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Abstract

In this work a formulation for rod structures able to consider coupled geometric and constitutive
sources of nonlinearity in both the static and the dynamic range is developed. Additionally, it
is extended for allowing the inclusion of passive energy dissipating elements as a special rod
element and geometric irregularities as a full three-dimensional body connected to the framed
structure by means of a two-scale model.
The proposed formulation is based on the Reissner-Simo geometrically exact formulation for
rods considering an initially curved reference configuration and extended to include arbitrary
distribution of composite materials in the cross sections. Each material point of the cross sec-
tion is assumed to be composed of several simple materials with their own thermodynamically
consistent constitutive laws. The simple mixing rule is used for treating the resulting composite.
Cross sections are meshed into a grid of quadrilaterals, each of them corresponding to a fiber
directed along the axis of the beam. A mesh independent response is obtained by means of the
regularization of the energy dissipated at constitutive level considering the characteristic length
of the mesh and the fracture energy of the materials. Local and global damage indices have
been developed based on the ratio between the visco elastic and nonlinear stresses.
The consistent linearization of the weak form of the momentum balance equations is performed
considering the effects of rate dependent inelasticity. Due to the fact that the deformation map
belongs to a nonlinear manifold, an appropriated version of Newmark’s scheme and of the it-
erative updating procedure of the involved variables is developed. The space discretization of
the linearized problem is performed using the standard Galerkin finite element approach. A
Newton-Raphson type of iterative scheme is used for the step-by-step solution of the discrete
problem.
A specific element for energy dissipating devices is developed, based on the rod model but re-
leasing the rotational degrees of freedom. Appropriated constitutive relations are given for a
wide variety of possible dissipative mechanisms.
A two–scale, global and local, approach is used for considering local geometric irregularities. At
global scale level, all the elements of the model are prismatic rods. For the geometric irregu-
larity, an amplified view of the corresponding element is carried out, constructing a fully three-
dimensional model which constitutes the local scale level. The dimensional–coupling between
scales is performed through surface–interfaces. An iterative Newton–Raphson scheme which
considers the interaction between scales is developed even in the nonlinear dynamic range.
Several numerical examples have been included for the validation of the proposed formulation.
The examples include elastic and inelastic finite deformation response of framed structures with
initially straight and curved beams. Comparisons with existing literature is performed for the
case of plasticity and new results are presented for degrading and composite materials. Those
examples show how the present formulation is able to capture different complex mechanical
phenomena such as the uncoupling of the dynamic response from resonance due to inelastic
incursions and suppression of the high frequency content. The study of realistic flexible pre-cast
and cast in place reinforced concrete framed structures subjected to static and dynamic actions
is also carried out. Detailed studies regarding to the evolution of local damage indices, energy
dissipation and ductility demands are presented. The studies include the seismic response of
concrete structures with energy dissipating devices. Advantages of the use of passive control
are verified. Finally, examples showing the capabilities of the developed two–scale approach in
predicting the elastic and inelastic dynamic responses of structures with local irregularities are
included.
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Chapter 1

Introduction

The three dimensional nonlinear analysis of rod structures has captured the interest of many
researchers and practitioners during the past decades and currently it still constitutes a very
active branch of research in structural analysis [81]. In the case of civil engineering structures
and some flexible mechanical components, reduced or one–dimensional (1D) formulations for
structural elements appear as a solution combining both, numerical precision and reasonable
computational costs [258, 260] when compared with fully three-dimensional (3D) descriptions of
the structures.
Many contributions have been focused on the formulation of geometrically consistent models
of beams undergoing large displacements and rotations, but considering that the material be-
havior remains elastic and, therefore, employing simplified linear constitutive relations in terms
of cross sectional forces and moments [299, 174]. Most of the recent works in this field invoke
the formulation and the numerical implementation proposed Simo et al. [362, 363, 365], which
generalize to the three-dimensional dynamic case, by means of an appropriated parametriza-
tion of the rotational part of the kinematics, the formulation originally developed by Reissner
[333, 332]. This formulation employs a director type approach in describing the configuration of
the beam cross sections during the motion, considering finite shearing and finite extension, as
described by Antman in Ref. [11]. The so called Reissner–Simo geometrically exact rod theory
consider a straight and unstressed rod as reference configuration and the hypothesis of plane
cross sections. The resulting deformation map can be identified with elements belonging to the
differential manifold obtained from the rotation group SO(3) and the canonical vector space R3.
Posteriorly, other authors have contributed in different manners to the enrichment of the finite
deformation theory of rods and also have applied it in a wide number of fields1; in this sense it
is possible to quote [89, 178, 187, 207, 198, 388] among many others.
On the contrary, constitutive nonlinearity in numerical models for beam structures has been
described by means of concentrated and distributed models, both of them formulated, in the
most cases, for small strain and small displacement kinematics hypothesis. In the first case,
inelasticity in a beam element is concentrated in springs located at the ends of a linear elastic
element [354]. Among the most common drawbacks in concentrated plasticity models, one has
to considers that transversal force-moment interaction is ignored. Moreover, the cross sectional
properties of the rod elements require a calibration based on experiments and usually the range
of application of the obtained constitutive relations is rather limited due to the fact that specific
hysteretic rules have to be defined for each type of cross section. If a new cross sectional shape or
reinforcement configuration is employed in a structure, additional hysteretic models have to be

1A more complete review of the state of the art in the topics here mentioned is given in §2 of the present work.
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provided. In the second case, distributed models alow to spread the inelastic behavior along the
element, evaluating the constitutive equations at a fixed number of cross sections along the rod’s
axis. Further enhancement in the analysis of the mechanical response of structures is obtained
considering inhomogeneous distributions of materials on arbitrarily shaped cross sections [113].
In this case, the procedure consists into obtaining the constitutive relationship at cross sectional
level by means of integrating on a selected number of points corresponding to fibers directed
along the beam’s axis [390]. Thus, the mechanical behavior of beams with complex combinations
of materials can be simulated [36]. The employment of fibers allows predicting a more realistic
strain-stress state at the cross sectional level, but it requires the definition of uniaxial constitu-
tive laws for each material point. In most cases, both types of models, the concentrated and the
distributed ones, have been formulated under the hypothesis of infinitesimal deformation and
commonly, inelasticity in the fibers is restricted to the component of the stress tensor acting
perpendicular to the cross section; maintaining the other components (shear stresses) in the
elastic range. Moreover, the thermodynamical basis of the constitutive equations are usually ig-
nored [36]. In general, when materials with softening are considered, the numerical solutions are
affected by strain localization. A technique based on the regularization of the energy dissipated
at any material point [258] ensures that the whole structural response remains objective, but
the length of the zone where softening occurs is still mesh dependent. Other approaches based
on the use of strong discontinuities at a micro-scale have been recently considered [25]. Only a
few works have been carried out using fully geometric and constitutive nonlinear formulations
for beams, but they have been mainly focused on perfect plasticity [347, 361] and on the static
analysis of the structures [151].
An important effort has been devoted to develop time–stepping schemes for the integration of
the nonlinear dynamic equations of motion involving finite rotations. The main difficulty arises
in the fact that the deformation map takes values in the differentiable manifold S0(3)×R3 and
not in a linear space, as it is the case in classical dynamics. An implicit time–stepping algo-
rithm is developed in Ref. [365] extending the classical Newmark’s scheme to S0(3), obtaining
a formulation similar to that of the linear case. In the same work, the consistent linearization
of the weak form of the balance equations yields to a tangential inertia tensor, nonsymmetric
in the rotational components. Again, additional research have been carried out by a number of
authors in this field e.g. [183, 245, 244].
Newmark’s family of implicit schemes fails to preserve certain conservation laws of the mo-
tion, such as the total energy and momentum of nonlinear Hamiltonian systems, producing
numerical (fictitious) dissipation [82, 371]. A further improvement in the development of robust
time–stepping schemes is provided by the energy-momentum conserving algorithms [372]. These
algorithms have been extended to the rotation group by Simo et al. in Ref. [373] and applied to
the nonlinear dynamic problems of rods, shells and rigid bodies. The attention recently captured
by these methods rely on the potential applications and the algorithmic stability gained with
them. For example, a list of representative works could be [23, 21, 46, 182, 189, 340] (see also
§2.1.3).
More recently, attention have been turned towards variational integrators i.e. algorithms formed
from a discrete version of Hamilton’s variational principle [226]. For conservative systems usual
variational principles of mechanics are used, while for dissipative or forced systems, the Lagrange-
d’Alembert principle is preferred. The main properties that make them attractive are: for the
conservative case they are symplectic [252] and momentum conserving and permit the systematic
construction of higher order integrators with remarkably good energy behavior. A summary can
be found in [227, 253, 254]. At the author’s knowledge, this type of methods have not been
formally applied to the present rod theory.
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The above topics about nonlinear problems in rod theories can be seen as free of local irregular-
ities in the sense explained in the following section.

Local irregularities

On one hand, modern practice in engineering permits designing structures for forces lower than
those expected from the elastic response on the premise that the structural design assures signif-
icant energy dissipation potential and, therefore, the survival of the structures when subjected
to severe accidental loads such as those derived from earthquakes [161]. Frequently, the dissipa-
tive zones are located near the beam–column joints and, due to cyclic inelastic incursions, some
structural members can suffer a great amount of damage. A limited level of structural damage
dissipates part of the energy induced by earthquakes and uncouples the dynamic response from
resonance offering a certain protection [260], however, the large displacements can also increase
the second order effects such as the so called P−∆ effect in seismic engineering. Moreover, these
deformations can produce irreparable damage in those members.
Additionally, in the last decades new concepts for the design of building, based on the manipu-
lation of the energy dissipation, have improved the behavior of the structures providing higher
levels of safety for the occupants and the buildings. The new techniques are based on adding
devices to the buildings with the main objective of dissipating the energy demand imposed by
the dynamic actions alleviating the ductility demand on primary structural elements and de-
creasing the dynamic response [161, 382]. The devices can be installed in new or in existing
structures and can be used in seismic design or rehabilitation. The purpose is to control the
dynamics response of the buildings by means of a set of dissipating devices which constitutes
the control system, adequately located in the structure.
In general, control systems can be classified in four groups detailed in §2.3.1. However, in this
work attention is focused on passive energy dissipating devices (EDDs) which is a well under-
stood technique and its use is widely accepted by the engineering community. EDDs are devices
located throughout the structure to absorb and dissipate an important part of the energy input
induced in the structure by earthquakes or other dynamic actions (see Fig. 1.1a). EDDs are
considered as a local irregularity due to the fact that energy dissipation has place on a specific
point in the element and the dissipative characteristic are designed in a manner that it permits
to improve the global dynamics of the whole structure.

Figure 1.1: Local irregularities. (a): Energy dissipating devices added as diagonal elements to
the bare frame. (b): Geometric irregularity constituted by the non-monolithic connecting joint.

On the other hand, fully 3D numerical technics provide the most precise tools for the simula-
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tion of the nonlinear behavior of RC buildings, although the computing time required for real
structures makes their applications unpractical. Considering that a great part of the elements
in buildings are prismatic, one–dimensional formulations appear as a solution combining both,
numerical precision and reasonable computational costs [258, 260]. However, in spite of the fact
that a great amount of work has been devoted to the development of refined nonlinear models
for beam structures, almost (if not all) of them are subjected to the following limitations: (i)
beam structures present either fully monolithic connections among elements [200]. Therefore,
structural failures due to damage inside of the nodes, such as those occurred in poorly designed
RC buildings [54, 55] or in the so called semi–rigid connections of steel structures [17], often
are not properly considered. (ii) The shape and the mechanical properties of the cross sections
present smooth variations along an element and, therefore, they show serious difficulties in re-
producing structural behaviors dominated by local changes in the geometry e.g. those in the
connecting joints of precast structures [315, 316], (see Fig. 1.1b).
Some authors model the effects of local irregularities employing plastic hinge models reflecting
the mechanical characteristics of the connecting joints [221], although this approach has the
previously described limitations. An alternative approach, combining precision, generality and
computational efficiency consists of coupling reduced 1D and full 3D numerical models for dif-
ferent parts of the structure. The connection between models of different dimensions is done
through interface–surfaces. Some research in this direction have been carried out by in et al.
[158, 280, 359, 358] among others.

1.1 Problem statement

In Summary, a modern numerical approach to the structural analysis and design of three-
dimensional rod–like engineering structures should take into account the following aspects:

(i) Geometric nonlinearity. Changes in the configuration of rod–like in structures (and flexible
mechanisms) due to the action of static and/or dynamic actions produces additional stress
fields which should be considered in a coupled manner with

(ii) Constitutive nonlinearity. In this case, inhomogeneous distribution of inelastic materials
can appear in many structures. The obtention of the reduced cross sectional forces and
moments as well as the estimation of the dissipated energy should be considered in a
manner consistent with the thermodynamic basis of the constitutive theory. The success
in determining the energy dissipation for softening structures constitutes an excellent point
of departure for the application of

(iii) Modern control techniques, which allows to improve the dynamic response of structures by
means of the strategic incorporation of devices contributing to the control of displacements
and to the alleviation of the ductility demand on primary structural elements.

(iv) Geometric irregularities. In the case that geometric irregularities in framed structures are
detected it should be desirable to have an appropriated and efficient numerical tool able
to determine their effects on the global structural response.

At the author’s knowledge the present state of the art in rod analysis have provided a set of
partial solutions to the above mentioned requirements, however, there is not an unified approach
covering all the aspects in a manner consistent with the principles of the continuum mechanics.
The following list addresses in a summarized manner (see §2 for a more complete survey) the
main lacks and drawbacks in the existing developments:
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(i) Finite deformation models for rod–like structures, particularly the geometrically exact
ones, even when are highly sophisticated and strongly founded formulations, in most of
the cases have been restricted to the elastic case or when they consider inelasticity it
corresponds to plasticity in the static case.

(ii) Most of the formulations for considering inelasticity in rods are developed under the small
strain assumption, constitutive laws are valid for specific geometries of the cross sections
or the thermodynamical basis of the constitutive theories are violated; limiting severely
the possibility of obtaining good characterizations of the mechanical properties of the
structures in the nonlinear dynamic range.

(iii) Several research and commercial codes have included special elements for EDDs, however,
the obtained formulations inherit the drawbacks of points (i) and (ii) of the present list.

(iv) In general, a not too much large list of works can be said to be advocated to the numerical
treatment of geometric irregularities in a manner consistent with the continuum mechanics.
The references provided in §2.3.2 permit to affirm that most of the works are restricted to
the static and elastic analysis of problems under infinitesimal deformation.

Taking into account the above list the following section presents the objectives of the present
work, which tries to be a contribution to the improvement of those aspects in a unified form
consistent with the laws of the continuum mechanics and oriented to the obtention of a software
package able to be applied in practical (realistic) cases of study.

1.2 Objectives

The main purpose of this thesis consists in developing a formulation for rod structures able to
consider in a coupled manner geometric and constitutive sources of nonlinearity in both static
and dynamic range. Additionally, the same formulation must be extended for allowing the inclu-
sion of passive energy dissipating elements as a special case of rods and geometric irregularities
as a full three-dimensional body connected to the framed structure.
To this end, the initially curved and twisted version of the Reissner–Simo geometrically exact
formulation for rods is expanded to consider an inhomogeneous distribution of inelastic, prob-
ably rate dependent, composite materials on arbitrarily shaped, but planar2, cross sections.
Constitutive laws for the materials should be developed consistently with the kinematics of the
rod model and with the thermodynamical laws3. A particular case of this model for rods is
considered for the development of specific elements representing energy dissipating devices. Ad-
ditionally, if local geometric irregularities appear in the structure, a two–scale approach (global
and local) is developed in order to study the nonlinear response of RC framed buildings. At
global scale level, all the elements of the finite element model are rods; however, if (locally) geo-
metric irregularities appear, a zoom view of the corresponding element is performed, consisting
in a fully 3D model which constitutes the local scale level. The dimensional–coupling between
scales is performed through surface–interfaces imposing the kinematic hypothesis assumed for
the beam model.
In this sense, the following list of objectives can be defined according to their nature:

(i) Theoretical objectives

2Cross sectional warping is not considered, avoiding to include additional warping variables in the formulation
or iterative procedures for recovering the corrected cross sectional strain and stress fields.

3This aspect can be exceptionally important in procedures currently applied in the earthquake resistant design
of structures.
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(i.1) To preform a deep study and theoretical analysis of the continuum based theory of
rods under the Reissner–Simo hypothesis.

(i.2) To deduce explicit expressions for the strain measure and for the objective measure
of the strain rate acting on each material point of the cross section, in terms of the
variables defining the deformation map, its derivatives and the geometry of the beam
cross section.

(i.3) Based on (i.1) develop rate dependent and independent inelastic constitutive laws
for simple materials lying on points on the cross sections in terms of the First Piola
Kirchhoff stress tensor and the corresponding energetically conjugated strain measure.
The developed laws have to be consistent with the kinematics of the rod model and the
laws of the thermodynamics, and allow to describe plastic deformations and damage.

(i.4) To include several simple materials as the components of a composite associated to a
point of the cross section. To this end, an appropriated version of the mixing theory
for composites has to be deduced for the case of the present rod theory.

(i.5) To develop explicit expressions for the stress resultant and stress couples which con-
sider inelasticity.

(i.6) To propose local and global damage indices able to describe the evolution of the
remaining load carrying capacity of complex structures.

(i.7) To carry out the consistent linearization of the weak form of the balance equations
including the effects of the rate dependent inelasticity existing at material point level
considering both, the spatial and material updating rules for the rotational field (see
§A). In this way, the corresponding rate dependent and independent parts of the
tangential stiffness should be deduced and added to the loading and geometric terms.

(i.8) To develop a specific rod element adapted for modeling the mechanical behavior of
energy dissipating devices incorporated to the full geometric and constitutive rod
theory.

(i.9) To provide appropriated one–dimensional force-displacement and/or moment-curvature
relations for the description of the nonlinear hysteretic behavior of EDDs.

(i.10) To develop an appropriated theoretical framework for the construction of a two–
scale model of rod structures with local geometric irregularities. To this end, the
formal definition of the scales of the problem as well the hypothesis for the interaction
between them have to be provided.

(ii) Numerical objectives

(ii.1) To provide numerical algorithms for the integration of the constitutive laws devel-
oped for simple materials as well as for the obtention of the mechanical behavior of
composites.

(ii.2) To perform the time discretization according to the Newmark’s method of the lin-
earized problem defined in (i.7). Newmark’s scheme has been preferred due to the
fact that the present study is focused on dissipative structures and its implementation
in a standard finite element code is rather straightforward. Additionally, considering
that the key idea in numerics is to implement the solution procedure in an iterative
Newton–Raphson scheme, iterative updating procedures, consistent with the nonlin-
ear nature of the manifold R3×SO(3), have to be developed for the strain and strain
rate measures defined in (i.2).

(ii.3) In the category of an additional proposal, some theoretical development about the
application of variational integrators for the time discretization of the action integral
of the system is presented.
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(ii.4) To develop an appropriated cross sectional analysis, based on the fiber discretization
of the cross sections. Each fiber must has associated a composite (probably with
one or more inelastic components) material. The calculation of the damage indices at
material point and cross sectional level should also developed at this stage. Moreover,
the procedure for obtaining the cross sectional tangential stiffness should be provided.

(ii.5) To perform the discretization in space of the linearized problem using the Galerkin
finite element interpolation of the deformation variables and their linearized forms.
Both, spatial and material updating rule for rotations should be analyzed.

(ii.6) To provide the explicit expression for the iterative Newton–Raphson scheme which
includes the cross sectional analysis and the Newmark’s updating scheme for the
dynamic variables.

(ii.7) To develop an integration algorithm for the constitutive relation assigned to the
energy dissipating devices and a method for obtaining the total force or the total
moment in the devices for a given strain field.

(ii.8) To implement the numerical coupling between scales for the two–scale approach de-
veloped, for the case when local geometric irregularities are present. Starting from
the full 3D stress state existing in the local model, cross sectional forces and moments,
required at global level, should be recovered by integrating at the surface–interface
in an analogous manner as for the cross sectional analysis of beams.

(ii.9) To develop an iterative Newton–Raphson scheme based on the displacement method,
which considers the interaction between scales to obtain the response at global level
even in the nonlinear dynamic range. The tangential stiffness of the local model
should be obtained numerically applying the perturbation method and obtaining the
corresponding reaction forces reduced to the degree of freedom of the global level.

(ii.10) To implement (computationally) a parallelized version of the master–slave approach
for managing the two–scale problem, where the global scale problem acts as the mas-
ter, sending a trial displacement field to the local scale models (slaves) and then
receives the corresponding internal forces and tangential tensors. The iterative pro-
cess is finished when the global convergence is achieved. The communication between
processes should be carried out by mean of an appropriated library of communica-
tion. In this way, minimal intervention on existing codes specific for beams and solids
should be required.

(iii) Practical objectives

(iii.1) To validate the proposed formulation through a set of linear elastic numerical exam-
ples in the static and dynamic cases which are compared with results provided in
existing literature.

(iii.2) To validate the proposed formulation throughout an extensive set of numerical ex-
amples (statics and dynamics) covering inelastic constitutive equations. The results
should be compared with those provided in existing literature when possible.

(iii.3) To validate the obtention of a mesh independent response when materials presenting
softening are considered.

(iii.4) To verify the ability of the proposed model for predicting the ultimate load, ductility
and other relevant engineering parameters when compared with experimental tests
on real structures.

(iii.5) To evaluate the ability of the proposed damage indices for predicting the load carrying
capacity of structures.



8 Chapter 1. Introduction

(iii.6) To study the static and dynamic (even seismic) response of real two and three-
dimensional reinforced concrete structures comparing the results obtained when full
nonlinearity is not considered in the numerical simulations.

(iii.7) To study the possibility of improving the dynamic (seismic) response of real civil
engineering structures by means of using energy dissipating devices.

(iii.8) To study the nonlinear static and dynamic response of precast concrete structures
including EDDs.

(iii.9) To investigate the nonlinear static and dynamic response of a precast concrete struc-
ture with non ductile connecting joints using the developed two–scale approach.

1.3 Layout

The organization of the present document is as follows:
Chapter 2 is regarded to perform a state of the art review in nonlinear analysis of rod–like
structures. Section 2.1 is dedicated to the formulations developed for the treatment of geomet-
ric nonlinearity; in §2.1.1, §2.1.2 and §2.1.3 material related to large rotations, research related
to rod models and time–stepping schemes on the rotational manifold are reviewed. §2.2 is de-
voted to the constitutive nonlinearity in rod–like structures including §2.2.2 about cross sectional
analysis. Section 2.3 is dedicated to local irregularities. The review of nonlinear methods for
the determination of the response of engineering structures equipped with energy dissipating
devices is performed in §2.3.1 including a characterization of the most commonly used types of
devices. §2.3.2 is dedicated to the review of the approaches followed for the numerical treatment
of local geometric irregularities.
Chapter 3 is devoted to the presentation of a geometrically exact formulation for rods capable of
undergoing finite deformation based on that originally proposed by Reissner [333, 332] and Simo
[362]. In Section 3.1 a detailed description of the kinematic of the model is carried out with
special attention paid on the formal definition of the configuration and placement manifolds as
well as their tangent spaces. In §3.2 to §3.3, after calculating the deformation gradient tensor,
the strain and strain rate measures at both, material point and dimensionally reduced levels,
are described along with the corresponding conjugated stress measures deduced using the power
balance condition in §3.4. The rod’s equations of motion are deduced starting from the local
form of the linear and angular balance conditions. An appropriated (weak) form for numerical
implementations is deduced in §3.5 and §3.6, for the nonlinear functional corresponding to the
virtual work principle. Finally, hyperelastic cross sectional constitutive laws and load types are
treated in §3.7 and §3.8, respectively.
Chapter 4 treats on constitutive nonlinearity. Section 4.1 provides the a general view of the
approach followed for considering softening materials and strain localization in rod elements.
Sections 4.2.2 to 4.2.3 are devoted to the development of specific damage and plasticity models
for rods including viscosity which are formulated in terms of the material forms of the strain and
stress vectors existing on the face of a given cross section. In §4.3 the mixing rule (in its parallel
version) for composite materials is presented in a way such that it is able to be included for
simulating arbitrary distributions of inelastic materials on the cross section. In §4.4 the explicit
expressions for the calculation of the stress resultant and stress couples (cross sectional forces)
are given along with the deduction of the corresponding cross sectional tangential stiffness which
includes rate dependent effects. In §4.5 local and global damage indices able to estimate the
remaining load carrying capacity of damaged structures are described.
Nonlinear problems in continuum mechanics are solved by linearizing an appropriated form of
nonlinear equilibrium equations and iteratively solving the resulting linear systems. Chapter 5
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is concerned with the linearization of the virtual work functional, in a manner consistent with
the geometry of the configurational manifold. Formally, the linearization procedure is carried
out using the directional derivative. In Section 5.1.1 some basic linear forms are calculated,
in §5.1.2, §5.1.3 and §5.1.4 the consistent linearization of the strain, spin variables and strain
rate measures is performed. Section 5.2 is devoted to the linearization of the stress resultant
and couples considering rate dependent inelastic constitutive equations for composite materials.
Finally, in §5.3 to §5.4 the consistent linearization of the virtual work functional is deduced,
which yields to the consistent tangential tensors including rate dependent (viscous) and rate
independent contributions. In all the cases, linearization is preformed considering both the ma-
terial and the spatial rule for updating rotations.
Chapter 6 concerns with the presentation of a time–stepping scheme consistent with the kine-
matic assumptions made for the present rod model. In the case of the rotational part of the
motion, explanations and new developments follow the procedures originally proposed by Simo
and Vu-Quoc [365]. In Section 6.1 the formulation of the problem is presented along with the
Newmark algorithm for rotational variables (§6.1.1), the iterative updating procedure for the
configuration variables and their related kinematical objects (§6.1.2, §6.1.3) as well as the strain
and strain rate measures §6.1.4 (§6.1.4.a – §6.1.4.d) are presented. Section 6.2 is dedicated to
obtain the semi–discrete version of the linearized form of the virtual work principle. The (semi)
discrete out of balance force terms are given in §6.2.1 and the discrete tangential stiffness are
obtained in §6.2.2.a to §6.2.2.c. More modern energy-momentum conserving methods are re-
viewed in §6.4 in view of obtaining a dissipative scheme based on constitutive damping. Finally,
in Section 6.5 the possibility of applying variational integrators obtained from the Hamilton
principle for developing time–stepping schemes is explored.
Chapter 7 describes the spatial discretization based on the Galerkin isoparametric finite element
(FE) approximation of the time discretization presented in §6 for the variational equations de-
scribed in §5.3.3. The applied procedure yields to a system of nonlinear algebraic equations well
suited for the application of the Newton iterative method. Sections 7.5 to 7.3 are dedicated to
the spatial updating of the rotational field. While, in §7.4 to §7.6 the material updating rule is
used. In both cases, the obtained inertial and viscous tangential matrices are consistent with the
Newmark procedure previously described. Finally, Section 7.7 is devoted to the implementation
of the iterative Newton–Raphson scheme and the cross sectional analysis.
In §8 the inclusion of local irregularities in the full constitutive and geometric nonlinear rod
model is considered. Section 8.1 is devoted to the development of a special FE for energy dis-
sipating devices and §8.2 covers the development of a two–scale (global in and local; see §8.3
and §8.4, respectively) approach for the numerical treatment of geometric irregularities. In the
second case, the resulting step-by-step iterative algorithm is implemented in a multiprocessor
scheme in §8.5. In both cases, advantages and limitations of the proposed approaches are dis-
cussed in §8.5.4.
Chapter 9 presents the results obtained from numerical simulations showing the ability of the
developed formulations in simulating the full geometric and constitutive nonlinear dynamics of
rod–like structures including local irregularities. §9.1, §9.2 and §9.3 are devoted to the validation
of the present version of the geometrically exact rod model in the linear elastic and inelastic
cases. The following sections cover studies of real engineering structures including reinforced
concrete structures in §9.4, precast structures with EDDs subjected to earthquake excitation in
§9.5 and local irregularities in §9.6.
Finally, in Chapter 10 conclusions abut the works performed are presented. A detailed survey
is given in §10.1 and an additional section (§10.2) is included for considering further lines of
research born from the results of the present work.
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The present work is complemented with the Appendix A including technical details pertaining
to the large rotations theory, which are necessaries for the formulation of geometrically exact
models for rod, therefore, for readers non necessarily familiarized with that theory it should be
recommendable to read it before the rest of the work.

Notation

Scalar quantities are denoted using lightfaced letters with italic or calligraphic style or lightfaced
mathematical symbols. First order tensors are denoted using lightfaced letters or symbols but
equipped with the over-head hat •̂. Tensors of greater order are written in boldface. A special
case are skew–symmetric tensors which boldfaced and equipped with an over-head tilde •̃. Upper
or lower case letters are used for scalars, vectors or tensors, but subjected to the previously
defined convention. The symbol Diag[a1, a2, a3] is used to denote a diagonal matrix constructed
from the values a1, a2, a3 ∈ R. The superscript T is used to denote the transpose of a given
quantity. The superscripts ’m’ and ’s’ are used for distinguish quantities in the material or
spatial description, respectively. In the same manner, the superscripts ’me’, ’mt’ are used for
denoting the material description of the elastic and tangential version of a tensorial quantity,
respectively. Analogously, the superscripts ’se’, ’st’ are used for denoting the spatial description
of the elastic and tangential version of tensorial quantities. Other sub and superscripts are
employed in several quantities through the text, but they are defined the first time they are
used. Summation index convention applies through the text. Latin indices, such as i, j, range
over the values: {1, 2, 3} and Greek indices, such as α, β, range over the values: {2, 3}. If it
is not the case, specific ranges are given in the text. The absolute value is denoted by Ab(•)
and the symbol 〈±•〉 = 1/2(Ab(•)±•) denotes the McAuley’s function. The inner (dot), cross,
and tensorial products are denoted by means of the symbols (·), (×) and (⊗), respectively.
Partial differentiation of the quantity (•) with respect to the variable x is denoted as (•),x and
the overhead dot is used to denote the time derivative i.e. ˙(•). Other operators and specific
symbols are introduced in Appendix A.



Chapter 2

State of the art review

The three dimensional nonlinear dynamic analysis of beam structures currently constitutes a
very active branch of research in structural analysis [81]. In the case of engineering structures
and flexible components of mechanical systems, one–dimensional formulations for structural
elements appear as a solution combining both, numerical precision and reasonable computational
costs [258, 260]. Numerous contributions have been devoted to the formulation of geometrically
consistent models of beams undergoing finite deformation, but employing simplified linear cross
sectional constitutive relations. By the other hand, constitutive nonlinearity has been described
by means of concentrated and distributed models, formulated in the most cases, considering
the small strain hypothesis. Works coupling geometric and constitutive nonlinearity have been
mainly focused on plasticity.
Moreover, modern engineering permits designing structures on the premise that the design
assures significant energy dissipation potential and, therefore, the survival of the structure when
subjected to severe accidental loads [161]. Frequently, the dissipative zones are located near the
beam-column joints and, due to dynamic cyclic inelastic incursions, some structural members
can be be severely damaged. If the damage is limited, it contributes to dissipate a part of the
energy induced by the action and prevents resonance offering a certain protection, however,
larger displacements can also increase the second order effects.
Recently, new design concepts for building based on the manipulation of the dissipation, have
provided higher levels of safety for the occupants and the buildings. The new techniques are
based on adding devices to the buildings with the main objective of dissipating the energy
demand imposed by the dynamic actions alleviating the ductility demand on primary structural
elements [382].
In what regard to beam models, the following limitations can be mentioned: (i) they usually
present fully monolithic connections among elements [200]. Therefore, structural failures due to
damage inside of the nodes often are not properly considered. (ii) The shape and the mechanical
properties of the cross sections present smooth variations along an element and then, structural
behaviors dominated by local changes in the geometry are not well reproduced.
In Summary, a modern approach to the analysis and design of framed structures should take
into account in a coupled manner, geometric and constitutive sources of nonlinearity in both
static and dynamic ranges. Additionally, it should be possible to describe, include and analyze
local irregularities such as sudden changes in the geometry or elements specifically designed to
act as dissipative points in the structure.
The present chapter deals with an extensive (as much as possible) state of the art review in
several topics of the nonlinear analysis of rod structures and the treatment given to the local
irregularities. As it can be though, this review does not intend to be exhaustive due to the large
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amount of works existing in most of the topics here covered, however, the provided reference
list naturally complements the works quoted throughout the text. The exposition is given in
such a way that its reading, along with the reviewing of the quoted works, should provide an
acceptable basis for the compression of the new contributions of the present work, which are
declared in the objectives of Chapter 1.

2.1 Geometric nonlinearity

Geometric nonlinearity in rod elements has been developed by two different approaches:

(i) The so called inexact or co–rotational formulations which considers arbitrarily large dis-
placements and rotations but infinitesimal strains and

(ii) the geometrically exact formulations obtained from the full three dimensional problem by
a reduction of the dimensions by means of the imposition of appropriated restrictions on
the kinematics of the displacement field.

A complete survey about the co–rotational techniques for rod elements is carried out in the
textbooks of Crisfield [107] Ch. 7 and [108] Ch. 17 for static problems and 24 for dynamic
problem, it also includes in Ch. 16 a complete review of the mathematical treatment for large
rotations from an engineering point of view. Other classical textbooks such as [42, 170] consider
the formulation of beam elements with different degrees of detail. Specific research papers are
also available e.g. in [106] the dynamics of the co–rotated beam models is investigated. Hsiao
et al. in [169] develop a consistent co–rotational finite element formulation for geometrically
nonlinear dynamic analysis of 3D beams. An application to the three-dimensional continua is
given in [290]. Behdinans and Tabarrok [53] use the updated Lagrangian method to obtain a
finite element solution for flexible sliding beams. In [424] Xue and Meek study the dynamic
response and instability of frame structures using a co–rotational formulation for beams and
columns. Battini and Pacoste in [45] develop co–rotational beam elements with warping effects
for the study of instabilities problems.
On the other hand, attending to the number of works devoted to the topic and the wide range
of the applications, probably the more successful formulations are the geometrically exact ones
[256]. The theoretical basis for the process that allows to make the dimensional reduction for
obtaining rod models (independent of the specific constraints imposed on the 3D displacement
field) can be consulted in the book of Antman [11]. Additional works of the same author covering
invariant dissipative mechanism for the motion of artificially damped rods and visco elastic rods
can be reviewed in [13, 12] and references therein. A theoretical discussion about the dimen-
sional reduction using nonconvex energy is given in [85]. Additionally, a complete work about
the exact theory of stress and strain in rods and shells can be consulted in the text of Ericksen
and Truesdell [124].
Other approaches such as the core-congruential formulation for geometrically nonlinear beam
finite elements can also be consulted, for example in the work of Felippa et al. [131]. In [243] a
force formulation for non–prismatic Timoshenko beams is presented. Healey and Mehta in [162]
study the computation of the spatial equilibria of geometrically exact Cosserat rods. Zupan
and Saje in [429] develops a finite-element formulation of geometrically exact rods based on
interpolation of strain measures; in [432] the linearized theory is considered and in [430] a rod’s
formulation based on curvature is presented. In [353] a rod element based on the interpolation of
the curvature is developed. Hjelmstad and Taciroglu [165] develop a mixed variational methods
for finite element analysis of geometrically nonlinear Bernoulli-Euler beams. Complementarily,
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theoretical works are also available: Izzuddin in [197] analyzes some conceptual issues in geo-
metrically nonlinear analysis of rod structures. In [220] the dynamics of stretchable rods in the
inertial case is studied and in [233] Liu and Hong also study the finite deformation dynamics
of three-dimensional beams. ÃLuczko [242] investigates the bifurcations and internal resonances
in rods. Friedemann in [136] presents a variational approach to obstacle problems for shearable
nonlinearly elastic rods. Rey [334] study the mathematical basis of the symmetry breaking, av-
eraging and elastic rods with high intrinsic twist. The nonlinear equations for thin and slender
rods are developed in [326, 331], respectively. Rosen et al. [342] develop a general nonlinear
structural model of a multirod systems. Wisniewski [404] uses a finite rotation quadrilateral
element for multi-layer beams. A theoretical work about constitutive relations for elastic rods
is developed by O’Reilly in [311]. Simmonds [360] discusses about the possibility of developing
a nonlinear thermodynamic theory of arbitrary elastic beams which including the mathematical
requirements for the constitutive relations.
Moreover, the most invoked geometrically exact formulation is that originally proposed by Simo
[362] which generalize to the three dimensional dynamic case the formulation originally de-
veloped by Reissner [333, 332] for the plane static problem. According to the author, this
formulation should be regarded as a convenient parametrization of a three-dimensional exten-
sion of the classical Kirchhoff–Love1 [234] rod model due to Antman [11], employing a director
type approach for describing the configuration of the beam cross sections during the motion,
which allows to consider finite shearing and finite extension. In this formulation, the concepts
of rotations and moments have the classical meanings. Rotations are actions of the orthogonal
group on the Euclidean space, which do not commute. This formulation avoids the alternative
approach employing semi tangential rotations and moments (see Ref. [321]). Posteriorly, Simo
and Vu-Quoc [363, 365] implemented the numerical integration of the equations of motion of
rods in the context of the finite element framework for the static and dynamic cases. They have
considered a straight and unstressed rod as reference configuration and the hypothesis of planar
sections, neglecting any kind of warping.
One of the main conceptual difficulties arising in the Reissner–Simo formulation is given by
the fact that the resulting configuration space for the rod in no longer a linear space but a
infinite-dimensional nonlinear differentiable manifold. Concretely, the mentioned manifold is
obtained by the pairing R3 × SO(3), where SO(3) is the rotation group [16] (see Appendix A).
Therefore, the application of the standard techniques of continuum mechanics and numerical
methods has to be carried out taking into account the intrinsic non–additive nature of a part
of the kinematics of the rods. For example, after the linearization of the weak form of the
equilibrium equations, the resulting geometric stiffness is non-symmetric away from equilibrium
but symmetry is recovered in the equilibrium configuration [391]. A deep analysis about this
and other aspects were provided by Simo in [371]. Other earlier works on finite deformation of
rod elements can be found in the works of Atluri and Vasudevan [29], Bathe and Bolourchi [41],
Iaura and Atluri [174, 173] and Meek and Loganathan [282] among others.

2.1.1 Large rotations

The fact that the configuration manifold of the rod model involves large rotations become
strongly desirable (if not compulsory) to dispose of an acceptable background in mathematics of
Lie groups, its associated Lie algebras and other topics related to rotations such as: parametriza-

1The Kirchhoff–Love formulation can be seen as the finite strain counterpart of the Euler formulation for
beams frequently employed in structural mechanics and civil and earthquake engineering application as it can be
reviewed in Refs. [36, 113].
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tion [394], linearization, configurational description of rotational motion, time derivatives [425]
and so on (see Appendix A).
Literature about the parametrization of the rotational motion can be found e.g. in the papers
of Bauchau and Trainelli [48], Trainelli [394], Bauchau and Choi [49], Argyris [15], Argyris and
Poterasu [16] and Grassia [148], among many others; about the coupling between large dis-
placements and rotations of displacement fields in solid mechanics in [28]; on the Lie group2

methods for rigid body dynamics in [92]. A survey about integration of differential equations
on manifolds3 can be reviewed in [68, 84]. A Lie-group formulation of kinematics and dynamics
of constrained multi-body systems is presented in [294].
Works about the parametrization of finite rotations in computational mechanics can be re-
viewed in [58, 71, 246, 283], for the specific case of shells Refs. [76, 104, 105, 188] are available.
Ibrahimbegović presents a discussion about the choice of finite rotation parameters in [181] and
the computational aspects of vector–like parametrization of three-dimensional finite rotations
are analyzed in [179]. Rhim and Lee [336] follow a similar approach for the vectorial approach
and the computational modeling of beams undergoing finite rotations. A formulation of the
rotational dynamics of rigid bodies using the Cayley Klein parametrization is presented in the
work of Cottingham and Doyle [103]. Gerardin and Cardona [142] employ a Quaternion algebra
for parameterizing the kinematics and dynamics of rigid and flexible mechanisms. Mcrobie and
Lasenby [281] review the J. Simo-Vu Quoc rods but using so called Clifford algebra. Park and
Ravani in [319] develop a smooth invariant interpolation of rotations. In [426] the representation
of finite rotation in nonlinear field theory of continuum mechanics is discussed.
In most of the works about parametrization of finite rotations, different versions of the so called
Rodrigues’s formula for the exponentiation of a vectorial quantity are presented. For example,
Ritto-Corrëa and Camotin in [338] develop a complete survey about the differentiation of this
formula and its significance for the vector-like parametrization of Reissner–Simo beam theory.
A careful analysis about the interpolation of rotations and its application to geometrically exact
rods is given by Romero in [341]. Sansour and Wagner [350] use a path independent approach
for the multiplicative updating of the rotation tensor in the analysis of rods and shells. A clas-
sical work about the parametrization of the three-dimensional rotation group is provided by
Stuelpnagel in Ref. [389].

2.1.2 Research related to the Reissner–Simo rod theory

A great amount of works on both theoretical and numerical implementation of the geometri-
cally exact formulations for beams have been developed starting from the Reissner–Simo works
[380]. Particularly, interesting developments have been carried out by Ibrahimbegović and Frey
to extend the formulation given in Ref. [362] to the case of a two dimensional curved refer-
ence configuration of the rod in [175] and by Ibrahimbegović4 [178] in the three dimensional
case; proposing alternative numerical treatments for the parametrization of rotations [181] and
applications to the optimal design and control of structures [193, 192]. Li [228] and Kapania
and Li [207, 208] develop a careful presentation of the initially curved and twisted rod theory
based on the principles of the continuum mechanics. Mäkinen [247] presents a total Lagrangian
formulation for geometrically exact rod elements, which does not presents singularities in the
rotational manifold.

2More theoretical works in the context of differential geometry can be consulted for e.g. [99] or the textbooks
of Dubrokin et al. [119] and Marsden and Ratiu [255].

3More specific works can also be consulted, e.g. Borri et al. in [67] presents general variational formulations
for dynamical problems, which are well suited to be implemented numerically.

4Both authors have also make contributions in the theory of shells with finite rotations [176, 177].
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Jelenić and Saje [198] develop a formulation based on the so called generalized principle of virtual
work, eliminating the displacement variables of the model and retaining only rotational degrees
of freedom, avoiding thus the shear locking phenomenon, previously investigated in [202], in the
numerical simulations. The same phenomenon has also been studied by Rubin [343] for thin
beams based on the Cosserat point theory. The usual discretization procedures applied in im-
plementing the strain measures in the finite element method violates the objectivity condition of
this tensor; Jelenić and Crisfield in Refs. [110, 199] propose a remedy for this problem. In [190]
several improvements in finite element implementations are addressed to ensure the invariance
of the continuum problem. Additional numerical work to obtain frame indifference of the strain
measurements in the numerical implementations have been carried out by Betsch and Steinmann
in [57], details about this specific subject can be found in Refs. [198, 199, 110].
A formulation equivalent to that proposed by Simo has been employed by Cardona and Gerardin
in [88] using an total Lagrangian updating rule for the rotational components. Cardona and
Huespe [89] have used this formulation for evaluating the bifurcation points along the nonlinear
equilibrium trajectory of flexible mechanisms with large rotations. Ibrahimbegović et al. in
[187, 180] for studying the buckling and post buckling behavior of framed structures. Nadler
and Rubin study the post buckling behavior of rods and frames using the theory of Cosserat
point in [295]. A comparative study between tangent and secant formulations of Cosserat beams
for the study of critical points is carried out by Pérez Morán [321] along with a generalization
of the original formulations allowing to use any kind of suitable parametrization for the ro-
tational field. By other hand, Sansour et al. in [349] develop a finite element approach for
studying the in plane chaotic motion of geometrically exact rods. Vu-Quoc and Li in [421] use
the Reissner–Simo formulation for studying the some complex phenomenon in the dynamics of
sliding geometrically-exact beams. Further, Vu-Quoc et al. [423, 422] extend the formulation
for considering the dynamics of geometrically exact sandwich beams/1D plates. Saje et al. [348]
study the instability of rod–like systems.
A very active research area closely connected to the development of geometrically exact rod
formulations is given by the analysis of flexible multi-body systems [328]. Advances in both
fields usually provide shearable results [33]. For example, Ambrósio [10] develops efficient de-
scriptions for the kinematics of joints for flexible multi-body systems and the same scheme can
be applied to rods; alternatively, [133] can also be consulted. In [185] rigid components and
joint constraints in dynamics of flexible multi-body systems with 3D rods is studied.
An additional improvement in reproducing more realistic strain fields on the cross section is
obtained starting from enhanced (more complex) kinematical hypothesis. For example, other
works based on alternative kinematic hypothesis allow to consider the warping of the cross
section [151, 372]. Particularly, Simo and Vu-Quoc in [370] develop a geometrically exact rod
model incorporating torsion-warping deformation. In spite of the fact that the mentioned theory
is exact, at cross sectional level the warping functions are taken from the small strain theory as
deduced in [195] starting from the Saint-Venànt’s principle. Petrov and Géradin in two works
develop a finite element theory for rods based on exact solutions for three-dimensional solids.
In [323] they present the geometrically exact nonlinear formulation and in [324] extend the pre-
vious work to the anisotropic case. However, even when the authors claim that the proposed
formulation is geometrically exact, i.e. without assumptions added to the kinematical ones, at
cross sectional level the small strain hypothesis is used for constructing the displacement field.
Another active research area is focused on designing time-integration schemes for nonlinear dy-
namics of flexible structural systems undergoing large overall motion. Taking the flexibility
into account allows a better representation of system behavior at higher operating speeds and
controlling the corresponding stress states [189]. By one hand, in certain circumstances it is de-
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sirable to develop time–stepping schemes able to reproduce conserved quantities of the motion
(see e.g. [252] and references herein) and by the other hand, considering that the finite element
method provides a poor estimate of the higher frequencies, for certain systems, it is desirable
to eliminate or reduce the contribution of higher frequencies in computed response of a system.
This is the main motivation for introducing numerical dissipation on higher modes. The next
section is devoted to the review of a number of relevant works related to the design and the
numerical implementation of time–stepping schemes applied to the dynamic of geometrically
exact rods undergoing finite deformations.

2.1.3 Time–stepping schemes on the rotational manifold

An important effort has been devoted to develop time–stepping schemes for the integration of
the nonlinear dynamic equations of motion involving finite rotations [87]. As in the static case,
the basic difficulty arises in the noncommutative nature of the group SO(3) [365]. A general
view of numerical integration schemes for both explicit and semi–implicit methods applied to
rotational motion can be consulted in [216, 217].
Simo and Vu-Quoc in [365] develop an implicit transient algorithm that extends the classical
Newmark formulae, stated in R3, to the rotation group S0(3), obtaining a formulation similar
to that of the linear case. In the same work, the consistent linearization of the weak form of
the balance equations yields to a tangential inertia tensor, nonsymmetric in the rotational com-
ponents. A comparison among implicit time–stepping schemes according to different choices of
rotational parameters can be reviewed in Ref. [183] and in [182] Ibrahimbegović and Mazen
discusses about the parametrization of finite rotations in dynamics of beams and implicit time–
stepping schemes (see also [184]). Recently, Mata et al. [260] present the inclusion of viscous and
rate independent dissipation in the Reissner–Simo rod model considering a thermodynamically
consistent visco damage model on each material point of the cross section. Details about its
numerical implementation in a Newmark time–stepping scheme are also addressed. Rubin in
[344] provides a simplified implicit Newmark integration scheme for finite rotations.
Even though Newmark’s scheme has been widely applied to the study of the dynamic response
of structures, rigid bodies and flexible mechanisms, Mäkinen states in Ref. [245] that it only
constitutes an approximated version of the corrected formulae, which are given in his work for
the spatial and material descriptions. The main reasons are that material descriptions of the
spin and acceleration vectors involved in the updating procedures, belong to different tangent
spaces at different times. Additionally, a critical study of Newmark’s scheme on the manifold of
finite rotations is given by the same author in [244].
On the other hand, Newmark’s family of implicit schemes fails to preserve certain conservation
laws of the motion, such as the total energy and momentum of nonlinear Hamiltonian systems,
producing numerical (fictitious) dissipation [82]. Algorithms which inherit the conservation
properties of the Hamiltonian dynamical system are attractive due to the fact that conserved
quantities often capture important qualitative characteristics of the long-term dynamics [82]
and numerically, conservation the total energy lead to convenient notions of algorithmic stabil-
ity [145]. A further improvement in the development of robust time–stepping schemes is provided
by the energy-momentum conserving algorithms. One of the pioneering works in constructing
one of such of that algorithms is due to Simo et al. [372] which also develops symplectic schemes
for nonlinear dynamics including an extension to the rotational motion. A recent survey on
algorithms inheriting conservation properties for rigid and elastic bodies as well as constrained
mechanical systems can be consulted in the works of Betsch and Steinmann [59, 60, 61]. Simo et
al. in [373] provide a detailed formulation and the numerical implementation of a time–stepping
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algorithm designed to conserve exactly the total energy, the linear and the angular momentum
for 3D rods.
Some additional enhancements have been carried out, for example: Armero and Romero devel-
ops an energy–dissipating momentum–conserving time–stepping algorithms for nonlinear rods
in [23]. A survey abut second order methods for high–frequency dissipative algorithms is given
by the same authors in [21]. Bauchau and Theron [46] present an energy–decaying scheme for
beams. It is worth to note that, finite elements based on the space interpolation of rotational
variables may be afflicted with problems such as nonobjective and path-dependent solutions; in
[340] Romero and Armero develop an objective FE approach for the energy-momentum conserv-
ing dynamics of geometrically exact rods. Betsch and Steinmann [62] avoid the use of rotational
variables regarding nonlinear beams from the outset as constrained mechanical systems. An
energy–decaying scheme constructed as an extension of the energy–conserving schemes pro-
posed by Simo [373] is presented by Ibrahimbegović and Mamouri in [189]. Jelenic̀ and Crisfield
[201] analyzes the problems associated with the use of Cayley transform and tangent scaling for
energy and momenta conservation in the Reissner–Simo theory for rods.
Closely related applications of the previous time–stepping schemes are found in the field of multi-
body dynamics. Bauchau and Bottasso [47] design an energy preserving and decaying scheme for
flexible multi-body systems. An application of the geometrically exact theory of rods to multi-
body dynamics with holonomic constrains and energy conserving schemes can be reviewed in
Ibrahimbegović et al. [186]. In Refs. [182] and [189] a complete study of the general dynamics
of flexible mechanisms is carried out and an energy conserving/decaying time–stepping scheme
is proposed for eliminating the high frequency content in the response of flexible structures.
In [70] Bottasso et al. develop conserving/dissipating numerical schemes for the integration of
elastic multi-body systems. The specific case of rods is covered in [69]. Shell elements have
been also investigated see e.g. [80, 79, 77] for the application of the Newmark scheme with finite
rotations and [376] for energy-momentum conserving schemes. In [144] the dynamic analysis of
rigid and deformable multi-body systems with penalty methods and energy-momentum schemes
is considered and in [225, 298] energy preserving implicit and explicit integrators for constrained
multi-body systems are developed. A survey about non–linear dynamics of flexible multi-body
systems is given in [191].
More recently, attention have been turned towards variational integrators i.e. algorithms formed
from a discrete version of Hamilton’s variational principle [226]. For conservative systems usual
variational principles of mechanics are used, while for dissipative or forced systems, the Lagrange-
d’Alembert principle is preferred. The main properties that make these algorithms attractive
are: for the conservative case variational integrators are, symplectic [252] and momentum con-
serving. These methods also permit the systematic construction of higher order integrators.
Variational integrators also have remarkably good energy behavior. A summary can be re-
viewed in [227, 254]. An extensive treatment for the case of the continuum mechanics can be
reviewed in [253].
Additionally, in [206] Kane et al. discuse about variational integrators and the Newmark al-
gorithm for conservative and dissipative mechanical systems. Marsden and Wendlandt [252]
present a nice overview on mechanical systems with symmetry, variational principles, and inte-
gration algorithms. An application to the design of variational integrators on the Lie group for
the full body problem is given in [222]. At the author’s knowledge, this type of methods have
not been formally applied to the Reissner–Simo’s rod theory.
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2.2 Constitutive nonlinearity

2.2.1 Inelasticity in rod elements

In spite of the great capacity of the mentioned formulations, works considering both constitutive
and geometric nonlinearity are rather scarce. Research on constitutive nonlinearity have pro-
gressed based on a different approaches, that’s, lumped and distributed plasticity models [317].
Experimental evidence shows that inelasticity in beam elements can be formulated in terms of
cross sectional quantities and, therefore, the beams’s behavior can be described by means of
concentrated (lumped) models, some times called plastic hinges, which focalizes all the inelastic
behavior at the ends of linear elastic structural elements by means of ad-hoc force-displacement
or moment-curvature relationships (see e.g. Bayrak and Sheikh [50] or Lubliner [239], among
many others). Mitsugi in [286] proposes a method for the measurement of strains develop in a
finite deformation formulation for hinge connected beam structures. Some of these models have
been extended for considering a wide variety of failure criteria; an example is shown in the work
of Hyo-Gyoung Kwank and Sun-Pil Kim [219] where a moment-curvature relationship for the
study of reinforced concrete (RC) beams subjected to cyclic loading is defined. This method is
recommended by certain authors due to its numerical efficiency when compared with the full
three-dimensional formulation of the nonlinear problem. It is important to note that the nonlin-
ear constitutive laws are valid only for specific geometries of the cross section and that usually,
the thermodynamical basis of the material behavior are violated [159]. Moreover, some compo-
nents of the reduced forces and/or moments are frequently treated elastically [113, 160, 296].
A further refinement in the analysis of the mechanical response of beam structures is obtained
considering inhomogeneous distributions of materials on arbitrarily shaped cross sections [113].
In the case of distributed plasticity models, the constitutive nonlinearity is evaluated at a fixed
number of cross sections along the beam axis, allowing to obtain a distributed nonlinear behav-
ior along the structural elements. In this case, the usual procedure consists into obtaining the
constitutive relationship at cross sectional level by integrating on a selected number of points
corresponding to fibers directed along the beam’s axis [355, 390]. Thus, the mechanical behavior
of beams with complex combinations of materials can be simulated [36, 102]. Fiber models
fall into the category known as distributed beam models [155] due to the fact that inelasticity
spreads along the beam element axis [317]. The employment of fibers allows predicting a more
realistic strain-stress state at the cross sectional level, but it requires the definition of uniaxial
constitutive laws for each material point. A combination of both models, applied to the study
of the collapse loads of RC structures, is proposed by Kim and Lee [214]. Another example is
given in the work of Mazars et al. [278] where a refined fiber models is used for the analysis
of concrete elements including torsion and shear. Monti and Spacone use a fiber beam element
for considering the bond-slip effect in reinforced concrete structural elements in [293]. In most
cases, both types of models, the concentrated and the distributed ones, have been formulated
under the hypothesis of infinitesimal deformation.
Two versions of the distributed plasticity models can be found in literature: the stiffness (dis-
placement based) and flexibility (force based) methods [317]. The first one is based on the
interpolation of the strain field along the elements. A precise representation of forces and mo-
ments requires a refined FE mesh for each structural element in which nonlinear constitutive
behavior is expected to appear. In the flexibility method, the cross sectional forces and mo-
ments are obtained interpolating the nodal values and satisfying the equilibrium equations even
in the nonlinear range [354]. Examples of flexibility based finite elements for the geometrically
nonlinear analysis of beams structures can be found in the work of Neuenhofer and Filippou
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[297] and Barham et al. [39] for elastic perfectly plastic beam structures.
Both approaches are affected by the strain localization phenomenon when materials with soft-
ening behavior are employed. A extensive review of the strain localization in force-based frame
elements is presented by Coleman and Spacone in [98]. A more theoretical work about this
topic is given by Armero and Ehrlich in [24] and Ehrlich and Armero [121] for a plastic hinge
model incorporated into a infinitesimal formulation for Euler-Bernoulli rods and frames. In the
stiffness method, localization occurs in a specific element and, in the case the flexibility method,
nonlinearity is concentrated in the volume associated to a specific cross section of the element
undergoing strain softening. In any case, the whole structural response becomes mesh depen-
dent if no appropriate corrections are considered. Several techniques have been proposed for
ensuring objectivity5 of the structural element response: Scott and Fenves [354] develop a new
integration method based on the Gauss-Radau quadrature that preserve the objectivity for force
based elements; Hanganu et al. [159] and Barbat et al. [36] regularize the energy dissipated at
material point level, limiting its value to the specific fracture energy of the material [301]. These
methods ensure that the whole structural response remains objective, but the length of the zone
where softening occurs is still mesh dependent. Recently, some developments employing strong
discontinuities6 have been applied to the study of beam models but considering constitutive laws
in terms of cross sectional forces and infinitesimal deformations, as it can be seen in Armero
and Ehrlich [25, 26] and in references therein. The characterization of localized solutions in a
softening bar using an analysis of the propagation of waves is presented by Armero in Ref. [22].
One of the most common limitation of distributed formulations arises from fact that constitu-
tive nonlinearity is defined for the component of the strain acting in the direction normal to
the face of the cross section and, therefore, the shearing components of the stress are treated
elastically. This assumption does not allows to simulate the nonlinear coupling between different
stress components at constitutive level, resulting in models where cross sectional shear forces and
torsion moments are transmitted elastically across then elements [113, 296]. This assumption
predefines the way in which the failure of the members occurs, limiting severely the participation
of shear forces to the equilibrium. A comparative study of different plasticity models applied to
earthquake analysis of buildings can be consulted in [117].
Most of the geometrically nonlinear models are limited to the elastic case [362, 363]. Works con-
sidering both constitutive and geometric nonlinearity are scarce and the inelastic behavior has
been mainly restricted to plasticity [347, 372]. In [64, 65] and [118] a higher order approximation
is used for the calculation of the axial strain in truss elements and uniaxial constitutive descrip-
tions are used for different material behaviors. Simo et al. in [361] extends the formulation of
rod elements with warping of arbitrary cross sections for considering a small strain formulation
for elastic visco plastic constitutive materials. An outstanding work considering the warping of
cross sections made of elastic plastic materials is due to Gruttmann et al. [151]. Additionally,
Wagner and Gruttmann in [398] develop the finite element analysis of the Saint-Venànt torsion
problem considering the exact integration of the elastic plastic constitutive equations. Nukala
and White [299] develop a mixed finite element for studying the stability behavior of steel struc-
tures. Pi and Bradford [325] study the coupled elastic plastic buckling and the post buckling
evolution of arches subjected to central loads. In [284] a method for studying the large deflection

5Note that in this case, the term objectivity is used for referring to a mesh independent response of the
structure in stead of the usual sense in continuous mechanics where it refers to an invariant response under rigid
body motions.

6For an extensive review about the employment of the strong discontinuity approach for the treatment of
localized dissipative mechanisms in a local continuum see Armero [18]; the theoretical basis of these methods in
the three dimensional version of fracture in mechanics can be found in [303, 302, 417] and references therein.
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of three-dimensional steel frames is proposed. Gebbeken [141] develop a numerical approach for
the (static) ultimate load analysis of steel framed structures. Isotropic hardening is included
in the model presented by Park and Lee in [318] which is based on the work of Simo [363] for
considering geometric nonlinearity. A kinematically exact formulation of elastic plastic frames
is presented in [346] by Saje et al. , however, results are restricted to the plane case.
Recently, Mata et al. [258, 260] have extended the geometrically exact formulation for rods due
to Reissner, Simo and others [178, 199, 207] to include an arbitrary distribution of composite
materials with inelastic constitutive laws on the cross sections for the static and dynamic cases;
thermodynamically consistent constitutive laws of visco damage and plasticity are developed in
terms of the material form first Piola Kirchhoff stress vector in the framework of the mixing
theory for composites. Some basic requirements, such as the objectivity of the response when
strain localization for softening materials occurs is also considered by means of a regularization
of the energy dissipated by the materials [36, 160].
Alternative approaches are also available, e.g. in [167, 168] Hori and Sasagawa develop a large
deformation model based on subelements for inelastic analysis of large space frames. Examples
of application of the proposed model are given in the second paper. In all the above references,
examples are restricted to the static case. In the dynamic case, Galucio et al. [139] employ
the finite element method for the study of the mechanical response of a infinitesimal deforma-
tion version of visco elastic sandwich beams using fractional derivative operators. Turkalj et
al. [396] uses the external stiffness approach for large displacement analysis of elastic plastic
framed structures. Shi and Atluri [357] employ a plastic hinge formulation for the elastic plastic
analysis of space–frames considering large deformation. Battini and Pacoste in [44] study the
plastic instability of beam structures using the co–rotational technique.
Other kind of research has been conducted toward the more precisely estimation of the consti-
tutive behavior of rod–like structures, it corresponds to the employment of the homogenization
theory at material point level on the cross section (see e.g. [224, 427]) or the asymptotic cross
sectional analysis [410]. This last type of approximation can give a very precise simulation of the
behavior of the materials but they have the inconvenient that it is very expensive in computing
time. In distributed models for the coupled constitutive and geometric nonlinear analysis of
rod–like structures, the cross sectional analysis became a crucial step. According to the hypoth-
esis assumed, several degrees of refinement can be obtained. This specific topic is covered in the
next section.

2.2.2 Cross sectional analysis

The cross sectional analysis in a strain driven numerical method can be defined as the set of pro-
cedures used for determining: (i) the stress distribution in a cross section for a given strain field;
(ii) the stress resultant and stress couples (see §3 for formal definitions) and (iii) the reduced
(cross sectional) tangential stiffness if inelastic materials are considered. All these procedures
are usually dependent on the shape of the cross section and, the distribution and the constitutive
relation of the involved materials.
Therefore, a large amount of research have been concentrated on this topic. The significance of
the techniques developed for the precise cross sectional analysis arises on the accuracy of the
stress field assigned to point on the rod. Special attention has been directed to the determina-
tion of the shear stress and the shear strain distribution on arbitrarily shaped cross sections.
Gruttmann et al. in [150] develop a refined method based on the finite element for shear stresses
in prismatic beams and Gruttmann and Wagner [153] use the same method for calculating the
shear correction factors in Timoshenko’s beams. An analytical study about the shear coefficients
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is performed by Hutchinson in [171]. Jiang and Henshall [203] present a finite element model
coupled with the cross sectional analysis for the torsion problem in prismatic bars. Similarly,
Petrolo and Casciaro in [322] develop 3D beam element based on the Saint Venànt’s rod theory.
Specific efforts have been oriented to the case of thin walled (closed or not) cross sections; For
example, Freddi et al. [135] analyze the case of thin-walled beams of rectangular shape. Beams
made of composite materials have received great attention due to the fact that failure in this type
of structures is closely related to the shear distribution between layers. For example, Reznikov
in [335] develops a method for the analysis of the nonlinear deformation of composites including
finite rotations. An application to the analysis of sections of rotor blades made of composite
materials can be reviewed in [204]. Ovesy et al. [312] perform the geometric nonlinear analysis
of channel sections using the so called finite strip method. Mokos and Sapountzakis in [289]
propose the use of the boundary element method [351] for obtaining a solution to the transverse
shear loading of composite beams.
An innovative procedure for the precise analysis of stresses in arbitrary cross sections is given by
the asymptotic variational methods which take advantage of certain small parameters inherent
to beam-like structures [412]. Several works can be quoted in this line of research, e.g. Cesnik et
al. in [93] analyze the role of the short–wavelength extrapolation in a refined theory of compos-
ite beams. Popescu and Hodges [327] uses the method for deducing an asymptotically correct
version of the Timoshenko anisotropic beam theory. Yu and Hodges compares the elasticity
solutions with those obtained from asymptotic analysis for prismatic beams in [414] and in [413]
Yu et al. apply the method to initially curved and twisted composite beams. Additional works
can be reviewed e.g. in [399, 420].
Most of the previous mentioned references are restricted the small strain deformation or to the
elastic case. In several areas of engineering the inelastic response of the structures is required,
as is the case of earthquake engineering. Moreover, several modern techniques of characteriz-
ing structures are based on nonlinear analysis e.g. [395] or the work of Fantilli et al. [127]
about flexural deformability of concrete beams. Complex phenomenons such as the effect of
confinement in shear dominated failures of civil engineering structures have received increasing
research efforts [329]. Burlion et al. [86] analyze the compaction and tensile damage in concrete
including the development of constitutive relations in the dynamic range. In [288] Mohd Yassina
and Nethercotb develop a procedure for the calculation of the key cross sectional properties of
steelconcrete composite beams of complex cross sections. In [406] Yang and Leu develop con-
stitutive laws and a force recovery procedure for the nonlinear analysis of trusses. Thanoon et
al. [392] propose a method for estimating the inelastic response of composite sections. Ayoub
and Filippou [30] employ a mixed formulation for structures with composite steel and concrete
cross sections. In the work of Bentz [56] an intend to develop a method for the cross sectional
analysis is presented. The reference list is extensive, with works covering from specific aspects
to more general procedures. Recently, Bairan and Mari [31, 32] present a coupled model for the
nonlinear analysis of anisotropic sections. In §7.7.1 of the present work, a method for the cross
sectional analysis consistent with the Reissner–Simo rod hypothesis is developed. The present
procedure tries to combine simplicity and the sophistication required by composite materials.

2.3 Local Irregularities

As explained in §1 two types of singularities are considered: (i) energy dissipating devices and (ii)
local geometric irregularities. In following a state of the art review of both topics is presented.
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2.3.1 Energy dissipating devices

Conventional seismic design practice permits designing reinforced concrete, steel and composite
structures for forces lower than those expected from the elastic response on the premise that
the structural design assures significant energy dissipation potential and, therefore, the survival
of the building when subjected to severe earthquakes [161]. Normally, energy dissipation during
seismic or other dynamic actions, occurs in critical zones of the structure specially designed
to admit large ductility demands [74]. Frequently, the dissipative zones are located near the
beam-column joints and, due to cyclic inelastic incursions during earthquakes, several structural
members can suffer a great amount of damage with irreversible degradation of the mechanical
properties of the materials, cracking and yielding of the steel reinforcements etc. For a complete
survey about reinforced concrete structures subjected to seismic actions see Fardis [128].
Even if a limited level of structural damage dissipates part of the energy induced by the action
and uncouples the dynamic response from resonance offering a certain level of protection against
seismic actions [260], the large displacements required for developing hysteretic cycles in dissi-
pative zones can cause severe damage to non structural components. Particularly, in earthquake
engineering, these deformations can produce irreparable damage in those members, but this
situation is generally considered economically acceptable if life safety and collapse prevention
are achieved.
In the last decades, new concepts for the design of building, based on the manipulation of the
energy dissipation, have improved the seismic behavior of the structures providing higher levels
of safety for the occupants, the buildings and the nonstructural components. The new tech-
niques are based on adding devices to the buildings with the main objective of dissipating the
energy demand imposed by the dynamic loading, alleviating the ductility demand on primary
structural elements, such as beams, columns or walls and decreasing the acceleration response
[161, 382]. The devices can be installed in new or in existing structures and can be used in
seismic design or rehabilitation. The purpose is to control the dynamic response of the buildings
by means of a set of dissipating devices which constitutes the control system, adequately located
in the structure.
In general, control systems can be classified in four major groups:

(i) Active control systems. These systems work measuring, by means of sensors, the external
excitation and/or the structural response. Then, based on those data and using algorithms,
compute the control forces needed to improve the seismic response of the building. Control
forces are applied to the structure by means of actuators, which take the energy from an
external supply. (see [14, 35, 229, 385] among others).

(ii) Passive control systems. In this case, the passive energy dissipating devices (EDD) work
dissipating the energy of the earthquake, localizing and concentrating the nonlinear phe-
nomena of the structure and thus the damage in the devices without the need of an external
energy supply [163, 382, 393].

(iii) Semi active systems. In this case the control algorithm changes some of the properties of
the EDD in order to obtain a better seismic performance of the structure. In this category
of control systems, control actuators do not add energy directly to the structure and EDD
can be seen as controllable passive devices. [95, 248, 383, 387, 407].

(iv) Hybrid systems. This systems are typically defined as a combination of different active
and/or passive systems. A comparative study of the response of structures for different
control systems can be reviewed in [40, 330]. A rather brief state of the art review about
theory and practice using control techniques in civil engineering structures can be found
in Ref. [383].
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Today, the passive control of structures is a well understood technique and its use is widely
accepted by the engineering community even in the case when passive EDDs are not able to
adapt their behavior to the seismic response of the building [385]. The passive control systems
most used in reducing the seismic response of buildings are: base isolation and EDDs.
By one hand, base isolation uncouples the structure from the soil introducing flexible supports
between foundations and the rest of the structure. The isolation system transforms the building
into a rigid body moving over flexible supports, shifting thus the fundamental period of the
structure and enhancing the energy dissipating characteristics of the isolation-superstructure
system [4]. A detailed presentation of theory, numerical analysis and of the practical applica-
tions of base isolation systems can be reviewed in [211]. More specific aspects of this technique,
such as analytical models for bearings, linear equivalent models for practical design of structures,
etc. can be consulted in [5, 213, 75, 212] and references therein.
By the other hand, passive EDDs, also called supplemental dampers, are devices located through-
out the structure to absorb and dissipate an important part of the energy input induced in the
structure by earthquakes or other dynamic actions (e.g. hurricanes or machinery induced vi-
brations). Figs. 2.1a-c 2.2a-b show the location of several types of energy dissipating devices.
They are applicable to a wider range of structures than base isolation but the benefits obtained
in reducing the seismic response of the structure are usually less significative.

Figure 2.1: Energy dissipating devices location in buildings. (a): Diagonal elements. (b): Base
level elements. (c): Connecting elements.

Figure 2.2: Energy dissipating devices location in a bridge. (a): Longitudinal direction. (b):
Transversal direction.

Many practical application of EDDs to real structures are summarized in [4]. The effectiveness
of the implementation of EDDs in engineering structures can be analyzed starting from the
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energy balance equation [8] as

EI = EK + ES + ED + Eπ (2.1)

where EI is the absolute earthquake energy input, EK is the absolute kinetic energy, ES is
the elastic strain energy, ED is the energy dissipation due to inelastic behavior in the structure
(including viscous effects) and Eπ is the contribution of energy dissipation due to the addition
of EDDs.
Using the assumption that the term Eπ has no influence on EI , it is possible to see from Eq.
(2.1) that increments of the contribution of ED + Eπ implies reductions of EK + ES and, there-
fore, lower displacements and velocities are obtained when extra energy dissipation is provided
[4, 382]. The main objective of designers when applying passive control in improving the seismic
behavior of the structures, is defining appropriately the properties of the EDDs in such way that
the inelastic demand on primary structural members ED be transferred to the term Eπ. After
severe loadings, EDDs can be replaced by new ones if necessary.
EDDs can be classified according to the nature of their dissipative mechanism in (i) displacement
dependent, e.g. friction, metallic and extrusion devices, (ii) velocity dependent e.g. viscous, (iii)
mixed e.g. visco elastic and others such as tuned liquid and tuned mass dampers; each of these
types is described in further sections. A great amount of works comparing the ability of different
passive EDDs in controlling the seismic response of structures is available in the literature, for
example in [137] is compared the response of frame structures equipped with visco elastic and
viscous devices; in Ref. [210] an approximated method is used to carry out a comparative study
considering metallic and viscous devices. Guidelines and methods for testing and characterizing
the different types of EDDs can be consulted in [163, 164, 337].
Other points of view are admissible for considering the incorporation of passive control in RC
structures, for example Aiken presents in Ref. [4] the contribution of the extra energy dissipa-
tion due to EDDs as an equivalent damping added to the linear bare structure and displacement
reduction factors are given as a function of the damping ratio added to buildings by means of
the EDDs. A critical review of the reduction factors and design force levels can be consulted in
[230]. In Ref. [100] Connor et al. propose a method for a preliminary design of passively con-
trolled buildings under the hypothesis that the structure is composed of two systems, the bare
frame and the dissipative one, that work together to satisfy a design criterium. In Ref. [143] the
optimal control theory is use to design supplemental viscous and visco elastic passive damping
systems in seismic control. In [231, 232] Lin and Copra study the accuracy in estimating the
dynamic response of asymmetric one-story buildings equipped with EDDs, when the dissipating
devices are replaced by their energetic equivalent linear viscous dampers; a correction factor is
provided estimating the maximum forces in the EDDs. Other procedures for the analysis and
design of structures with EDDs can be consulted in [96].
Today, only a few countries have codes for designing RC buildings with EDDs; one of them
is United States, where there are several codes that provide procedures and requirements for
the design of passive energy dissipating devices. Particularly, the US Federal Emergency Man-
agement Agency (FEMA) proposes code provisions and standards along with other references
pertaining to the design of EDDs for use in buildings. The document includes Prestandard and
Commentary for the Seismic Rehabilitation of Buildings (FEMA 356)[129] and NEHRP Rec-
ommended Provisions for Seismic Regulations for New Buildings and Other Structures (FEMA
368)[130], which covers the detailed design of EDDs in an Appendix to Chapter 13.
As it is mentioned in Ref. [279] in the case of Europe, efforts have been focused in developing
codes for base isolation in some countries such as Italy or the Soviet Union. In the case of EDDs
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the developments have been limited to guidelines rather that codes or official standards. The last
(draft) version of Eurocode 8 of the year 2003 (Ref. No: prEN 1998-1:2003 E) [125] contains the
Chapter 10 devoted to base isolation systems, but no guidelines or recommendations are made
for other kind of passive control. In the case of Japan a fully review of the state of the art in
passive control of structures is reviewed in [397], however, no mentions are given in this work to
available codes, standards or guidelines for practitioners.
As it can be concluded from the existing codes, guidelines and technical literature, a great part
of the design methods proposed for RC (or steel) structures are based on supposing that the
behavior of the bare structure remains in the elastic range, concentrating the energy dissipation
demands on the control system. However, even though this assumption can be useful for a pre-
liminary design, experimental and theoretical evidence show that inelastic behavior will occur in
the main structural elements during severe strong motion as noted by Shen and Soong in [356].
Therefore, these authors recommend to eliminate the assumption of linear structural response
and propose a design method based on the damage control. However, it is widely recognized that
nowadays it is possible to carry out nonlinear time history analysis, which can provide a most
precise and complete evaluation of the responde of structural systems incorporating EDDs (see
[261, 262, 416]); but it also requires relatively large amounts of analysis expertise and computa-
tional time and effort. It is also recognized that equivalent linear static or dynamic procedures
require the least amount of time and computational effort, but they are not able to represent the
fully complexity of the nonlinear dynamic behavior of structures. This situation regarding to
the most appropriated kind of analysis for simulating the response of engineering building with
dissipators is taken into account in the FEMA code, which recommends the use of a combination
of rationality and an admissible computational cost. The code describes four different analysis
procedures: (1) linear static; (2) linear dynamic; (3) nonlinear static; and (4) nonlinear dynamic
analysis. Linear methods are based on force reduction factors and can be applied subjected to
limitations specified in the code [393], in other cases nonlinear analysis have to be carried out.
Independently of the type of analysis chosen, it is clear that the nonlinear time history analysis
has gained space in the passive control of structures subjected to great dynamic actions, there-
fore, sophisticated numerical tools became more necessary for both academics and practitioners.
For example, in Ref. [235] Lu presents a comparative study between numerical simulations and
experimental test carried out on scaled RC structures. During the last decades, great efforts
have been done in developing numerical formulations and their implementation in computer
codes for the simulation of the nonlinear dynamic response of RC structures, for example a
recent state of the art review for the case of concrete structures can be found in [384].
The engineering community agrees with the fact that the use of general fully 3D numerical tech-
nics, such as finite elements with appropriated constitutive laws, constitute the most precise tools
for the simulation of the the behavior of RC buildings subjected to earthquakes [196, 382, 386]
to other kind of loads [218] or even for the simulation of the mechanisms that produce earth-
quakes itself [1]. However, usually the computing time required when using full models of real
structures became their application unpractical. Several approaches have been developed to
overcome this difficulty; some authors propose the use of the so called macro–elements, which
provide simplified solutions for the analysis of large scale problems [114, 115, 126]. Considering
that most of the elements in RC buildings are columns or beams, one–dimensional formula-
tions for structural elements, obtained trough the reduction of spatial dimensions by means of
kinematic assumptions [11, 85], appear as a solution combining both numerical precision and
reasonable computational costs [258]. Experimental evidence [50] shows that nonlinearity in
beam elements can be formulated in terms of cross sectional forces and/or moments and dis-
placements and/or curvatures, which is frequently quoted in literature as plastic hinges models
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[98] (see §2.2). Some formulations of this type have been extended to take into account ge-
ometric nonlinearities [314, 378, 418, 419] allowing to simulate the P–∆ effect, which occurs
due to the changes of configuration of the structure during the earthquake [83, 152, 378, 403].
Several limitations have been reported to this kind of models, specially for the modeling of RC
structures with softening behavior in the dynamic range [390] (this aspect is covered in §4.1).
A discussion about topics such as step-by-step methods, path bifurcation, overall stability, limit
and deformation analysis in the context of the plastic hinges formulation for beam structures
can be consulted in [97].
An additional refinement is obtained considering inhomogeneous distributions of materials on ar-
bitrarily shaped beam cross sections [299, 416]. Specific numerical models based on a secondary
discretization of the beam cross sections have been developed allowing to include multiple ma-
terials. In this case, the constitutive force-displacement and/or moment-curvature relationship
at cross sectional level is deduced by integrating over the selected points on the cross section
[155]. Therefore, using this approach the mechanical behavior of beams constituted by complex
combinations of materials, such it is the case of RC beams, can be simulated [156, 157, 43].
In general, the engineering community agree with the fact that although this models are more
expensive, in terms of computational cost, than the plastic hinges ones, they allow to estimate
more precisely the response nonlinear response of RC and other kind of structures [34, 113, 390].
Formulations of this type, considering both constitutive and geometric nonlinearity are rather
scarce [118]; moreover, most of the geometrically nonlinear models for beams are limited to the
elastic range of materials, as it can be consulted for example in Refs. [178, 256, 362] and the
treatment of constitutive nonlinear behavior has been mainly restricted to plasticity [64, 151].
In reference [134] a theory for the stress analysis of composite beams is presented, however the
formulation is only valid for moderated rotations and the behavior of the materials remain in
the elastic range. Recently, Mata et al. [258, 260] has extended the geometrically exact formu-
lation for beams due to Reissner–Simo [333, 332, 362, 363, 365] for considering and arbitrary
distribution of composite materials con the cross sections for the static and dynamic cases.
From the numerical point of view, the nonlinear behavior of EDDs usually has been described
in a global sense by means of force-displacement or moment-curvature relationships [382] which
intend to capture appropriately the force/moment level and the energy dissipating capacity ex-
isting in the devices. That is to say that, a rather simplified description appears to be enough for
the mechanical characterization of the EDDs, independently of the micro-mechanisms involved
in the energy dissipation or the stress distribution in each of their components [259].
The inclusion of EDDs in a software package for the seismic analysis of RC structures is fre-
quently done by means of using link elements equipped with the mentioned nonlinear relation-
ships [382]. In this way, the link elements connect the different points of the model of structure
which represent the anchorage point of the EDDs in the real buildings. During the seismic event
the relative displacement and/or rotation between the anchorage points activates the dissipative
mechanisms of the devices [397].
Nowadays, there are several numerical codes available for the study of the nonlinear dynamic
response of engineering structures with EDDs. For example, in Ref. [416] a detailed presentation
of a computer program able to simulate the static and dynamic (seismic) behavior of different
types of buildings with EDDs is presented. Other professional (commercial) softwares such as
those described in references [111, 112, 132] have incorporated different kind of inelastic analysis
including beam element with plastic hinges and specific link elements for EDDs. A comparative
study of the performance of different commercial software packages for simulation the P–∆ effect
in structures can be consulted in [352]. In any case, the mentioned softwares show a balance
between capabilities and limitations.
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2.3.1.a EDDs in RC building structures

There are a great number of EDDs developed, however, a tentative classification can be con-
structed following Soong and Dargush [382] where the following types are identified according
to their working mechanism:

(i) Metallic devices

In this type of devices, energy dissipation depends upon plastic deformation of metallic
materials, such as mild steel or aluminium [382]. A large set of possible geometries have
been used as tentative devices, which includes torsional beams, U-strips, braced systems
etc. As an example, Fig 2.3a-b show the geometric characteristics of X-shaped (ADAS)
devices and 2.3c a torsional beam.

Figure 2.3: Plastic devices. (a, b): ADAS devices, front and lateral views. (c): Torsion beam.

A large set of mathematical models have been developed for describing the force-
displacement relationship in metallic devices e.g. [401]. In any case, classical plasticity
models can produce good results [239, 377]. Specific design methods for incorporating
metallic dissipators in structures can be consulted e.g. in [287]. An example of the effects
of several types of devices, including metallic, is presented in [249].

(ii) Visco elastic devices

Visco elastic dampers (VDE) use polymeric materials which dissipate energy when sub-
jected to shear deformations. Originally, applications for controlling vibration were focused
in the aircraft and aerospace industry and more recently in seismic engineering. The main
effects and benefices are obtained due to the fact that VEDs increases the global damping
of the structure [212].

Figure 2.4: Visco elastic dampers. (a): Device. (b): Location in a building.

A typical device is depicted in Fig. 2.4a which consists of visco elastic layers bounded



28 Chapter 2. State of the art review

with steel plates and a typical building’s location is shown in 2.4b. Dissipation in the VE
layers reduces the relative motion between elements of the structure.
In general terms, the shear stress-strain relationship is frequency and temperature depen-
dent as it can be consulted in [259, 382]. In [3] a detailed study about the modeling of the
dynamic properties of filled rubber is presented. Asano et al. [27] carry out the experi-
mental study on visco elastic dampers and the formulation of an analytical model. Kojima
and Yoshihide [215] present a survey about the performance, and durability of high damp-
ing rubber bearings for earthquake protection. Other analytical models for visco elastic
materials can be consulted in [172, 273, 267, 265] and references therein. Design recom-
mendations for building incorporating VE–EDDs can be consulted in [211, 382].

(iii) Friction Devices

Friction dampers (FD) dissipate energy through the friction that develops between two
solid bodies sliding one relative to the another. The force developed in the device depends
on the friction coefficient between the materials and the normal force, according to the well
known Coulomb’s law [382]. Several geometric choices have been proposed; for example,
in Fig. 2.5a a FD based on the relative motion of two diagonal element enclosed by two
steel plates is presented; Fig. 2.5b shows the location of the devices in a typical portal
frame.
The numerical modeling of the device’s behavior is commonly based on the use of bilinear
hysteretic rules, however, more complications appears in the (nonlinear) studies covering
the seismic analysis of buildings with FDs, e.g. Aiken et al. in [6] study the seismic
response of a nine-story steel frame with FD located in the cross-bracing system. Ryan
and Chopra [345] estimate the seismic displacement of friction pendulum isolators based
on time history responses obtained from nonlinear analysis. Additional references can be
consulted in the same works.

Figure 2.5: Frictional damper. (a): Device. (b): Location on a typical RC building.

(iv) Fluid based devices

Fluids can also be used as basic material in order to control the seismic response of flexible
structures. The original efforts have been oriented to convert the applications developed
for the military and heavy industry to the civil engineering field. Several application of
this kind of devices have been focused on the control of vibrations derived from shock and
ambient excitations. For example, in [223] the fluid damper technology is described in a
wide context.
Viscous fluid dampers (VFD) dissipate energy when subjected to a velocity input. Usually,
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dissipation has place due to the conversion of the mechanical work of a piston moving in a
highly viscous fluid, such as silicon gel, into heat. Larger viscosity values implies a greater
energy dissipation. Currently, materials which exhibits both frequency and temperature
dependency are used.
Several kinds of devices have been proposed as VFD, for example in [408] the behavior
and effectiveness of viscous–damping walls [287] in controlling wind-induced vibrations
in multi-story buildings investigated. Other applications combine base isolation systems
with VFD for controlling the lateral displacement of base isolated building. In this case,
the VFDs increase the damping of the isolation system. Figure 2.1b shows several VFDs
working in parallel with the base isolation system.
The most common types of VFDs are based on the flow of the fluid in a closer container.
In general these devices acts forcing the fluid to pass through small orifices by mean of a
piston [382]. Greater levels of energy dissipation can be obtained using this kind of devices,
however, a more complex mechanical design of the damper is needed.
Fig. 2.6 show two typical cross sections of VFDs. They both consist of a stainless steel
piston with an orifice head and are filled with viscous liquid, such as silicon oil. One of
them has an accumulator while the other has a run-through rod instead. The difference of
pressure between each side of the piston head result in the damping force, and the damping
constant of the damper can be determined by adjusting the configuration of the orifice of
the piston head. The device of Fig. 2.6a contains compressible silicone oil.

Figure 2.6: Typical VFD. (a): Device based on a highly compressible fluid. (b): device based
on the flow of fluid through orifices.

Figure 2.7: Hydraulic dampers. (a): Cylinder. (b): Revolving disc device. (c): Force-
displacement characteristic curve.
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Practical applications of this kid of EDD can be reviewed in [415, 409]. In Ref. [405]
analytical and experimental studies to evaluate a strategy for structural health monitoring
of nonlinear viscous dampers are presented. In [7] an extensive overview of the testing
program for the viscous dampers used in the retrofit of the Golden Gate Bridge is provided,
including four devices from U.S. manufacturers and two from European ones.

(v) Extrusion devices

A particular case of metallic devices is given by the extrusion ones (ED). In this case
energy dissipation is produced due to the rearrangement of the crystalline red of special
metals (such as lead) due to the imposition of a deformation (extrusion) but maintaining
confined the dissipative nucleus of the device.

Figure 2.8: Lead extrusion dampers. (a): Device. (b): Force-displacement characteristic curve.

Fig. 2.8a shows a typical ED and in 2.8a the experimental force-displacement hysteretic
curve is presented. Applications of these devices can be reviewed in [320, 339] and refer-
ences therein.

(vi) Other types

Additional types of devices can be added to the present list, however, and by briefly, here
only three additional typologies, which are treated in passive as well as active control
fields, are mentioned: (a): Smart materials: This materials are incorporated to structural
elements along with a set of sensors and actuator and are able to change their mechanical
properties according to the dynamics of the structure were they are located. In this
category are included shape memory alloys and devices based on piezoelectric materials.
(b): Tuned mass dampers: These devices are added to the structures with the objective of
receive and dissipate a part of the vibrational energy. They can be seen in the simplest case
as a spring–dashpot system attached to the main structure. Usually, tuned mass dampers
contribute to decrease the response of a particular mode and, therefore, for environmental
actions with a wide frequency content, they are used in combination with other type of
devices. For a more complete review of these types of devices see [382, 383] and references
there quoted.

2.3.2 Complex geometric details

As it has been explained, although a great amount of work has been devoted to the development
of refined nonlinear models for beam structures, all of them are subjected to the following
limitations:

(i) Beam structures present either fully monolithic connections among elements or some of
their degree of freedoms are released [200] (e.g. pinned connections). Therefore, structural
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failures due to damage inside of the nodes, such as those occurred in poorly designed RC
buildings [54] or in the so called semi–rigid connections of steel or composite structures
[17], often are not properly considered.

(ii) The shape and the mechanical properties of the cross sections are considered constants in
an element (or they have smooth variations) and, therefore, the beam models show serious
difficulties in reproducing structural behaviors dominated by local changes in the geometry
such as those observed in the connecting joints of precast concrete structures [315, 316].

Several attempts have been carried out for modeling the effects of local irregularities or local com-
plex stress concentrations in framed structures. Probably, the most common approach consists in
employing plastic hinge models with moment-curvature relations reflecting the mechanical char-
acteristics of the connecting joints [221], although this approach has the previously described
limitations. Other authors have focused their efforts towards developing specific solid-to-beam
transition elements e.g. [428]. More realistic numerical studies of beam–column connections
involve fully 3D finite element models as it is shown by Fu et al. in [138]; however, in their work
the purpose still is obtaining simpler moment-curvature relationship of the connecting joints.
An alternative approach, combining precision, generality and computational efficiency consists
of coupling reduced 1D and full 3D numerical models for different parts of the structure. In
this case, most of the elements are prismatic rods and local irregularities or zones correspond-
ing to the connecting joints receive a more detailed geometric description. The connection
between models of different dimensions is done through interface–surfaces. Some research in
this direction have been carried out by McCune et al. [280] where a scheme for establishing
displacement compatibility and stress equilibrium at the interface is developed. The results
are finally implemented as multi–point constraint equations relating the displacement field of
the beam’s node (which includes rotations) with the corresponding of the nodes of the solid
at the interface. A similar approach is followed by Shim et al. [359, 358] and an application
to earthquake engineering can be reviewed in [154]. The kinematic restrictions for a consistent
beam-to-shell transition element in finite deformation is presented in [400]. Garusi and Tralli
[140] develop hypostatic transition solid-to-beam and plate-to-beam elements following a stress
assumed method. In [158], the dimensional–coupling is obtained applying the Lagrange multi-
plier’s method. Göttlicher and Schweizerhof in [147] present the analysis of flexible structures
with occasionally rigid parts under dynamics actions. Monaghan et al. in Ref. [291] develops a
method for the dimensional–coupling between 1D beams and full 3D bodies. Blanco et al. [63]
develop a unified variational approach for coupling 3D–1D models and show an application to
the blood flow. In [146] a displacement based super–element is used for studying the propagation
of waves in structures with singularities. In all the cases, the numerical examples are limited to
the linear elastic case.
In this work, a two–scale approach (global and local) is developed in order to study the non-
linear response of RC framed buildings. At global scale level, all the elements of the FE model
are rods; however, if (locally) geometric irregularities appear, a zoom view of the correspond-
ing element is performed, consisting in a fully 3D model which constitutes the local scale level.
The dimensional–coupling between scales is performed through surface–interfaces imposing the
kinematic hypothesis assumed for the beam model. This method avoids the use of multi-points
constraints or Lagrange multipliers. Starting from the full 3D stress state existing in the local
model, cross sectional forces and moments, required at global level, are recovered by integrating
at the surface–interface in an analogous manner as for the cross sectional analysis of beams [258].
Force and displacement equilibrium is checked local and global levels, ensuring that compatible
configurations are reached for the whole problem. Computationally, the problem is managed by
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means of a master–slave approach, where the global scale problem acts as the master, sending
a trial displacement field to the local scale models (slaves) and then receives the corresponding
internal forces, moments and tangential tensors estimated by means of integration on the surface
interfaces. The proposed approach is well suited to be implemented in a parallelized algorithm,
where the mater and slave problems are solved independently by different programs [379]. All
the details are presented in §8.2.
An important branch of civil engineering structures presenting local geometric irregularities is
that including the precast ones. In this case, irregularities are mainly located in the connecting
joints which are, by constructive reasons, non-monolithic. The following section is devoted to
give an overview of the main characteristics and limitations of the precast concrete structures.

2.3.2.a Precast structures

Precast concrete structures has been categorized in three types: (i) skeletal frames, (ii) portal
frames and (iii) wall frames. Of these, the skeletal frame is the most challenging, both structural
and architectonically, and therefore, they have attracted the most attention in research and devel-
opment. This kind of structures has transformed passing since heavy-mass-produced elements to
streamlined, long-span, lightweight, thermally and acoustically efficient free-maintenance struc-
tures of today. Many engineers, builders and researchers consider that precast concrete is the
most versatile building material available, (see e.g. [122] and references therein). The other two
kind of precast concrete structures, i.e. portal and wall frames, have limited applications to
modular-like structures, however, the skeletal ones may be adapted for a wide range of multi-
storey offices, car parks, shopping etc. The main feature being the versatile use of large open
spaces. In general, the mass of skeletal structures is about a 5% of its volume with about a 2/3
of this in the floors7.
Among the main reasons that have contributed to increase the market participation of the pre-
cast concrete are the high velocity of erection with a minimum site presence getting construction
rates of 1000-2000 m2 per week with a fixing team of around six persons. To achieve this rates,
structural elements, (beams, columns, floors and walls), must be erected simply and safely,
through efficient connector designs [315].
The global stiffness of precast frames is highly dependant on the local stiffness of the connec-
tors between elements, often 5-10 times that of the elements. A very important aspect of the
structural design of precast structures is that connections possess adequate strength and duc-
tility specially when the whole structure undergoes large displacements, [122]. In this sense the
most important connections are the column-foundation and column-beam joints. Most of the
research work in the present is given by the study of the behavior of connecting joints, possibly
at the expense of the structural elements itself which has been optimized in-house by the precast
manufacturer. The lack of specific codes providing technical specifications about the design of
precast structures with different connecting systems has carry to the employment pejorative
rules that must be applied to concrete columns in unbraced frames, requiring lateral bracing to
stabilize be used to stabilize skeletal frames of more than three storeys.
Precast shear walls, cores, masonry infill walls and cross bracing provide lateral stability and
different degrees of stiffness but nonlinear interaction between stabilizing elements and the skele-

7This fact has motivated a large amount of research in pre-tensioned floors for both gravity and horizontal
loads. Today there are a wide variety of engineering solutions providing light weight floors based on precast
prestressing concrete unit and high strength concrete [122], which are one of the most economical flooring systems
worldwide.
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tal elements take place8. Some unbraced structures frames are stabilized by columns acting as
moment-resisting cantilevers or by frame action via rigid or semi-rigid connections. Some de-
signers prefer the pinned connections because of the perceived view that a semi-rigid connection
could if not properly detailed and constructed, soften at loads near ultimate failure.
Pinned connections are easier to assemble, but rarely behave as perfect hinges because of the
need of continuity tie steel, which rather destroy the intended notion. In any case unbraced
frames frequently are designed as pinned joined structures [122].
Until recent years only a little effort in research and development on the global structural be-
havior of precast structures has been done. Probably, the most challenging initiative in this way
has been the US-Japanese PRESSS project [122], but in any case a lot of work is necessary in
development of specific tools in numerical analysis and design codes.
By other hand, braced frames are stabilized laterally by strategically positioned walls, cores
or diagonals struts and ties. Many times these elements are in conflict with the architectural
requirements limiting enormously their positions in the structure. The addition of bracing el-
ements can produce extraordinarily high stress concentration when connected to the flexible
pinned jointed frame and, therefore, the major part of the research has been focused on the
localized behavior of such frames, particulary on cyclic or reversal loads in large displacement
conditions, simulating the behavior expected during earthquakes. The need to develop hysteretic
energy dissipaters has concentrated on attempting to satisfy the requirements of strength, stiff-
ness and toughness simultaneously.
After several collapses of precast structures during recent earthquakes and other failures, the
design criteria has been enhanced and innovative methods such as the alternative load path has
been developed as a means of bypassing damaged elements or connections. In general, research
activity on precast concrete frames can be subdivided in [122]:

(i) Studies on global precast frame behavior, focusing on the influence of connections. The
profession agree that this type of research contribute to enhance the status of precast
demonstrating their unquestionable structural integrity. Studies have been focused on the
continuity of connections rather than on the elements themselves.

(ii) Sub-structuring the precast frames into appropriated two-dimensional cruciform or floor
bay assemblies for the convenient experimental testing and/or numerical modeling.

(iii) Optimization of precast elements, in particular lightweight prestressed floor systems.
(iv) Vertical and horizontal stability systems, such as infill shear walls and precast floor di-

aphragms with out cast in situ structural toppings.
(v) Connections and joints.
(vi) Structural integrity. The collective issues of ductility, toughness and robustness.

Even when in the last 15 years the research on precast carried out in United States, Japan, the
European Union and other countries has been increased notably, the percentage of the total
resources invested in research on concrete structures destined to precast is about 2-3 %.
In view of the above list it is clear that numerical research and particularly, the development of
robust numerical techniques for modeling and simulating the nonlinear response of precast struc-
tures considering local geometric irregularities, appears as a very important need for improving
the mechanical response of this type of structures when subjected to accidental actions.

8A widespread amount of research is being done to know more about structural interaction between frame
elements and the stabilization system [166].





Chapter 3

Geometrically exact formulation for
rods

This chapter is devoted to the presentation of a geometrically exact formulation for rods capa-
ble of considering large displacements and rotations. The present formulation is based on that
originally proposed by Simo [362] and extended by Vu-Quoc [363, 365], which generalize to the
full three-dimensional dynamic case the formulation originally developed by Reissner [333, 332]
for the plane static problem. These works are based on a convenient parametrization of the
three-dimensional extension of the classical Kirchhoff–Love1 [234] model. The approach can be
classified as a director type’s one according to Antman [11, 13], which allows to consider finite
shearing, extension, flexure and torsion. In the present case, an initially curved and unstressed
rod is considered as the reference configuration in an analogous approach as Ibrahimbegović et
al. [178, 182].
First, a detailed description of the kinematic assumptions of the rod model is carried out in the
framework of the configurational description of the mechanics. Due to its importance in the
development of time–stepping schemes in next chapters, special attention is paid to the formal
definition of the nonlinear differentiable manifolds that constitute the configuration, placement
and their tangent spaces. After defining translational and rotational strain vectors and calcu-
lating the deformation gradient tensor, a set of strain measures at material point level on the
cross section are described following the developments of Kapania and Li [207, 208]. However,
the developments are not limited to the static case and explicit expressions for the material,
spatial and co–rotational versions of the strain rate vectors as functions of the spin variables
are also provided. At material point level, the conjugated stress measures are deduced from
the principles of continuum mechanics and using the power balance condition for deducing the
stress measure energetically conjugated to the cross sectional strain measures.
The equations of the motion of the rod are deduced starting from the local form of the linear
and angular balance conditions and integrating over the rod’s volume. A form (weak) appro-
priated for the numerical implementation is deduced for the nonlinear functional corresponding
to virtual work principle, considering the noncommutative nature of a part of the admissible
variation of the displacement field.
Finally, a discussion about the deduction of reduced constitutive relations considering hyperelas-
tic materials is presented, leaving the detailed treatment of the rate dependent and independent
constitutive nonlinearity for the next chapter.

1The Kirchhoff–Love formulation can be seen as the finite strain counterpart of the Euler formulation for
beams frequently employed in structural engineering [36, 113].
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3.1 Kinematics

For an appropriated description of the three-dimensional motion of rods and shells in finite de-
formation (and in the rigid body dynamics [11, 62, 108, 188]) it is necessary to deal with the
(finite) rotation of a unit triad and therefore, the results of Appendix A will be used repeatedly
here to describe the Reissner–Simo geometrically exact formulation for rods.
First, it is necessary to define the orthogonal frame {Êi} which corresponds to the material ref-
erence frame of the configurational description of the mechanic, and it is defined to be coincident
with the fixed spatial frame {êi} by convenience. The concept of spatially fixed means that the
corresponding spatially fixed objects are fixed in an arbitrarily chosen orthogonal frame2 {êi}
that has no acceleration nor rotation in the 3D inertial physical space [365].

3.1.1 Initially curved and twisted reference rod

The configuration of a physically unstrained, unstressed, curved and twisted rod, simply called
curved reference rod, is defined by a smooth and spatially fixed reference curve with its position
vector given by

ϕ̂0 = ϕ̂0(S0) ∈ R3 = ϕ0iêi ∈ R3, S0 ∈ [0, L0] (3.1)

where reference curve is parameterized by its real arch–length coordinate S0 ∈ [0, L0] ⊂ R with
L0 ∈ R being the total real arch–length of the initially curved and twisted reference curve.
The reference curve also correspond to the line of centroid connecting a family of cross sections
through the geometry, mass or elasticity [228, 362]. Formally, plane cross sections are defined
considering the local orthogonal frame {t̂0i(S0)}, which is rigidly attached to each S0 ∈ [0, L0]
with its origin at ϕ̂0(S). It is explicitly given by

t̂0i = t̂0i(S0) = t0ij êj ∈ R3, t̂0i · t̂0j = δij (3.2)

where the components of the vectors t̂0i are given referred to the spatial frame {êi}.
Considering the coordinate system ξβ ∈ R, (β = 2, 3) defined along the base vectors {t̂0β} it
is possible to construct a compact subset of R2 defining the shape and size of the rod cross
section, which is obtained by means of selecting an appropriated set of pairs (ξβ) ∈ R2. This set
is designed as A0 = A0(S0) ⊂ R2 and in following it will be identified with the corresponding
plane rod cross section at S0. An additional assumption is that A0 vary smoothly along the
material points on the reference curve ϕ̂0, but it is invariant under any deformation. Thats to
say, material points attached to a given cross section are always the same. Since, the curved
reference rod is considered to be free of either strain nor stress, it is conventionally assumed
that the cross section planes of the curved reference rod are normal to the unit tangent vector3

ϕ̂0,S0 ∈ R3 at the point S0 ∈ [0, L0] [178, 228, 362] and, therefore, we have

ϕ̂0,S0 = t̂01 (3.3a)
ϕ̂0,S0 ·t̂0i = δ1i (3.3b)

‖t̂0i‖ = 1. (3.3c)

2The base vector {êi} is such that êi · êj = δij ; (i, j = 1 . . . 3).
3The symbol (•),x denotes partial differentiation with respect to the variable x i.e. ∂(•)/∂x.
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In this manner, we have that the position vector of any material point x̂0 = x̂0(S0, ξβ) ∈ R3 on
the curved reference rod4 is described by

x̂0 = ϕ̂0(S0) + ξβ t̂0β(S0) = ϕ̂0 + ξ2t̂02 + ξ3t̂03 (3.4)

where (S0, ξβ) ∈ ([0, L0] × A0) ⊂ (R × R2). It is worth to note that the reference curve ϕ̂0

corresponds to the set of material points of the form described by the family of vectors x̂(S0, ξβ =
0). Therefore, the kinematic assumptions imply that an admissible configuration of the curved
reference rod is formed by material points as those described by Eq. (3.4).
Due to the fact that {Êi} and {êi} are orthogonal frames, there exist an orthogonal tensor
Λ0 = Λ0(S0) ∈ SO(3) relating t̂0i and Êi by

t̂0i = Λ0Êi ⇔ Λ0 ≡ t̂0i ⊗ Êi = t0jiêi ⊗ Êj = Λ0ij êi ⊗ Êj . (3.5)

Therefore, the components of Λ0 referred to the basis {êi ⊗ Êj} are given by

[Λ0]êi⊗Êj
= [Λ0ij ]êi⊗Êj

=




t011 t021 t031

t012 t022 t032

t013 t023 t033


 . (3.6)

Hence, considering that t0ij = t̂0i · êj gives the director cosine of t̂0i with respect to êj , we have
that the orthogonal tensor Λ0 ∈ SO(3) determines the orientation of the cross sections of the
curved reference rod. For this reason the rotation tensor Λ0 = t̂0i⊗ Êj is usually referred as the
orientation tensor of the curved reference rod cross section [228, 362].
By the other hand, Λ0 corresponds to a two-point tensor relating vectors belonging to the ma-
terial space vector, obtained by the expansion of the material reference frame {Êi} and vectors
belonging to the spatial space vector obtained expanding the spatial reference frame {t̂0i}. In
this way, it is possible to say that Λ0 has ’one leg’ in the material reference configuration and
the another in the spatial one.
The above results imply that the configuration of the curved reference rod is completely deter-
mined by the family of position vectors of the centroid curve ϕ̂0 and the family of orthogonal
rotation tensors Λ0 [246, 362, 363]. Moreover, taking into account the results of §A.3 to §A.5 of
Appendix A, it is possible to construct the following definitions:

Definition 3.1. Curved reference configuration

In this way, it is possible to define the curved reference configuration by the following manifold

C0 := {(ϕ̂0,Λ0) : [0, L0] → R3 × SO(3)
∣∣ ϕ̂,S0 ·t̂01 > 0} (3.7)

which is the set composed by the family of pairs (ϕ̂0,Λ0) that define the initial geometry of the
curved reference rod ¥

Definition 3.2. Material placement

The material placement of the curved reference rod is defined as

B0 := {x̂0(S0, ξβ) ∈ R3
∣∣ x̂0 = ϕ̂0(S0) + ξβΛ(S0)Êβ; (S0, ξβ) ∈ [0, L0]×A0} (3.8)

constituted by all the physical points of the space which are occupied by material points at the
4It has been identified each material point or particle on the rod with its corresponding coordinate coordinate

values i.e. (S0, ξβ) ∈ [0, L0]×A(S0) along the spatial frame {t̂0i} or equivalently {êi}.
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initial time, conventionally designed by t0 ¥

Definition 3.3. Tangent bundle

The tangent space to the material placement of the curved reference rod is given by

TB0 := {(Ûx0 , x̂0) ∈ R3 ⊗ B0 ⊂ R3 ⊗ R3
∣∣ Ûx0 ∈ R3; x̂0 ∈ B0}. (3.9)

That is to say, the tangent space to B0 corresponds to the set of vectors belonging to R3 (or an
isomorphic linear space) with base points on the elements of B0 ¥

Definitions 3.1 and 3.2 correspond to nonlinear differentiable manifolds. If one takes a fixed
point x̂0, by analogy with Eq. (3.9), it is possible to define the tangent space to the material
placement with base point x̂0 denoted by Tx̂0B0. Moreover, one have

TB0 ≡
⋃

x̂0∈B0

Tx̂0B0.

3.1.2 Straight reference rod

Additionally, a spatially fixed, straight, unstrained and untwisted reference rod can be defined,
whose the centroid line is given by the position vector

ϕ̂00(S00) = S00Ê1 = S00ê1 (3.10)

with its arch–length coordinate S00 and total arch–length L00 exactly the same as in the case of
the curved reference rod i.e. S00 ≡ S0 and L00 ≡ L0. The corresponding local frames {t̂00i} of
the cross sections are given by t̂00i ≡ Êi = êi.
By analogy with the case of the curved reference rod, the position vector x̂00 = x̂00(S00, ξβ) of
any material point (S00, ξβ) for S00 ≡ S0 ∈ [0, L00] and (ξβ) ∈ A00(S00) on the cross section, can
be described by

x̂00 = ϕ̂00(S00) + ξβ t̂00β(S00) = S0Ê1 + ξ2Ê2 + ξ3Ê3. (3.11)

Following analogous procedures as for Λ0, the corresponding orientation tensor (or rotation
tensor) for the straight reference rod is simply given by

Λ00 ∈ SO(3) ≡ t̂00i ⊗ Êi = Êi ⊗ Êi = I (3.12)

where I is the second–order identity tensor of dimension three on the material vector space
spanned by {Êi⊗ Êj}. The configuration of the straight reference rod is completely determined
by the family of the arch–length coordinates S00 and orthogonal rotation tensors Λ00, therefore,
it is possible to define the following mathematical objects:

Definition 3.4. Straight reference configuration

The straight reference configuration space is defined by

C00 := {(S00,Λ00 = I) : [0, L00] → R× SO(3)} (3.13)

which is fixed in space and time ¥
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Definition 3.5. Material placement

The material placement of the straight reference rod is defined as

B00 := {x̂00(S00, ξβ) ∈ R3
∣∣ x̂00 = S00Ê1 + ξβÊβ; (S00, ξβ) ∈ [0, L00]×A00} (3.14)

which is equivalent to the set of material points of the rod at the fictitious time t00 ¥

Definition 3.6. Tangent bundle

The tangent bundle to the material placement of the straight reference rod is given by

TB00 := {(Ûx00 , x̂00) ∈ R3 ⊗ B00 ⊂ R3 ⊗ R3
∣∣ Ûx00 ∈ R3; x̂00 ∈ B00}. (3.15)

Therefore, the tangent bundle to B0 corresponds to the set of vectors belonging to R3 (or an
isomorphic linear space) with base points on the elements of B00 ¥

As before in the curved reference rod, definitions 3.5 and 3.6 correspond to nonlinear dif-
ferentiable manifolds. The tangent space to the material placement with base point x̂00 = X̂
denoted by TX̂B00 and one has

TB00 ≡
⋃

X̂∈B00

TX̂B00.

3.1.3 Current rod

During the motion the rod deforms from the curved reference rod configuration at time t0 to the
current rod configuration at time t. The position vector of any material point initially located
on the curved reference rod with coordinate S0 ≡ S ∈ [0, L0] moves from ϕ̂0 ∈ R3 to ϕ̂ ∈ R3 at
time t throughout the addition of the translational displacement û = û(S) ∈ R3 i.e.

ϕ̂(S) = ϕ̂0(S) + û(S) (3.16)

during the same motion, the initial local orientation frame Λ0 is rotated, along with the plane
cross section, from t̂0i ∈ R3 at time t0 to t̂i ∈ R3 at time t, which stays orthogonal and unitary
(t̂i ·t̂j = δij), by means of the orthogonal incremental rotation tensor Λn ∈ SO(3) in the following
way

t̂i ≡ Λnt̂0i = ΛnΛ0Êi. (3.17)

The term Λ = ΛnΛ0 ∈ SO(3) corresponds to a compound rotation as it as been defined in
Eq. (A.3). In Eq. (3.17) the spatial updating rule for rotations has been used; if the material
updating is preferred Eq. (3.17) transforms to the equivalent Λ = Λ0Λm

n with Λm
n = ΛTΛnΛ.

By simplicity in the exposition, for the moment the spatial rule will be used in most of the cases;
on the contrary it will be clearly indicated.
In the configurational description of the motion, the rotation tensor Λ can be seen as a two-point
operator that maps vectors belonging the space spanned by the material reference frame {Êi}
to vectors belonging the space spanned by the current spatial frame {êi}. Furthermore, Λ can
be seen as a linear application as follows

Λ : {Êi} → {êi}
V̂ 7→ ΛV̂ = v̂ (3.18)
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where V̂ and v̂ are two generic vectors belonging to the spaces spanned by {Êi} and {êi},
respectively. The components of Λ in those two reference systems are simply given by

Λ ≡ t̂i ⊗ Êi ∈ SO(3). (3.19)

By the other hand, the incremental rotation tensor Λn maps the base vectors {t̂0i} to the base
vectors {t̂i} and the components of Λn given in those reference systems are given by

Λn ≡ t̂i ⊗ t̂0i ∈ SO(3). (3.20)

Considering that t̂i = tij êj , it is possible to observe that the component representation of the
orthogonal tensor Λ, referred to the bases {êi ⊗ Êj}, is

[Λ]êi⊗Êj
= [Λij ]êi⊗Êj

=




t11 t21 t31

t12 t22 t32

t13 t23 t33


 = [t̂1, t̂2, t̂3]. (3.21)

In this manner, the orthogonal tensor Λ determines the orientation of the moving rod cross
section at time t. Similar to Λ0, the rotation tensor Λ is frequently called the orientation tensor
of the current rod cross section at the material point (S, ξβ = 0).
It is worth to note that the rotation operator Λ(S, t) can be minimally parameterized (see
Appendix A, Section A.2) using the material or spatial description of the rotation vector
Ψ̂(S, t) ∈ Tmat

I , ψ̂(S, t) ∈ T spa
I , respectively.

Figure 3.1: Configurational description of the rod model.

The position vector x̂ ≡ x̂(S, ξβ, t) ∈ R3 × R+ of any material point (S, ξβ) ∈ [0, L] ×A on the
moving rod cross section at time t is

x̂(S, ξβ, t) = ϕ̂(S, t) + ξβ t̂β(S, t) = ϕ̂(S, t) + ξβΛ(S, t)Êβ. (3.22)

Eq. (3.22) realizes the Reissner–Simo hypothesis for rods [332, 362], hence it is a parametrization
of the constraint infinite–dimensional manifold that arise from the hypothesis that the config-
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uration of the rod is described by means of the displacement of a centroid line more the rigid
body-rotation of the cross sections attached to it.
The position vector field x̂ can also be viewed as an one–dimensional solid, i.e. an internally
one–dimensional vector bundle constituted by the cross section planes of the rod; and time t is
considered as an independent parameter. For a more complete review of this point of view of
the rod theory it is convenient to consult the works of Mäkinen et al. [246, 245].
The above results imply that the moving rod configuration at time t ∈ R+ can be completely
determined by the position vector of the centroid curve ϕ̂ ∈ R3 and the family of orthogonal
rotation tensors Λ ∈ SO(3) of the rod cross section [246, 362, 363]. The following definitions
complete the kinematical hypothesis for the current rod:

Definition 3.7. Current configuration space

In this way, it is possible to define the current configuration space at time t by

Ct := {(ϕ̂,Λ) : [0, L0] → R3 × SO(3)
∣∣ ϕ̂,S0 ·t̂01 > 0, (ϕ̂0,Λ0)|∂Φϕ̂0 = (ϕ̂0Φ,Λ0Φ)} (3.23)

subjected to have prescribed values (ϕ̂0Φ,Λ0Φ) on a subset ∂Φϕ̂0 of the two end points of the rod
defined by the set ∂ϕ̂0 = {ϕ̂0(0), ϕ̂0(L0)}. The manifold Ct is called the abstract configuration
space of the rod. Note that ∂Φϕ̂0 = ∅ implies the free fly of a rod [373] ¥

Particular cases are C0 of Eq. (3.7), at time t0 when the moving rod coincides with the
spatially fixed curved reference rod and C00 of Eq. (3.13), at ’time’ t00 when it coincides with
the spatially fixed straight reference rod configuration5. Therefore, the configuration space can
be globally included in the Cartesian product R3 × SO(3) where R3 refers to the translational
displacement and SO(3) to the rotational displacement.

Definition 3.8. Spatial placement of the rod

The spatial placement of the rod is defined as

Bt := {x̂(S, ξβ, t) ∈ R3
∣∣ x̂ = ϕ̂(S, t) + ξβΛ(S, t)Êβ; (S, ξβ, t) ∈ [0, L0]×A× R} (3.24)

which can be seen as the set of the point in the ambient space which are occupied by the material
points of the rod at time t ¥

Definition 3.9. Tangent bundle

The tangent bundle to the spatial placement is given by

TBt := {δ(x̂) ∈ R3
∣∣ δ(ϕ̂) + δ(Λ)ξβÊβ, x̂ ∈ B} (3.25)

where the variation δ(•) can also be replaced by other vectors with base point on material points
of the rod at the current configuration ¥

Again, one has that Ct and Bt are differentiable manifolds. The tangent space to Bt at base
point x̂ is denoted by Tx̂Bt and the following relation holds

TBt ≡
⋃

x̂∈Bt

Tx̂Bt.

5Note that both curved and straight reference rod configurations are spatially fixed and independent of time
though moving rod configuration may coincide with these by respectively taking pre–subscripts ’0’ and ’00’.
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If the material updating rule is used for compound rotations, we have that the variation field
δx̂ ∈ TBt, which define the elements of the tangent space to the spatial placement Bt in Eq.
(3.24), can be written in material representation as

δx̂ = δϕ̂ + ΛδΘ̃ξβÊβ ∈ Tx̂Bt (3.26)

where ΛδΘ̃ ∈ Tmat
Λ SO(3) = TX̂B00⊗T ∗

X̂
B00 corresponds to the variation of the rotation operator

Λ given in Eq. (A.98a). By the other hand, if Λ is updated using the spatial rule i.e. θ̂ = ΛΘ̂,
it is also possible to represent the variation field δx̂ in spatial form as

δx̂ = δϕ̂ + δθ̃ΛξβÊβ = δϕ̂ + δθ̃ξβ t̂β ∈ Tx̂Bt (3.27)

where δθ̃Λ ∈ T spa
Λ SO(3) = Tx̂Bt ⊗ T ∗x̂Bt. One of the main advantages of choosing the material

representation for the rotation tensor and their variation field is avoiding the employment of
Lie derivatives in the linearization of the virtual work functional and, therefore, avoiding certain
complications related with the obtention of the tangent stiffness tensor for numerical calculations,
as it will be explained in next chapters.
The straight and curved reference configurations as well as the current configuration have been
drawn in Fig. 3.1. All the above described tangent spaces have associated the corresponding dual
tangent spaces6: T ∗(•)B, T ∗(•)B0 and T ∗(•)B00 respectively, spanned by the co–vector base {Ê∗

i }.
Considering that the material reference frame {Êi} is an Euclidean spatially fixed basis, it is
possible to assume that the associated dual basis {Ê∗

i } is coincident with it, i.e. {Êi} ∼= {Ê∗
i };

therefore, strictly no differentiation is needed between T(•)(•) and T ∗(•)(•).

3.1.4 Geometric interpretation of elongation and shearing

The arch–element ds of the current rod centroid line corresponding to the material point at
S ∈ [0, L] on the curved reference rod is ds = J dS, where J ≡ ‖ϕ̂,S ‖L2

7. Then the elongation
or elongation ratio of the centroid line of the moving rod at time t is defined by [228]

e(S) =
ds

dS
− 1 = J − 1. (3.28)

Thus, the unit tangent vector of the centroid curve of the moving rod at time t corresponding
to the material point S ∈ [0, L] on the rod centroid curve is calculated as

ϕ̂,s =
dϕ̂

dS

dS

ds
=

1
J ϕ̂,S =

1
1 + e

ϕ̂,S . (3.29)

In the general case, the unit normal vector t̂1 of the deformed rod cross section does not coincide
with the unit tangent vector ϕ̂,s because of the shearing; the angle changes between the tangent
vector of the centroid curve and t̂1 and away from orthogonal to t̂2 and t̂3 are the angles of
shearing, denoted by γ1i and determined (see [228, 207, 174]) by

ϕ̂,s ·t̂1 =
1

1 + e
ϕ̂,S ·t̂1 = cos γ11

6Some times called co–vector spaces or space of the one forms [245].
7The L2 norm of a vector is ‖v̂‖L2 = (v̂ · v̂)

1
2 for any vector v̂ ∈ Rn.
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ϕ̂,s ·t̂2 =
1

1 + e
ϕ̂,S ·t̂2 = cos(

π

2
− γ12) = sin γ12

ϕ̂,s ·t̂3 =
1

1 + e
ϕ̂,S ·t̂3 = cos(

π

2
− γ13) = sin γ13. (3.30)

At time t0 the moving rod coincides with the curved reference rod. Similarly, it is possible to
rewrite Eqs. (3.30) for the curved reference rod throughout the corresponding elongation and
shearing as

1
1 + e0

ϕ̂0,S ·t̂01 = cos γ011

1
1 + e0

ϕ̂0,S ·t̂02 = sin γ012

1
1 + e0

ϕ̂0,S ·t̂03 = sin γ013, e0 = 0, γ01i = 0.

3.1.5 Time derivatives, angular velocity and acceleration

Considering the spatial updating of the compound rotation Λ = ΛnΛ0 we have that the velocity
of a material point in the current configuration is calculated as the following material time
derivative [251]:

˙̂x =
dx̂

dt
= ˙̂ϕ + ṽvvT̂ = Λ

[
ΛT ˙̂ϕ + ṼVV Ê

] ∈ Tx̂Bt (3.31a)

where T̂ , ξβ t̂β, Ê , ξβÊβ and the spatial angular velocity tensor ṽvv = Λ̇ΛT ∈ T spa
Λ SO(3) of

the current cross section is referred to the straight reference configuration and it is calculated
employing the result of Eq. (A.113) as

ṽvv = ṽvvn + Λnṽvv0ΛT
n = ṽvvn ∈ T spa

Λn
SO(3) (3.31b)

where ṽvv0 = Λ̇0ΛT
0 = 0 due to the fact that Λ0 is a spatially fixed tensor8. In Eq. (3.31a) the

angular velocity tensor is also phrased in terms of the material angular velocity tensor referred
to the straight reference rod, which is explicitly given by

ṼVV = ΛT Λ̇ = ΛT ṽvvnΛ = ΛT
0 ṼVV nΛ0 ∈ Tmat

Λ SO(3) (3.31c)

where ṼVV n = ΛT
n Λ̇n ∈ Tmat

Λn
SO(3) and in an analogous manner as with the spatial case we have

that ṼVV 0 = 0. The corresponding axial vectors are: v̂ = v̂n ∈ T spa
Λ , V̂ ∈ Tmat

Λ and V̂n ∈ Tmat
Λn

.
Taking an additional material time derivative on Eq. (3.31a) we obtain the acceleration of a
material point on the current configuration as

¨̂x =
∂2x̂

∂t2
= ¨̂ϕ + ˙̃vvvT̂ + ṽvv

˙̂
T = ¨̂ϕ + [Λ̇ṼVV + ΛΛT

0
˙̃
VVV nΛ0]Ê ∈ Tx̂Bt (3.32a)

where the time derivative of ṽvv, ˙̃
VVV n and T̂ are calculated as

˙̃vvv = ˙̃vvvn =
d
dt

(Λ̇nΛT
n ) = Λ̈nΛT

n + Λ̇n
˙(ΛT
n )

= Λ̈nΛT
n − ṽvvnṽvvn = α̃ααn = α̃αα ∈ T spa

Λn
(3.32b)

8Detailed definitions of the material and spatial tangent spaces to SO(3) at the base point Λ and their
associated linear spaces, are given in Appendix A, Section A.4.
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˙̃
VVV = ˙̃

VVV n =
d
dt

(ΛT
n Λ̇n) = ˙(ΛT

n )Λ̇n + ΛT
n Λ̈n = −ΛT

n ṽvvnΛ̇n + ΛT
n Λ̈n

= −ΛT
n ṽvvnṽvvnΛn + ΛT

n Λ̈n = ÃAAn = ÃAA ∈ T spa
Λn

SO(3) (3.32c)
˙̂

T = ṽvvnT̂ . (3.32d)

Considering Eqs. (3.32b) to (3.32d) and the fact that ΛΛT
0

˙̃
VVV nΛ0 = −ΛṼVV ṼVV and Λ̇ = ΛṼVV we

obtain that
¨̂x =

∂2x̂

∂t2
= ¨̂ϕ + [α̃ααn + ṽvvnṽvvn]T̂ = Λ[ΛT ¨̂ϕ + [ÃAAn + ṼVV nṼVV nÊ ] (3.33)

with the corresponding axial vectors α̂n ∈ T spa
Λn

, Ân ∈ Tmat
Λn

.

REMARK 3.1. If the material updating rule for rotations is preferred i.e. Λ = Λ0Λm
n (Λm

n =
ΛTΛn), an entirely equivalent set of equations is obtained, which are summarized as

˙̂x = ˙̂ϕ + Λ0ṽvv
m
n ΛT

0 T̂ = ˙̂ϕ + ṽvvmT̂ = Λ[ΛT ˙̂ϕ + ṼVV
m

n Ê ] (3.34)
¨̂x = ¨̂ϕ + Λ0[α̃αα

m
n + ṽvvm

n ṽvvm
n ]ΛT

0 T̂ = ¨̂ϕ + [α̃ααm + ṽvvmṽvvm]T̂ = Λ[ΛT ˙̂ϕ + ÃAA
m

n Ê ] (3.35)

where ṽvvm
n = Λ̇m

n ΛmT
n , α̃ααm

n = ˙̃vvv
m

n ∈ T spa
Λn

, ṼVV
m

n = ΛmT
n ṽvvm

n Λm
n , ÃAA

m

n = ΛT α̃ααmΛ ∈ Tmat
Λn

; with the
corresponding axial vectors v̂m

n , α̂m
n ∈ T spa

Λn
and V̂ m

n , Âm
n ∈ Tmat

Λn
¥

3.1.6 Curvature vectors and tensors

Employing identical procedures as for the case of time derivatives of the rotation tensor in the
preceding section, (see also §A.5.7), it is possible to construct the curvature tensors for the
spatial and material configurations as

ω̃ωω0 ≡ ΠΠΠ[ω̂0] = Λ0,S ΛT
0 ∈ T spa

Λ0
SO(3) (3.36a)

Ω̃0 ≡ ΠΠΠ[Ω̂0] = ΛT
0 Λ0,S =

←
Λ0 (ω̃ωω0) = ΛT

0 ω̃ωω0Λ0 ∈ Tmat
Λ0

SO(3) (3.36b)

and

ω̃ωω ≡ ΠΠΠ[ω̂] = Λ,S ΛT = ω̃ωωn + Λnω̃ωω0ΛT
n ∈ T spa

Λ SO(3) (3.37a)

Ω̃ ≡ ΠΠΠ[Ω̂] = ΛTΛ,S =
←
Λ (ω̃ωω) = ΛT ω̃ωωΛ = Ω̃n + Ω̃0 ∈ Tmat

Λ SO(3) (3.37b)

where ω̃ωωn and Ω̃n are given by

ω̃ωωn ≡ ΠΠΠ[ω̂n] = Λn,S ΛT
n ∈ T spa

Λ SO(3) (3.38a)

Ω̃n ≡ ΠΠΠ[Ω̂n] =
←
Λ (ω̃ωωn) = ΛTΛn,S Λ0

= ΛT ω̃ωωnΛ = ΛTΛ,S −ΛT
0 Λ0,S ∈ Tmat

Λn
SO(3). (3.38b)

By simplicity, it is possible to say that the skew–symmetric tensors ω̃ωω0, ω̃ωωn, ω̃ωω, Ω̃0, Ω̃n and Ω̃
belongs to so(3)9, with their corresponding associated axial vectors, Eq. (A.100), given by

ω̂ ≡ ωj êj = Ωj t̂j ∈ T spa
Λ (3.39a)

9In the corresponding spatial and material tangent spaces according to Eqs. (3.36a), (3.37a) and (3.38a).
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ω̂0 ≡ ω0j êj = Ω0j t̂0j ∈ T spa
Λ0

(3.39b)

ω̂n ≡ ωj êj = Ωj t̂j ∈ T spa
Λn

(3.39c)

for the spatial form and

Ω̂ ≡ ΩjÊj = ΛT ω̂ ∈ Tmat
Λ (3.39d)

Ω̂0 ≡ Ω0jÊj = ΛT
0 ω̂0 ∈ Tmat

Λ0
(3.39e)

Ω̂n ≡ ΩnjÊj = ΛT ω̂n = Ω̂− Ω̂0 ∈ Tmat
Λn

(3.39f)

for the material forms.
The terms ω̂0 and Ω̂0 are the curvature vectors of the curved reference rod configuration in the
spatial and material descriptions, they measure the orientation change rate of the cross section
with respect to the arch–length coordinate S. The component Ω01 is the twist rate around the
tangent vector t̂01, and Ω02 and Ω03 are the corresponding curvature components around t̂02 and
t̂03, respectively.
Similarly, we also call ω̂ and Ω̂ the curvature vectors of the current rod in spatial and material
forms; they denote the orientation change rate of the cross section of the current rod with respect
to the arch–length coordinate S. Analogously, the component Ω1 is the twist rate around the
normal vector t̂1, and Ω2 and Ω3 are the corresponding curvature components around t̂2 and t̂3,
respectively.
It is interesting to note that, according to the result of Eq. (A.100) of §A.5.6 of Appendix A,
the components of the spatial curvature vectors in the spatial moving frame {t̂0i} or {t̂i} are
identical to the components of the material curvature vectors in the material reference frame
{Êi} i.e.

Ω0j = Ω̂0 · Êj = ω̂0 · t̂0j

Ωj = Ω̂ · Êj = ω̂ · t̂j . (3.40)

Additionally, it is possible to call ω̂n and Ω̂n the curvature change vectors in spatial and material
forms, of the current rod relative to the curved reference rod, and they denote orientation
change of the cross sections of the current rod relative to the curved and twisted reference
configurations with respect to the arch–length coordinate S ∈ [0, L]. The component Ωn1 is
the twist rate change around the normal vector t̂1, and Ωn2 and Ωn3 are the corresponding
curvature components around t̂2 and t̂3, respectively. In this manner, the elongation, shearing
and curvature change have been described.
The fact that the cross section rotates away from the orthogonality with the tangent vector
of the rod mid–curve is considered as shearing10. While relative orientation angle of the cross
section as the material point S ∈ [0, L] varies along the rod mid–curve determines the curvature
change of a curved rod.

3.2 Strain measures

For deducing explicit expressions for the strain measures some preliminary results are required;
the calculation of the co-rotated derivative of the orientation frames of a cross section of the
current and curved reference rods.

10Shearing can be expressed in terms of the distortion angle as it has been described in §3.1.4. This measurement
of shear or elongation is obtained from the engineering point of view; consult e.g. [228, 207, 208].



46 Chapter 3. Geometrically exact formulation for rods

3.2.1 Co–rotated derivative of the orientation triads

Explicit expressions for the spatial derivative of the orientation triads {t̂0i} and {t̂i} can be
calculated taking their co–rotated derivative with respect to the arch–length coordinate S ∈
[0, L], recovering the Frenet–Serret formulae in the original sense as explained in Ref. [228].
They read as (see Def. A.27 of Appendix A, pp. 285)

[
O
t0i],S ≡ LΛ0(t̂0i) = t̂0i,S −ω̃0t̂0i = Λ0(ΛT

0 t̂0i),S = Λ0(Êi),S = 0

[
O
t i],S ≡ LΛ(t̂i) = t̂i,S −ω̃t̂i = Λ(ΛT t̂i),S = Λ(Êi),S = 0

what imply that

t̂0i,S = ω̃0t̂0i = ω̂0 × t̂0i (3.41a)
t̂i,S = ω̃t̂i = ω̂ × t̂i (3.41b)

considering that ω̂0 = Ω0j t̂0j and writing for each component one obtains

t̂01,S = Ω03t̂02 − Ω02t̂03; t̂02,S = −Ω03t̂01 + Ω01t̂03; t̂03,S = Ω02t̂01 − Ω01t̂02,

for the curved reference orientation triad and considering ω̂ = Ωj t̂j , one has that

t̂1,S = Ω3t̂2 − Ω2t̂3; t̂2,S = −Ω3t̂1 + Ω1t̂3; t̂3,S = Ω2t̂1 − Ω1t̂2, (3.41c)

for the current orientation triad.

3.2.2 Deformation gradient tensor

The deformation gradient can be defined as the material gradient of the deformation x̂(S, ξβ, t)
and it can be calculated with the aid of the formula F = ∇X̂ x̂. However, the deformation
x̂ : B00 → Bt is more like a point mapping than a vector. Hence, the deformation gradient
tensor can be defined as the tangent field of the deformation mapping [246, 245] i.e.

F := TX̂ x̂ ∈ Tx̂Bt ⊗ T ∗
X̂
B00 (3.42)

where F is also a linear application TX̂ ∈ L(Tx̂Bt ⊗ TX̂B00) is formally defined as

TX̂ x̂ :=
∂xi

Xj
Xj = FX̂.

In Eq. (3.42) it has been assumed that x̂ is a tensor of rank one i.e. a vector. The study
of the deformation gradient helps to determine the strain measures at any material point of
the current cross section of the rod [363, 207]. In this section, we will indirectly obtain the
deformation gradient tensor of the current rod configuration relative to the curved reference
rod configuration by means of obtaining the deformation gradient tensors of the two curved
rod configurations relative to the straight reference rod configuration followed by a change of
reference configuration11 (see Ogden [300]).
Considering the expression for the position vector of material points on the curved and current
rods, x̂0 and x̂, given by Eqs. (3.4) and (3.22) respectively, and the result of §3.1.6, it is possible

11Avoiding use covariant and contra–variant reference frames.
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to calculate the following derivatives:

x̂0,S = ϕ̂0,S +ω̃ωω0T̂0 = ε̂0 + t̂01 (3.43a)
= Λ0[ΛT

0 ϕ̂0,S +Ω̃0Ê ] = Λ0[Ê0 + Ê1] (3.43b)
x̂0,β = t̂0β = Λ0Êβ (3.43c)

where we have denoted Ê := ξβÊβ ∈ TX̂B00 and T̂0 := ξβ t̂0β ∈ Tx̂0B0 by simplicity and the
vectors ε̂0 ∈ Tx̂0B0 and Ê0 ∈ TX̂B00 are given by

ε̂0 ≡ E0j t̂0j = γ̂0 + ω̃ωω0T̂0 (3.44a)

Ê0 ≡ E0jÊj = Γ̂0 + Ω̃0Ê (3.44b)

with γ̂0 ∈ Tx̂0B0 and Γ̂0 ∈ TX̂B00 given by

γ̂0 ≡ Γ0j t̂0j = ϕ̂0,S −t̂01 (3.45a)
Γ̂0 ≡ Γ0jÊj = ΛT

0 ϕ̂0,S −Ê1 (3.45b)

for a point on the curved reference rod and

x̂,S = ϕ̂,S +ω̃ωωT̂ = ε̂ + t̂1 (3.46a)
= Λ[ΛT ϕ̂,S +Ω̃Ê ]
= Λ[Ê + Ê1] (3.46b)

x̂,β = t̂β = ΛÊβ (3.46c)

where we have denoted T̂ := ξβ t̂β ∈ Tx̂Bt by simplicity and the vectors ε̂ ∈ Tx̂Bt and Ê ∈ TX̂B00

are given by

ε̂ ≡ Ej t̂j = γ̂ + ω̃ωωT̂ (3.47a)

Ê ≡ EjÊj = Γ̂ + Ω̃Ê (3.47b)

with γ̂ ∈ Tx̂Bt and Γ̂ ∈ TX̂B00 given by

γ̂ ≡ Γj t̂j = ϕ̂,S −t̂1 (3.48a)
Γ̂ ≡ ΓjÊj = ΛT ϕ̂,S −Ê1 (3.48b)

for a material point on the current rod.
Therefore, employing the results of Eqs. (3.5) and (3.19) for rotation tensors, the deformation
gradient tensors F0 ∈ Tx̂0B0 ⊗ TX̂B00 and F ∈ Tx̂Bt ⊗ TX̂B00, of the curved reference rod and
the current rod relative to the straight reference rod, respectively; are determined by

dx̂0 ≡ F0dx̂00

F0 = x̂0,S ⊗Ê1 + x̂0,β ⊗Êβ = ε̂0 ⊗ Ê1 + t̂0i ⊗ Êi = E0it̂0i ⊗ Ê1 + t̂0i ⊗ Êi

= ε̂0 ⊗ Ê1 + Λ0 = Λ0F̄0 (3.49a)
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dx̂ ≡ Fdx̂00

F = x̂,S ⊗Ê1 + x̂,β ⊗Êβ = ε̂⊗ Ê1 + t̂i ⊗ Êi = Eit̂i ⊗ Ê1 + t̂i ⊗ Êi

= ε̂⊗ Ê1 + Λ = ΛF̄ (3.49b)

with F̄0, F̄ ∈ TX̂B00 ⊗ TX̂B00 given by

F̄0 = Ê0 ⊗ Ê1 + I = E0iÊi ⊗ Ê1 + Êi ⊗ Êi (3.50a)
F̄ = Ê ⊗ Ê1 + I = EiÊi ⊗ Ê1 + Êi ⊗ Êi, (3.50b)

respectively. Considering Eqs. (3.30) and (3.31) for the elongation and shearing of the curved
reference rod and the current rod configuration, it is possible to obtain the components of γ̂0(S)
and γ̂(S) referred to the local frames as

γ0j = Γ0j = ϕ̂0,S ·t̂0j − t̂01 · t̂0j = ϕ̂0,S ·t̂0j − δ1j ; e0 = 0; γ01i = 0 (3.51a)
γj = Γj = ϕ̂,S ·t̂j − t̂1 · t̂j = ϕ̂,S ·t̂j − δ1j . (3.51b)

Then the components of ε̂0(S, ξβ) and ε̂(S, ξβ) in Eqs. (3.44a), (3.44b), (3.47a) and (3.47b)
referred to their local frames are

E01 = γ01 + ξ3Ω02 − ξ2Ω03; E02 = γ02 − ξ3Ω01; E03 = γ03 + ξ2Ω01, (3.52a)

and
E1 = γ1 + ξ3Ω2 − ξ2Ω3; E2 = γ2 − ξ3Ω1; E3 = γ3 + ξ2Ω1. (3.52b)

Note that the component representation of F0 and F in the spatial form as well as F̄0 and F̄ in
the material form (see §A.3.1) can be identified from Eqs. (3.49a), (3.49b), (3.50a) and (3.50b)
as [207]

[F0]t̂0i⊗Êj
= [F̄0]Êi⊗Êj

=




1 + E01 0 0
E02 1 0
E03 0 1


 (3.53a)

and

[F]t̂i⊗Êj
= [F̄]Êi⊗Êj

=




1 + E1 0 0
E2 1 0
E3 0 1


 . (3.53b)

The determinants of F̄0(S, ξβ) and F̄(S, ξβ) can be obtained from Eqs. (3.53a) and (3.53b) as

g0 ≡ Det[F0] = Det[Λ0]Det[F̄0] = Det[F̄0]
= 1 + E01 = 1 + Γ01 + ξ3Ω02 − ξ2Ω03 (3.54a)

g ≡ Det[F] = Det[Λ]Det[F̄] = Det[F̄]
= 1 + E1 = 1 + Γ1 + ξ3Ω2 − ξ2Ω3 (3.54b)

respectively, and the inverses of F0 and F are

F−1
0 = (Λ0F̄0)−1 = F̄−1

0 ΛT
0 = (− 1

g0
Ê0 ⊗ Ê1 + I)ΛT

0

= [E0iÊi ⊗ Ê1 + Êi ⊗ Êi]−1ΛT
0

= −g−1
0 Ê0 ⊗ t̂01 + ΛT

0 = ΛT
0 (−g−1

0 ε̂0 ⊗ t̂01 + I) ∈ TX̂B00 ⊗ T ∗x̂0
B0 (3.55a)
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F−1 = (ΛF̄)−1 = F̄−1ΛT = (−1
g
Ê ⊗ Ê1 + I)ΛT

= [EiÊi ⊗ Ê1 + Êi ⊗ Êi]−1ΛT

= −1
g
Ê ⊗ t̂1 + ΛT = ΛT (−1

g
ε̂⊗ t̂1 + I) ∈ TX̂B00 ⊗ T ∗x̂Bt. (3.55b)

Taking into account the definitions given for F0 and F in Eqs. (3.49a) and (3.49b) as well as
(3.55a) and (3.55b), it is possible to obtain the deformation gradient tensor of the current beam
relative to the curved reference rod through a change of reference configuration, following the
procedure described in Ref. [300].
As it has been previously explained the gradient tensor F0 ∈ Tx̂0B0 ⊗ T ∗

X̂
B00 maps differential

elements of length from the straight reference configuration B00 to the curved reference config-
uration B0, i.e. F0(dX̂00) → dx̂0. By other hand, the gradient tensor F ∈ Tx̂Bt ⊗ T ∗

X̂
B00 maps

differential elements of length from the straight reference configuration B00 to the current place-
ment of the body Bt i.e. F(dX̂00) → dx̂. Considering that both gradient tensors are invertible

B0

Fn=F◦F−1
0

--

F−1
0

%%

Bt

F−1
n

mm

F−1

zz
B00

F0

``AAAAAAAAAAAAAAAA

F

>>}}}}}}}}}}}}}}}}

Figure 3.2: Diagram of domains and ranges for the gradient tensor Fn.

applications it is possible to construct a third gradient tensor Fn ∈ Tx̂0B0⊗T ∗x̂Bt relating differ-
ential elements of length between the curved reference placement B0 and the current placement
Bt as

Fn := F ◦ F−1
0 ∈ Tx̂Bt ⊗ T ∗x̂0

B0; such that
Fn : Tx̂0B0 → Tx̂Bt (3.56)

dx̂0 7→ Fn(dx̂0) = dx̂

The scheme of Fig. 3.2 shows the vector fields where the gradient tensor Fn acts. An explicit
expression for the deformation gradient tensor Fn can be calculated as

dx̂ ≡ Fndx̂0

Fn = FF−1
0 = (Eit̂i ⊗ Ê1 + t̂i ⊗ Êi)(−g−1

0 E0jÊj ⊗ t̂01 + Êj ⊗ t̂0j)
= −g−1

0 EiE0jδ1j t̂i ⊗ t̂01 − g−1
0 E0jδij t̂i ⊗ t̂01 + Eit̂i ⊗ δ1j t̂0j + t̂i ⊗ δij t̂0j

= −(EiE01 + E0i − E01Ei − Ei)
E01 + 1

t̂i ⊗ t̂01 + t̂i ⊗ t̂0i

= g−1
0 Enit̂i ⊗ t̂01 + t̂i ⊗ t̂0i

=
1
g0

ε̂n ⊗ t̂01 + Λn = ΛF̄nΛT
0 ∈ Tx̂Bt ⊗ T ∗x̂0

B0 (3.57a)

F̄n =
1
g0
Ên ⊗ Ê1 + I =

1
g0
EniÊi ⊗ Ê1 + Êi ⊗ Êi ∈ TX̂B00 ⊗ TX̂B00 (3.57b)



50 Chapter 3. Geometrically exact formulation for rods

where, employing Eqs. (3.44a) to (3.52b), and noting that Ω̃n(•) = Ω̂n × (•) we have

Ên ≡ EnjÊj ∈ TX̂B00

≡ Ê − Ê0 = Γ̂n + Ω̃nÊ = Γ̂n + (ξ3Ωn2 − ξ2Ωn3)Ê1 + Ωn1(ξ2Ê3 − ξ3Ê2) (3.58)
ε̂n = ΛÊn = ε̂−Λnε̂0 = γ̂n + ω̃ωωnT̂ ∈ Tx̂Bt

= γ̂n + (ξ3Ωn2 − ξ2Ωr3)t̂1 − ξ3Ωn1t̂2 + ξ2Ωn1t̂3 = Enj t̂j (3.59)

with

Enj ≡ Ej − E0j = x̂,S ·t̂j − x̂0,S ·t̂0j (3.60a)
En1 = Γn1 + ξ3Ωn2 − ξ2Ωn3)
En2 = Γn2 − ξ3Ωn1)
En3 = Γn3 + ξ2Ωn1)
Γnj ≡ Γj − Γ0j = ϕ̂,S ·t̂j − ϕ̂0,S ·t̂0j = ϕ̂,S ·t̂j − δ1j (3.60b)

and

Γ̂n ≡ Γ̂− Γ̂0 = ΛT ϕ̂,S −ΛT
0 ϕ̂0,S = ΓnjÊj (3.61a)

γ̂n = ΛΓ̂n = ϕ̂,S −Λnϕ̂0,S = γ̂ −Λnγ̂0 = ϕ̂,S −t̂1 = Erj t̂j (3.61b)

where γ0j = Γ0j = 0, considering that the curved reference configuration x̂0 is unstressed and
unstrained.
The determinant of Fn can be obtained employing Eqs. (3.53a) and (3.55a) [228] as

gn = Det[Fn] = Det[FF−1
0 ] = Det[F]Det[F−1

0 ] =
Det[F]
Det[F0]

=
g

g0
= 1 +

En1

g0
(3.62)

and, using Eqs. (3.49a) and (3.55b), it is possible to obtain the inverse of Fn as

F−1
n = (FF−1

0 )−1 = F0F−1 = ΛT
n (−1

g
ε̂n ⊗ t̂1 + I). (3.63)

It is important to note that ε̂0, ε̂, Ê0 and Ê (in the spatial and material forms, respectively) are
the strain vectors at any point of the cross section and γ̂0, γ̂, Γ̂0 and Γ̂ are the strain vectors
on the centroid-curve for the curved reference rod and the current rod relative to the straight
reference configuration. They determine the corresponding elongation and shearing relative to
the straight reference rod [178, 188, 362].
Fig. 3.3 show a schematic representation of the these strain measurements expressing their
components in the material reference frame by simplicity; additionally, the material form of the
curvature vector has been draw to highlight the relation between ε̂, (Ê), and γ̂, (Γ̂), given in
Eqs. (3.58) to (3.61a).
Noting the similarity between Eqs. (3.57b) and (3.50b), one may intuitively choose ε̂n/g0, Ên/g0

as the right strain vector of the current rod configuration relative to the curved reference rod
that is conjugated to the First Piola Kirchhoff12 stress vector.
The term g0 = |F0|, given in Eq. (3.54a), is the scale factor between the differential volumes of

12More details about stress measurements will be given in the next section.
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Figure 3.3: Geometric representation of the reduced strain vectors.

the curved reference rod and the straight reference rod at any material point (S, ξβ)

dV0 = g0dV00 = g0dSdξ2dξ3 (3.64a)
dV00 = dSdξ2dξ3 (3.64b)

where V0 and V00 are the volume domains of the curved reference rod and straight reference rod
configurations, respectively. Additionally, the following relation holds for the current differential
element of volume

dV = gdV00 = gndV0. (3.64c)

An unit–length fiber parallel to Ê1, the normal to the straight reference rod cross section is
stretched to be g0 in the direction of t̂01, the normal of the curved reference rod cross section,
if the rod moves from the straight reference configuration to the curved reference configuration.
In fact, using Eq. (3.49a) for the deformation13 gradient tensor F0 of the curved reference rod
relative to the straight reference rod and Eq. (3.54a) for g0, one has

(F0Ê1dS) · t̂01 = (ε̂0 + t̂01) · t̂01 = (ε̂0 · t̂01 + t̂01 · t̂01)dS = (E01 + 1)dS ≡ g0dS (3.65)

which is dependent on the curvature of the curved reference rod configuration but not on the
twist for a given point on the cross section, see Eq. (3.52b). This result is in agreement with
the assumption that the rod cross section remains plane and undeformed during the motion. If
in stead, an unit–length fiber along Êβ is chosen we have that

(F0dξβÊβ) · t̂0β = ((ε̂⊗ Ê1 + Λ)dξβÊβ) · t̂0β = (ε̂δ1β + dξβ t̂0β) · t̂0β = dξβ (3.66)

which is in conformity with the kinematic assumption that suppose that cross sections remain
planes and undeformed. The same result is obtained if in Eq. (3.66) F0 and t̂0β are replaced by
F and t̂β, respectively. Therefore, one have the following result for elements of differential area

dA00 = dA0 = dA. (3.67)

Eq. (3.64b) also implies that any ’cut’ slide of the curved reference rod through two cross
section planes with differential length dS, at any point on the mid–curve, is linearly tapered and
its thickness in direction t̂01 varies according to g0dS as the material point varies on the curved
reference rod cross section [228]. Any fiber parallel to t̂01 has a real length g0dS at (S, ξβ) if a

13Here the term deformation has been used instead of gradient to highlight that F0 contains all the information
relative to stretches and rotations of differential length elements [251, 300].
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fiber parallel to t̂01 has a real length dS at S on the mid–curve.
The factor g−1

0 (in front of ε̂n) in the deformation gradient tensor Fn of Eq. (3.57a), appears
due to the fact that variations are taken with respect to the real undeformed fiber’s length [228].
The same conclusion can be reached from the relation dx̂ ≡ Fndx̂0 in the same set of equations,
in which dx̂0 and dx̂ are the spatial vectors of an oriented differential fiber element with real
length before and after deformation with the orthonormal reference frame {êi} or {t̂i}.
The term g0 ca be identified with the initial curvature correction term, whose effect may be
significant for thick and moderately thick curved rods and small for slender rods. Similar
explanations may be made for g = |F| as defined in Eq. (3.54b) and gn = |Fn| in Eq. (3.62).

3.2.3 Other strain measurements

In continuous mechanics different strain measurements can be defined; Crisfield in reference
[107], (Chapters 1–5), shows a good introduction to different measurement of strains in the
one–dimensional case. For the 3D case it is possible to consult [251, 300].
The importance of studying several strain measurements is due to the fact that some of them
are energetically conjugated to stress measurements although there are some exceptions.
Starting from Fn and removing the rigid body component Λn it is possible to define the following
spatial strain tensor εεεn (or EEEn in the material form):

εεεn ≡ (Fnt̂0i −Λnt̂0i)⊗ t̂0i = Fn −Λn

=
1
g0

ε̂n ⊗ t̂01 =
1
g0
Enit̂i ⊗ t̂01

= Enij t̂i ⊗ t̂0j ∈ Tx̂Bt ⊗ Tx̂0B0 (3.68a)
EEEn ≡ (F̄nÊi − IÊi)⊗ Êi = F̄n − I

=
1
g0
Ên ⊗ Ê1 =

1
g0
EniÊi ⊗ Ê1

= EnijÊi ⊗ Êj ∈ TX̂B00 ⊗ TX̂B00 (3.68b)

which, as it will shown in next sections, is the energetically conjugated strain measurement to
the First Piola Kirchhoff stress tensor. The component form of this strain measurement is

[εεεn]t̂i⊗t̂0j
= [EEEn]Êi⊗Êj

=
1
g0



En1 0 0
En2 0 0
En3 0 0


 =

1
g0

[Ên 0̂ 0̂
]
. (3.69)

In fact, as it has been previously described, the vector g−1
0 Ên = EEEn · Ê1 corresponds to the

right strain measurement acting on the face of the cross section of the current rod configuration
relative to the curved reference rod. The geometrical meaning of the strain vector g−1

0 ε̂n can be
appreciated from the alternative definition:

1
g0

ε̂n ≡ Fnt̂01 −Λnt̂01 ∈ Tx̂Bt (3.70)

which is the stretching of an oriented unit length fiber t̂01 of the curved reference rod at any
material point to Fnt̂01 with the rigidly rotated part t̂1 = Λnt̂01 removed. The component g−1

0 εn1

along t̂1 may be called the extensional strain, and the components g−1
0 εn2 and g−1

0 εn3 along t̂2
and t̂3 respectively, called the shear strains. For small strain problems the three components of
the strain vector g−1

0 ε̂n become the extensional and shear strains in the classical or engineering
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sense [300].
Taking advantage of the standard theory of continuum mechanics [251, 300], it is possible to
construct the following definitions for the present theory:

Definition 3.10. Symmetric Green strain tensor

Taking into account the result of Eq. (3.57a), the symmetric Green strain tensor in spatial and
material forms are defined as [228]

εεεG ≡ 1
2
(FT

nFn − I) =
1
2
(
(g−1

0 Enit̂01 ⊗ t̂i + t̂0i ⊗ t̂i)(g−1
0 Enk t̂k ⊗ t̂01 + t̂k ⊗ t̂0k)− I

)

=
1
2
(
g−2
0 EnkEnk t̂01 ⊗ t̂01 + g−1

0 Enk t̂01 ⊗ t̂0k + g−1
0 Enk t̂0k ⊗ t̂01 + t̂0k ⊗ t̂0k − I

)

= (
g−2
0

2
Ên · Ên + g−1

0 En1)t̂01 ⊗ t̂01 +
g−1
0

2
Enβ(t̂01 ⊗ t̂0β + t̂0β ⊗ t̂01)

= EGij t̂0i ⊗ t̂0j ∈ Tx̂0B0 ⊗ Tx̂0B0 (3.71a)

EEEG = (
g−2
0

2
Ên · Ên + g−1

0 En1)Ê1 ⊗ Ê1 +
g−1
0

2
Enβ(Ê1 ⊗ Êβ + Êβ ⊗ Ê1)

= EGijÊi ⊗ Êj ∈ TX̂B00 ⊗ TX̂B00 (3.71b)

where the material form is obtained by means of the pullback operation by the rotation tensor
Λ0 as EEEG = ΛT

0 εεεGΛ0 ¥

The corresponding component form is

[εεεG]t̂0i⊗t̂0j
= [EEEG]Êi⊗Êj

=
1

2g0




2En1 + g−1
0 Ên · Ên En2 En3

En2 0 0
En3 0 0


 (3.72)

which is conjugated to the Second Piola Kirchhoff stress tensor.

Definition 3.11. Symmetric Eulerian strain tensor

The spatial and material forms of the symmetric Eulerian strain tensor are defined as

εεεE ≡ 1
2
(I− F−T

n F−1
n ) ≡ F−T

n εεεGF−1
n

=
1
2
(
I− (g−1Enk t̂1 ⊗ t̂ok + t̂k ⊗ t̂ok)(g−1Enj t̂oj ⊗ t̂1 + t̂oj ⊗ t̂j)

)

=
1
2
(
I− t̂k ⊗ t̂k − g−2EnkEnk t̂1 ⊗ t̂1 − g−1Enk t̂1 ⊗ t̂k − g−1Enk t̂k ⊗ t̂1

)

= −g−1

2
(
(g−1|Ên|2 + 2Enk)t̂1 ⊗ t̂1 + Enβ(t̂1 ⊗ t̂β + t̂β ⊗ t̂1)

)

= EEij t̂i ⊗ t̂j ∈ Tx̂Bt ⊗ Tx̂Bt (3.73a)

EEEE = −g−1

2
(
(g−1|Ên|2 + 2Enk)Ê1 ⊗ Ê1 + Enβ(Ê1 ⊗ Êβ + Êβ ⊗ Ê1)

)

= EEijÊi ⊗ Êj ∈ TX̂B00 ⊗ TX̂B00, (3.73b)

respectively. In Eq. (3.73b) the material form is obtained by means of the pullback operation
by Λ as EEEG = ΛTεεεGΛ ¥



54 Chapter 3. Geometrically exact formulation for rods

This stress tensor does not have an energetically conjugated strain measure. The correspond-
ing component form is

[εεεE ]t̂0i⊗t̂0j
= [EEEE ]Êi⊗Êj

= − 1
2g0gr




2En1 + (grg0)−1Ên · Ên En2 En3

En2 0 0
En3 0 0


 . (3.74)

Both the Green strain tensor EEEG and the Eulerian strain tensor EEEE consist of those of the
symmetric part of the engineering strain tensor EEEn

14. Writing both the Green and the Eulerian
strain tensors in terms of the components of EEEn, one obtains that the they consist of the following
nonlinear quadratic term: ( 1

2g2
0

)Ên · Ên =
( 1
2g2

0

)EniEni.

3.2.4 Material time derivative of Fn and strain rates

In this section we calculate the material time derivative of Fn, that will be used in next sections
for the presentation of the balance laws for rod–like bodies. Noticing Eqs. (3.31b), (3.32b) for
the angular velocity of the cross section, Eq. (A.105) for the co–rotated derivative of a second
order tensor and Eqs. (3.57a) and (3.57b) for the spatial and material forms of the gradient
tensor Fn, we have

Ḟn =
d
dt

(ΛF̄nΛT
0 ) = Λ̇F̄nΛT

0 + Λ ˙̄FnΛT
0 + ΛF̄n(Λ̇0)T

= ṽvvFn − Fn
˙̃vvv0+

O[
Ḟn

]

= ṽvvFn+
O[
Ḟn

]
(3.75)

where it has been used the fact that Λ̇0 = 0 (spatially fixed) and the co–rotated time derivative

of the deformation tensor
O[
Ḟn

]
is calculated considering Λ = t̂k ⊗ Êk and ΛT

0 = Êp ⊗ t̂0p, as

O[
Ḟn

]
= Λ→

(Ḟn) = Λ ˙̄FnΛT
0

=
1
g0

(t̂k ⊗ Êk) · ˙̂E ⊗ Ê1 · (Êp ⊗ t̂0p)

=
1
g0
Ėnit̂kδik ⊗ δ1pt̂0p =

1
g0
Ėnit̂i ⊗ t̂01 = g−1

0 Λ ˙̂E ⊗ t̂01

=
1
g0

O
[ ˙̂εn] ⊗t̂01 ∈ Tx̂Bt ⊗ Tx̂0B0 (3.76)

where the explicit explicit expression for the time derivative of the material form of the defor-
mation gradient is calculated as

˙̄Fn =
1
g0

˙̂En ⊗ Ê1 (3.77)

14Another researchers [174, 173], prefer to use g0Enij = x̂,S ·t̂j − x̂0,S ·t̂0j as the strain measure which is
conjugated to the First Piola Kirchhoff stress tensor divided by the term g0.
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with

Ŝn = ˙̂En = ˙̂Γn + ˙̃ΩnÊ (3.78a)

ŝn =
O

[ ˙̂εn] = Λ ˙̂EnΛT =
O

[ ˙̂γn] +
O

[ ˙̃ωωωn]T̂ . (3.78b)

Explicit formulae for the co–rotated strain rate vector, Eq. (3.78b), of any material point (S, ξβ)
on the current rod can be deduced with the aid of the expressions given for the spatial, material
and co–rotated forms of the translational and rotational strain rates, as follows:

˙̂γn =
d
dt

(
ϕ̂,S −t̂1

)
= ˙̂ϕ,S −ṽvvnt̂1 (3.79a)

˙̂Γn =
d
dt

(
ΛT γ̂n

)
= Λ̇T ϕ̂,S +ΛT ˙̂ϕ,S = ΛT

( ˙̂ϕ,S −ṽvvnϕ̂,S
)

(3.79b)

O
[ ˙̂γn] = Λ ˙̂Γn = ˙̂ϕ,S −ṽvvnϕ̂,S (3.79c)

for the reduced translational strain rate vectors and

˙̃ωωωn =
d
dt

(
Λn,S ΛT

n

)
= ˙(Λn),S ΛT

n + Λn,S ˙(Λn)
T

=
(
ṽvvn,S Λn + ṽvvnΛn,S

)
ΛT

n −Λn,S ΛT
n ṽvvn

= ṽvvn,S +ṽvvnω̃ωωn − ω̃ωωnṽvvn (3.80a)
˙̃Ωn =

d
dt

(
ΛT

0 ΛT
nΛn,S Λ0

)
= ΛT

0

[ ˙(Λn)
T
Λn,S +ΛT

n
˙(Λn),S

]
Λ0

= ΛT
0

[−ΛT
n ṽvvnΛn,S +ΛT

n

(
ṽvvn,S Λn + ṽvvnΛn,S

)]
Λ0

= ΛT ṽvvn,S Λ (3.80b)
O

[ ˙̃ωωωn] = Λ ˙̃ΩnΛT = ṽvvn,S (3.80c)

for the spatial, material and co–rotated descriptions of the rotational strain rate tensors, respec-
tively. Therefore, the spatial, material and co–rotated descriptions of their associated rotational
strain rate vectors are given by

˙̂ωn = v̂n,S −ω̃ωωnv̂n = v̂n,S +ṽvvnω̂n (3.81a)
˙̂Ωn =

d
dt

(
ΛT ω̂n

)
= Λ̇T ω̂n + ΛT

(
v̂n,S +ṽvvnω̂n

)
= ΛT v̂n,S (3.81b)

O
[ ˙̂ωn] = Λ ˙̂Ωn = v̂n,S = ˙̂ωn + ω̃ωωnv̂n. (3.81c)

Finally, Eq. (3.78b) can be rewritten as

ŝn =
O

[ ˙̂εn]=
O

[ ˙̂γn] +
O

[ ˙̃ωωωn] T̂ = ˙̂ϕ,S −ṽvvnϕ̂,S +ṽvvn,S T̂ . (3.82)

As it has been noted by Simo [362], Eq. (3.82) corresponds to the strain rate measured by an
observer located on the current reference system {t̂i}.
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3.3 Stress measures and stress resultants

In the general theory of continuous mechanics several stress measurements can be constructed
(see e.g. [251, 300, 388]). In this work only the Cauchy, the First Piola Kirchhoff and the Second
Piola Kirchhoff stress tensors will be presented and deduced for a material point on the current
cross section of the rod. Then, the stress resultants and stress couples will be defined in the
classical sense [11, 333, 332, 362].

3.3.1 Cauchy stress tensor

The definition of the Cauchy stress tensor15 starts from the postulation of the existence of
a vector field t̂(x̂, k̂, t), depending on time t, the spatial point x̂(X̂, t) and the unit vector k̂.
Physically, t̂ represents the force per unit area exerted on a surface element oriented with normal
k̂. It is also called the Cauchy stress vector (see Fig. 3.4).
Assuming that the balance of momentum16 holds, that x̂ is C1 and t̂ is a continuous function of
its arguments; then, there is a unique F(2, 0) tensor field (see §A.3.1 of Appendix A) denoted
σσσ ∈ Tx̂Bt ⊗ Tx̂Bt, depending on x̂ and t such that

t̂ = 〈σσσ, k̂〉 ↔ ti = σijgqjk
q = σi

jk
j . (3.83)

In Eq. (3.83) the component form of the stress vector t̂ has been expressed in terms of the
tensor field σσσ associated to a general curvilinear coordinate system on Bt with metric tensor ggg.
Therefore, two equivalent expressions are obtained: σσσ = [σij ]t̂i⊗t̂j

= [σi
j ]t̂i⊗t̂∗j

, considering that

σijgkj = σi
k. As it can be consulted in [251] the Cauchy stress tensor is symmetric.

Figure 3.4: Geometric interpretation of the Cauchy stress vector.

In the case of the rod theory presented in this work, the Cauchy stress tensor σσσ at any material
point (S, ξβ) referred to a differential volume of the current rod cross section is given by

σσσ ≡ σ̂j ⊗ t̂j = Σjit̂i ⊗ t̂j ∈ Tx̂Bt ⊗ Tx̂Bt (3.84a)
ΣΣΣ = ΣjiÊi ⊗ Êj ∈ TX̂B00 ⊗ TX̂B00 (3.84b)

15The Cauchy stress tensor is some times called the right or true Cauchy stress tensor [251].
16Given x̂(X̂, t), ρ(x̂, t), t̂(x̂, k̂, t) the motion function, density in the spatial form, the stress vector defined as

before and b̂(x̂, t) the body force, we say that the balance of momentum is satisfied provided that for every nice
open set U ⊂ B:

d

dt

∫

x̂t(U)

ρvdV =

∫

x̂t(U)

ρb̂dV +

∫

∂x̂t(U)

t̂da.

Where v = ∂x̂/∂t, t̂ is evaluated on the unit outward normal k̂ to ∂x̂t(U) at the point x̂ [251, 300].
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in the spatial and material descriptions, respectively. The term σ̂j is the stress vector acting on
the current face and referred to the real area of the same face of the current rod with t̂j as unit
normal vector. Explicit expressions are

σ̂j ≡ Σjit̂j ∈ Tx̂Bt (3.85a)
Σ̂j = ΣjiÊj ∈ TX̂B00 (3.85b)
Σji ≡ Σij

3.3.2 First Piola Kirchhoff stress tensor

The first Piola Kirchhoff (FPK) stress tensor P ∈ Tx̂Bt ⊗ TX̂B00 is usually defined by means of
the relation17

P̂dAt = P · N̂0dA0 (3.86)

where N̂0 ∈ T ∗
X̂
B0 is the unit normal co–vector belonging to the cotangent space of the material

placement (see §A.3) dA0 and dAt are the differential areas in the material and spatial placements
and P̂ ∈ Tx̂Bt is the FPK stress vector (see Fig. 3.4) that belongs to the tangent space of the
spatial placement Bt. We note that the basis vector {t̂i} spans the tangent space Tx̂Bt. The
FPK stress tensor P is an example of two point tensor in the sense that its stress vector belongs
to the spatial vector space, its normal vector to the material vector space and its differential
area to the material placement.

Figure 3.5: Geometric interpretation of the FPK stress tensor; note that P · N̂0dA0 ∈ Tx̂Bt

although it is drawn on the material placement.

Moreover, it is possible to write the FPK stress tensor as a linear combination of stress vectors
as

P = P̂1 ⊗ Ê1 + P̂2 ⊗ Ê2 + P̂3 ⊗ Ê3 ∈ Tx̂Bt ⊗ TX̂B00 (3.87)

where P̂i = P̂i(x̂, t) is the spatial stress vector belonging to the tangent space of spatial placement
Bt and {Êi} is the material basis. Material and spatial place vector are related by Eq. (A.60).
For the case of the present rod theory, using Eq. (3.63) for the inverse of the deformation tensor
F−1

n = ΛT
n (−g−1ε̂n ⊗ t̂1 + I), the fact that F−T

n = −g−1t̂1 ⊗ En1k t̂0k + t̂k ⊗ t̂0k, the relation
gn = 1 + g−1

0 Êrj as given in Eq. (3.62) and taking into account the definition given by Ogden
[300], one obtains that the asymmetric FPK stress tensor P referred to a differential volume of

17A more formal definition of the FPK stress tensor require the definition of the Piola transform and it can be
consulted in [251].
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the curved reference rod is obtained as

P ≡ gnσσσF−T
n

=
−gn

g

[
Σij t̂j ⊗t̂i · t̂1︸ ︷︷ ︸

δi1

⊗Enk1t̂0k

]
+ gn

[
Σij t̂j ⊗t̂i · t̂k︸ ︷︷ ︸

δik

⊗t̂0k

]

= −g−1
0 Σ1it̂i ⊗ Enk1t̂0k + gnΣkit̂i ⊗ t̂0k

=
[
gnσ̂k − Enk1

g0
σ̂1

]⊗ t̂0k

= P̂k ⊗ t̂0k = Pm
ki t̂i ⊗ t̂0k ∈ Tx̂Bt ⊗ Tx̂0B0 (3.88a)

Pm ≡ ΛTPΛT
0 = Pm

ki Êi ⊗ Êk ∈ TX̂B00 ⊗ TX̂B00 (3.88b)

P̂k = Pm
ki t̂i = gnσ̂k − Ênk1

g0
σ̂1 ∈ Tx̂Bt (3.88c)

P̂m
k = Pm

ki Êi ∈ TX̂B00 (3.88d)

Pm
ki = gnΣki − Enk1

g0
Σ1i 6= Pm

ik ∈ R

P̂1 = σ̂1 (3.88e)

where P̂j is the FPK stress vector acting on the deformed face in the current rod placement
corresponding to the reference face with normal t̂0j in the curved reference configuration and
referred to the real area of the same reference face.
Additionally, considering FT

n = g−1
0 Eni1t̂01 ⊗ t̂i + t̂0i ⊗ t̂i one obtains

PFT
n ≡ [

gnΣki − 1
g0

Σ1iEnk1

] 1
g0
Enp1t̂i ⊗ t̂0k · t̂01 ⊗ t̂p

+
[
gnΣki − 1

g0
Σ1iEnk1

]
t̂i ⊗ t̂0k · t̂0p ⊗ t̂p

=
[gn

g0
Σ1iEnp1 − 1

g2
0

Σ1iEnp1En11 + gnΣpi − 1
g0

Σ1iEnp1

]
t̂i ⊗ t̂p

=
[1 + (En11/g0)

g0
Σ1iEnp1 − 1

g2
0

Σ1iEnp1En11 + gnΣpi − 1
g0

Σ1iEnp1

]
t̂i ⊗ t̂p

= gnΣpit̂i ⊗ t̂p = gnΣpit̂p ⊗ t̂i; (Symmetry of Σ). (3.88f)

On the other hand, one has

FnPT ≡ 1
g0
Enp1

[
gnΣki − 1

g0
Σ1iEnk1

]
t̂p ⊗ t̂01 · t̂0k ⊗ t̂i

+
[
gnΣki − 1

g0
Σ1iEnk1

]
t̂p ⊗ t̂0p · t̂0k ⊗ t̂i

=
[1 + (En11/g0)

g0
Σ1iEnp1 − 1

g2
0

Σ1iEnp1En11 + gnΣpi − 1
g0

Σ1iEnp1

]
t̂p ⊗ t̂i

= gnΣpit̂p ⊗ t̂i, (3.88g)
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comparing the result of Eq. (3.88g) with the one of Eq. (3.88f) one obtains the identity PFT
n =

FnPT . Inversely, noticing Eq. (3.57b) for Fn, we have

σσσ ≡ 1
gn

PFT
n =

1
gr

(Pm
ji +

Enj1

g0
Pm

1i )t̂i ⊗ t̂j =
1
gn

(P n
ij +

Eni1

g0
Pm

1j )t̂i ⊗ t̂j . (3.89)

Similarly, for later reference, the FPK stress tensor P0 referred to a differential volume of the
straight reference configuration is given by

P0 ≡ gσσσF−T = g0PF−T
0

= gΣjk t̂k ⊗ t̂j ·
(− 1

g
Ei1t̂1 ⊗ Êi + t̂i ⊗ Êi

)

= gΣjk t̂k ⊗ Êj − Σ1k t̂k ⊗ Ei1Êi

= gσ̂j ⊗ Êj − σ̂1 ⊗ Ê1 = P̂i ⊗ Êi ∈ Tx̂Bt ⊗ TX̂B00 (3.90a)

P̂ 0
1 = P̂1 = σ̂1 ∈ Tx̂Bt

P̂ 0
2 = g0P̂2 − E021P̂1 = gσ̂2 − E21σ̂1 ∈ TX̂B00

P̂ 0
3 = g0P̂3 − E031P̂3 = gσ̂3 − E31σ̂1 ∈ TX̂B00

P0FT ≡ FP0T (3.90b)

where P̂ 00
i is the corresponding stress vector acting on the deformed face in the current placement

corresponding to the reference face normal to Êi in the straight reference configuration and
referred to the real area of the same reference face.
Correspondingly, the material form of P0 is given by

P0m = ΛTP0 = gΣjkÊk ⊗ Êj − Σ1kÊk ⊗ Ei1Êi

= gΣ̂j ⊗ Êj − Σ̂1 ⊗ Ê1 = P̂i ⊗ Êi ∈ TX̂B00 ⊗ TX̂B00 (3.91)

REMARK 3.2. Note that the FPK stress vector referred to the cross section of any rod
configuration is the same as the real Cauchy stress vector on the current cross section because
it remains undeformed during the motion (see Eq. (3.67)) ¥

3.3.3 Second Piola Kirchhoff stress tensor

Formally, the Second Piola Kirchhoff (SPK) stress tensor S ∈ TX̂B00 ⊗ TX̂B00 is obtained by
pulling the first leg of the FPK stress tensor P back by F (see the Section §A.5.218). In
coordinates,

S ≡ ←
F (P)

SAB = (F−1)A
aP

aB = J(F−1)A
a(F

−1)B
bσ

ab (3.92)

where J is the Jacobian of the map x̂ and the coordinate systems {X̂A} and {X̂a} with their
corresponding dual basis{X̂A} and {X̂a}, are used to describe the material and spatial place-
ments, respectively.
In the Reissner–Simo rod theory, S (see e.g. [251, 300]) is given in terms of the FPK and the

18For a detailed deduction of the SPK stress tensor see [251] Ch.2
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Cauchy stress tensors as

S ≡ gnF−1
n σσσF−T

n = F−1
n P

= gn(−1
g
Enj1t̂0j ⊗ t̂1 + t̂0j ⊗ t̂j) · Σik t̂k ⊗ t̂i · (−1

g
t̂1 ⊗ Enp1t̂0p + t̂p ⊗ t̂0p)

= gn(−1
g
Enj1t̂0j ⊗ t̂1 + t̂0j ⊗ t̂j) · (−1

g
Σ1kEnp1 + Σpk)t̂k ⊗ t̂0p

=
[
gnΣpj −

(Enj1

g0
Σp1 +

Enp1

g0
Σ1j

)
+

1
gn

(Enj1

g0

)(Enp1

g0

)
Σ11

]
t̂0j ⊗ t̂0p

= Ŝp ⊗ t̂0p = Sm
pj t̂0j ⊗ t̂0p ∈ Tx̂0B0 ⊗ Tx̂0B0 (3.93a)

with the corresponding material form given by

Sm = ΛT
0 SΛ0 = Sm

pjÊj ⊗ Êp ∈ TX̂B00 ⊗ TX̂B00

Ŝj ≡ F−1
n P̂j = F−1

n (Pm
ji t̂i) = Pm

ji (F
−1
n t̂i) = Sm

ji t̂0i ∈ TX̂B00 (3.93b)

Ŝm
j = Sm

ji Êi ∈ TX̂B00

Sm
ij = Pm

ij −
Eni1

gng0
Pm

j1 = Pm
ij −

Enj1

grg0
Pm

i1 . (3.93c)

In Eq. (3.93a) Ŝj is the stress vector acting on the deformed face in the current placement
corresponding to the reference face normal to t̂0j in the curved reference configuration and
referred to the real area of the same reference face. That is equivalent to contract back P̂j to the
curved reference rod. It can be seen that the differences among the Cauchy stress and the FPK
and SPK stresses are obvious for finite strain problems, though the differences tend to vanish
for small strain problems (see Crisfield [107, 108]).

3.3.4 Stress resultants and stress couples

For the reduced one–dimensional rod model, it is convenient to define the stress resultant which
is the internal force vector acting on the current cross section and the stress couple i.e. the
internal moment vector acting on the same cross section.
The material form of the stress resultant n̂m(S, t) ∈ T ∗

X̂
B00 and stress couple m̂m(S, t) ∈ T ∗

X̂
B00

are defined by means of the following general formulas [245]:

n̂m ,
∫

A00

ΛT P̂1dA00 =
∫

A00

P̂m
1 dA00 (3.94a)

m̂m , ΛT

∫

A00

T̃TT P̂1dA00 =
∫

A00

ẼEE P̂m
1 dA00 (3.94b)

where A00(S) is the cross section at S ∈ [0, L], ẼEE is the skew–symmetric tensor obtained from Ê
and P̂m

1 is the FPK stress vector acting in the face of the cross sectional area with normal Ê1.
The stress couple vector can be viewed as an element of the Tmat

Λ
∗ space that is the material

co–vector space of rotation vectors.
For the formulation of the rod theory in terms of a straight and curved reference configurations it
is necessary to define the spatial/material stress resultant and the spatial/material stress couple
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vectors in following forms:

n̂(S) =
∫

A(S)
σσσt̂1dξ2dξ3 =

∫

A
σ̂1dA ∈ Tx̂B∗t (3.95a)

N̂(S) =
∫

A0(S)
Pt̂01dξ2dξ3 =

∫

A0

P̂1dA0 = n̂ ∈ Tx̂0B∗0 (3.95b)

N̂0(S) =
∫

A00(S)
P0Ê1dξ2dξ3 =

∫

A00

P̂ 0
1 dA00 = n̂m ∈ TX̂B∗00 (3.95c)

n̂s(S) =
∫

A0(S)
FnSt̂01dξ2dξ3 =

∫

A0

FnŜ1dA0 ∈ TX̂B∗0 (3.95d)

= Nit̂i.

Considering that the rod has to maintain the internal force equilibrium in any configuration and
neglecting the fact that all the stress resultant of Eqs. (3.95a) to (3.95d) are defined in their
appropriated co–vector spaces, it is possible to write

n̂(S) = N̂(S) = N̂0(S) = n̂s(S) (3.96)

with components Ni =
∫
A00

Pm
1i dA00.

For the case of the stress couple vector m̂(S), the following expressions are obtained [228]:

m̂ ≡
∫

A(S)
(x̂− ϕ̂)× (σσσt̂1)dξ2dξ3 =

∫

A
T̃TT σ̂1dA ∈ Tx̂B∗t (3.97a)

M̂ ≡
∫

A0(S)
(x̂− ϕ̂)× (Pt̂01)dξ2dξ3 =

∫

A0

T̃TT P̂1dA0 = m̂ ∈ Tx̂0B∗0 (3.97b)

M̂0 ≡
∫

A00(S)
ΛT (x̂− ϕ̂)× (P0Ê1)dξ2dξ3 =

∫

A00

ẼEE P̂ 0
1 dA00 = m̂m ∈ TX̂B∗00 (3.97c)

m̂s ≡
∫

A0(S)
(x̂− ϕ̂)× (FnSt̂01)dξ2dξ3 =

∫

A0

T̃TT FnS1dA0 ∈ Tx̂0B∗0 (3.97d)

= Mit̂i

(3.97e)

where T̃TT is the skew–symmetric tensors obtained from T̂ . The component of Eqs. (3.97a) to
(3.97d) are given by

M1 =
∫

A00

ξ2P
m
13 − ξ3P

m
12dA00; M2 =

∫

A00

ξ3P
m
11dA00; M3 = −

∫

A00

ξ2P
m
11dA00. (3.98)

In analogous manner to the case of the stress resultant, considering the equilibrium condition
and the fact that all the tangent spaces to the material point on the body manifold in any
configuration are isomorphic to R3, it is possible to write:

m̂(S) = M̂(S) = M̂0(S) = m̂s(S). (3.99)
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Given the stress resultant and the stress couple in their spatial forms n̂ and m̂ respectively, it is
possible to obtain the corresponding material forms by means of pullback by Λ as

n̂m(S) =
←
Λ [n̂] = ΛT n̂ = NiÊi ∈ T ∗

X̂
B00 (3.100a)

m̂m(S) =
←
Λ [m̂] = ΛT m̂ = MiÊi ∈ T ∗

X̂
B00, (3.100b)

respectively.
In Eqs. (3.95a) to (3.95d) and (3.97a) to (3.97d) n1 = N1 is the normal force component in the
cross section with normal direction t̂1 while n2 = N2 and n3 = N3 are the shear force components
in the directions t̂2 and t̂3, respectively. On the other hand, m1 = M1 is the torque component
around the normal t̂1 while m2 = M2 and m3 = M3 are the bending moment components around
t̂2 and t̂3, respectively. See Fig. 3.6 for a schematic representation of the stress resultant and
the stress couple in the current configuration.

Figure 3.6: Geometric representation of (a): Stress resultant. (b): Stress couple.

3.4 Power balance condition

The purpose of this section is to formulate properly invariant reduced constitutive equations in
terms of global kinetic and kinematical objects. The first step consists into obtain a reduced
expression for the internal power from the general expression of three-dimensional theory, by
means of introducing the kinematics assumptions of Eq. (3.22) [41, 62, 362]. This reduced
expression yields the appropriated definition of strain measures conjugate to the resultant cross
sectional forces and moments in the spatial as well as in the material descriptions.

3.4.1 Internal power

The general power balance condition can be stated as:
If the mechanical energy is conserved then, the power of the external loadings (surface traction
and body force) is equal to the kinetic stress power plus the internal power for a given reference
volume domain of the continuum using the Lagrangian description. The converse in also true.
The internal power per unit of reference volume of the continuum is

Pint = Tr
[
PT Ḟn

]
= g−1PT (ṽvvn(δi1ε̂n + t̂i) + δi1

O
[ ˙̂εn]) · t̂0i (3.101)
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where the trace operator has been used, Eq. (A.55), the internal power has been written in terms
of the FPK stress tensor P, Eq. (3.88a), and the material time derivative of the deformation
gradient, Ḟn, which is an objective scalar, independent of the observer and the reference frame at
a given material point. The objective of studying the internal power is to determine the strain
measures that are conjugate to the FPK stresses for the curved reference rod.
Considering Eqs. (3.75) to (3.81c) for the material time derivative of the deformation tensor,
Ḟn, and Eq. (A.56) for the trace of the product of two second order tensors, one obtains that
the current rod internal power per unit of volume of the curved reference rod at any material
point (S, ξβ) is

Pint(S, ξβ) = Tr
[
PT Ḟn

]
= Tr

[
PḞT

n

]

= Tr
[
PT ṽvvFn

]
+ Tr

[
PT

O[
Fn

]]
= Tr

[
P(ṽvvFn)T

]
+ Tr

[
PT

O[
Fn

]]
. (3.102)

The first term of the above equations is due to rigid–body rotation and should vanish. In fact,
noticing Eq. (3.88a) for the relation between the FPK stress tensor and the Cauchy stress tensor
as well as the symmetry of the Cauchy stress tensor and skew-symmetry of ṽvv, we have [228]

Tr
[
P(ṽvvFn)T

]
= Tr

[
gnσσσF−T

n FT
n ṽvvT ]

= −gnTr
[
σσσṽvv

]

= −gnTr
[
σσσT ṽvv

]
= −gnTr

[
σσσṽvvT ]

= gnTr
[
σσσṽvv

]
= 0 (3.103)

then, the second term become

Tr
[
PT

O[
Fn

]]
= Tr

[
(t̂0j ⊗ P̂j)(

1
g0

O[
ε̂n

] ⊗t̂01)
]

=
1
g0

Tr
[
(P̂1 ·

O[
ε̂n

]
)(t̂01 ⊗ t̂01)

]

=
1
g0

P̂1·
O[
ε̂n

]
. (3.104)

It follows that the current rod internal power per unit of the curved reference rod at any material
point (S, ξβ) is

Pint = Tr
[
PT Ḟn

]
= Tr

[
PT

O[
Fn

] ]
= Tr

[
PmT ˙̄Fn

]

= P̂1 · ( 1
g0

O[
ε̂n

]
) = P̂m

1 · ( 1
g0

˙̂En). (3.105)

Therefore, g−1
0 ε̂n in the spatial form or g−1

0 Ên in the material one is the strain vector at the
material point (S, ξβ) on the current cross section energetically conjugate to the FPK stress
vector P̂1 in the spatial form or to P̂m

1 in the material description.
Additionally, it is possible to see that the strain tensors εεεn, (EEEn), Eqs. (3.68a) to (3.68b), are
the energetically conjugated couples to the FPK strain tensors P, (Pm).
As it has been mentioned in §3.2.3 the Green strain tensors εεεG, (EEEG), are the energetically
conjugated couples to the SPK stress tensors. Noting their relation with the FPK strain tensor,



64 Chapter 3. Geometrically exact formulation for rods

Eq. (3.93a), it is possible to rewrite the internal power density as

Pint ≡ Tr
[
Sε̇εεG

] ≡ Tr
[
PḞn

]
= Sm

ij ε̇Gij = Pm
ij Ėnij = P̂m

1 · ( 1
g0

˙̂En). (3.106)

However, the symmetric Eulerian strain tensor εεεE , (EEEE), does not have an energetically conju-
gated stress measure. In the case of the Cauchy stress tensor σσσ, (ΣΣΣ), a conjugated strain rate
tensor can by constructed in the following way [251, 300]

Pint ≡ gnTr
[
σσσΣ∗Σ∗Σ∗

] ≡ Tr
[
PT Ḟn

] ≡ ΣijΣ∗mij = Σ̂1 · ( 1
g0

˙̂En) = Pm
1 · (

1
g0

˙̂En) (3.107)

where
Σ∗ ≡ F−T

n ĖEEGF−1
n ≡ Σ∗mij t̂0i ⊗ t̂0j (3.108a)

is the Eulerian strain rate tensor, which can not be obtained simply taking the material time
derivative on εεεE nor on EEEE in Eq. (3.73a). The component description of Σ∗ is

[ΣΣΣ∗]t̂0i⊗t̂0j
=

1
2g0gn



Ėn1 Ėn2 Ėn3

Ėn2 0 0
Ėn3 0 0


 . (3.108b)

At cross sectional level, the current rod internal power per unit of arch–length of the curved
reference rod is

Pint(S) =
∫

A(S)
Pintg0dξ2dξ3 =

∫

A(S)
P̂1 · ( 1

g0

O[Ên

]
)g0dA

=
∫

A(S)
P̂1 ·

[ O[
γ̂n

]
+

O[
ω̃ωωn

]
T̂

]
dA

=
[ ∫

A(S)
P̂1dA

]

︸ ︷︷ ︸
n̂(S)

·
O[
γ̂n

]
+

[ ∫

A(S)
T̃TT P̂1d̂A

]

︸ ︷︷ ︸
m̂(S)

·
O[
ω̂n

]
. (3.109)

The current rod internal power in spatial and material forms are

Pspa
int = n̂·

O[
γ̂n

]
+m̂·

O[
ω̂n

]
(3.110a)

Pmat
int = n̂m · ˙̂Γn + m̂m · ˙̂Ωn (3.110b)

therefore, γ̂n and ω̂n (Γ̂n and Ω̂n) are the strain measures conjugate to the stress resultant n̂(S)
and stress couple m̂(S) (n̂m(S) and m̂m(S)), respectively. These strain measures are summarized
in Table 3.1.

Table 3.1: Reduced strain measures.

Strain measure Spatial form Material form

Translational γ̂n = ϕ̂,S −t̂1 Γ̂n = ΛT γ̂n

Rotational ω̂n = axial[Λn,S ΛT
n ] Ω̂n = ΛT ω̂n
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Once the reduced strain vectors are determined, the strain vector g−1
0 ε̂n at any material point

(S, ξβ) (S ∈ [0, L]; ξβ ∈ A(S)) on the current rod cross section can be determined according
to Eqs. (3.60a) and (3.54a). Having this information at hand, all the other strain measures
reviewed in this work can be calculated using the equations of Section 3.2.3. Finally, the current
rod internal power relative to the curved reference rod, Πint, can be determined integrating along
the length of the current rod as

Πint ≡
∫

A(S)×[0,L]
Tr

[
PFT

n

]
dSdξ2dξ3 =





∫ L
0

{
n̂·

O[
γ̂n

]
+m̂·

O[
ω̂n

] }
dS Spatial form

∫ L
0

{
n̂m · ˙̂Γn + m̂m · ˙̂Ωn

}
dS Material form

(3.111)

3.5 Equations of motion

The Lagrangian differential equations of motion19 of a material point of the continuum without
boundary conditions, can be written in terms of the FPK stress tensor referred to the curved
reference configuration as

∇ ·P + b̂ = ρ0
¨̂x

PFT
n = FnPT (3.112)

where b̂ and ρ0 are the body force vector and the material density in the curved reference
configuration, respectively. However, it is not convenient to work directly on the expression
given in Eq. (3.112) because the divergence term is inconvenient to expand in the local frame
{t̂0i} along the mid–curve20 [228, 207, 208].
As stated by Simo [362], it is possible to work on the straight reference configuration to obtain
the equations of motion of the current rod. In this case, the equilibrium equations including
boundary conditions are

∇ ·P0 + b̂(X̂, t) = ρ00(X̂)¨̂x(X̂, t)

P0FT = FP0T



 in B00 (3.113a)

P0N̂00 = t̂σ on ∂B00σ (3.113b)

X̂ = ˆ̄X on ∂B̄00σ (3.113c)

where the boundary of the rod with applied initial conditions is defined by ∂B00 = ∪∂B00σ∂B̄00σ,
∂B00σ ∩ ∂B̄00σ = ∅ and b̂, ρ00 = g0ρ0, N̂00, t̂σ and ¯̂x are the body force vector, the material
density in the straight reference configuration, the vector normal to the traction boundary, the
prescribed traction force vector and the prescribed placement vector, respectively. The base
points are given in the material placement B00, but they occupy tangent spaces of the spatial
placement Tx̂Bt i.e. b̂ := b̂(x̂) ∈ Tx̂Bt and P0FT ∈ Tx̂B ⊗ Tx̂B.
According to Ogden [300] it is possible to work with the integral counterpart of Eq. (3.113a)
yielding to the Lagrangian field form of the linear momentum balance equation written in term

19Alternatively, Iaura and Atluri [174, 173] work directly with the principle of virtual work for the reduced
balance of equations of the initially curved/twisted rods.

20Taking directional derivatives can be a choice but more complicated algebraic developments are involved.
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of integrals over B00 as
∫

B00

∇ ·P0dV00 +
∫

B00

b̂dV00 =
∫

B00

ρ00ẍdV00. (3.114)

By one hand, following analogous developments as those presented in [362] we have that∇·P0 =
P̂ 0

1 ,S +P̂ 0
β ,ξβ

and by Eqs. (3.95a), (3.95b), (3.97a) and (3.97b) we obtain

n̂,S =
∫

A00

P̂ 0
1 ,S dA00 (3.115)

where it has been taken into the fact that P̂ 0
1 = σ̂1; considering Eq. (3.113a) we have

∫ L

0
n̂,S dS = −

∫

V00

{
P̂ 0

β ,ξβ
+ρ00b̂

}
dV00 +

∫

V00

ρ00
¨̂xdV00

= −
{∫

A00∗
P̂ 0

βν00βdA00∗ +
∫

V00

ρ00b̂dV00

}
+

∫

V00

ρ00
¨̂xdV00 (3.116)

where A00∗ is the arbitrarily chosen surface domain, ν̂00 = ν00βÊβ the outward unit vector of
the differential surface dA00∗ and V00 the corresponding volume domain surrounded by A00∗.
In Eq. (3.116) it has been used the divergence theorem to convert the volume integrals in area
integrals.
Considering Eq. (3.33) it is possible to rewrite the last term in Eq. (3.116) as

∫

V00

ρ00
¨̂xdV00 =

∫

[0,L]×A00

ρ00( ¨̂ϕ + [α̃ααn + ṽvvnṽvvn]T̂ )dA00dS

=
∫ L

0

¨̂ϕ[
∫

A00

ρ00dA00]dS +
∫ L

0
α̃ααn[

∫

A00

ρ00T̂ dA00]dS

+
∫ L

0
ṽvvnṽvvn[

∫

A00

ρ00T̂ dA00]dS

=
∫ L

0

¨̂ϕAρ00dS +
∫ L

0
α̃ααnŜρ00dS +

∫ L

0
ṽvvnṽvvnŜρ00dS

=
∫ L

0
[ ¨̂ϕAρ00 + α̃ααnŜρ00 + ṽvvnṽvvnŜρ00]dS (3.117)

where Aρ00(S) =
∫
A00

ρ00dA00 ∈ R and Ŝρ00 =
∫
A00

ρ00T̂ dA00 ∈ Tx̂Bt.
If the Eq. (3.116) are applied to a parallel ’cut’ slice through the straight reference configuration
with differential length dS parallel to Ê1, defining the surface and volume integration domains
(see Fig. 3.7), where dA00∗ is separated into the lateral surface dA00L and the cut surface
dA00N = dA00N+ ∪ dA00N−, and then using the variable and domain changes, one obtains the
explicit expression for the reduced external force density per unit of arch–length of the curved
reference rod as

N̂ ∗ =
∫

A00L

P̂ 0
β ν̂00βdA00L +

∫

V00

ρ00b̂dA00dS (3.118)

and using Eq. (3.117) along with the preceding result one obtains the integral version of the
linear momentum balance equation of the rod referred to the curved reference configuration,
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Figure 3.7: A differential slice for the straight reference configuration.

which read as ∫ L

0

{
n̂,S +N̂ ∗ −Aρ00

¨̂ϕ− α̃ααnŜρ00 − ṽvvnṽvvnŜρ00

}
dS. (3.119)

The local form of Eq. (3.119) constitutes the linear momentum balance condition and is given
by

n̂,S +N̂ ∗ = Aρ00
¨̂ϕ + α̃ααnŜρ00 + ṽvvnṽvvnŜρ00 . (3.120)

Identical procedures allow to deduce the linear momentum balance condition when the reference
configuration is the curved one. In this case one has

n̂,S +N̂ = Aρ0
¨̂ϕ + α̂n × Ŝρ0 + ṽvvnṽvvnŜρ0︸ ︷︷ ︸

ℵ̂1

(3.121)

where the stress resultant n̂ ∈ T ∗x̂Bt has been given in Eq. (3.95a), Aρ0 is the reduced form of
the translational mass density per unit of reference arch–length with explicit expression given
by

Aρ0 =
∫

A0

g0ρ0dA0 (3.122)

v̂n ∈ T spa
Λ is the angular velocity vector of the current rod cross section; α̂ ∈ T spa

Λ is the rotational
acceleration of the current rod cross section and the first mass moment density vector Ŝρ0 per
unit of arch–length of the curved reference rod mid–curve is

Ŝρ0 =
∫

A0

T̂ g0ρ0dA0 = S̄ρ03t̂2 + S̄ρ02t̂3 (3.123)

S̄ρ03 =
∫

A0

g0ρ0ξ2dA0, S̄ρ02 =
∫

A0

g0ρ0ξ3dA0

and N̂ ∈ T ∗x̂Bt corresponds to the reduced form of the external applied forces calculated for the
case of the curved reference rod as

N̂ =
∫

A00L

P̂ 0
β ν̂00βdA00L) +

∫

V00

ρ00b̂dV00dS (3.124a)

=
∫

A0L

(g0PF−T
0 )(g−1

0 FT
0 ν̂0dA0L) +

∫

V0

g0ρ0b̂dV0 (3.124b)
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=
∫

A0L

Pν̂0dA0L +
∫

V0

g0ρ0b̂dV0 (3.124c)

=
∫

CA

g0

|ν0|2CA P̂j ν̄0jdCA +
∫

V0

g0ρ0b̂dV0 ∈ T ∗x̂Bt. (3.124d)

The above expression for N̂ include the load boundary conditions for the lateral surface traction
with outward unit vector ν̂0 = ν̄0j t̂0j of the curved reference rod configuration; dCA is the
differential element of the contour line CA of the cross section domain A and ν̂0CA = ν̄2CA t̂02 +
ν̄2CA t̂02 the unit normal outward vector of CA in the cross section plane of the curved reference
rod configuration [228].
Analogously, for the case of the angular momentum balance condition we have

∫

V00

(x̂− ˆ̀)× (∇ ·P0)dV00 +
∫

V00

ρ00(x̂− ˆ̀)× b̂dV00 =
∫

V00

ρ00(x̂− ˆ̀)× ¨̂xdV00 (3.125)

where ˆ̀∈ R3 is and arbitrarily spatially fixed position vector. By one hand, developing for the
right side of Eq. (3.125) and considering ˆ̀ = ϕ̂ by convenience along with the result of Eq.
(A.21b) we obtain

∫

V00

ρ00T̂ × ¨̂xdV00=
∫

V00

ρ00T̂ × ¨̂ϕdV00 +
∫

V00

ρ00T̃TT α̃ααnT̂ dV00 +
∫

V00

ρ00T̃TT ṽvvnṽvvnT̂ dV00 (3.126)

to develop an alternative expression for Eq. (3.126), it is necessary to take into account that

T̃TT ṽvvnṽvvnT̂ = T̃TT v̂n × ṽvvnT̂

= −ΠΠΠ[ṽvvnT̂ ](T̃TT v̂n)

= −(ṽvvnT̃TT − T̃TT ṽvvn)(T̃TT v̂n)

= −ṽvvnT̃TT T̃TT v̂n + (T̃TT v̂n)× (T̃TT v̂n)

= −ṽvvnT̃TT T̃TT v̂n

which allows to rewrite Eq. (3.126) as
∫

V00

ρ00T̂ × ¨̂xdV00 =
∫

V00

ρ00T̂ × ¨̂ϕdV00 −
∫

V00

ρ00T̃TT T̃TT α̂ndV00 −
∫

V00

ρ00ṽvvnT̃TT T̃TT v̂ndV00

=
∫ L

0
Ŝρ00 × ¨̂ϕdS +

∫ L

0
IIIρ00α̂ndS +

∫ L

0
ṽvvnIIIρ00 v̂ndS (3.127)

where the spatial inertial dyadic, IIIρ00 , with respect to the straight reference configuration is
expressed by

IIIρ00 = −
∫

A00

ρ00T̃TT T̃TT dA00 =
∫

A00

ρ00(‖T̂ ‖2I− T̂ ⊗ T̂ )dA00 (3.128)

the corresponding material form is obtained as Iρ00 = ΛTIIIρ00Λ. Before analyzing the left side
of Eq. (3.125) we will present a previous result as follows: Considering Eq. (3.113c) and the
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results given in Eqs. (A.21a) to (A.21g) of Appendix A, we have that

P0FT = FP0T

P̂ 0
1 ⊗ x̂,S +P̂ 0

β ⊗ x̂,ξβ
= x̂,S ⊗P̂ 0

1 + x̂,ξβ
⊗P̂ 0

β

↔ (P̂ 0
1 ⊗ x̂,S −x̂,S ⊗P̂ 0

1 ) + (P̂ 0
β ⊗ x̂,ξβ

−x̂,ξβ
⊗P̂ 0

β ) = 0

↔ ΠΠΠ[x̂,S ]ΠΠΠ[P̂ 0
1 ]−ΠΠΠ[P̂ 0

1 ]ΠΠΠ[x̂,S ] + ΠΠΠ[x̂,ξβ
]ΠΠΠ[P̂ 0

β ]−ΠΠΠ[P̂ 0
β ]ΠΠΠ[x̂,ξβ

] = 0

↔ ΠΠΠ[x̂,S ×P̂ 0
1 + x̂,ξβ

×P̂ 0
β ] = 0

−→ x̂,S ×P̂ 0
1 + x̂,ξβ

×P̂ 0
β = 0. (3.129)

By the other hand, the derivative with respect to the arch–length parameter S of the the cross
sectional moment, Eq. (3.97b), is calculated considering Eqs. (3.125) and (3.129) as

m̂,S =
∫

A00

x̂,S ×P̂ 0
1 dA00 − ϕ̂,S ×

∫

A00

P̂ 0
1 dA00 +

∫

A00

T̂ × P̂ 0
1 ,S

−→
∫ L

0
(m̂,S +ϕ̂,S ×n̂)dS =

∫ L

0
(Ŝρ00 × ¨̂ϕ + IIIρ00α̂n + ṽvvnIIIρ00 v̂n)dS

−
∫ L

0

∫

A00

ρ00T̂ × b̂dA00dS +
∫ L

0

∫

A00

x̂,S ×P̂ 00
1 dA00dS

+
∫ L

0

∫

A00

T̂ × P̂ 0
β ,ξβ

dA00dS

where, using the divergence theorem and the result of Eq. (3.129) allows to deduce the integral
form of the momentum balance condition as

∫ L

0
(m̂,S +ϕ̂,S ×n̂)dS =

∫ L

0
(Ŝρ00 × ¨̂ϕ + IIIρ00α̂n + ṽvvnIIIρ00 v̂n)dS −

∫ L

0

∫

A00

ρ00T̂ × b̂dA00dS

+
∫ L

0

∫

A00

{x̂,S ×P̂ 0
1 + x̂,ξβ

×P̂ 0
β}︸ ︷︷ ︸

=0

dA00dS

+
∫ L

0

∫

∂A00

T̂ × P̂ 0
βνβd∂A00dS

=
∫ L

0
(Ŝρ00 × ¨̂ϕ + IIIρ00α̂n + ṽvvnIIIρ00 v̂n − M̂∗)dS (3.130)

where M̂∗ is the external applied moment per unit of reference arch–length, which reads

M̂∗ =
∫

∂A00

T̂ × P̂ 0
βνβd∂A00 −

∫

A00

ρ00T̂ × b̂dA00. (3.131)

The corresponding local form of the momentum balance condition is obtained from the previous
equation as

m̂,S +ϕ̂,S ×n̂ + M̂∗ = Ŝρ00 × ¨̂ϕ + IIIρ00α̂n + ṽvvnIIIρ00 v̂n. (3.132)
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Identical procedures allow to deduce the momentum balance condition when the reference con-
figuration is the curved one. In this case, one obtains

m̂,S +ϕ̂,S ×n̂ + M̂ = Ŝρ0 × ¨̂ϕ︸ ︷︷ ︸
ℵ̂2

+IIIρ0α̂n + ṽvvn

[IIIρ0 v̂n

]
(3.133)

where the stress couple m̂ ∈ T ∗x̂Bt has been given in Eq. (3.97a) and the rotational mass or mass
moment density tensor IIIρ0 per unit of arch–length of the curved reference rod is

IIIρ0 = −
∫

A0

g0ρ0T̃TT T̃TT dA0 =
∫

A0

g0ρ0(‖T̂ ‖2I− T̂ ⊗ T̂ )dA0 = Īρ0ij t̂2 ⊗ t̂3 (3.134)

where

Īρ011 = Īρ022 + Īρ033, Īρ012 = Īρ013 = Īρ021 = Īρ031 = 0

Īρ022 =
∫

A0

g0ρ0(ξ3)2dA0, Īρ033 =
∫

A0

g0ρ0(ξ2)2dA0

Īρ023 = Īρ032 = −
∫

A0

g0ρ0ξ2ξ3dA0 (3.135)

and the reduced external moment density per unit of arch–length of the curved reference rod
mid–curve is

M̂ =
∫

A00L

T̂ × [
P0ν̂00dA00L

]
+

∫

A
ρ00T̂ × b̂dA

=
∫

A0L

T̂ ×Pν0dA0L +
∫

A
g0T̂ × ρ0b̂dA

=
∫

CA

g0

ν̂0 · ν̂0CA
T̂ × (P0

j ν̄0j)dCA +
∫

A
g0T̂ × ρ0b̂dA ∈ T ∗x̂Bt. (3.136a)

The same equations of motion can be derived by very different principles and approaches as it
can be reviewed in references [11, 174, 136]. It is worth to note that the linear and angular
momentum balance equations for the case of the present initially curved and twisted rods is also
a stress resultant formulation, consistent with the continuum mechanics at the resultant level
[89, 142].
The system of nonlinear differential equations of Eqs. (3.121) and (3.133) have to be supple-
mented with the following boundary conditions:

(ϕ̂Φ,ΛΦ) ∈ ∂Φϕ̂× [0, T ] (3.137a)
(n̂Σ, m̂Σ) ∈ ∂Σϕ̂× [0, T ] (3.137b)

with the standard conditions ∂Φϕ̂0 ∪ ∂Σϕ̂0 = ∂ϕ̂0 and ∂Φϕ̂0 ∩ ∂Σϕ̂0 = ∅ assumed to hold. The
additional initial data are given by

ϕ̂(S, 0) = ϕ̂0(S) and Λ(S, 0) = Λ0(S), ∀S ∈ [0, L] (3.137c)
˙̂ϕ(S, 0) = ˙̂ϕ0(S) and Λ̇(S, 0) = Λ0(S)ṼVV 0n(S), ∀S ∈ [0, L] (3.137d)

where ( ˙̂ϕ0, V̂0n) : [0, L] → R3 × R3 is a prescribed velocity field. The static version can be
obtained ignoring the terms of Eqs. (3.137c) and (3.137d) and the corresponding inertial terms
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in the equilibrium equations.

REMARK 3.3. For an untwisted straight rod made of homogeneous material with no initial
elongation of the rod mid–curve, (g0 = 1), the first mass moment density Ŝρ0 of Eq. (3.123)
vanishes if the rod reference curve is chosen as the geometry centroid line of the rod cross section.
In this case, the terms ℵ̂1 and ℵ̂2 of Eqs. (3.119) and (3.133) vanish and the balance equations
reduce to the original forms given by Simo [362] and Simo and Vu-Quoc [363, 365]. In addition,
if the rod is also uniform, Eqs. (3.124a) to (3.124d) and (3.136a) to (3.136a) also are reduced
to those given by Simo et al. For initially curved rods, g0 6= 1, and if the rod reference curve is
chosen as the geometric centroid line, Ŝρ0 does not vanish in general though its entries are small
for slender rods. On other hand, if one choose the mass centroid line as the rod reference curve,
Ŝρ0 also vanishes ¥

3.6 Virtual work forms

In this section, we derive the principle of virtual work [201] for the Reissner–Simo rod theory.
As stated by Mäkinen in Ref. [245] we state that the virtual work may be viewed as a linear
form on the tangent field–bundle TB0 (see §A.5). This field bundle is also a tangent bundle
of the placement manifold at fixed time. In following we give definitions for the virtual work
in the finite–dimensional and infinite–dimensional cases. Moreover, it will be shown that the
principle of virtual work constitutes a weak form of the linear and angular momentum balance
equations recovering Eqs. (3.113a) to (3.113c) or equivalently Eqs. (3.121) and (3.133). Detailed
explanations about virtual work forms on manifolds are given in Defs. A.18 and A.19 of §A.3.1
of Appendix A.

3.6.1 Principle of virtual work

The principle of virtual work states that at a dynamical equilibrium, the virtual work with
respect to any virtual displacement, at time t = t0 and place vector x̂∗, vanishes i.e.

G(x̂∗, δx̂) :=
∫

Bt0

f̂ · δx̂dBt0 = 0 ∀ x̂∗ ∈ Bt0 , δx̂ ∈ Tx̂∗Bt0 (3.138)

where the virtual displacement field δx̂ ∈ TB0 and the force field f̂ = f̂(t0, x̂∗) ∈ T ∗Bt0 i.e. it
belongs to the co–tangent field bundle.

3.6.2 Weak form of the balance equations

One choice for constructing a continuum based expression of the virtual work is given by taking
as pair quantity the FPK stress tensor. This selection is very popular for the geometrically
exact rod theories [174, 245, 362] since the work pair for the FPK stress tensor is the virtual
deformation gradient, as it has been shown in §3.4, yielding rather a simple formulation. The
virtual deformation gradient corresponds to the Lie variation (see §A.5.5) of the deformation
gradient tensor, δΛ(F) ∈ Tx̂Bt⊗ T ∗

X̂
B0. Then, we write explicitly the virtual work principle and

we show that it satisfies the balance equilibrium conditions given in Eqs. (3.113a) to (3.113a)
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[245] as follows:

G(x̂, δx̂) =
∫

B0

〈δx̂, b̂〉gggdV +
∫

∂B0

〈δx̂, t̂σ〉gggdA

︸ ︷︷ ︸
Gext

+
∫

B0

(δ
O[
F

]
: gggP)dV

︸ ︷︷ ︸
Gint

−
∫

B0

〈δx̂, ρ0
¨̂x〉gggdV

︸ ︷︷ ︸
Gine

=0

=
∫

B0

δx̂ · b̂dV +
∫

∂B0

δx̂ · t̂σdA−
∫

B0

(δ
O[
F

]
: P)dV −

∫

B0

ρ0δx̂ · ¨̂xdV = 0. (3.139)

In principle, in Eq. (3.139) a more general formulation, including the metric tensor ggg, associated
to the coordinate description of the current beam configuration, has been used (see §A.3 of
Appendix A) by completeness. The formal definition for the inner product 〈•〉ggg ∈ L(Tx̂0Bt0 ×
T ∗x̂0

Bt0 ,R) is given in the same appendix. The first two terms correspond to the external virtual
work Gext and to the internal virtual work Gint, respectively; and the last term to the inertial
virtual work Gine.
Note that the term (δΛF : P) can be simplified into

δ
O[
F

]
: P = δF : P− (δθ̃θθF) : P

= (∇δx̂) : P− 1
2
[
(δθ̃θθF) : P− (δθ̃θθ

T
F) : P

]

= ∇ · (PT δx̂)− δx̂ · (∇ ·P)− 1
2
δθ̃θθ : (PFT − FPT ) (3.140)

where the skew–symmetry of δθ̃θθ
T

= −δθ̃θθ has been used together with the relation between
divergence and gradient operators (∇δϑ̂) : gggϑϑϑ = ∇· (ϑϑϑ∗gggδϑ̂)−gggδϑ̂ · (∇·ϑϑϑ), ∀ϑ̂ ∈ R3, ϑϑϑ ∈ F(0, 2)
with the metric tensor ggg = I and P∗ = PT (see §A.3).
Substituting the result of Eq. (3.140) in Eq. (3.139) we obtain

G =
∫

B0

(1
2
δθ̃θθ : (PFT − FPT ) + δx̂ · (∇ ·P + b̂− ρ0

¨̂x)
)
dV +

∫

∂B0

δx̂ · (t̂σ −PN̂σ)dA. (3.141)

where it has been used the divergence theorem and N̂σ is outward normal to the surface ∂B0

where traction forces are applied.
Comparing Eqs. (3.141) with (3.113a) to (3.113c) we found that the principle of virtual work
of Eq. (3.139) satisfies the equations of motion for a kinematically admissible virtual displace-
ment. The kinematically admissible virtual displacement field δx̂ fulfills the essential boundary
conditions by construction.

REMARK 3.4. It is worth to note that the term δ
O[
F

]
: P also satisfies the balance equation

of momentum PFT − FPT but the term δF : P does not [246] ¥
REMARK 3.5. As it has been mentioned, the virtual work can be decomposed into three
components: external, internal and inertial virtual works according to the following equation:

G = Gext + Gint −Gine

where the minus sign indicate that the inertial forces act against the virtual displacements.
Additionally, the inertial virtual work Gine includes the minus sign inside its form. Sometimes
it is convenient to avoid additional minus signs by introducing the virtual work of acceleration
forces by the formula Gine = −Gacc ¥
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3.6.3 Reduced form virtual work principle

A dimensionally reduced version of the virtual work principle may also be obtained from the
reduced linear and angular balance equilibrium equations [174, 198]. In this work an analogous
procedure to these presented by Ibrahimbegović [178] will be used for the case of initially curved
rods.
According to Eq. (3.27) taking an admissible variation of the position vector (consistent with
the prescribed boundary conditions) in the current rod configuration δx̂ = δϕ̂ + δθ̂ × T̂ ∈ Tx̂Bt

i.e. a virtual displacement field, where δϕ̂ ∈ R3 is an arbitrary but kinematically admissible
variation of the translational field, δθ̂ = δθ̂n ∈ T spa

Λ is an arbitrary but kinematically admissible
rotation increment associated with the skew–symmetric tensor δθ̃θθ = δΛnΛT

n ∈ T spa
Λ SO(3) thus,

a virtual incremental rotation; taking the dot product of η̂s = (δϕ̂, δθ̂) ∈ TCt ≡ R3 × T spa
Λ with

Eqs. (3.119) and (3.133) and integrating over the length of the curved reference rod we obtain
the following contributions to the nonlinear functional corresponding to the reduced virtual work
principle:

3.6.3.a Virtual work of external forces and moments

Considering the externally applied forces and moments we obtain the following expression for
the virtual work of the external loading:

Gext(ϕ̂,Λ, η̂s) =
∫ L

0

〈 [
δϕ̂

δθ̂

]
,

[N̂ ∗

M̂∗

]〉
ggg
dS =

∫ L

0
(δϕ̂ · N̂ ∗ + δθ̂ · M̂∗)dS. (3.142)

It is worth noting that it has been carried out a separated integration for the translational part
of the external work corresponding to the forces N̂ ∗ ∈ R3∗ and for the rotational part associated
to the moments M̂∗ ∈ T spa

Λ
∗ which is an element of the co–vector space of rotation and the work

conjugated of the virtual incremental rotation vector δθ̂ ∈ T spa
Λ .

3.6.3.b Virtual work of the internal forces and moments

The virtual work of the internal forces and moments can be computed in a similar way but
taking the corresponding terms of Eqs. (3.119) and (3.133) as

Gint(ϕ̂,Λ, η̂s) =
∫ L

0

〈[
δϕ̂

δθ̂

]
,

[
n̂,S

m̂,S +ϕ̂,S ×n̂

]〉
ggg
dS

=
∫ L

0

[
δϕ̂ · n̂,S +δθ̂ · m̂,S +δθ̂ · (ϕ̂,S ×n̂)

]
dS. (3.143)

3.6.3.c Virtual work of the inertial forces

The virtual work of the inertial forces can be computed in a similar way but taking the other
terms of Eqs. (3.119) and (3.133) as

Gine(ϕ̂,Λ, η̂s) =
∫ L

0

〈 [
δϕ̂

δθ̂

]
,

[
Aρ0

¨̂ϕ
Iρ0α̂n + ṽnIρ0 v̂n

]〉
ggg
dS

=
∫ L

0

[
δϕ̂ ·Aρ0

¨̂ϕ + δθ̂ · (Iρ0α̂n + ṽnIρ0 v̂n)
]
dS. (3.144)
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Finally, the principle of virtual work for the Reissner–Simo rod’s theory becomes

G(ϕ̂,Λ, η̂s) = [Gint + Gine −Gext](ϕ̂,Λ, η̂s)

=
∫ L

0

[
δϕ̂ · n̂,S +δθ̂ · (m̂,S +ϕ̂,S ×n̂)

]
dS

+
∫ L

0

[
δϕ̂ ·Aρ0

¨̂ϕ + δθ̂ · (Iρ0α̂n + ṽnIρ0 v̂n)
]
dS

−
∫ L

0
(δϕ̂ · N̂ ∗ + δθ̂ · M̂∗)dS = 0. (3.145)

From the above equation, taking integration by parts for the n̂,S and m̂,S terms and noticing
δθ̂ · (ϕ̂,S ×n̂) = (δθ̂ × ϕ̂,S ) · n̂, one may easily obtains that

G(ϕ̂,Λ, η̂s) =
∫ L

0

[
(δϕ̂,S −δθ̂ × ϕ̂,S ) · n̂ + δθ̂,S ·m̂

]
d̂S

+
∫ L

0

[
δϕ̂ ·Aρ0

¨̂ϕ + δθ̂ · (Iρ0α̂n + ṽnIρ0 v̂n)
]
dS

− (δϕ̂ · n̂)
∣∣∣
L

0
− (δθ̂ · m̂)

∣∣∣
L

0
−

∫ L

0
(δϕ̂ · N̂ ∗ + δΘ̂ · M̂∗)dS = 0. (3.146)

By this way it is possible to rewrite the external virtual work including the natural boundary
conditions: (δϕ̂ · n̂)|L0 + (δθ̂ · m̂)|L0 and an alternative (weak [363]) form of contribution, which
constitutes spatial version of the variational form of reduced internal power as given in Eq.
(3.111) i.e.

G(ϕ̂,Λ, η̂s)sint =
∫ L

0
(δ

O
[γ̂n] ·n̂ + δ

O
[ω̂n] ·m̂)dS (3.147)

where δ
O
[•] is the Lie variation (or co–rotated variation) as it is explained in §A.5.5 of Appendix

A. A deeper presentation of the calculation of the variations of mathematical quantities involved
in the linearization of the weak form of the virtual work principle will be given in Chapter 5,
for the moment it is sufficient to indicate that

δ
O

[γ̂n]= δϕ̂,S −δθ̂ × ϕ̂,S ; δ
O

[ω̂n]= δθ̂,S = δθ̂n,S

Considering that in virtue of the results presented in Section A.5 one have that δΓ̂n = ΛT δ
O

[γ̂n]

and δΩ̂n = ΛT δ
O

[ω̂n], therefore, Eq. (3.147) is completely equivalent to its material form which
is given by

G(ϕ̂,Λ, η̂s)mint =
∫ L

0
(δÊn · n̂m + δΩ̂n · m̂m)dS. (3.148)

A formal demonstration of the mentioned equivalence is left to Section 5.3. In the more general
term, the power balance equation in its variational form becomes the virtual work equation
while the internal power becomes the internal virtual work.

REMARK 3.6. The superscripts ’s’ and ’m’ has been added to the internal virtual work of
Eqs. (3.147) and (3.148) to indicate that the corresponding scalar quantity Gint is phrased in
terms of spatial (correspondingly material) quantities, although it is well known that a scalar
by itself is independent of the reference system ¥
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3.7 Constitutive relations

In most of the cases in finite deformation theories for rods, hyper-elastic, isotropic and homoge-
neous materials have been assumed (see e.g. [73, 87, 131, 182, 363]) and therefore, the reduced
constitutive equations become very simple. Other authors have extended the constitutive rela-
tions to the nonlinear case performing an integration of the constitutive equations at material
point level and then obtaining the corresponding stress resultant and stress couple by mean of
a second integration loop on the cross sectional area. Most of those works have been focused on
plasticity [107, 118, 151, 299, 313, 318].
In the case that cross sections are composed by several materials, some authors prefer to work
with 1D constitutive laws for the normal component of the stress tensor maintaining the shear
behavior linear (see e.g. [113, 117, 214]). This last approach normally imply the violation of the
law of thermodynamics [36, 307] conducing to spurious energy dissipation.
In the present work, cross sections are considered as formed by an inhomogeneous distribu-
tion of composite materials, each of them having several simple material components. Each
simple material have associated its own constitutive law and the behavior of the composite is
obtained using the mixing rule theory [90]. However, in this section only a brief overview of
elastic constitutive relations for stress resultant and stress couples is discussed.

3.7.1 Hyperelastic materials

An elastic material is said to be a hyperelastic or a Green–elastic material if a strain energy
function per unit volume Wstr exist and the FPK stress tensor P0 can also be defined [300] as

P :=
∂Wstr(F)

∂F
∈ Tx̂Bt ⊗ TX̂00

B00 (3.149)

where it has been assumed that the strain energy function is frame–indifferent under orthogonal
transformation i.e. F+ = ΛF by obeying the identity:

Wstr(F+) = Wstr(ΛF) = Wstr(F)

with Λ ∈ SO(3). This means that the strain energy function is invariant under rigid–body
rotations. The Lie variation by Λ, Eq. (A.95), of the energy function Wstr(F) can be written
using Eqs. (3.149) as

δ
O

[Wstr]=
∂Wstr(F)

∂F
: δ

O
[F]= P : δ

O
[F] ∈ R (3.150)

that is equal to the virtual work of internal forces Gint of Eq. (3.139). We get the same result
for Wstr(ΛTF). Employing the Lie variation, pullback and push–forward operators (see §A.5) it
is possible to express Eq. (3.150) as

δ
O

[Wstr]= P :
(
Λδ(ΛTF)

)
= (ΛTP) : δ(ΛTF) = (ΛTP) : δ(ΛTF− I). (3.151)

Therefore the Lie variation of the strain energy function, Eq. (3.150), introduces the material
strain and stress tensors defined by

Σ := ΛTP ∈ T ∗
X̂
B00 ⊗ TX̂B00 (3.152a)

H := ΛTF− I ∈ TX̂B00 ⊗ T ∗
X̂
B00 (3.152b)
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The material stress tensor Σ = ΣijÊ
∗
i ⊗ Êj can be identified with the material form of the

FPK stress tensor as given in Eq. (3.88b) and its work conjugated H = HijÊi ⊗ Ê∗
j can be

identified with the material form of the strain measure EEE given in Eq. (3.68b). Both Σ and H
are nonsymmetric tensors and are not named in continuum mechanics.
Let us to consider the constitutive relation between the components of the stress tensor Σ and
the components of H given by

Σ = CCCme : H (3.153)

where the elasticity tensor CCCme ∈ T ∗
X̂
B00⊗TX̂B00⊗T ∗

X̂
B00⊗T ∗

X̂
B00 is a fourth order tensor. For

the purpose of establish a linear constitutive relation for the strain and stress measures acting
on the face of the current cross section (see Fig. 3.3) we introduce the following simple linear
constitutive relations in component form:

Σ11 = EH11; Σ21 = GH21; Σ31 = GH31 (3.154)

where E denote the elastic modulus and G the shear modulus. The constitutive relations of
Eq. (3.154) correspond to commonly named the engineering approach. We note that the vector
Ĥi1Êi corresponds to Ê as given in Eq. (3.68b). Thus, we could to express the material stress
vector Σi1Ê

∗
i as

Σi1Ê
∗
i = (EÊ∗

1 ⊗ Ê∗
1 + GÊ∗

2 ⊗ Ê∗
2 + GÊ∗

3 ⊗ Ê∗
3)Ê . (3.155)

Comparing the preceding equation with Eq. (3.87) and the material stress tensor Σ, Eq.
(3.152a), we get the material form of the stress vector at the current cross section

Σi1Ê
∗
i = ΛT P̂1 = P̂m

1 . (3.156)

Now we can substitute the above equation into the formula of the stress resultant vector n̂m,
obtained materializing Eq. (3.95c), that yields after integrating over the cross section to the
following result:

n̂m =
∫

A00

Σi1Ê
∗
i dA00 = (EA00Ê

∗
1 ⊗ Ê∗

1 + GA00Ê
∗
β ⊗ Ê∗

β)Ê ∈ T ∗
X̂
B00. (3.157)

Similarly, we may derive the stress couple vector m̂m, obtained materializing Eq. (3.97c), as

m̂m =
∫

A00

ẼEE [EÊ∗
1 ⊗ Ê∗

1 + GÊ∗
β ⊗ Ê∗

β](Γ̂ + Ω̃Ê )dA00

=
[ ∫

A00

ẼEECCCmedA00

]
Γ̂−

[ ∫

A00

ẼEECCCmeẼEE dA00

]
Ω̂

=
[
(G(−1)β

∫

A00

ξβdA00)Ê∗
1 ⊗ Ê∗

α + (E(−1)α

∫

A00

ξαdA00)Ê∗
β ⊗ Ê∗

1

]
Γ̂

+
[
GIρ0011Ê

∗
1 ⊗ Ê∗

1 + EIρ00αβÊ∗
α ⊗ Ê∗

β

]
Ω̂. (3.158)

In Eq. (3.158) the formula for the material form second moment of inertia Iρ00 given in Eqs.
(3.134) and (3.135) has been used.

3.7.2 General formulation for the linear elastic case

Due to the fact that the reference configuration is describe using Euclidean coordinates, it will
be assumed that {Êi} ∼= {Ê∗

i } by simplicity in the notation. A general expression for the
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linear elastic relation between the material form of the FPK stress vector, P̂m
1 given in Eq.

(3.88c), and its energetically conjugate strain vector, Ên given Eq. (3.69), at any material point
(S, ξβ) ∈ [0, L] × A(S) on the current rod cross section for a hyperelastic but not necessarily
isotropic nor homogeneous material can be given by

Pm
i = [PmÊ1] · Êi = P̂m

1 · Êi = g−1
0 CCCme

ij Enj ; CCCme
ij = ᾱCCC0me

ij ; ᾱ = ᾱ(S, ξβ) (3.159)

where CCCme
ij = CCCme

ji are the general elasticity constants for a given material point and they can vary
over the material point considered; CCC0me

ij = CCC0me
ji are the arbitrarily chosen reference material

constants and do not vary over different material points; ᾱ is a scalar factor between CCCme
ij and

CCC0me
ij depending on the material point.

Then, the linear constitutive relation for a given material point on the current rod cross section
may be described in the material and spatial settings as

P̂m
1 = g−1

0 CCCmeÊn, CCCme = Cme
ij Êi ⊗ Êj (3.160a)

P̂1 = g−1
0 CCCseε̂n, CCCse = Cse

ij t̂i ⊗ t̂j , (3.160b)

respectively.
Substituting Eq. (3.160b) into the formulae for the components Ni and Mi of the stress re-
sultant n̂ and stress couple m̂ vectors in Eqs. (3.95a) to (3.97d) and using the formulae for
the components ε̂n without the initial curvature correction term in Eq. (3.59), it is possible to
obtain, following analogous procedures as those given in Eqs. (3.157) and (3.158), the reduced
linear constitutive relations as

n̂ = Cse
nnγ̂n + Cse

nmω̂n (3.161a)
m̂ = Cse

mnγ̂n + Cse
mmω̂n (3.161b)

for the spatial description, and

n̂m = Cme
nn Γ̂n + Cme

nmΩ̂n (3.161c)
m̂m = Cme

mnΓ̂n + Cme
mmΩ̂n (3.161d)

for the material description (see Eqs. (3.100a) and (3.100b)); where

Cse
pq = [Cme

pq ]ij t̂i ⊗ t̂j ; Cme
pq = [Cme

pq ]ijÊi ⊗ Êj ; Cse
pq = ΛCme

pq ΛT (3.162)

and the subscripts p, q ∈ {m,n}. Explicit expressions for the general coefficients of Eqs. (3.161c)
and (3.161c) are given in Appendix B.
The simplest case of the cross sectional elasticity constants is obtained when the rod material
is isotropic and homogeneous

Pm
1 = g−1

0 EEn1; Pm
2 = g−1

0 GEn2; Pm
3 = g−1

0 GEn3 (3.163)
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i.e. ᾱ = 1 and Cme
11 = E, C22 = C33 = G, Cm

ij = δij otherwise. Then, the cross section elasticity
constants became

[Cse
nn]t̂i⊗t̂j

= [Cme
nn ]Êi⊗Êj

=




EA00 0 0
0 GksA00 0
0 0 GksA00


 (3.164a)

[Cse
nm]t̂i⊗t̂j

= [Cme
nm]Êi⊗Êj

=




0 ES̄2 −ES̄3

−GS̄2 0 0
GS̄3 0 0


 (3.164b)

[Cse
mm]t̂i⊗t̂j

= [Cme
mm]Êi⊗Êj

=




GktI11 0 0
0 EI22 −EI23

0 −EI32 EI33


 (3.164c)

[Cse
mn]t̂i⊗t̂j

= [Cme
mn]Êi⊗Êj

=




0 −GS̄2 GS̄3

ES̄2 0 0
−ES̄3 0 0


 (3.164d)

where

A00 =
∫
A00

g−1
0 dA00 S̄2 =

∫
A g−1

0 ξ3dξ2dξ3; S̄3 =
∫
A g−1

0 ξ2dξ2dξ3

Ī22 =
∫
A g−1

0 (ξ3)2dξ2dξ3; Ī33 =
∫
A g−1

0 (ξ2)2dξ2dξ3; Ī23 =
∫
A g−1

0 ξ2ξ3dξ2dξ3

Ī11 = Ī22 + Ī33; Ī23 = Ī32;

and ks and kt are the correction factors for shearing and torsion, respectively.
For slender curved rods or straight rods, we may let g0 ≈ 1 [228]. If the rods are further
assumed to be built of isotropic, homogeneous and linear elastic material, we may take the rod
cross section geometry centroid line as the rod reference curve and align t̂2 and t̂3 to coincide
with the cross section principal axes. Then, Cnn and Cmm become diagonal, and Cnm and Cmn

vanish. This last simple constitutive form has been used in most of the reviewed works (see e.g.
[174, 190, 180, 228, 362] and references therein).

3.8 External loads

The applied external loads can be very complex in practice, for example when interaction be-
tween structure and environment is considered, such as the forces derived from fluid–structure
interaction for aircrafts or the effects of earthquakes on civil engineering structures (see e.g.
[117]) among many others. The complexity in the form of external forces acting on a given
structure enforces to develop simplified models for simulating the real phenomena.

3.8.1 Point loads and concentrated moments

Clearly if a point load is applied in a globally fixed direction, the conventional procedures apply
[108]. Consequently, we will concentrate on follower loads i.e. loads which maintain the position
relative to the rod configuration. In general, this type of loads can be defined as referred to the
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local frame {t̂}i, therefore, an applied point load can be described by

P̂f = Pfit̂i (3.165)

the corresponding contribution to the external virtual work of Eq. (3.142) is

Gext = δϕ̂ · (Pfit̂i) (3.166)

where the contribution to the external virtual work is configuration dependent due to the fact
that the components of the follower point load are given with respect to a movable frame.
By the other hand, applied moments about fixed axes, M̂f = Mfiêi, are non-conservative (for
a demonstration se e.g. [108, 190]) i.e. the work done by a mechanical system due to the
application of a concentrated moment is path–dependent. The corresponding contribution to
Gext is

Gext = δθ̂ · (Mfiêi) (3.167)

As it will be shown in a next chapter the non-conservative nature of concentrated moments leads
to a non-symmetric tangent stiffness in the linearized problem.

3.8.2 Distributed loads

Three types of distributed loads, in the form of load densities, are considered, following the
proposition given by Kapania and Li [207, 208]:

(I) The applied load density is given per unit of unstressed arch–length of curved configuration
referred to the spatially fixed frame {êi}. One manner to define the self–weight of the
structure is employing this kind of loads, but it has the disadvantage that is difficult to
define for cross sections composed with different materials.
Therefore, the differential force df̂g and moment dm̂g, exerted on the differential element
dS are calculated as:

df̂g = λN̂g(S)dS (3.168a)
dm̂g = λM̂g(S)dS, (3.168b)

respectively; where N̂g(S) and M̂g(S) are the corresponding densities and λ ∈ R is a
proportional loading factor. This type of loading is deformation invariant and usually
conservative [228, 108].

(II) The applied load density is given as a constant in space in the sense that the load acting on
unit projection length dsd of the deformed arch–length ds corresponding to the undeformed
arch–length dS at a material point S on the mid-curve onto any plane with normal d̂N =
N̂d/‖N̂d‖ ∈ R3 is constant, given by

df̂d =
∫ λ

0
N̂ddsddλ (3.169)

where N̂d is constant with respect to both space and the rod itself; however, dsd depends
on the deformation and motion of the rod. dsd relates the deformation and undeformed
arch–length element dS as well as the direction of N̂d by

dsd = [(d̂N × ϕ̂,s )× d̂N ] · ϕ̂,S dS = −[d̃dd
2

N ϕ̂,s ] · ϕ̂,S dS.
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Assuming that extension or elongation of the rod mid–curve is small and can be ignored,
i.e. dsd = dS, the above equation for dsd can be simplified as

dsd = −[d̃dd
2

N ϕ̂,S ] · ϕ̂,S dS. (3.170)

Therefore, Eq. (3.170) can be rewritten as [228]

df̂d = N̂d

∫ λ

0
(−[d̃dd

2

N ϕ̂,S ] · ϕ̂,S )dλdS = λcN N̂ddS (3.171)

where

cN = − 1
λ

∫ λ

0
[d̃dd

2

N ϕ̂,S ] · ϕ̂,S dλ.

Similarly, we may define the differential moment dm̂d, exerted on the arc–element dS of
the rod mid–curve, as

dm̂d = λcMM̂ddS (3.172)

where

d̂M = M̂d/‖M̂d‖ ∈ R3

cM = − 1
λ

∫ λ

0
[d̃dd

2

M ϕ̂,S ] · ϕ̂,S dλ.

Note that both df̂d and dm̂d are dependent on deformation. The force density Nd may be
a good approximation for loads acting on a uniform rod when loading process is addressed
and the load itself can cause relatively large displacements/rotations. Therefore, this kind
of loading can be non conservative.

Figure 3.8: Different types of distributed applied loadings.

(III) The applied load density is given per unit unstressed arch–length of the rod mid–curve
referred to the moving frame {t̂i} invariant with respect to the deformation of the rod.
Pressure and other follower loads belongs to this type if both the shear deformation and
cross section variation along the rod axis are small and can be ignored.
The differential force df̂p, and moment, dm̂p, exerted on the arch–length dS are calculated
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as follows:

df̂p = λN̂pdS = λΛ ˆ̄NpdS (3.173a)

dm̂p = λM̂pdS = λΛ ˆ̄MpdS (3.173b)

where ˆ̄Np = ˆ̄Npj êj and ˆ̄Mp = ˆ̄Mpj êj are given in the material form. This type of loads
depends on the rotational displacements and, therefore, is non-conservative. In Fig. 3.8
are show the three types of applied distributed loads. Now it is possible to define

N̂dist = λ
[N̂g + cN N̂d + N̂p

]
(3.174a)

M̂dist = λ
[M̂g + cMM̂d + M̂p

]
(3.174b)

as the force density and the moment density along the rod mid–curve at current loading
respectively.

Table 3.2 summarize the different types of loading. Note that all the components of the applied
load densities are constant for given S in load types I and III and sd in type II.

Table 3.2: Applied external load densities.

Load type Force Density Moment Density

IC
C

N̂g(S) = Ngj(S)êj M̂g(S) = Mgj(S)êj

IIC
C

N̂d(sd) = Ndj(sd)êj M̂d(sd) = Mdj(sd)êj

IIIC
C

N̂p(S) = N̄pj(S)t̂j M̂p(S) = M̄pj(S)t̂j

3.8.3 Body loads

In Section 3.6 it has been written the balance law Eqs. (3.119) and (3.133), which include the
external loads due to a body forces per unit of volume b̂ in the terms N̂ and M̂. The evaluation
of these external body forces at element level require the numerical integration of the following
integrals

N̂bd =
∫ L

0

∫

A0

g0

(
ρ0b̂

)
(S, ξβ)dV0 ∈ T ∗x̂0

Bt (3.175)

M̂bd =
∫ L

0

∫

A0

T̃TT g0ρ0b̂(S, ξβ)dV0 ∈ T ∗x̂0
Bt (3.176)

in analogous manner as explained in §3.6 if the mass centroid of the cross section is chosen as
the reference curve for the rod, the term Mbd in Eq. (3.176) vanish.

3.8.4 Seismic loading

If the structure is subjected to the base acceleration corresponding to a seismic input, the
acceleration of each material point can be written as the sum of the acceleration of the material
point with reference to the fixed inertial frame {Êi}, Eq. (3.32a) or (3.31b), and the acceleration
of the inertial frame itself. It worth to note that usually in earthquake engineering seismic inputs
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are considered as a record of three base accelerations acting in three independent directions and,
therefore, any rotational acceleration of the inertial frame itself have to be considered in the
calculations. The resulting expression for the acceleration of the material point (S, ξβ) in the
spatial description is given by

¨̂x = ¨̂ϕ + ¨̂a +
[
α̃ + ṽvvṽvv

]
T̂ ∈ Tx̂Bt (3.177)

where the vector ¨̂a corresponds to the translational acceleration of the fixed reference frame
{Êi} (see Fig. 3.9).

x̂

{0̂} ¨̂a //

¨̂x

66nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn {Êi}

¨̂
ξ

>>}}}}}}}}}}}}}}}}

Figure 3.9: Seismic acceleration of the material point (S, ξβ).

In this case Eqs. (3.119) and (3.119) are rewritten to consider the additional acceleration term
¨̂a as

n̂,S +N̂ = Aρ0( ¨̂ϕ + ¨̂a) + α̃ααnŜρ0 + ṽvvnṽvvnŜρ0︸ ︷︷ ︸
Â1

(3.178)

m̂,S +ϕ̂,S ×n̂ + M̂ = Ŝρ0 × ( ¨̂ϕ + ¨̂a)︸ ︷︷ ︸
Â2

+IIIρ0α̂n + ṽvvnIIIρ0 v̂n (3.179)

As it has been said the terms Â1 and Â2 can be neglected if the reference curve of the rod coincide
with the mass centroid or if the eccentricity between the mechanical center of the section and the
mass centroid is small. In this case the seismic acceleration only affects to the linear momentum
balance condition. The seismic acceleration vector ¨̂a is independent of the material point and
can be treated as an additional body force adding it to the term N on the right side of Eq.
(3.178). Therefore, Eq. (3.175) can be employed to calculate the total body load acting on the
rod.
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Constitutive nonlinearity

As it has been mentioned in previous sections, most of the works treating geometrically non-
linear rod theories have considered hyperelastic, isotropic and homogeneous material properties
[131, 178, 362, 363] considering rather simple reduced constitutive equations. Normally, in engi-
neering problems we are interested in knowing the behavior of the structures beyond the linear
elastic case. Therefore, the assumption linearity of the constitutive relations may be in general
not applicable in practical studies of engineering structures. Additionally, the viscous damping
reduces the effects of the dynamic actions on structures, which has been considered, for example,
in many seismic codes. Therefore, realistic studies focused on the simulation of the nonlinear
dynamics of beam structures should consider inelastic rate dependent constitutive relations as
well as geometric effects.
This chapter is focused on the treatment given in this work to constitutive nonlinearity. To
this end, material points on the cross sections are considered as formed by a composite ma-
terial corresponding to a homogeneous mixture of different components, each of them with its
own constitutive law. The composite behavior is obtained by means of the mixing theory for
composite materials. A schematic representation of these ideas is shown in Fig. 4.1 where a
typical transversal cut throughout a cross section of a rod in the current configuration shows
a material point that has associated a composite which is divided in a set of simple materials
represented schematically in the zoom view by different zones hatched with points, lines, etc.
The mechanical response of the composite is obtained supposing a rheological model where all
the components work in parallel.
Two types of nonlinear constitutive models for simple materials are used in this work, corre-
sponding to the damage and the plasticity models, both of then formulated in the rate inde-
pendent and rate dependent forms and in a manner that is consistent with the laws of the
thermodynamics for adiabatic processes [237, 236]. They have been chosen due to the fact that
combining different parameters of the models a wide variety of mechanical behaviors can be
reproduced, e.g. concrete, fiber reinforced composites and metals among others [160, 36, 309].
This chapter is organized starting with the formulation of the rate independent models for com-
ponents; rate dependent behavior and viscosity is then included by means of a Maxwell model
[307]. The mixing rule for composites is then introduced along with a continuum version of the
cross sectional analysis.
Considering that the components of any spatial vector or tensor in the local frame {t̂i} are the
same as those of their corresponding material forms described in the material frame {Êi}, in
this section the constitutive models are formulated in terms of the material form of the FPK
stress vector, P̂m

1 , and the strain and strain rate measures Ên and Ŝn, respectively.
We start assuming that each component of the composite associated to a material point is

83
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Figure 4.1: Each material point on the rod has associated a composite composed by a finite
amount of simple materials.

described by means of a nonlinear strain-stress relation; by the moment this relation can be
considered rate independent. Considering Eqs. (3.88a) to (3.88f) for the material form of the
FPK stress vector referred to a differential volume of the curved reference rod, we can suppose
a relation of the form

P̂m
1 = P̂m

1 (g−1
0 Ên). (4.1)

It is also possible to assume that there exist a linearized relation between linear increments of the
material forms of P̂m

1 and Ên, given by the tangential constitutive tensor in material description
CCCmt, as

δP̂m
1 = g−1

0 CCCmtδÊn; CCCmt
ij = g0(P̂m

1i ),Ênj
(4.2)

where the spatial form of the tangential constitutive tensor is obtained as CCCst = ΛCCCmtΛT .
Explicit expressions for Eqs. (4.1) and (4.2) depend on the constitutive formulation assigned
to the material considered. Additionally, taking into account the relation between material and
co-rotated linear increments by means of employing the push–forward operation by the rotation
tensor Λ we have that

δ
O

[P̂1]= ΛδP̂m
1 = Λ

[
g−1
0 CCCmtδÊn

]
= g−1

0 CCCstδ
O

[ε̂n] . (4.3)

However, attention should be paid that the stress vector must be determined according to the
specific constitutive laws described in Eq. (4.1) for the general case.

4.1 Softening materials and strain localization

As noted by Armero and Ehrlich [25, 24] the failure of framed structures is normally determined
by the localization of the degradation of the mechanical properties of the materials in critical
cross sections. This process usually occurs when materials presenting softening are associated
to the points on the cross section. Therefore, the strain localization phenomenon can occur on
specific zones of the rod for certain loading levels [303]. Some authors have confined the dissipa-
tive zone to the existence of a band with defining a characteristic length of the material, which
is called the size effect appearing in softening zones before the failure [51, 52] and have given
correlations with complex redistribution of forces and moments in redundant structures. In any
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case, softening behavior of points on the cross section implies the induction of a softer response
at cross sectional level and, in this manner, the strain localization induced at material point
level is translated to the cross sectional force-displacement and moment-curvature relationships
leading to the classical concept of the formation of plastic hinges (see e.g. [97, 109, 117, 214]
among many others).
Several approaches has been developed to treat the failure in framed structures, which cover
from the theoretical studies to more practical engineering applications. By one hand, some
classical techniques in structural analysis such as the limits analysis do not consider a softening
response on the hinges after the yielding threshold of the cross section has been reached [239].
By the other hand, the inelastic analysis of rod structures in softening regime has been developed
considering concentrated and distributed models (see §2 for a more complete survey about this
topic).

Figure 4.2: Softening volume in the rod element.

In this work, cross sectional degradation with softening is modeled considering that a spe-
cific length of the rod concentrates the large localized strains (see Fig. 4.2a) and the force-
displacement and/or moment-curvature relations are estimated throughout cross sectional inte-
gration of the stress field (see Eqs. (3.94a) and (3.94b)). In this sense, the present approach fall
in the category of distributed models, where inelasticity can occurs elsewhere in a given element.
A similar approach has been followed by several authors in recent works as for example, Bratina
et al. [81] or Coleman and Spacone [98] (and reference therein). Among the main advantages
of this approach it is possible to mention:

(i) The definition of a finite length associated to the softening zone allows to simulate the
distributed damage observed in some composite structures such as reinforced concrete in
tension where numerous micro-cracks connect each with the others along a finite zone
before the collapse of an element. In the case of compression a distributed damage zone
appears before the shear band dominate the global response of the element [98].

(ii) The cross sectional force-displacement and/or moment-curvature relations are deduced
a posteriori depending on the material distribution and their corresponding constitutive
laws. In Fig. 4.2b a typical cross section associated to the volume of the beam where
strain localization will have place has been depicted. The beam is subjected to a simple
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flexural moment M . In the case (i) the stress distribution in the beam depth is irreg-
ular in the sense that it does not follows the same path as the strain according to the
distribution of materials and their constitutive laws. On the right side it has been drawn
the corresponding moment-curvature, M − θ, relation. If M is increased, case (ii), the
stress distribution changes and some points suffer a great degradation of their mechanical
properties producing the softening branch in the corresponding M − θ diagram.

In general, the structural response becomes dependent on the mesh size and therefore, appro-
priated corrections has to be made. The mesh independent response of the structure is obtained
regularizating the constitutive equations according to the energy dissipated in the corresponding
softening volume, limiting this value to the specific fracture energy of the material [258]. Details
about the regularization process can be consulted in [260, 307, 305]. Chapter 7 devoted to the
finite element implementation of the present formulation allows to identify the mentioned spe-
cific length with the characteristic length associated to an integration point on a finite element.
Some criticisms can be made to the present approach in what regards to treatment given to the
softening response of rod structures, e.g. the fact that even in the case that the characteristic
length of the materials exists (intrinsically, as a material property), this length should be largely
smaller that the scales considered in the meshes [25]. However, among the above described
capabilities, the present approach has been considered due to its versatility to be included in a
standard finite element code for beam elements. Other alternative procedures based on consid-
ering the strong discontinuity approach1 on the generalized displacement field of the beam can
be consulted in [25, 24, 26]. In that case, the proposed approach leads to the regularization of
the mathematical problem and to an solution with physical significance. However, at the author
knowledge at the moment these results do not have been extended to cover some important
characteristics of the mechanical behavior of the structures such as those described in (i) and
(ii).

4.2 Constitutive laws simple materials

This section presents thermodynamically consistent formulations for the rate independent and
rate dependent versions of the damage and plasticity models which allow their inclusion in the
present geometrically exact rod model.

4.2.1 Degrading materials: damage model

The model here presented corresponds to an adaptation of the isotropic damage model proposed
by Oliver et al. [301] and based on the early ideas of Kachanov [205]; in a way that it is consistent
with the kinematic assumptions of the rod (see §3). The behavior of most of the degrading
materials is presented attending to the fact that micro-fissuration in geomaterials occurs due
to the lack of cohesion between the particles, among other processes. Different micro-fissures
connect each with others generating a distributed damage zone in the material. After a certain
loading level is reached a fractured zone is clearly defined2 [159, 205]. In the 3D case, the
directions of the dominating fissures are identified from the trajectories of the damaging points.
Considering a representative volume3 B ∈ R3 of material in the reference configuration and an

1For a detailed treatment of this topics, consult [18, 303, 302] and references therein.
2In this sense, the fractured zone is composed by the geometric place of all completely damaged points.
3A volume big enough to contain a large number of defects but small enough to be considered representative

of the behavior of a material point.
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arbitrary cut with normal k̂, as it has been shown in Fig. 4.4, the undamaged area is Sn and S̄n

is the effective area obtained subtracting the area of the defects from Sn. Therefore, the damage
variable associated to this surface is

dn =
Sn − S̄n

Sn
= 1− S̄n

Sn
∈ [0, 1] (4.4)

which measures the degradation level and is equal to zero before loading. When damage in-
creases, the resisting area (also called effective) S̄n → 0, which implies that dn → 1.

Figure 4.3: Schematic representation of the damage model.

The material form of the effective stress vector ˆ̄Pm
1 is constructed from the material description

of the FPK stress vector P̂m
1 starting from the fact that the material form of the force F̂k acting

in the section Sn, can be written as [159]

F̂k = P̂m
1 Sn = ˆ̄Pm

1 S̄n (4.5)

and considering Eq. (4.4) we have that

P̂m
1 = (1− d) ˆ̄Pm

1 = (1− d)CCCmeÊn. (4.6)

While damage is increasing, the effective area resists the external loads and, therefore, ˆ̄Pm
1 is

a quantity more representative of the physical phenomenon. Eq. (4.6) show that the material
form of the FPK stress vector is obtained from its linear elastic counterpart (undamaged) CCCmeÊn

by means of multiplying by degrading factor (1 − d). In this kind of models degradation is
introduced by means of the internal state variable d ∈ [0, 1], called the damage, which measure
the lack of secant stiffness of the material as it can be seen in Fig. 4.4.
In this work, a damage model consistent with the kinematic assumption of the rod theory and
based on the 3D formulation presented by Oliver et al. [301] is developed. The model has
only one internal variable (isotropic) employed for simulating the mechanical degradation of
the material. The concept of isotropic damage is used to denote models that consider only one
scalar damage parameter which affects to all the components of the elastic constitutive stress
tensor avoiding to differentiate between preferential directions in space [159]. This model is
based on the earlier ideas of Kachanov (1958) [205] and it presents a good equilibrium between
the required complexity for modeling the behavior of softening materials and versatility for
being used in large numerical simulations. In this case, fissuration is interpreted as a local effect
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defined by means of the evolution of a set material parameters and functions which control the
beginning and evolution of the damage [301].
One advantage of this kind of model is that it avoids the formulation in terms of directional
damage and the fissuration paths are identified a posteriori from the damaged zones. The
simple idea above explained allows to employ the damage theory for describing the mechanical
behavior of even more complex degrading materials if a special damage function, which considers
a differentiated material response for tension or compression, is included in the formulation of
the model [159, 364].

4.2.1.a Secant constitutive equation and mechanical dissipation

In the case of thermally stable problems, with no temperature variation, the model has associated
the following expression for the free energy density Ψ in terms of the material form of the elastic
free energy density Ψ0 and the damage internal variable d [250]:

Ψ(Ên, d) = (1− d)Ψ0 = (1− d)(
1

2ρ0
Ên · (CCCmeÊn)) (4.7)

where Ên is the material form of the strain vector, ρ0 is the mass density in the curved reference
configuration and CCCme = Diag[E, G,G] is the material form of the elastic constitutive tensor,
with E and G the Young and shear undamaged elastic modulus.
In this case, considering that the Clausius Planck (CP) inequality for the mechanical dissipation
is valid, its local form [237, 250] can be written as

Ξ̇m =
1
ρ0

P̂m
1 · ˙̂En − Ψ̇ ≥ 0

=
( 1
ρ0

P̂m
1 − ∂Ψ

∂Ên

) · ˙̂En − ∂Ψ
∂d

ḋ ≥ 0 (4.8)

where Ξ̇m is the dissipation rate.
For the unconditional fulfilment of the CP inequality and applying the Coleman’s principle, we
have that the arbitrary temporal variation of the free variable ˙̂En must be null [237]. In this
manner, the following constitutive relation for the material form of the FPK stress vector acting
on each material point of the beam cross section is obtained:

P̂m
1 = (1− d)CCCmeÊn = CCCmsÊn = (1− d)P̂m

01 (4.9)

where Cms = (1−d)Cme and P̂m
01 = CmeÊn are the material form of the secant constitutive tensor

and the elastic FPK stress vector, respectively.
Inserting the result of Eq. (4.9) into (4.8) the following expression is obtained for the dissipation
rate

Ξ̇m = −∂Ψ
∂d

ḋ = Ψ0ḋ ≥ 0. (4.10)

Eq. (4.9) shows that the FPK stress vector is obtained from its elastic (undamaged) counterpart
by multiplying it by the degrading factor (1− d). The internal state variable d ∈ [0, 1] measures
the lack of secant stiffness of the material as it can be seen in Fig. 4.4. Moreover, Eq. (4.10)
shows that the temporal evolution of the damage ḋ is always positive due to the fact that Ψ0 ≥ 0.
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Figure 4.4: Differentiated traction compression behavior and evolution of the internal variable.

4.2.1.b Damage yield criterion

By analogy with the developments presented in [36, 160, 309], the damage yield criterion denoted
by the scalar value F is defined as a function of the undamaged elastic free energy density and
written in terms of the components of the material form of the undamaged principal stresses,
P̂m

p0, as

F = P − fc = [1 + r(n− 1)]

√√√√
3∑

i=1

(Pm
p0i)2 − fc ≤ 0 (4.11a)

where P is the equivalent (scalar) stress and the parameters r and n given in function of the
tension and compression strengths fc and ft, respectively; and the parts of the free energy density
developed when the tension or compression limits are reached, (Ψ0

t )L and (Ψ0
c)L, respectively.

These quantities are defined as

(Ψ0
t,c)L =

3∑

i=1

〈±Pm
p0i〉Eni

2ρ0
, Ψ0

L = (Ψ0
t )L + (Ψ0

c)L (4.11b)

ft = (2ρΨ0
t E0)

1
2
L, fc = (2ρΨ0

cE0)
1
2
L (4.11c)

n =
fc

ft
, r =

∑3
i=1〈Pm

p0i〉∑3
i=1 |Pm

p0i|
(4.11d)

where |u| is the absolute value function and 〈±u〉 = 1/2(|u| ± u) is the McAuley’s function
defined ∀ u ∈ R.

REMARK 4.1. As it has been shown by Oliver et al. in [301], other kind of damage yield
criteria can be used in substitution of P e.g. Mohr–Coulomb, Drucker–Prager, Von Mises etc,
according to the mechanical behavior of the material (see also e.g. Hanganu et al. [160]) ¥
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A more general expression equivalent to that given in Eq. (4.11a) [36] is the following, which
was originally proposed by Simo and Ju [364]:

F̄ = G(P)− G(fc) (4.12)

where G(•) is a scalar monotonic function to be defined in such way to ensure that the energy
dissipated by the material on an specific integration point is limited to the specific energy fracture
of the material [301].

4.2.1.c Evolution of the damage variable

The evolution law for the internal damage variable d is given by

ḋ = µ̇
∂F̄
∂P = µ̇

∂G
∂P (4.13)

where µ̇ ≥ 0 is the damage consistency parameter. Additionally, a damage yield condition F̄ = 0
and consistency condition ˙̄F = 0 are defined analogously as in plasticity theory [377]. By one
hand, the yield condition implies that

P = fc (4.14a)
dG(P)

dP =
dG(fc)

dfc
(4.14b)

and the consistency condition along with an appropriated definition of the damage variable
expressed in terms of G i.e. d = G(fc), allows to obtain the following expression for the damage
consistency parameter:

µ̇ = Ṗ = ḟc =
∂P

∂P̂m
01

· ˙̂
Pm

01 =
∂P

∂P̂m
01

· CCCme ˙̂En. (4.15)

Details regarding the deduction of Eqs. (4.14b) to (4.15) can be consulted in Refs. [36, 160].
These results allow to rewrite Eqs. (4.10) and (4.13) as

ḋ =
dG
dP Ṗ (4.16a)

Ξ̇m = Ψ0
˙G(P) = Ψ0

[ dG
dP

∂P
∂P̂m

01

]
· Cme ˙̂En. (4.16b)

Finally, the Kuhn-Thucker relations: (a) µ̇ ≥ 0 (b) F̄ ≤ 0 (c) µ̇F̄ = 0, have to be employed to
derive the unloading–reloading conditions i.e. if F̄ < 0 the condition (c) imposes µ̇ = 0, on the
contrary, if µ̇ > 0 then F = 0.

4.2.1.d Definition of G

In an analogous manner as Barbat et al. in [36] and Oliver et al. [301], the following expression
is employed for the function G of Eq. (4.12):

G(χ) = 1− Ḡ(χ)
χ

= 1− χ∗

χ
e
κ(1−χ

χ
∗) (4.17)
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where the term Ḡ(χ) gives the initial yield stress for certain value of the scalar parameter χ = χ∗

and for χ →∞ the final strength is zero (see Fig. 4.5).

Figure 4.5: Function G(χ).

The parameter κ of Eq. (4.17) is calibrated to obtain an amount of dissipated energy equal to
the specific fracture energy of the material when all the deformation path is followed.
Integrating Eq. (4.8) for an uniaxial tension process with a monotonically increasing load, and
considering that in this case the elastic free energy density can be written as Ψ0 = P2/(2n2E0)
[36], it is possible to obtain that the total energy dissipated is [301]

Ξmax
t =

∫ ∞

P∗
P2

2ρ0n2E0
︸ ︷︷ ︸

Ψ0

dG(P) =
P∗2

2ρ0E0

[1
2
− 1

κ

]
. (4.18)

Therefore, the following expression is obtained for κ > 0

κ =
1

Ξmax
t n2ρ0E0

f2
c

− 1
2

≥ 0 (4.19)

where it has been assumed that the equivalent stress tension P∗ is equal to the initial damage
stress fc. The value of the maximum dissipation in tension Ξmax

t is a material parameter equal
to the corresponding fracture energy density gf , which is derived from the fracture mechanics
as

gd
f = Gd

f/lc (4.20)

where Gd
f the tensile fracture energy and lc is the characteristic length of the fractured domain

employed in the regularization process [238]. Typically, in the present rod theory this length
corresponds to the length of the fiber associated to a material point on the beam cross section
(see §4.1).
An identical procedure gives the fracture energy density gd

c for a compression process yielding
to the following expressions for κ

κ =
1

Ξmax
c ρ0E0

f2
c

− 1
2

≥ 0. (4.21)

Due to the fact that the value of κ have to be the same for a compression or tension test, we
have that

Ξmax
c = n2Ξmax

t . (4.22)
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4.2.1.e Tangential constitutive tensor

Starting from Eq. (4.9) and after several algebraic manipulations which can be reviewed in [36,
160], we obtain that the material form of the tangent constitutive tensor CCCmt can be calculated
as

δP̂m
1 = CCCmsδÊn + δCCCmsÊn. (4.23)

Considering

DCCCms · δd =
d
dβ

[
(1− (d + βδd))CCCme

]∣∣∣
β=0

= −δd CCCme (4.24)

where β ∈ R and the definition of directional (Fréchet) derivative (see §A.21 of Appendix A)
has been used to calculate the linear increment in the material form of the constitutive tensor.
Using the results of Eqs. (4.13) and (4.15) in linearized form one obtains

δd CCCmeÊn =
∂G
∂P

[ ∂P
∂P̂m

01

· (CCCmeδÊn)
]
P̂m

01 (4.25)

which after using Eq. (A.54) of Def. A.13 of Section A.3 and replacing in Eq. (4.23) yields to

δP̂m
1 = CmtδÊn =

[
(1− d)I− dG

dP P̂m
01 ⊗

∂P
∂P̂m

01

]CCCmeδÊn (4.26)

where I is the identity tensor. It is worth noting that Cmt is nonsymmetric and it depends on
the elastic FPK stress vector. Note that no explicit expression has been given for δÊn what will
be done in §5 devoted to linearization.
A backward Euler scheme is used for the numerical integration of the constitutive damage model.
The flow chart with the step-by-step algorithm used in numerical simulations is shown in Table
4.1.

4.2.2 Rate dependent effects

In this section, the rate independent damage model presented in the previous section is extended
to consider viscosity and, as it will be shown, the same formulation can be directly applied to
visco elasticity neglecting the damage internal variable. For the case of materials with a visco
plastic constitutive equation, reference [370] can be consulted and, therefore, those results are
omitted here. In an analogous way as for the inviscid case, the formulation of the rate dependent
damage model is carried out in terms of the material forms of the FPK stress vector P̂m

1 and
the strain and strain rate vectors Ên and Ŝn, respectively.
The rate dependent behavior of a compounding material is considered by means of using the
Maxwell model [159, 307]. In this case, the material form of the FPK stress vector P̂mt

1 is
obtained as the sum of a rate independent part P̂m

1 , see Eq. (4.9) and a viscous component P̂mv
1

as
P̂mt

1 = P̂m
1 + P̂mv

1 = (1− d)CCCmeÊn + ηηηsmŜn = (1− d)CCCme
(Ên +

η

E
Ŝn

)
(4.27)

where P̂mt
1 is the material form of the total FPK stress vector, Ŝn is the material form of the

strain rate vector given in Eq. (3.78b) and ηηηsm is the material description of the secant viscous
constitutive tensor defined from the material description of the secant constitutive tensor as

ηηηsm =
η

E
CCCms = τCCCms. (4.28)
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Table 4.1: Flow chart for the damage model
1. INPUT: material form of the strain vector Ên existing on a given integration point on the beam

cross section

2. Compute the material form of the elastic (undamaged) FPK stress vector, at the loading step k
and global iteration j as

(P̂m
01)

(k)
j = CCCmt(Ên)(k)

j

3. Integration of the constitutive equation (Backward Euler scheme)
Loop over the inner iterations: lth iteration
For l = 1 → (P̂m

1 )(k,0)
j = (P̂m

01)
(k)
j

(?) (P̂m
1 )(k,l)

j = (1− d
(k,l)
j )(P̂m

1 )(k,0)
j

P(k,l)
j = P((P̂m

1 )(k,l)
j ) Eq. (4.11a)

IF F̄(P(k,l)
j , d

(k,l)
j ) ≤ 0 → no damage → GOTO 4

ELSE → Damage
(∆d)(k,l)

j = G(P(k,l)
j )− d

(k,l−1)
j Eq. (4.17)

d
(k,l)
j = (∆d)(k,l)

j + d
(k,l−1)
j

(CCCmt)(k,l)
j = CCCme

[
(1− d)I− dG

dP P̂m
01 ⊗ ∂P

∂P̂m
01

](k,l)

j

l = l + 1 → GO BACK TO (?)

4. OUTPUT: Updated values of the FPK stress vector and tangent constitutive tensor i.e.

(P̂m
1 )(k)

j = (P̂m
1 )(k,l)

j and (Cmt)(k)
j = (Cmt)(k,l)

j

STOP.

The scalar parameter η is the viscosity and τ is the relaxation time, defined as the time required
by the visco elastic system to reach a stable configuration in the undamaged configuration [159].

REMARK 4.2. It is interesting to note that in Eq. (4.27) for the case of a material completely
damage (d = 1) the corresponding stresses are zero and for the case of an elastic material
CCCms = CCCme and, therefore, the pure visco elastic behavior is recovered ¥

In this case the dissipative power is given by

Ξ̇m =
[
Ψ0 +

τ

ρ0

˙̂En · CmeÊ
] dG
dPm

∂Pm

∂P̂m
1

· Cms ˙̂En. (4.29)

The linearized increment of the material form of the FPK stress vector is calculated as

δP̂mt
1 = δP̂m

1 + δP̂mv
1

= CCCmtδÊn + δηηηsmŜn + ηηηsmδŜn

= CCCmtδÊn − δd
η

E
CCCmeŜn + ηηηsmδŜn

= CCCmtδÊn − δdP̂mv
01 + ηηηsmδŜn

= CCCmvδÊn + ηηηsmδŜn (4.30)

where P̂mv
01 is the material form of the FPK visco elastic stress vector, δŜn is the linearized

increment of the material description of the strain rate vector, which will be given in Chapter
5, and CCCmv is the material description of the tangent constitutive tensor which considers the
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viscous effects and is calculated in a completely analogous manner as Eq. (4.26) i.e.

CCCmv = (I−Dmv)CCCme =
[
I− (

dI +
dG

dPm
(P̂m

01 + P̂mv
01 )⊗ ∂P

∂P̂m
01

)]CCCme. (4.31)

The co-rotated form of the linearized increment of the total FPK stress vector is obtained from
Eq. (4.3) by means of the push-forward operation on Eq. (4.30) according to

δ
O

[P̂ t
1 ]= ΛδP̂mt

1 = CCCsvδ
O

[ε̂n] +ηηηssδ
O

[ŝn] (4.32)

where CCCsv = ΛCCCmvΛT and ηηηss = ΛηηηsmΛT are the spatial descriptions of the rate dependent
tangent and the secant viscous constitutive constitutive tensors, respectively.

4.2.3 Plastic materials

For case of a material which can undergo non–reversible deformations, the plasticity model
formulated in the material configuration is used for predicting the corresponding mechanical
response. The model here presented is adequate to simulate the mechanical behavior of metallic
and ceramic materials as well as geomaterials [305]. Assuming a thermally stable process, small
elastic and finite plastic deformations, we have that the free energy density Ψ is given by the
addition of the elastic and the plastic parts [238] as

Ψ = Ψe + ΨP =
1

2ρ0
(Êe

n · CmeÊe
n) + ΨP (kp) (4.33)

where the Êe
n is the elastic strain vector calculated subtracting the plastic strain vector ÊP

n from
the total strain vector Ên, Ψe and ΨP are the elastic and plastic parts of the free energy density,
respectively, ρ0 is the density in the material configuration and kp is the plastic damage internal
variable.

4.2.3.a Secant constitutive equation and mechanical dissipation

Following analogous procedures as those for the damage model i.e. employing the CP inequality
and the Coleman’s principle [237, 250], the secant constitutive equation and the mechanical
dissipation take the following forms

P̂m
1 = ρ0

∂Ψ(Êe
n, kp)

∂Êe
n

= CCCms
(Ên − ÊP

n

)
= CCCmeÊe

n (4.34a)

Ξ̇m =
P̂m

1 · ˙̂EP
n

ρ0
− ∂ΨP

∂kp
k̇p ≥ 0 (4.34b)

where the material description of the secant constitutive tensor CCCms coincides with the elastic
one CCCme = Diag[E, G, G]. It is worth to note that Eqs. (4.34a) and (4.34b) constitute particular
cases of a more general formulation of the so called coupled plastic–damage models as it can be
reviewed in [305].

4.2.3.b Plastic yielding and potential functions

Both, the yield function, Fp, and plastic potential function, Gp, for the plasticity model, are
formulated in terms of the material form of the FPK stress vector P̂m

1 and the plastic damage
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internal variable kp as

Fp(P̂m
1 , kp) = Pp(P̂m

1 )− fp(P̂m
1 , kp) = 0 (4.35a)

Gp(P̂m
1 , kp) = K (4.35b)

where Pp(P̂m
1 ) is the (scalar) equivalent stress, which is compared with the hardening function

fp(P̂m
1 , kp) depending on the damage plastic internal variable kp and on the current stress state,

and K is a constant value [241, 305].

REMARK 4.3. Common choices for Fp and Gp are Tresca or Von Mises for metals, Mohr-
Coulomb or Drucker-Prager for geomaterials ¥

According to the evolution of the plastic damage variable, kp, it is possible to treat materials
considering isotropic hardening as in Refs. [151, 318, 372]. However, in this work kp constitutes
a measure of the energy dissipated during the plastic process and, therefore, it is well suited for
materials with softening. In this case kp is defined [238, 306] as

gP
f =

GP
f

lc
=

∫ ∞

t=0
P̂m

1 · ĖP
n dt (4.36a)

0 ≤ [
kp =

1
gP
f

∫ t

t=0
P̂m

1 · ĖP
n dt

] ≤ 1 (4.36b)

where GP
f is the specific plastic fracture energy of the material in tension and lc is the length of

the fractured domain defined in analogous manner as for the damage model. The integral term
in Eq. (4.36b) corresponds to the energy dissipated by means of plastic work and, therefore,
kp constitutes a measure of the part of the fracture energy that has been consumed during the
deformation. Similarly, it is possible to define the normalized plastic damage variable for the
case of a compressive test related with gP

c .

4.2.3.c Evolution laws for the internal variables

The flow rules for the internal variables ÊP
n and kp are defined as usual for plastic models defined

in the material configuration [238, 236] according to

˙̂EP
n = λ̇

∂Gp

∂P̂m
1

(4.37)

k̇p = λ̇ %̂(P̂m
1 , kp, G

P
f ) · ∂Gp

∂P̂m
1

= %̂(P̂m
1 , kp, G

P
f ) · ˙̂EP

n (4.38)

where λ̇ is the plastic consistency parameter and %̂ is the following hardening vector [238, 305]

k̇p =
[ r

gP
f

+
1− r

gP
c

]
P̂m

1 · ˙̂EP
n = %̂ · ˙̂EP

n (4.39)

where term P̂m
1 · ˙̂EP

n is the plastic dissipation and r is given in Eq. (4.11d). It is interesting
to note that the proposed evolution rule allows to differentiate between tensile and compressive
properties of the material, distributing the total plastic dissipation as weighted parts of the
compressive and tensile fracture energy densities.
In what regards the hardening function of Eq. (4.35a), the following evolution equation has
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been proposed [241]:
fp(P̂m

1 , kp) = rσt(kp) + (1− r)σc(kp) (4.40)

where r has been defined in Eq. (4.11d) and the (scalar) functions σt(kp) and σc(kp) represent
the evolution of the yielding threshold in uniaxial tension and compression tests, respectively.
It is worth noting that in Eq. (4.40) a differentiated traction–compression behavior has been
taken into account.
As it is a standard practice in plasticity, the loading/unloading conditions are derived in the
standard form from the Kuhn-Tucker relations formulated for problems with unilateral restric-
tions, i.e. , (a) λ̇ ≥ 0, (b) Fp ≤ 0 and (c) λ̇Fp = 0.
By other hand, starting from the plastic consistency condition Ḟp = 0 one has

Ḟp = Ṗp − ḟp = 0

=
∂Pp

∂P̂m
1

· ˙̂
Pm

1 − ∂fp

∂P̂m
1

· ˙̂
Pm

1 − ∂fp

∂kp
k̇p = 0

= (
∂Pp

∂P̂m
1

− ∂fp

∂P̂m
1

) · (CCCmeĖn − ĖP
n )− ∂fp

∂kp
k̇p = 0

where it has been used the expression for the temporal variation of Eq. (4.34a). Considering the
flow rules of Eqs. (4.37) and (4.38), it is possible to deduce the explicit form of λ̇ as [305, 306]

λ̇ = −
∂Fp

∂P̂m
1

· (Cme ˙̂En)
{ ∂Fp

∂P̂m
1

· (Cme ∂Gp

∂P̂m
1

)− ∂fp

∂kp
%̂ · ∂Gp

∂P̂m
1

} (4.41)

4.2.3.d Tangent constitutive tensor

The material form of the tangent constitutive tensor is calculated taking the time derivative of
Eq. (4.34a), considering the flow rule of Eq. (4.37), replacing the plastic consistency param-
eter of Eq. (4.41), using Eq. (A.54) of Def. A.13 of Section A.3 and after several algebraic
manipulations [305, 306], it is obtained as

δP̂m
1 = CCCme(δÊn − δλ

∂Gp

∂P̂m
1

)

= CCCmeδÊn −CCCme
[ ∂Fp

∂P̂m
1

· (CCCmeδÊn)
{ ∂Fp

∂P̂m
1

· (CCCme ∂Gp

∂P̂m
1

)− ∂fp

∂kp
%̂ · ∂Gp

∂P̂m
1

}
] ∂Gp

∂P̂m
1

=
[
CCCme −

(CCCme ∂Gp

∂P̂m
1

)⊗ (CCCme ∂Fp

∂P̂m
1

)

∂Fp

∂P̂m
1

· (CCCme ∂Gp

∂P̂m
1

)− ∂Fp

∂kp
%̂ · ( ∂Gp

∂P̂m
1

)
]
δÊn

=
[
CCCme −

(CCCme ∂Gp

∂P̂m
1

)⊗ (CCCme ∂Fp

∂P̂m
1

)

∂Fp

∂P̂m
1

· (CCCme ∂Gp

∂P̂m
1

)− Φp

]
δÊn

= CCCmtδÊn (4.42)

where Φp is the so called hardening parameter.
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4.2.3.e Perfect plasticity with Von Mises yield criterion

If the Von Mises criterion is chosen for the both the yielding and potential functions, equal
tension/compression yielding thresholds are considered i.e. , n = 1 and Gf = Gc ≈ ∞, one
obtains that kp ≈ 0, k̇p ≈ 0 and fp ∼ fc with σ∗ being the characteristic yielding threshold of
the material, the following expressions are obtained

Fp = Pp − fp =
√

P̂m
1 · SSSP̂m

1 − σ∗; SSS = diag[1, 3, 3] (4.43a)

∂Fp

∂P̂m
1

=
∂Gp

∂P̂m
1

=
SSSP̂m

1

Pp
:= N̂m

1 (4.43b)

λ̇ = − N̂m
1 · (CCCme ˙̂En)

N̂m
1 · (CCCmeN̂m

1 )
(4.43c)

CCCmt = CCCme −
(CCCmeN̂m

1

)⊗ (CCCmeN̂m
1

)

N̂m
1 · (CCCmeN̂m

1

) (4.43d)

In this particular case, more simple expressions are obtained as it can be seen in Eqs. (4.43a)
to (4.43d) including a symmetric tangential tensor. Therefore, the perfect plasticity case can
be considered as a limit case of the present formulation, for materials with an infinite fracture
energy.
The backward Euler scheme is used for the numerical integration of the constitutive plasticity
model [305]. A flow chart with the step-by-step algorithm used in numerical simulations is shown
in Table 4.2.

4.3 Mixing theory for composite materials

4.3.1 Hypothesis

Each material point on the beam cross is treated as a composite material according to the mixing
theory [258, 305], considering the following assumptions:

(i) Each composite has a finite number of simple materials (see Fig. 4.1).
(ii) Each component participate in the mechanical behavior according to its volumetric par-

ticipation ki defined as
kq = Vq/V →

∑
q

kq = 1

i.e. according to its proportional part Vi (in terms of volume) with respect to the total
volume V associated to the material point.

(iii) All the components are subjected to the same strain field, what can be interpreted as a
rheological model where each compounding substance works in parallel with the others.

Therefore, the interaction between all the components defines the overall mechanical behavior
at material point level. Supposing that a generic material point, where coexist Nc < ∞ different
components (hypothesis (i)), is subjected to a strain field described by the material strain vector
Ên, according to hypothesis (iii) we have the following closing equation:

Ên ≡ (Ên)1 = · · · = (Ên)j = · · · = (Ên)Nc (4.44)
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Table 4.2: Flow chart for the plasticity model
1. INPUT: material form of the strain vector Ên existing on a given integration point on the beam

cross section

2. Compute the material form of the predicted FPK stress vector, at the loading step k and global
iteration j as

(P̂m
1 )(k)

j = Cms((Ên)(k)
j − (ÊP

n )(k)
(j−1))

3. Integration of the constitutive equation (Backward Euler scheme)
Loop over the inner iterations: lth iteration
For l = 1 → (P̂m

1 )(k,0)
j = (P̂m

1 )(k)
j , (∆ÊP

n )(k,0)
j = 0

(?) (P̂m
1 )(k,l)

j = (P̂m
1 )(k,l−1)

j − Cms(∆ÊP
n )(k,l−1)

j

(Pp)
(k,l)
j = Pp((P̂m

1 )(k,l)
j )

IF Fp(Pp, Ê
P
n , kp)

(k,l)
j ≤ 0 → elastic case → GOTO 4

ELSE → plastic case
(∆ÊP

n )(k,l)
j = (∆λ)(k,l)

j

( ∂Gp

∂P̂m
1

)(k,l)

j
Eq. (4.41)

(ÊP
n )(k,l)

j = (ÊP
n )(k,l−1)

j + (∆ÊP
n )(k,l)

j

(∆kp)
(k,l)
j = (%̂)(k,l)

j · (∆ÊP
n )(k,l)

j Eq. (4.39)
(kp)

(k,l)
j = (kp)

(k,l−1)
j + (∆kp)

(k,l)
j

l = l + 1 → GO BACK TO (?)

4. OUTPUT: Updated values of the FPK stress vector and tangent constitutive tensor i.e. (P̂m
1 )(k)

j =

(P̂m
1 )(k,l)

j and

(Cmt)(k)
j = (Cmt)(k,l)

j = Cme −
[ (Cms ∂Gp

∂P̂m
1

)
⊗
(Cme ∂Fp

∂P̂m
1

)
{(

∂F
∂Pm

1

)
·
(Cms ∂Gp

∂P̂m
1

)
− ∂Fp

∂kp
%̂·
(

∂Gp

∂P̂m
1

)}
](k,l)

j

STOP.

which imposes the strain compatibility between components.

4.3.2 Free energy density of the composite

The free energy density of the composite is written for the adiabatic case as the weighted sum
of the free energy of the components [305]

Ψ(Ên, αp) ≡
Nc∑

q=1

kqΨq(Ên, αpq) (4.45)

where Ψq(Ên, αpq) is the free energy of the qth compounding substance with an associated con-
stitutive model depending on p internal variables, αpq , and kq is the volumetric fraction of the
component. As it has been explained, in the present work only degrading and plastic materials
are used as compounding substances, therefore, the values that the index p can take, is limited
to 1 for the degrading materials, (the damage variable d), and to 2 for the plastic ones (the plas-
tic strain vector (ÊP )q and the plastic damage (kp)q. In any case, a generic notation has been
preferred by simplicity, even though it is necessary to have in mind that different substances
have associated a different number of internal variables.
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4.3.3 Secant constitutive relation and mechanical dissipation

Starting from Eq. (4.45), it is possible to obtain the material form of the secant constitutive
equation, the secant constitutive tensor, C̄CCms and the mechanical dissipation ˙̄Ξm for the composite
in analogous way as for simple materials i.e.

P̂m
1 ≡ ρ0

∂Ψ(Ên, αp)
∂Ên

=
Nc∑

q=1

(ρ0)qkq
∂Ψq(Ên, αpq)

∂Ên

=
Nc∑
q

kq(P̂m
1 )q (4.46a)

Ξ̇m ≡ −
Nc∑

q=1

kq(Ξ̇m)q = −
Nc∑

q=1

kq

[ p∑

j=1

∂Ψ(Ên, αj)
∂αj

α̇j

]
q
≥ 0. (4.46b)

where (P̂m
1 )q and (Ξ̇m)q, are the material form of the FPK stress vector and the mechanical

dissipation of the qth component, respectively. It is worth to comment the meaning of ρ0 in Eq.
(4.48) it corresponds to the average value of the material form of the density obtained as result
of applying the mixing theory. Having calculated the material form of the FPK stress vector,
the spatial form is obtained by P̂1 = ΛP̂m

1 . From Eq. (4.48) it is possible to conclude that

C̄CCms ≡
Nc∑

q=1

kq(CCCms)q → P̂m
1 = C̄CCms(Ên − ÊP

n ) (4.46c)

ÊP
n =

Nc∑

q=1

kq(ÊP
n )q (4.46d)

where (CCCms)i and (ÊP
n )i, are the material form of the secant constitutive tensor and the (fictitious)

material plastic strain vector, respectively. It is worth to comment the meaning of ÊP
n in Eq.

(4.50), it corresponds to the average value of the material form of the plastic strain vector of
the composite obtained using the mixing theory.

4.3.4 Tangent constitutive tensor

The material form of the tangent constitutive tensors, C̄CCmt, of the composite is estimated in
analogous way as for simple materials i.e.

δP̂m
1 = C̄CCmt

δÊn =
Nc∑

i=1

kq(CCCmt)qδÊn (4.47)

where (CCCmt)q, δP̂m
1 and δÊn are the material form of the tangent constitutive tensors and the

variation of the material stress and strain vectors, respectively.

4.3.5 Rate dependent effects

Using the same reasoning as in Section 4.2.2, the participation of rate dependent effects in the
composite can be considered in the following form:

P̂mt
1 ≡

Nc∑
q

kq(P̂m
1 + P̂mv

1 )q =
Nc∑
q

kq

[
(1− d)CCCme

(Ên +
η

E
Ŝn

)]
q
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=
Nc∑
q

kq(CCCms)qÊn +
Nc∑
q

kq(ηηηsm)qŜn = C̄CCmsÊn + η̄ηηsmŜn (4.48)

where η̄ηηsm corresponds tho the viscous secant tensor of the composite.
By analogy with Eq. (4.30), the linearized relation between material forms of strain and stress
vectors is given by

δP̂mt
1 = C̄CCmv

δÊn + η̄ηηsmδŜn; C̄CCmv =
Nc∑
q

kq(CCCmv)q, η̄ηηsm =
Nc∑
q

kq(ηηηsm)q. (4.49)

The co-rotated form of the linearized relation between strains and stresses for the composite
material is based on the weighted sum of the spatial form of the tangent constitutive tensors
(Cmv)i plus the rate dependent tensors (ηss)i of Eq. (4.31) for each one of the components and
it is given by

δ
O

[P̂ t
1 ]=

Nc∑

q=1

kq(CCCsv)qδ
O

[ε̂n] +
N∑

q=1

kq(ηηηss)qδ
O

[ŝn]= C̄CCsv
δ

O
[ε̂n] +η̄ηηssδ

O
[ŝn] . (4.50)

Therefore, an entirely analogous formulation for composite materials is obtained considered the
participation of the volumetric fraction of each component.

REMARK 4.4. An important aspect to consider is regarded to the total fracture energy of
the composite, which is a experimental quantity. It is obtained as the sum of the fracture energy
of the components i.e.

GP
(f,c) =

∑

i

G
P (i)
(f,c),

more details can be consulted in [90, 91] ¥

4.4 Stress resultant, couples and related reduced tensors

As it has been explained in Section 4.2, the distribution of materials on the beam cross sections
can be arbitrary (see Fig. 4.1). Considering Eqs. (3.100a) and (3.100b), one has that the
material form of the cross sectional stress resultant and couples can be written as

n̂m =
∫

A00

P̂mt
1 dA00 =

∫

A00

C̄CCmsÊndA00 +
∫

A00

η̄ηηsm ˙̂EndA00Ŝn (4.51)

m̂m =
∫

A00

ẼEE P̂mt
1 dA00 =

∫

A00

ẼEE C̄CCmsÊndA00 +
∫

A00

ẼEE η̄ηηsm ˙̂EndA00 (4.52)

where Eqs. (4.51) and (4.52) have been written in terms of the secant tensors for the composite
even when there is not an explicit expression for them when plasticity is used (see §4.2.3.a). The
numerical obtention of n̂m and m̂m will be explained in detail in §7.

4.4.1 Cross sectional tangential tensors

Taking into account the result of Eq. (4.49) it is possible to obtain the linearized relation
between the material form of the stress resultant and couples and the corresponding linearized
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forms of the reduced strain measures as

δn̂m =
∫

A00

δP̂mt
1 dA00 =

∫

A00

C̄CCmv
δÊndA00 +

∫

A00

η̄ηηsmδŜndA00

=
[ ∫

A00

C̄CCmvdA00

]
δΓ̂n −

[ ∫

A00

C̄CCmv
ẼEE dA00

]
δΩ̂n

+
[ ∫

A00

η̄ηηsmdA00

]
δ
˙̂Γn −

[ ∫

A00

η̄ηηsmẼEE dA00

]
δ

˙̂Ωn

= C̄mv
nn δΓ̂n + C̄mv

nmδΩ̂n + ῩΥΥsm
nnδ

˙̂Γn + ῩΥΥsm
nmδ

˙̂Ωn (4.53a)

δm̂m =
∫

A00

ẼEE δP̂mt
1 dA00 =

[ ∫

A00

ẼEE C̄CCmvdA00

]
δÊn +

[ ∫

A00

ẼEE η̄ηηsmdA00

]
δŜn

=
[ ∫

A00

ẼEE C̄CCmvdA00

]
δΓ̂n −

[ ∫

A00

ẼEE C̄CCmv
ẼEE dA00

]
δΩ̂n

+
[ ∫

A00

ẼEE η̄ηηsmdA00

]
δ
˙̂Γn −

[ ∫

A00

ẼEE η̄ηηsmẼEE dA00

]
δ

˙̂Ωn

= C̄mv
mnδΓ̂n + C̄mv

mmδΩ̂n + ῩΥΥsm
mnδ

˙̂Γn + ῩΥΥsm
mmδ

˙̂Ωn (4.53b)

where the material and viscous cross sectional tangential tensors C̄mv
ij and ῩΥΥsm

ij (i, j ∈ {n,m})
are calculated in an completely analogous manner as for the elastic case but replacing the
components of the elastic constitutive tensor by their tangent and viscous tangent counterparts
(see §3.7.2).
It is worth noting that in Eqs. (4.53a) and (4.53b) the linearized material strain and strain rate
vectors have been written as δÊn = δΓ̂n−ẼEE δΩ̂n and δÊn = δΓ̂n−ẼEE δΩ̂n, however, by the moment
we do not have explicit expressions for these linearized quantities. They will be calculated in
great detail in §5.
Taking into account the results of §A.5.5 of Appendix A one has that the Lie variation (or
co–rotated) variation of the stress resultant and couples are obtained as

δ
O
[n̂]= Λδn̂m = C̄sv

nnδ
O

[γ̂n] +C̄sv
nmδ

O
[ω̂n] +ῩΥΥss

nnδ
O

[ ˙̂γn] +ῩΥΥss
nmδ

O
[ ˙̂Ωn] (4.53c)

δ
O

[m̂]= Λδm̂m = C̄sv
mnδ

O
[γ̂n] +C̄sv

mmδ
O

[ω̂n] +ῩΥΥss
mnδ

O
[ ˙̂γn] +ῩΥΥss

mmδ

O
[ ˙̂Ωn] (4.53d)

where the spatial form of the cross sectional tangential tensors C̄sv
ij and ῩΥΥss

ij i, j ∈ {n,m} are
obtained applying the push–forward by Λ i.e. C̄sv

ij = ΛC̄mv
ij ΛT and ῩΥΥss

ij = ΛῩΥΥsm
ij ΛT , respectively.

Additionally, the co–rotated linearized form of the reduced strain and strain rate vector has been

included considering that δ
O
[•]= Λ(•), ∀(•) ∈ R3. The above results can be summarized in matrix

form as
[

δn̂m

δm̂m

]
=

[
C̄mv

nn C̄mv
nm

C̄mv
mn C̄mv

mm

][
δΓ̂n

δΩ̂n

]
+

[
ῩΥΥsm

nn ῩΥΥsm
nm

ῩΥΥsm
mn ῩΥΥsm

mm

][
δ
˙̂Γn

δ
˙̂Ωn

]
(4.54)


 δ

O
[n̂]

δ
O

[m̂]


 =

[
C̄sv

nn C̄sv
nm

C̄sv
mn C̄sv

mm

]

δ

O
[Γ̂n]

δ
O

[Ω̂n]


 +

[
ῩΥΥss

nn ῩΥΥss
nm

ῩΥΥss
mn ῩΥΥss

mm

]

δ

O
[ ˙̂Γn]

δ

O
[ ˙̂Ωn]


 . (4.55)
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4.4.1.a Fiber reinforcements and structural damping

By one hand, the mixing rule provides an appropriated framework for simulating the mechanical
behavior of some advanced composed materials such as: epoxy based materials with glass or
carbon fibers or even reinforced concrete [305]. This behavior usually is based on the response
of a matrix component which is reinforced with oriented fibres e.g. epoxy based materials with
glass or carbon fibers or even reinforced concrete, where the usual steel bars and stirrups can
be seen as embedded reinforcing fibers.4

The behavior behavior of fiber directed along the beam axis, i.e. longitudinal reinforcements,
can be simulated by means of appropriated one–dimensional constitutive laws. Due to the
limitations imposed by the assumption that plane cross section remain plane during the motion,
the incorporation of stirrups or other kind of transversal reinforcements is not allowed in the
present formulation. The reason is based on the fact that the mechanical effects of transversal
reinforcements is due to the stretches of the fibers when the changes in cross sectional shape
occurs (see §3.2.2 of Chapter 3 for a detailed discussion about the deformation of differential
line elements in the rod). However, the simulation of the effect of this kind of reinforcement is
carried out by means of modifying the fracture energy and the limit stress of the matrix material
for increasing the cross sectional ductility, deformability, resistance and so on [258, 260, 261],
even when this is an approximated method.
By the other hand, the employment of nonlinear constitutive equations at material point level
implies that the global structural damping is added to the system in the term Gint(ϕ̂,Λ, η̂s) of
the virtual work, Eq. (3.143), by means of the stress resultant and couples obtained trough
the cross sectional integration of stresses according to Eqs. (4.51) and (4.52). These reduced
quantities include the contribution of any kind of rate independent or viscous effects, according
to the distribution of the materials on the cross section.
Some branches of engineering are focused on the dynamic response of damped system but
considering that the material behavior remains within the linear elastic range, such as in robotics,
in the study of flexible mechanisms and in earthquake engineering. Therefore, with this objective,
several ad hoc approximations have been developed, most of them based on adding a damping
term to the equilibrium equations, which is considered to be a function of the strain rates [189].
As it is well known, a widely used method in structural dynamics is Rayleigh’s method, which
develops a damping matrix using a linear combination of potentials of the stiffness and mass
matrices [94]. In this work, a constitutive approach using rate dependent constitutive models
is preferred due to the fact that it avoids predefining the way in which the structural damping
behaves. Therefore, the proposed method makes hypothesis only at constitutive level.

4.5 Damage indices

The estimation of damage indexes representative of the real remaining loading capacity of a
structure has become a key issue in modern performance-based design approaches of civil engi-
neering [209]. Several criteria have been defined for estimating the damage level of structures
[160, 304]; some of them are defined for the global behavior of the structure, others can be
applied to individual members or subparts of the structure [101].
The FPK stress vector at any material point on the cross section gives a suitable starting point
for defining a damage index representative for the real remaining loading capacity of a struc-
ture [159]. The damage index developed in this work is based on an analogy with the problem
at micro-scale (constitutive) level. A measure of the damage level of a material point can be

4A detailed presentation of the mixing rule applied to composites can be consulted the work of E. Car [91]
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obtained as the ratio of the existing stress level, obtained applying the mixing rule, to its un-
damaged elastic counter part. Following this idea, it is possible to define the fictitious damage
variable Ď as follows:

3∑

i=1

|Pmt
1i | = (1− Ď)

3∑

i=1

|Pmt
1i0| = (1− Ď)

3∑

i=1

|(CCCmÊn)i|

Ď = 1−
∑3

i=1 |Pmt
1i |∑3

i=1 |Pmt
1i0|

(4.56)

where |Pmt
1i | and |Pmt

1i0| are the absolute values of the components of the existing and visco elastic
stress vectors in material form, respectively. Observe that |Pmt

1i | can includes the viscous part
of the stress. It is worth to note that Ď considers any kind of stiffness degradation (damage,
plasticity, etc.) at the material point level through the mixing rule and then it constitutes a
measure of the remaining load carrying capacity. Initially, for low loading levels, the material
remains elastic and Ď = 0, but when the entire fracture energy of the material has been dissi-
pated |Pm

1i | → 0 and, therefore, Ď → 1.
Eq. (4.56) can be extended to consider elements or even the whole structure by means of inte-
grating the stresses over a finite volume of the structure. It allows defining the local and global
damage indices as follows:

Ď = 1−
∫
Vp

( ∑
i |Pm

1i |
)
dVp∫

Vp

( ∑
i |Pm

1i0|
)
dVp

(4.57)

where Vp is the volume of the part of the structure.
By one hand, the local/global damage index defined in Eq. (4.57) is a force-based criterium,
which is able to discriminate the damage level assigned to a set of elements or to the whole
structure, according to the manner in which they are loaded, in the same way as it has been
explained in reference [160]. By the other hand, Eq (4.57) is easily implemented in an standard
finite element code without requiring extra memory storage or time consuming calculations.

4.5.1 Cross sectional damage index

Considering Eq. (4.57) a cross sectional damage index, ĎA(S), can be constructed restricting
the integrations to the cross sectional area as

ĎA(S) = 1−
∫
A

( ∑
i |Pm

1i |
)
dA∫

A
( ∑

i |Pm
1i0|

)
dA ∀S ∈ [0, L]. (4.58)

In this way, Eq. (4.57) can be rewritten as

Ď =
∫ L

0
ĎA(S)dS. (4.59)

The cross sectional damage index has the virtue of being a dimensionally reduced quantity that
capture in a scalar the degradation level of the rod at the arch–length coordinate S ∈ [0, L].





Chapter 5

Linearization of the virtual work
principle

As stated by Marsden (see [256] Ch. 5), nonlinear problems in continuum mechanics are in-
variably solved by linearizing an appropriated form of nonlinear equilibrium equations and it-
eratively solving the resulting linear systems until a solution to the nonlinear problem is found.
The Newton-Raphson method is the most popular example of such a technique [42]. Correct
linearization of the nonlinear equations is fundamental for the success of such techniques.
As it has been demonstrated in §3.6 the virtual work principle is an equivalent representation of
the equilibrium equations. For prescribed material and loading conditions, its solution is given
by a deformed configuration fulfilling the equilibrium equations and the boundary conditions.
Normally, the development of an iterative step-by-step procedure, such as the Newton-Raphson
solution procedure, can be obtained based on the linearization, using the general directional
derivative (see Def. A.22 in §A.5), of the virtual work functional, which is nonlinear with re-
spect to the kinematic and kinetic variables, the loading and the constitutive behavior of the
materials (see §4). Two approaches are available: (i) To discretize the equilibrium equations and
then linearize with respect to the nodal positions or (ii) To linearize the virtual work statement
and then discretize [66]. Here the later approach is adopted in Chapters 6 and 7 due to the fact
that it is a more suitable for the solution of problems in solid mechanics.
This chapter is concerned with the linearization of the virtual work principle, in a manner
consistent with the geometry of the configurational manifold where the involved kinetic and
kinematical quantities belongs. The procedure requires an understanding of the directional
derivative. The linearization procedure is carried out using the directional (Gâteaux) derivative
considering it provides the change in an item due to a small change in something upon which
item depends. For example, the item could be the determinant of a matrix, in which case the
small change would be in the matrix itself.
The fact that the rotational part of the displacement field can be updated using two alternatively
but equivalent rules, the material and the spatial one (see Appendix A), implies that two sets of
linearized kinetic and kinematical quantities can be obtained, according to the selected updating
rule. It is possible to show that both sets are also equivalent by mean of the replacement of
the identities summarized in Eqs. (A.67a) to (A.67c) of §A.4. In any case and by completeness,
both set of linearized expressions are obtained in the following sections of this chapter.
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5.1 Consistent linearization: admissible variations

At it has been explained in Section 3.1.3 the current configuration manifolds of the rod at time
t is specified by the position of its line of centroid and the corresponding field of orientation
tensors, Eq. (3.23), explicitly Ct := {(ϕ̂,Λ) : [0, L] → R3 × SO(3)} which is a nonlinear
differentiable manifold. Following the procedure presented in [363], where Simo and Vu-Quoc,
according to the standard practice, carry out the linearization procedure based on using the
Gâteaux differential (see Appendix A) as a way to approximate to the more rigorous Fréchet
differential1, it is possible to construct a perturbed configuration onto Ct as follows:

(i) Let β > 0 ∈ R be a scalar and δϕ̂(S) = δϕi(S)êi be a vector field (see Def. A.26
of Appendix A) considered as a superimposed infinitesimal displacement onto the line of
centroid defined by ϕ̂.

(ii) Let δθ̃θθ = δθ̃ij êi ⊗ êj (= δθ̃ij êi ∧ êj (i < j)) be the spatial version of a skew–symmetric
tensor field interpreted, for β > 0, as a superimposed infinitesimal rotation onto Λ, Eqs.
(3.19) and (3.21), with axial vector δθ̂ ∈ T spa

Λ (see §A.4.4).

(iii) Let δΘ̃ = δΘ̃ijÊi⊗ Êj (= δΘ̃ij êi∧ êj (i < j)) be the material version of a skew–symmetric
tensor field interpreted, for β > 0, as a superimposed infinitesimal rotation onto Λ, Eqs.
(3.19) and (3.21), with axial vector δΘ̂ ∈ Tmat

Λ .

(iv) Then, the perturbed configuration

Ctβ , {(ϕ̂β,Λβ) : [0, L] → R3 × SO(3)}

is obtained by setting2

ϕ̂β(S) = ϕ̂(S) + βδϕ̂(S) ∈ R3 (5.1a)

Λβ(S) = exp
[
βδθ̃θθ(S)

]
Λ(S) ∈ SO(3). (5.1b)

The term Λβ defined in Eq. (5.1b) is also a rotation tensor, due to the fact that it is obtained by
means of the exponential map acting on the skew–symmetric tensor βδθ̃θθ ∈ so(3) and, therefore,
the perturbed configuration Ctβ belongs to R3 × SO(3) as well as the current configuration Ct

does (Ctβ ⊂ Ct). It should be noted that the perturbed configuration also constitute a possible
current configuration of the rod.
Note that in Eq. (5.1b) the spatial updating rule for compound rotations has been chosen for
the superimposed infinitesimal rotation, i.e. βδθ̃θθ ∈ T spa

Λ SO(3). If the material updating rule is
preferred, Eq. (5.1b) has to be rewritten as

Λβ(S) = Λ(S)exp
[
βδΘ̃ΘΘ(S)

] ∈ SO(3) (5.2)

where βδΘ̃ΘΘ(S) ∈ Tmat
Λ SO(3).

As it has been explained in Appendix A.4, both skew–symmetric tensors δθ̃θθ and δΘ̃ΘΘ have asso-
ciated the corresponding axial vectors δθ̂ and δΘ̂ ∈ R3, respectively. Alternatively, it is possible
to work with the field defined by the pair η̂(S) , (δϕ̂(S), δθ̂(S)) ∈ TCt ≈ R3 × R3 and in this

1In reference [377] a rigorous foundation for this procedure can be found.
2Note that as it has been explained in §A, finite rotations are defined by orthogonal transformations, whereas in-

finitesimal rotations are obtained through skew–symmetric transformations. The exponentiation map (see §A.2.4)
allows to obtain the finite rotation for a given skew–symmetric tensor.
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case the definition for admissible variation given in §A.5.1 and §3.1.5 is recovered. The meaning
for the two component of η̂(S) is analogous to those given for (δϕ̂, δΘ̃) if the material updating
rule of rotations is used3.
Due to attention is focused on the boundary value problem in which displacements and rotations
are the prescribed boundary data and starting from the previous definition for η̂, it follows that
the linear space of kinematically admissible variations is

ηs = {η̂s = (δϕ̂, δθ̂) ∈ R3 × R3 | η̂s|∂Φϕ̂ = 0} ⊂ TCt (5.3)

if the spatial updating rule for rotations is used; if the material rule is preferred one has that

ηm = {η̂m = (δϕ̂, δΘ̂) ∈ R3 × R3 | η̂s|∂Φϕ̂ = 0} ⊂ TCt. (5.4)

The above definitions allows to construct the expression given in Eq. (3.27) for the tangent
space in the spatial form Tx̂Bt, which was originally developed following Ref. [245], Eqs. (A.85),
(A.86), (A.87) and (A.88). Employing a slight abuse in the notation it is possible to write
η̂s(S) ∈ TΦCt i.e. the kinematically admissible variation belong to the tangent space to the
current configuration Ct at the material point Φ = (ϕ̂,Λ) ∈ Ct.

5.1.1 Basic linearized forms

The basic set-up is: given the current configuration space Ct, we consider the spatial description
for the admissible variation field η̂s ∈ TΦCt and the corresponding perturbed configuration Ctβ,
Eqs. (5.1a) and (5.1b). For the case of the material representation we use η̂m ∈ TΦCt. To
systematically carry out the linearization process [178, 251, 363, 377] we make use of the notion
of directional (Gâteaux) derivative (see §A.5.1) as follows:

Dϕ̂ · δϕ̂ , d
dβ

ϕ̂β

∣∣∣
β=0

= δϕ̂ (5.5a)

DΛ · δθ̃θθ = δΛ , d
dβ

Λβ

∣∣∣
β=0

= δθ̃θθΛ (5.5b)

DΛ · δΘ̃ = δΛ , d
dβ

Λβ

∣∣∣
β=0

= ΛδΘ̃. (5.5c)

It is well known that the position vector and its linearized increment vector belong to the same
vector space, Tx̂Bt, then the additive rule for vectors applies to them. Also it is interesting
to note that Eqs. (5.5b) and (5.5c) recovers the spatial and material representations of the
variation of the rotation tensor given in Eq. (A.98b) of §A.5.5.
Repeating the procedures followed in Eqs. (5.5b) and (5.5c) for the case of the rotation tensor
from the curved reference rod to the current rod configuration, Λn, we have the spatial and
material representations of the corresponding admissible variation as

δΛn =
d
dβ

∣∣∣
β=0

[
exp[βδθ̃θθ]Λn

]
= δθ̃θθΛn (5.6a)

δΛn =
d
dβ

∣∣∣
β=0

[
Λnexp[βδΘ̃ΘΘ]

]
= ΛnδΘ̃ΘΘ. (5.6b)

3Note that (δϕ̂, δθ̂) ≈ (δϕ̂, δθ̃θθ) ≡ (δϕ̂,ΛδΘ̃ΘΘΛT ) due to the fact that (R3 × T spa
Λ ) ≈ (R3 × T spa

Λ SO(3)) ≈
(R3 × Tmat

Λ SO(3)).
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Note that in Eqs. (5.5a) and (5.6b) the symbol δ has been included to empathize the infinitesimal
nature of the involved quantities. In analogous manner, the spatial and material forms of the
admissible variation of the compound orientation tensor Λ = ΛnΛ0 (see §3.1.1 and §3.1.3) is

δΛ =
d
dβ

∣∣∣
β=0

Λβ =
[d(ΛnβΛ0)

dβ

]∣∣∣
β=0

= δθ̃θθΛnΛ0 = δθ̃θθΛ (5.7a)

δΛ =
d
dβ

∣∣∣
β=0

Λβ =
[d(ΛnβΛ0)

dβ

]∣∣∣
β=0

= Λ0ΛnδΘ̃ΘΘ = ΛδΘ̃ΘΘ (5.7b)

due to the fact that Λ0 is fixed in space and time.

5.1.2 Linearization of the strain measures

Since the admissible variations of the orthogonal tensor and the displacement fields of the current
rod referred to the curved reference rod have been determined, other relevant linearized forms can
be obtained using the chain rule for partial derivatives. An important aspect to be mentioned
is given by the fact it has been assumed that variations and temporal derivatives commute,
which is also a common assumption in continuum mechanics, however, it implies that all the
considered restrictions are holonomic; more details can be consulted in [245]. In this section the
admissible variations of strain measures given in Table 3.1 are calculated.

5.1.2.a Translational strains

Considering the spatial updating rule for rotations for the admissible variation field η̂s =
(δϕ̂, δθ̂) ≈ (δϕ̂, δθ̃θθ), the spatial form of the translational strain vector, γ̂n = ϕ̂,S −t̂1, the re-
sults given in Eq. (5.6a) and the fact that t̂1 = Λnt̂01, one has the following derivation for the
linearized form of γ̂n:

Dγ̂n · η̂s = δγ̂n , d
dβ

γ̂mβ

∣∣∣
β=0

= δ(ϕ̂,S −t̂1) = δϕ̂,S −δ(Λnt̂01)
= δϕ̂,S −δΛnt̂01 = δϕ̂,S −δθ̃Λnt̂01 = δϕ̂,S −δθ̃t̂1

= δϕ̂,S +t̃tt1δθ̂ (5.8a)

where t̃tt1 = ΠΠΠ[t̂1] is the skew–symmetric tensor obtained from t̂1 ∈ R3. In the case of the material
form of the translational strain vector, Γ̂n = ΛT γ̂n, and noticing from Eq. (5.6a) the fact that
δΛT = −ΛT δθ̃θθ, one obtains that

DΓ̂n · η̂s = δΓ̂n , d
dβ

Γ̂nβ

∣∣∣
β=0

= δ(ΛT γ̂n) = δΛT γ̂n + ΛT δγ̂n

= −ΛT δθ̃θθ(ϕ̂,S −t̂1) + ΛT (δϕ̂,S −δθ̃θθt̂1)

= ΛT
[− δθ̃θθ(ϕ̂,S −t̂1) + δϕ̂,S −δθ̃θθt̂1

]
= ΛT (δϕ̂,S −δθ̃θθϕ̂,S )

= ΛT (δϕ̂,S +ΠΠΠ[ϕ̂,S ]δθ̂). (5.8b)

Employing the result of Eqs. (5.8a) and (5.8b) and the definition of Lie variation given in Eq.
(A.96) it is possible to show that the Lie or co–rotated variation of the translational strain
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vector, δ
O

[γ̂n], is given by

δΛ[γ̂n] = δ
O

[γ̂n]= ΛδΓ̂n = δϕ̂,S +ϕ̃ϕϕ,S δθ̂ (5.8c)

where ϕ̃ϕϕ,S = ΠΠΠ[ϕ̂,S ] ∈ so(3).

5.1.2.b Rotational strains

Similarly, considering the spatial form of the incremental curvature strain tensor, Eq. (3.38a), i.e.
ω̃ωωn = Λn,S ΛT

n , (or equivalently its corresponding axial vector) and the fact that δΛT
n = −ΛT

n δθ̃θθ,
one obtains that

Dω̃ωωn · δθ̃θθ = δω̃ωωn , d
dβ

ω̃ωωnβ

∣∣∣
β=0

= δ(Λn,S ΛT
n )

= δΛn,S ΛT
n + Λn,S δΛT

n = (δΛn),S ΛT
n + Λn,S (−ΛT

n δθ̃θθ)

= (δθ̃θθΛn),S ΛT
n −Λn,S ΛT

n δθ̃θθ

= (δθ̃θθ,S Λn + δθ̃θθΛn,S )ΛT
n −Λn,S ΛT

n δθ̃θθ

= δθ̃θθ,S ΛnΛT
n + δθ̃θθΛn,S ΛT

n −Λn,S ΛT
n δθ̃θθ

= δθ̃θθ,S +δθ̃θθω̃ωωn − ω̃ωωnδθ̃θθ

= δθ̃θθ,S +ΠΠΠ[δθ̂ × ω̂n] = δθ̃θθ,S +[[[δθ̃θθ, ω̃ωωn]]]. (5.9a)

For the case of the material form of the incremental curvature tensor, we obtain

DΩ̃n · δθ̃θθ = δΩ̃n , d
dβ

Ω̃nβ

∣∣∣
β=0

= ΛT
0 δ(ΛT

nΛn,S )Λ0

= ΛT
0

[
ΛT

n δΛn,S +δΛT
nΛn,S

]
Λ0

= ΛT
0

[
ΛT

n (δΛn),S −ΛT
n δθ̃θθΛn,S

]
Λ0

= ΛT
0

[
ΛT

n (δθ̃θθΛn),S −ΛT
n δθ̃θθΛn,S

]
Λ0

= ΛT
0

[
ΛT

n (δθ̃θθ,S Λn + δθ̃θθΛn,S )−ΛT
n δθ̃θθΛn,S

]
Λ0

= ΛT δθ̃θθ,S Λ. (5.9b)

Then, the co–rotated variation of the rotational strain tensor is then given by

δΛ[ω̃ωωn] = δ
O

[ω̃ωωn]= ΛδΩ̃nΛT = δθ̃θθ,S . (5.9c)

Employing the fact that for any two vectors v̂1,v̂2 ∈ R3 it is possible to define a third vector
v̂ = v̂1 × v̂2 and to define the skew–symmetric tensor constructed from v̂, ΠΠΠ[v̂] ≡ ṽvv, which has
the following property: ṽvv = ṽvv1ṽvv2 − ṽvv2ṽvv1 = [[[ṽvv1, ṽvv2]]] (Lie brackets, see Def. A.5 of Appendix A);
then, we can rewrite Eq. (5.9a) in terms of axial vectors as

Dω̂n · δθ̂ = δω̂n = δθ̂,S +δθ̃θθω̂n = δθ̂,S −ω̃ωωnδθ̂. (5.10a)

Considering that the material form of the curvature vector is obtained by means of the pullback
operator by the rotation tensor Λ acting on its spatial form as given by Eq. (3.39e), Ω̂n = ΛT ω̂n,
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one obtains that

DΩ̂n · δθ̂ = δΩ̂n , d
dβ

Ω̂nβ

∣∣∣
β=0

= δ(ΛT ω̂n)

= δΛT ω̂n + ΛT δω̂n

= −ΛT δθ̃θθω̂n + ΛT (δθ̂,S −ω̃δθ̂)
= ΛT δθ̂,S . (5.10b)

The above results allow to obtain the co–rotated variation of the curvature strain vector as

δΛ[ω̂n] = δ
O

[ω̂n]= ΛδΩ̂n = δθ̂,S (5.10c)

and considering Eq. (5.10a) the following identity is obtained: δθ̂,S = δω̂n + ω̃ωωnδθ̂. This result
allows to rewrite Eqs. (5.10b) and (5.10c) as

δΩ̂n = ΛT (δω̂n + ω̃ωωnδθ̂) (5.11a)

δ
O

[ω̂n] = δθ̂,S = δω̂n + ω̃ωωnδθ̂, (5.11b)

respectively. If δθ̂ (δΘ̂) is parameterized in terms of other kind of pseudo–vectors as those
described in §A.2.6 and summarized in Table A.1, the deduction of the admissible variations of
the strain vectors and tensors is more complicated and it will be omitted here.
Summarizing the above results in matrix form, we can rewrite Eqs. (5.8a) to (5.11b) as

[
δγ̂n

δω̂n

]
=

[
[ d
dS I] t̃tt1
0

(
[ d
dS I]− ω̃ωωn

)
]

︸ ︷︷ ︸
BBBs(ϕ̂,Λ)

[
δϕ̂

δθ̂

]
= BBBs(ϕ̂,Λ)η̂s (5.12a)

[
δΓ̂n

δΩ̂n

]
=

[
ΛT [ d

dS I] ΛTΠΠΠ[ϕ̂,S ]
0 ΛT [ d

dS I]

]

︸ ︷︷ ︸
B̄BB

s
(ϕ̂,Λ)

[
δϕ̂

δθ̂

]
= B̄BB

s(ϕ̂,Λ)η̂s (5.12b)

for the admissible variations of the spatial and material descriptions of the strain vectors, re-
spectively. The operator [ d

dS I] is defined as [ d
dS I](•) = I · (•),S . The corresponding expressions

for the co–rotated variations are rearranged as

 δ

O
[γ̂n]

δ
O

[ω̂n]


 =

[
[ d
dS I] ΠΠΠ[ϕ̂,S ]
0 [ d

dS I]

]

︸ ︷︷ ︸
BBB(ϕ̂)

[
δϕ̂

δθ̂

]
= BBB(ϕ̂) · η̂s = (IΛB̄BB

s)η̂s (5.12c)

where IΛ is a (6 × 6) matrix formed by four (3 × 3) blocks. The blocks located on and above
the diagonal are equal to Λ and the another one is zero. This matrix perform the push–forward
operation on B̄BB(ϕ̂,Λ).

5.1.2.c Material updating of the rotational field

Alternatively, if the material updating procedure is chosen for the rotational field i.e. η̂m =
(δϕ̂, δΘ̂), we obtain the following expressions for the spatial, material and co–rotated versions



5.1. Consistent linearization: admissible variations 111

of the translational strain vector:

Dγ̂n · η̂m = δγ̂n = δϕ̂,S −δΛÊ1 = δϕ̂,S −ΛδΘ̃Ê1

= δϕ̂,S +ΛẼEE1δΘ̂ (5.13a)
DΓ̂n · η̂m ≡ δΓ̂n = δ[ΛT γ̂n] = δΛT γ̂n + ΛT δγ̂n

= −δΘ̃ΛT ϕ̂,S +ΛT δϕ̂,S

= ΠΠΠ[ΛT ϕ̂,S ]δΘ̂ + ΛT δϕ̂,S (5.13b)

δΛ[γ̂n] = δ
O

[γ̂n] = ΛδΓ̂n = δϕ̂,S +ΛΠΠΠ[ΛT ϕ̂,S ]δΘ̂
= δϕ̂,S +ΠΠΠ[ϕ̂,S ]δθ̂. (5.13c)

Eqs. (5.13a), (5.13b) and (5.13c) are completely equivalent to those given in Eqs. (5.8a), (5.8b)
and (5.8c) provided that δΘ̃ = ΛT δθ̃θθΛ.
For the case of the spatial, material and co–rotated version of curvature tensors, we have

Dω̃ωωn · δΘ̃ = δω̃ωωn = Λn→
(δΘ̃,S ) = (δΛn),S ΛT

n + Λn,S (δΛn)T

= (Λn,S δΘ̃ + ΛnδΘ̃,S )ΛT
n −Λn,S δΘ̃ΛT

n

= ΛnδΘ̃,S ΛT
n (5.14a)

DΩ̃n · δΘ̃ = δΩ̃n = δ(ΛT ω̃ωωnΛ) = (δΛ)T ω̃ωωnΛ + ΛT δω̃ωωnΛ + ΛT ω̃ωωnδΛ

= −δΘ̃ΛT ω̃ωωnΛ + δΘ̃,S +ΛT ω̃ωωnΛδΘ̃

= δΘ̃,S +Ω̃nδΘ̃− δΘ̃Ω̃n

= δΘ̃,S +[[[Ω̃n, δΘ̃]]] (5.14b)

δ
O

[ω̃ωωn] = ΛδΩ̃nΛT = Λ[δΘ̃,S +Ω̃nδΘ̃− δΘ̃Ω̃n]ΛT

= Λ→
(δΘ̃,S +[[[Ω̃n, δΘ̃]]]) = δθ̃θθ,S (5.14c)

with the following relations for the associated axial vectors:

Dω̂n · δΘ̂ = δω̂n = ΛnδΘ̂,S (5.15a)
DΩ̂n · δΘ̂ = δΩ̂n = δΘ̂,S +Ω̃nδΘ̂ (5.15b)

δ
O

[ω̂n] = ΛδΩ̂n = ΛδΘ̂,S +ω̃ωωnΛδΘ̂. (5.15c)

Summarizing the above results in matrix form, we can rewrite Eqs. (5.13a) to (5.15c) as
[

δγ̂n

δω̂n

]
=

[
[ d
dS I] ΛẼEE1

0 Λn[ d
dS I]

]

︸ ︷︷ ︸
BBBm(ϕ̂,Λ)

[
δϕ̂

δΘ̂

]
= BBBm(ϕ̂,Λ)η̂m (5.16a)

[
δΓ̂n

δΩ̂n

]
=

[
ΛT [ d

dS I] ΠΠΠ[ΛT ϕ̂,S ]
0

(
[ d
dS I] + Ω̃n

)
]

︸ ︷︷ ︸
B̄BB

m
(ϕ̂,Λ)

[
δϕ̂

δΘ̂

]
= B̄BB

m(ϕ̂,Λ)η̂m (5.16b)
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for the admissible variations of the spatial and material descriptions of the strain vectors, re-
spectively; the co–rotated admissible variations is written in matrix form as


 δ

O
[γ̂n]

δ
O

[ω̂n]


 =

[
[ d
dS I] ΛΠΠΠ[ΛT ϕ̂,S ]
0 Λ[ d

dS I + Ω̃n]

]

︸ ︷︷ ︸
B̄BB(ϕ̂,Λ)

[
δϕ̂

δΘ̂

]
= B̄BB(ϕ̂,Λ)η̂m. (5.16c)

Additionally, a summarization of the linearized forms of the spatial and material versions of
reduced strain measures considering the spatial and material updating rule for the rotational
part is presented in Tables 5.1 and 5.2.

Table 5.1: Linearized forms of the translational strains.

δγ̂n δΓ̂n δ
O

[γ̂n]

η̂s δϕ̂,S +t̃tt1δθ̂ ΛT (δϕ̂,S +ΠΠΠ[ϕ̂,S ]δθ̂) δϕ̂,S +ΠΠΠ[ϕ̂,S ]δθ̂
O

O

η̂m δϕ̂,S +ΛẼEE1δΘ̂ ΠΠΠ[ΛT ϕ̂,S ]δΘ̂ + ΛT δϕ̂,S δϕ̂,S +ΠΠΠ[ϕ̂,S ]ΛδΘ̂
O

O

Table 5.2: Linearized forms of the rotational strains.

δω̃ωωn δΩ̃ΩΩn δ
O

[ω̃ωωn] δω̂n δΩ̂n δ
O

[ω̂n]

η̂s δθ̃θθ,S +[[[δθ̃θθ, ω̃ωωn]]] ΛT δθ̃θθ,S Λ δθ̃θθ,S δθ̂,S −ω̃ωωnδθ̂ ΛT δθ̂,S δθ̂,S
O

O

η̂m ΛnδΘ̃,S ΛT
n δΘ̃,S +[[[Ω̃n, δΘ̃]]] δθ̃θθ,S ΛnδΘ̂,S δΘ̂,S +Ω̃nδΘ̂ δθ̂,S

O

O

5.1.3 Linearization of the spin variables

Considering the spatial description of the admissible variation of the current rod configuration
η̂s ≈ (δϕ̂, δθ̃θθ), and the spatial form of the angular velocity tensor ṽvvn = Λ̇nΛT

n ∈ T spa
Λ SO(3)

of the current rod relative to the curved reference rod, Eq. (3.31b), one obtains the following
linearized form

Dṽvvn · δθ̃θθ = δṽvvn , δ
(
Λ̇nΛT

n

)
= (δΛ̇n)ΛT

n + Λ̇n(δΛT
n )

= (δ ˙̃
θθθΛn + δθ̃θθΛ̇n)ΛT

n + Λ̇n(−ΛT
n δθ̃θθ)

= δ
˙̃
θθθΛnΛT

n + δθ̃θθΛ̇nΛT
n − Λ̇nΛT

n δθ̃θθ

= δ
˙̃
θθθ + δθ̃θθṽvvn − ṽvvnδθ̃θθ

= δ
˙̃
θθθ + [[[δθ̃θθ, ṽvvn]]]. (5.17a)

The admissible variation of the axial vector of ṽvvn, the angular velocity vector, v̂n ∈ T spa
Λ , is

Dv̂n · δθ̂ = δv̂n = δ
˙̂
θ − ṽvvnδθ̂. (5.17b)

By the other hand, considering the spatial form of the angular acceleration tensor of the current
rod referred to the curved reference rod ˙̃vvvn = Λ̇nΛ̇T

n + Λ̈nΛT
n ∈ T spa

Λ SO(3), Eq. (A.121), we
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obtain that its admissible variation can be expressed as

D ˙̃vvvn · δθ̃θθ = δα̃ααn = (δΛ̇n)Λ̇T
n + Λ̇n(δΛ̇T

n ) + (δΛ̈n)ΛT
n + Λ̈nδΛT

n .

Prior to obtain an explicit expression for the linear form, we have to consider the following
results:

δ(Λ̇T
n ) = ˙(δ(ΛT

n )) = ˙((δθ̃θθΛn)T ) = −Λ̇T
n δθ̃θθ −ΛT

n δ
˙̃
θθθ

δ(Λ̇n) = ˙(δθ̃θθΛn) = δ
˙̃
θθθΛn + δθ̃θθΛ̇n

δ(Λ̈n) = ˙̇(δΛn) =
˙̇

(δθ̃θθΛn) = δ
¨̃
θθθΛn + 2δ

˙̃
θθθΛ̇n + δθ̃θθΛ̈n

which after several algebraic manipulations allow to obtain

D ˙̃vvvn · δθ̃θθ = δα̃ααn = δ
¨̃
θθθ + δ

˙̃
θθθṽvvn − ṽvvnδ

˙̃
θθθ + δθ̃θθα̃ααn − α̃ααnδθ̃θθ = δ

¨̃
θθθ + [[[δ ˙̃

θθθ, ṽvvn]]] + [[[δθ̃θθ, α̃ααn]]] (5.17c)

with the associated admissible variation of the axial vector ˙̂vn ∈ T spa
Λ given by

D ˙̂vn · δθ̂ = δα̂n = δ
¨̂
θ − ṽvvnδ

˙̂
θ − α̃ααnδθ̂. (5.17d)

Employing analogous procedures as those followed through Eqs. (5.17a) to (5.17d), the ad-
missible variations of the material forms of the angular velocity and acceleration tensors

ṼVV ∈ Tmat
Λ SO(3) and ˙̃

VVV ∈ Tmat
Λ SO(3) are

DṼVV · δθ̃θθ = δṼVV = ΛT
0 δṼVV nΛ0 = ΛT

0 [(δΛn)T Λ̇n + ΛT
n

˙(δΛn)]Λ0

= ΛT
0 [−ΛT

n δθ̃θθΛ̇n + ΛT
n (δ ˙̃

θθθΛn + δθ̃θθΛ̇n)]Λ0

= −ΛT δθ̃θθṽvvnΛ + ΛT δ
˙̃
θθθΛ + ΛT δθ̃θθṽvvnΛ

= ΛT δ
˙̃
θθθΛ (5.18a)

D
˙̃
VVV · δθ̃θθ ≡ δÃAA = ˙((δΛ)T )δΛ̇ + ˙(ΛT )δΛ̇ + δΛT Λ̈ + ΛT (δΛ̈)

= ˙(−ΛT δθ̃θθ)Λ̇ + ˙(ΛT )(δ ˙̃
θθθΛ + δθ̃θθΛ̇)−ΛT δθ̃θθΛ̈ + ΛT

˙
(δ ˙̃

θθθΛ + δθ̃θθΛ̇)

= ΛT
[
δ
¨̃
θθθ + δ

˙̃
θθθṽvv − ṽvvδ

˙̃
θθθ
]
Λ

= ΛT
[
δ
¨̃
θθθ + [[[δ ˙̃

θθθ, ṽvv]]]
]
Λ. (5.18b)

Additionally, the linearized form of the axial vectors V̂n, ˙̂
Vn ∈ Tmat

Λ are

DV̂n · δθ̂ = δV̂n = ΛT δ
˙̂
θ (5.19a)

D
˙̂
Vn · δθ̂ = δÂn = ΛT (δ ¨̂

θ − ṽvvnδ
˙̂
θ) (5.19b)

5.1.3.a Material updating of the rotational field

If we chose the material description of the admissible variation of the current rod configuration
η̂m ∼= (δϕ̂, δΘ̃ΘΘ), then, the admissible variations of the spatial and material forms of the angular
velocity and acceleration tensors can be calculated employing the same procedures as described



114 Chapter 5. Linearization of the virtual work principle

above. The resulting expressions are summarized as follows:

Dṽvv · δΘ̃ = δṽvv = δ(Λ̇ΛT ) = ˙(δΛ)ΛT + Λ̇(δΛ)T

= (Λ̇δΘ̃ + Λδ
˙̃Θ)ΛT + Λ̇(−δΘ̃ΛT )

= Λδ
˙̃ΘΛT (5.20a)

DṼVV · δΘ̃ = δṼVV = δ(ΛT Λ̇) = (δΛ)T Λ̇ + ΛT ˙(δΛ)

= −δΘ̃ΛT Λ̇ + ΛT (Λ̇δΘ̃ + Λδ
˙̃Θ)

= δ
˙̃Θ− δΘ̃ṼVV + ṼVV δΘ̃ = δ

˙̃Θ + [[[ṼVV , δΘ̃]]] (5.20b)

D ˙̃vvv · δΘ̃ = δα̃αα = ˙̇(δΛ)ΛT + Λ̈(δΛ)T + ˙(δΛ) ˙(ΛT ) + Λ̇ ˙((δΛ)T )

=
˙

(Λ̇δΘ̃ + Λδ
˙̃Θ)ΛT − Λ̈(δΘ̃ΛT ) + (Λ̇δΘ̃ + Λδ

˙̃Θ) ˙(ΛT )− Λ̇ ˙(δΘ̃ΛT )

= Λ
[
δ

¨̃Θ + ṼVV δ
˙̃Θ− δ

˙̃ΘṼVV
]
ΛT

= Λ
[
δ

¨̃Θ + [[[ṼVV , δ
˙̃Θ]]]

]
ΛT (5.20c)

D
˙̃
VVV · δΘ̃ = δÃAA = ( ˙(ΛδΘ̃)T )Λ̇ + (Λ̇T )( ˙ΛδΘ̃) + (ΛδΘ̃)T Λ̈ + ΛT

˙̇
(ΛδΘ̃)

= δ
¨̃Θ + δΘ̃(ΛT Λ̈− ṼVV ṼVV ) + (ΛT Λ̈− ṼVV ṼVV )δΘ̃− (δ ˙̃ΘṼVV + ṼVV δ

˙̃Θ)

= δ
¨̃Θ + ÃAAδΘ̃− δΘ̃ÃAA + ṼVV δ

˙̃Θ− δ
˙̃ΘṼVV

= δ
¨̃Θ + [[[ṼVV , δ

˙̃Θ]]] + [[[ÃAA, δΘ̃]]] (5.20d)

with the corresponding axial vectors given by

Dv̂ · δΘ̂ = δv̂ = Λδ
˙̂Θ (5.21a)

DV̂ · δΘ̂ = δV̂ = δ
˙̂Θ + ṼVV δΘ̂ (5.21b)

D ˙̂v · δΘ̂ = δα̂ = Λ
[
δ
¨̂Θ + ṼVV δΘ̂

]
(5.21c)

D
˙̂
V · δΘ̂ = δÂ = δ

¨̂Θ + ÃAAδΘ̂ + ṼVV δ
˙̂Θ. (5.21d)

A summary of the results for the linearized forms of the spin variables using the spatial and
material updating rules for the rotational field is presented in Table 5.3.

5.1.4 Linearization of the strain rates

By one hand, considering the spatial rule for updating the rotational part of the motion, we
have that the linearized form of the spatial description of the translational strain rate vector

given in Eq. (3.79a) can be obtained considering that δṽvvn = (δ ˙̃
θθθ + δθ̃θθṽvvn − ṽvvnδθ̃θθ) and δt̂1 = δθ̃θθt̂1

in the following way:

D ˙̂γn · η̂s = δ ˙̂γn = δ
[ ˙̂ϕ,S −ṽvvnt̂1

]

= δ ˙̂ϕ,S −δṽvvnt̂1 + ṽvvnδt̂1

= δ ˙̂ϕ,S −(δ ˙̃
θθθ + δθ̃θθṽvvn − ṽvvnδθ̃θθ)t̂1 + ṽvvnδθ̃θθt̂1

= δ ˙̂ϕ,S −δ
˙̃
θθθt̂1 − δθ̃θθṽvvnt̂1

= δ ˙̂ϕ,S −t̃tt1δ
˙̂
θ − ṽvvnt̃tt1δθ̂ (5.22a)
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Table 5.3: Linearized forms of the spin variables.

η̂s (Spatial updating) η̂m (Material updating)

δṽvvn δ
˙̃
θθθ + [[[δθ̃θθ, ṽvvn]]] Λδ

˙̃ΘΛT
O

O

δ ˙̃vvvn δ
¨̃
θθθ + [[[δ ˙̃

θθθ, ṽvvn]]] + [[[δθ̃θθ, α̃ααn]]] Λ
(
δ

¨̃Θ + [[[ṼVV , δ
˙̃Θ]]]

)
ΛT

O

O

δṼVV ΛT δ
˙̃
θθθΛ δ

˙̃Θ + [[[ṼVV , δΘ̃]]]
O

O

δ
˙̃
VVV ΛT

(
δ
¨̃
θθθ + [[[δ ˙̃

θθθ, ṽvv]]]
)
Λ δ

¨̃Θ + [[[ṼVV , δ
˙̃Θ]]] + [[[ÃAA, δΘ̃]]]

O

O

δv̂n δ
˙̂
θ − ṽvvnδθ̂ Λδ

˙̂Θ
O

O

δ ˙̂vn δ
¨̂
θ − ṽvvnδ

˙̂
θ − α̃ααnδθ̂ Λ

(
δ
¨̂Θ + ṼVV δΘ̂

)O

O

δV̂n ΛT δ
˙̂
θ δ

˙̂Θ + ṼVV δΘ̂
O

O

δ
˙̂
Vn ΛT (δ ¨̂

θ − ṽvvnδ
˙̂
θ) δ

¨̂Θ + ÃAAδΘ̂ + ṼVV δ
˙̂Θ

O

O

and the linearized form of the material description of the translational strain rate vector given
in Eq. (3.79b) can be obtained considering that δΛT = −ΛT δθ̃θθ as

D
˙̂Γn · η̂s = δ

˙̂Γn = δ
[
ΛT ( ˙̂ϕ,S −ṽvvnϕ̂,S )

]

= −ΛT δθ̃θθ( ˙̂ϕ,S −ṽvvnϕ̂,S ) + ΛT δ( ˙̂ϕ,S −ṽvvnϕ̂,S )
= ΛT (ΠΠΠ[ ˙̂ϕ,S ]δθ̂ + ṽvvnΠΠΠ[ϕ̂,S ]δθ̂ + δ ˙̂ϕ,S −δṽvvnϕ̂,S −ṽvvnδϕ̂,S )

= ΛT
(
(ΠΠΠ[ ˙̂ϕ,S ]− ṽvvnΠΠΠ[ϕ̂,S ])δθ̂ + ΠΠΠ[ϕ̂,S ]δ ˙̂

θ + δ ˙̂ϕ,S −ṽvvn∆ϕ̂,S
)
. (5.22b)

REMARK 5.1. Note that the strain rate vectors ˙̂γn and ˙̂Γn depend on time derivatives of the
configuration variables, therefore, formally the linearization process is carried out as D(•) · η̂s +
D(•) · ˙̂ηs; considering perturbations onto η̂s and its time derivative, however, the same notation
as before is used for avoiding a excesive proliferation of symbols ¥

By the other hand, the linearized form of the spatial and material descriptions of the rota-
tional strain rate vectors, given in Eqs. (3.80a) and (3.80b), can be obtained considering that

δω̂n = δθ̂,S −ω̃ωωnδθ̂ and δv̂n = δ
˙̂
θ − ṽvvnδθ̂ in the following way:

D ˙̂ωn · η̂s = δ ˙̂ωn = δ
[
v̂n,S +ṽvvnω̂n

]

= (δv̂n),S +(δṽvvn)ω̂n + ṽvvn(δω̂n)

= δ
˙̂
θ,S −ω̃ωωnδ

˙̂
θ − (ṽvvn,S −ṽvvnω̃ωωn)δθ̂

= δ
˙̂
θ,S −ω̃ωωnδ

˙̂
θ − ˙̂ωnδθ̂ (5.23a)

D
˙̂Ωn · η̂s = δ

˙̂Ωn = δ
[
ΛT v̂n,S

]

= −ΛT δθ̃θθv̂n,S +ΛT (δv̂n,S )

= ΛTΠΠΠ[v̂n,S ]δθ̂ + ΛT
(
δ

˙̂
θ − ṽvvnδθ̂

)
,S

= ΛTΠΠΠ[v̂n,S ]δθ̂ + ΛT
(
δ

˙̂
θ,S −ṽvvn,S δθ̂ − ṽvvnδθ̂,S

)

= ΛT
[
δ

˙̂
θ,S −ṽvvnδθ̂,S

]
. (5.23b)
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The co–rotated variation of the translational and rotational strain rates can be calculated

considering the definition of the Lie’s variation (see Appendix A) i.e. δ
O

[ ˙̂ωn]= Λ
[
δ

˙̂Ωn

]
and

δ
O

[ ˙̂γn]= Λ
[
δ
˙̂Γm

]
, respectively [258]; which explicitly are given by

δ
O

[ ˙̂γn] = ( ˙̃ϕϕϕ,S −ṽvvnϕ̃ϕϕ,S )δθ̂ + ϕ̃ϕϕ,S δ
˙̂
θ + δ ˙̂ϕ,S −ṽvvnδϕ̂,S (5.23c)

δ
O

[ ˙̂ωn] = δ
˙̂
θ,S −ṽvvnδθ̂,S . (5.23d)

Following analogous procedures it is possible to show that the linearized forms of the correspond-
ing spatial and material descriptions and the co-rotated strain rate tensors can be expressed as

D ˙̃ωωωn · η̂s = δ ˙̃ωωωn = δ
˙̃
θθθ,S +δ

˙̃
θθθω̃ωωn − ω̃ωωnδ

˙̃
θθθ + δθ̃θθ ˙̃ωωωn − ˙̃ωωωnδθ̃θθ

= δ
˙̃
θθθ,S +[[[δ ˙̃

θθθ, ω̃ωωn]]] + [[[δθ̃θθ, ˙̃ωωωn]]] (5.24a)

D
˙̃Ωn · η̂s = δ

˙̃Ωn = ΛT (δ ˙̃
θθθ,S +δθ̃θθ,S ṽvvn − ṽvvnδθ̃θθ,S )Λ

= ΛT (δ ˙̃
θθθ,S [[[δθ̃θθ,S , ṽvvn]]])Λ (5.24b)

δ
O

[ ˙̃ωωωn] = Λ(δ ˙̃Ωn)ΛT = δ
˙̃
θθθ,S +δθ̃θθ,S ṽvvn − ṽvvnδθ̃θθ,S

= δ
˙̃
θθθ,S +[[[δθ̃θθ,S , ṽvvn]]]. (5.24c)

Finally, the material and co-rotated descriptions of the linearized increment of the strain rate
at material point level is calculated as

DŜn · η̂s = δŜn = δ
˙̂En = δ

˙̂Γn + δ
˙̂Ωn × Ê (5.25)

δ
O

[ ˙̂εn]= δŝn = δ
O

[ ˙̂εn]= Λδ
˙̂En = δ

O
[ ˙̂γn] +δ

O
[ ˙̂ωn] ×T̂ (5.26)

where it has been considered the fact that T̂ = ΛÊ .
The terms δ ˙̂ϕ, δ ˙̂ϕ,S , δ

˙̂
θ and δ

˙̂
θ,S of Eqs. (5.23c) and (5.23d) do not allow to express directly the

co-rotated variations of the strain rate vectors in terms of δϕ̂ and δθ̂. To this end, the specific
time–stepping scheme used in the numerical integration of the equations of motion provides the
needed relations [365]. This aspect will be explained in detail in §6.
For the present developments, lets suppose that there exist two linear operators HHH a ∈ L(R3,R3∗)
and HHH b(θ̂) ∈ L(T spa

Λ , T spa
Λ

∗) such that

δ ˙̂ϕ = HHH aδϕ̂, δ ˙̂ϕ,S = HHH aδϕ̂,S +HHH a,S δϕ̂ (5.27a)

δ
˙̂
θ = HHH bδθ̂, δ

˙̂
θ,S = HHH bδθ̂,S +HHH b,S δθ̂ (5.27b)

Therefore, Eqs. (5.23c) and (5.23d) can be rearranged as

δ

O
[ ˙̂γn]

δ
O

[ ˙̂ωn]


 =

[
HHH a[ d

dS I] + HHH a,S −ṽvvn[ d
dS I] ˙̃ϕϕϕ,S +ϕ̃ϕϕ,S HHH b − ṽvvnϕ̃ϕϕ,S

0 (HHH b − ṽvvn)[ d
dS I] + HHH b,S

]

︸ ︷︷ ︸
[VVV(ϕ̂,θ̂)]

[
δϕ̂

δθ̂

]
= VVV η̂s (5.28)

where ˙̃ϕϕϕ,S = ΠΠΠ[ ˙̂ϕ,S ], ϕ̃ϕϕ,S = ΠΠΠ[ϕ̂,S ], I is the 3×3 identity matrix and the operator [ d
dS I] is defined
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as [ d
dS ](•) = I d

dS (•). It is worth to note that the tensor VVV is configuration dependent and it
couples the rotational and translational parts of the motion.

5.1.4.a Material updating of the rotational field

If we chose the material description of the admissible variation of the current rod configuration
η̂m ∼= (δϕ̂, δΘ̃ΘΘ), then, the admissible variations of the spatial form of the translational strain rate
vector can be calculated considering δt̂1 = ΛẼEE1δΘ̂ and the result of Eq. (5.20a) as

D ˙̂γn · η̂m = δ ˙̂γn = δ ˙̂ϕ,S −δṽvvnt̂1 − ṽvvnδt̂1

= δ ˙̂ϕ,S −Λδ
˙̃ΘΘΘΛT t̂1 − ṽvvnΛẼEE1δΘ̂

= δ ˙̂ϕ,S −ΛẼEE1δ
˙̂Θ−ΛṼVV nẼEE1δΘ̂

= δ ˙̂ϕ,S −t̃tt1
(
δ

˙̂Θ− ṼVV nδΘ̂
)

(5.29a)

for the case of the material form of the translational strain rate vector, we have

D
˙̂Γn · η̂m = δ

˙̂Γn = δ
[
ΛT ( ˙̂ϕ,S −ṽvvnϕ̂,S )

]

= (δΛ)T ( ˙̂ϕ,S −ṽvvnϕ̂,S ) + ΛT (δ ˙̂ϕ,S −δṽvvnϕ̂,S −δṽvvnδϕ̂,S )

= −δΘ̃ΘΘΛT ( ˙̂ϕ,S −ṽvvnϕ̂,S ) + ΛT δ ˙̂ϕ,S −δ
˙̃ΘΘΘΛT ϕ̂,S −ṼVV nΛT δϕ̂,S

= ˙̃ΓΓΓnδΘ̂ + ΠΠΠ[ΛT ϕ̂,S ]δ ˙̂Θ + ΛT δ ˙̂ϕ,S −ṼVV nΛT δϕ̂,S (5.29b)

where ˙̃ΓΓΓn is the skew–symmetric tensor obtained from ˙̂Γn. Finally, the co–rotated variation is
obtained as

δ
O

[ ˙̂γn] = Λδ
˙̂Γn =

O
[ ˙̃γγγn] ΛδΘ̂ + ΛΠΠΠ[ΛT ϕ̂,S ]δ ˙̂Θ + δ ˙̂ϕ,S −ṽvvnδϕ̂,S (5.29c)

where
O

[ ˙̃γγγn]= ΠΠΠ[
O

[ ˙̂γn]] ∈ so(3). In the case of the spatial form of rotational strain rate tensor and
considering the results of Eqs. (5.13c) and (5.20a), we have

D ˙̃ωωωn · δΘ̂ = δ ˙̃ωωωn = δ(ṽvvn,S +ṽvvnω̃ωωn − ω̃ωωnṽvvn)

= (Λδ
˙̃ΘΘΘΛT ),S+Λδ

˙̃ΘΘΘΩ̃nΛT +ΛṼVV nδΘ̃ΘΘ,S ΛT−ΛδΘ̃ΘΘ,S ṼVV nΛT−ΛΩ̃ΩΩn
˙̃ΘΘΘΛT

= Λ
{
δ

˙̃ΘΘΘ,S +ṼVV nδΘ̃ΘΘ,S −δΘ̃ΘΘ,S ṼVV n

}
ΛT

= Λ
{
δ

˙̃ΘΘΘ,S +[[[ṼVV n, δΘ̃ΘΘ,S ]]]
}
ΛT . (5.30a)

For the case of the material form of the strain rate tensor, considering Eqs. (3.80b) and (5.20a),
we obtain

D
˙̃Ωn · δΘ̂ = δ

˙̃Ωn = δ(ΛT ṽvvn,S Λ)
= (δΛ)T ṽvvn,S Λ + Λ)T (δṽvvn),S Λ + Λ)T ṽvvn,S δΛ

= ˙̃ΩnδΘ̃ΘΘ− δΘ̃ΘΘ ˙̃Ωn + ΛT (Λ,S δ
˙̃ΘΘΘΛT + Λδ

˙̃ΘΘΘ,S ΛT + Λδ
˙̃ΘΘΘ(ΛT ),S )Λ

= δ
˙̃ΘΘΘ,S + ˙̃ΩnδΘ̃ΘΘ− δΘ̃ΘΘ ˙̃Ωn + Ω̃nδ

˙̃ΘΘΘ− δ
˙̃ΘΘΘΩ̃n

= δ
˙̃ΘΘΘ,S +[[[ ˙̃Ωn, δΘ̃ΘΘ]]] + [[[Ω̃n, δ

˙̃ΘΘΘ]]]. (5.30b)
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Taking into account the previous result we have that the co–rotated form of the strain rate
tensor is given by

δ
O

[ ˙̃ωωωn]= Λ[δ ˙̃ΘΘΘ,S +[[[ ˙̃Ωn, δΘ̃ΘΘ]]] + [[[Ω̃n, δ
˙̃ΘΘΘ]]]]ΛT . (5.30c)

The axial vectors of the strain rate tensor of Eqs. (5.30a) to (5.30a) are then given by

D ˙̂ωn · δΘ̂ = δ ˙̂ωn = Λ
{
δ

˙̂Θ,S +ṼVV nδΘ̂,S
}

(5.31a)

D
˙̂Ωn · δΘ̂ = δ

˙̂Ωn = δ
˙̂Θ,S + ˙̃ΩnδΘ̂ + Ω̃n, δ

˙̂Θ (5.31b)

δ
O

[ ˙̂ωn] = Λδ
˙̂Ωn = Λ[δ ˙̂Θ,S + ˙̃ΩnδΘ̂ + Ω̃n, δ

˙̂Θ]. (5.31c)

It is worth note that δ
O

[ ˙̂ωn]6=D
O

[ ˙̂ωn] ·η̂m, where on the right hand side the linearization of the
co–rotated curvature strain rate vector is performed on the tangent space where it belongs i.e.
Tmat
Λ .

Analogously as for the case of the spatial updating of the rotational field, one obtains that the
material and co-rotated descriptions of the linearized increment of the strain rate at material
point level are calculated as

δŜn = δ
˙̂En = δ

˙̂Γn + δ
˙̂Ωn × Ê (5.32)

δŝn = δ
O

[ ˙̂εn]= Λδ
˙̂En = δ

O
[ ˙̂γn] +δ

O
[ ˙̂ωn] ×T̂ . (5.33)

The terms δ ˙̂ϕ, δ ˙̂ϕ,S , δ
˙̂Θ and δ

˙̂Θ,S of Eqs. (5.29c) and (5.31c) do not allow to express directly the
co-rotated variations of the strain rate vectors in terms of η̂m. The specific time–stepping scheme
used in the numerical integration of the equations of motion provides the needed relations [365].
This aspect will be explained in detail in §6.
Analogously as for the case of the spatial updating of the rotations, lets suppose that there exist
an additional linear operator HHH m

b (Θ̂) ∈ L(Tmat
Λ , Tmat

Λ ) such that

δ
˙̂Θ = HHH m

b δΘ̂, δ
˙̂Θ,S = HHH m

b δΘ̂,S +HHH m
b ,S δΘ̂ (5.34)

Therefore, Eqs. (5.29c) and (5.31c) can be rearranged as

δ

O
[ ˙̂γn]

δ
O

[ ˙̂ωn]


 =


 (HHH a − ṽvvn)[ d

dS I] + HHH a,S

O
[ ˙̃γγγn] Λ + ΛΠΠΠ[ΛT ϕ̂,S ]HHH m

b

0 Λ(HHH m
b [ d

dS I] + HHH m
b ,S + ˙̃Ωn + Ω̃nHHH m

b )




︸ ︷︷ ︸
[V̄VV(ϕ̂,Θ̂)]

[
δϕ̂

δΘ̂

]
= V̄VV η̂m.

(5.35)
It is worth to note that the tensor V̄VV is configuration dependent and it couples the rotational
and translational parts of the motion.

5.2 Linearization of the stress resultants and stress couples

5.2.1 Elastic case

Considering the variation of strains, Eqs. (5.8a) trough (5.11b), the constitutive relations for
stress resultant and couples in material form given in §3.7 for the linear case and denoting
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Cme
n = Cme

nn and Cme
m = Cme

mm, one obtains that

Dn̂m · η̂s = δn̂m = C̄me
nnδΓ̂n + C̄me

nmδΩ̂n

= C̄me
nnΛT (δϕ̂,S +ΠΠΠ[ϕ̂,S ]δθ̂) + C̄me

nmΛT δθ̂,S (5.36)

where C̄me
ij , (i, j ∈ {n,m}) are the material forms of the elastic constitutive tensors obtained

according to the mixing rule as explained in §4.3. Hence, employing the pullback and push–
forward operations we obtain the Lie variation (or co–rotated variation) as

δ
O
[n̂] = Λδ(ΛT n̂) = Λδn̂m

= ΛC̄me
nnΛT

︸ ︷︷ ︸
C̄se

nn

(δϕ̂,S +ΠΠΠ[ϕ̂,S ]δθ̂) + ΛC̄me
nmΛT

︸ ︷︷ ︸
C̄se

nm

δθ̂,S

= C̄se
nn(δϕ̂,S +ΠΠΠ[ϕ̂,S ]δθ̂) + C̄se

nmδθ̂,S (5.37)

where C̄se
ij , (i, j ∈ {n, m}) are the spatial forms of the elastic constitutive tensors. Similarly, one

obtain for the case of the stress couples

Dm̂m · η̂s = δm̂m = C̄me
mnΛ

T (δϕ̂,S +ΠΠΠ[ϕ̂,S ]δθ̂) + C̄me
mmΛT δθ̂,S (5.38)

δ
O

[m̂] = C̄se
mn(δϕ̂,S +ΠΠΠ[ϕ̂,S ]δθ̂) + C̄se

mmδθ̂,S . (5.39)

The linear form of the spatial stress resultant is calculated noticing the following relation for

the co–rotated variation: δ
O
[n̂]= δn̂− δθ̃θθn̂ = δn̂ + ñnnδθ̂, (where ñnn = ΠΠΠ[n̂]) as

Dn̂ · η̂s = δn̂ = δ
O
[n̂] +δθ̃θθn̂ = δ

O
[n̂] −ñnnδθ̂

= C̄se
nn(δϕ̂,S +ΠΠΠ[ϕ̂,S ]δθ̂) + C̄se

nmδθ̂,S −ñnnδθ̂

= C̄se
nnδϕ̂,S +(C̄se

n ΠΠΠ[ϕ̂,S ]− ñnn)δθ̂ + C̄se
nmδθ̂,S (5.40)

and analogously for the variation of the spatial form of the stress couple

Dm̂ · η̂s = δm̂ = C̄se
mnδϕ̂,S +(C̄se

mnΠΠΠ[ϕ̂,S ]− m̃mm)δθ̂ + C̄se
mδθ̂,S . (5.41)

The derivation of expressions for the admissible variations of the stress resultants and couples
for a general parametrization of the rotational field are omitted here.
The results obtained for the admissible variation of the stress resultant and couples given in
Eqs. (5.36) to (5.41) can be summarized and written in matrix form as

[
δn̂m

δm̂m

]
=

[
C̄me

nn C̄me
nm

C̄me
mn C̄me

mm

]

︸ ︷︷ ︸
C̄me

[
ΛT [ d

dS I] ΛTΠΠΠ[ϕ̂,S ]
0 ΛT [ d

dS I]

]

︸ ︷︷ ︸
B̄BB

s
(ϕ̂,Λ)

[
δϕ̂

δθ̂

]
= [C̄meB̄BB

s]η̂s (5.42)

where the material form of the constitutive tensor C̄me has been given in Eqs. (3.164a) to
(3.164d). By other hand, the co–rotated admissible variation of the stress resultant and couples
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is

 δ

O
[n̂]

δ
O

[m̂]


 =

[
C̄se

nn C̄se
nm

C̄se
mn C̄se

mm

]

︸ ︷︷ ︸
C̄se

[
[ d
dS I] ΠΠΠ[ϕ̂,S ]
0 [ d

dS I]

]

︸ ︷︷ ︸
BBB(ϕ̂)

[
δϕ̂

δθ̂

]
= [C̄seBBB]η̂s (5.43)

it is worth noting the relations IΛC̄meIT
Λ = C̄se and IΛB̄BB

s = BBB where the push–forward operation
by Λ has been used to carry the material form of the constitutive tensor to the spatial form,
i.e. Cse = ΛCme

ij ΛT (i, j ∈ {n,m}).
Finally, the spatial form of the admissible variation of the stress resultant and couples can be
expressed in matrix form as

[
δn̂
δm̂

]
=

{[
C̄se

nn C̄se
nm

C̄se
mn C̄se

mm

]

︸ ︷︷ ︸
C̄se

[
[ d
dS I] ΠΠΠ[ϕ̂,S ]
0 [ d

dS I]

]

︸ ︷︷ ︸
BBB(ϕ̂)

+
[

0 −ñnn
0 −m̃mm

]

︸ ︷︷ ︸
NNN

}[
δϕ̂

δθ̂

]
=

{
C̄seBBB + NNN

}
η̂s (5.44)

where the tensor NNN takes into account for the stress state existing in the current rod configu-
ration.

5.2.1.a Material updating of the rotational field

Considering the variation of strains, Eqs. (5.8a) trough (5.11b), the constitutive relations for
stress resultant and couples in material form given in §3.7 for the linear case, one obtains that

Dn̂m · η̂m = δn̂m = C̄me
nnδΓ̂n + C̄me

nmδΩ̂n = C̄me
nn(ΠΠΠ[ΛT ϕ̂,S ]δΘ̂ + ΛT δϕ̂,S ) + C̄me

nm(δΘ̂,S +Ω̃nδΘ̂).
(5.45)

Additionally, employing the pullback and push–forward operations we obtain the Lie variation,
(or co–rotated variation), as

δ
O
[n̂]= Λδ(ΛT n̂) = Λδn̂m = C̄se

nn(ΛΠΠΠ[ΛT ϕ̂,S ]δΘ̂ + δϕ̂,S ) + C̄se
nm(ΛδΘ̂,S +ω̃ωωnΛδΘ̂) (5.46)

where C̄se
ij , (i, j ∈ {n, m}) are the spatial forms of the elastic constitutive tensors. Similarly, one

obtain for the case of the stress couples

Dm̂m · η̂m = δm̂m = C̄me
mn(ΠΠΠ[ΛT ϕ̂,S ]δΘ̂ + ΛT δϕ̂,S ) + C̄me

mm(δΘ̂,S +Ω̃nδΘ̂) (5.47)

δ
O

[m̂] = C̄se
mn(ΛΠΠΠ[ΛT ϕ̂,S ]δΘ̂ + δϕ̂,S ) + C̄se

mm(ΛδΘ̂,S +ω̃ωωnΛδΘ̂). (5.48)

The linear form of the spatial stress resultant is calculated noticing the following relation for

the co–rotated variation: δ
O
[n̂]= δn̂− δΘ̃n̂ = δn̂ + ñnnδΘ̂ as

Dn̂ · η̂m = δn̂ = δ
O
[n̂] +δθ̃θθn̂ = δ

O
[n̂] −ñnnδθ̂

= C̄se
nn(ΛΠΠΠ[ΛT ϕ̂,S ]δΘ̂ + δϕ̂,S ) + C̄se

nm(ΛδΘ̂,S +ω̃ωωnΛδΘ̂)− ñnnδΘ̂
= C̄se

nnδϕ̂,S +(C̄se
nnΛΠΠΠ[ΛT ϕ̂,S ] + C̄se

nmω̃ωωnΛ− ñnn)δΘ̂ + C̄se
nmΛδΘ̂,S (5.49)

and analogously for the variation of the spatial form of the stress couple

Dm̂ · η̂m = δm̂ = C̄se
mnδϕ̂,S +(C̄se

mnΛΠΠΠ[ΛT ϕ̂,S ] + C̄se
mmω̃ωωnΛ− m̃mm)δΘ̂ + C̄se

mmΛδΘ̂,S . (5.50)
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The results obtained for the admissible variation of the stress resultant and couples given in
Eqs. (5.36) to (5.41) can be summarized and written in matrix form as

[
δn̂m

δm̂m

]
=

[
C̄me

nn C̄me
nm

C̄me
mn C̄me

mm

]

︸ ︷︷ ︸
C̄me

[
ΛT [ d

dS I] ΠΠΠ[ΛT ϕ̂,S ]
0 ([ d

dS I] + Ω̃ΩΩn)

]

︸ ︷︷ ︸
B̄BB

m
(ϕ̂,Λ)

[
δϕ̂

δΘ̂

]
= [C̄meB̄BB

m]η̂m (5.51)

where the material form of the constitutive tensor C̄me has been given in Eqs. (3.164a) to
(3.164d). By other hand, the co–rotated admissible variation of the stress resultant and couples
is


 δ

O
[n̂]

δ
O

[m̂]


=

[
C̄se

nn C̄se
nm

C̄se
mn C̄se

mm

]

︸ ︷︷ ︸
C̄se

[
[ d
dS I] ΛΠΠΠ[ΛT ϕ̂,S ]
0 (Λ[ d

dS I] + ω̃ωωnΛ)

]

︸ ︷︷ ︸
B̄BB(ϕ̂)

[
δϕ̂

δΘ̂

]
= [C̄seB̄BB]η̂m (5.52)

Finally, the spatial form of the admissible variation of the stress resultant and couples can be
expressed in matrix form as

[
δn̂
δm̂

]
=

[[
C̄se

nn C̄se
nm

C̄se
mn C̄se

mm

]

︸ ︷︷ ︸
C̄se

[
[ d
dS I] ΛΠΠΠ[ΛT ϕ̂,S ]
0 (Λ[ d

dS I] + ω̃ωωnΛ)

]

︸ ︷︷ ︸
B̄BB(ϕ̂)

+
[

0 −ñnn
0 −m̃mm

]

︸ ︷︷ ︸
NNN

][
δϕ̂

δΘ̂

]
=

{
C̄seB̄BB + NNN

}
η̂m

(5.53)
where the tensor NNN takes into account for the stress state existing in the current rod configu-
ration.

5.2.2 Inelastic case

In Chapter 4 (§4.2.2) it has been shown that the linearized form of the material version of the
total (possibly rate dependent) FPK stress vector can be expressed as

δP̂mt
1 = δP̂m

1 + δP̂mv
1 = C̄CCmv

δÊn + η̄ηηmsδŜn (5.54)

where C̄CCmv and η̄ηηms are the material form of the rate dependent4 and viscous tangent constitutive
tensors, calculated using the mixing rule for composites as explained in Section 4.3. The term
δŜn is the linearized increment of the material description of the strain rate vector, Eq. (5.25)
or (5.32).
The co–rotated form of Eq. (5.54) is obtained by means of applying the push–forward by the
rotation tensor Λ as

δ
O

[P̂ t
1 ]= ΛδP̂mt

1 = ΛδP̂m
1 + ΛδP̂mv

1 = C̄CCsv
δ

O
[ε̂n] +η̄ηηssδ

O
[ŝn] (5.55)

where C̄CCsv = ΛC̄CCmvΛT and η̄ηηss = Λη̄ηηsvΛT are the spatial form of the corresponding constitutive
tensors.
By other hand, the components of the spatial version of the total FPK stress vector can be
expressed in the local (time varying) frame {t̂i} as P̂ t

1 = P t
1it̂i and in the case of its material

4Here it has been used the denomination rate dependent tangent tensor for the general case of a material
presenting viscosity, however it is replaced by the rate independent version when corresponds without altering
the formulation.
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form P̂mt
1 = Pmt

1i Êi ; taking an admissible variation in both cases, one obtains

δP̂mt
1 = δPmt

1i Êi (5.56a)

δP̂ t
1 = δP t

1it̂i + δθ̃θθP t
1it̂i = δP t

1it̂i + δθ̃θθP̂ t
1 . (5.56b)

The co-rotated version of the linearized increment of the FPK stress vector is obtained by means
of applying the push–forward to δP̂mt

1 according to

δ
O

[P̂ t
1 ]= ΛδP̂mt

1 = δP t
1it̂i (5.57a)

where it is possible to deduce, taking into account Eqs. (5.55) and (5.55), that

δP̂ t
1 = δ

O
[P̂ t

1 ] +δθ̃θθP̂ t
1 = CCCsvδ

O
[ε̂n] +ηηηssδ

O
[ŝn] +δθ̃θθP̂ t

1 (5.57b)

where it is possible to replace δθ̃θθ ∈ so(3) by δΘ̃ΘΘ ∈ so(3) if the material updating rule is preferred.
As it has been detailed in §3.3.4, Eqs. (3.95b) and (3.97b), one has explicit expressions for n̂ and
m̂ and the corresponding linearized forms can be estimated starting from the result provided in
Eq. (5.57b) and integrating over the cross sectional area as

[
δn̂
δm̂

]
=

[
C̄sv

nn C̄sv
nm

C̄sv
mn C̄sv

mm

]

︸ ︷︷ ︸
C̄sv


 δ

O
[γ̂n]

δ
O

[ω̂n]


 +

[
Ῡss

nn Ῡss
nm

Ῡss
mn Ῡss

mm

]

︸ ︷︷ ︸
Υss


 δ

O
[ ˙̂γn]

δ
O

[ ˙̂ωn]


 +

[
0 −ñnn
0 −m̃mm

]

︸ ︷︷ ︸
NNN

[
δϕ̂

δθ̂

]
(5.58)

where C̄sv
ij and Ῡss

ij , (i, j = n,m) are the spatial forms of the reduced tangential and reduced
viscous tangential constitutive tensors, which are calculated simply replacing C̄CCse in each material
point on the cross section by the tangential C̄CCsv and viscous η̄ηηse constitutive tensors in spatial
description, and integrating over the cross section according the procedure described in §4.4 for
the elastic case. It is interesting to note that in the present formulation the reduced tangential
and viscous constitutive tensors are rate dependent. The corresponding material forms are
obtained as C̄mv

ij = ΛT C̄sv
ij Λ and ῩΥΥmv

ij = ΛTῩΥΥss
ij Λ.

If the spatial rule for the the updating procedure of the rotational field is used, Eq. (5.58) can be
rewritten, along with expressions for the linearized form of the material and co–rotated versions
of the stress resultant and couples, as

δ
O

[Φ̂] = (C̄svBBB + ῩssVVV)η̂s (5.59a)
δΦ̂m = (C̄mvB̄BB

s + ῩmsV̄VVs)η̂s (5.59b)
δΦ̂ = (C̄svBBB + ῩssVVV + NNN )η̂s (5.59c)

where the notation δΦ̂ = [δn̂, δm̂], δ
O

[Φ̂]= [δ
O
[n̂], δ

O
[m̂]] and δΦ̂m = [δn̂m, δm̂m] has been used.

In the deduction of Eqs. (5.59a) to (5.59a) it also has been used the results of Eqs. (5.12a),
(5.16a), (5.12c) and (7.47).
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If the material updating rule is preferred Eqs. (5.59a) to (5.59c) take the following form:

δ
O

[Φ̂] = (C̄svB̄BB + ῩssV̄VV)η̂m (5.60a)
δΦ̂m = (C̄mvB̄BB + ῩmsV̄VVm)η̂m (5.60b)

δΦ̂ = (C̄svB̄BB + ῩssV̄VV + NNN )η̂m (5.60c)

where it has been taken into account the results of Sections 5.1.4 and 5.2.1.

5.2.3 Equivalence between Gm and Gs

Prior to carry out formally the linearization of the virtual work functional, Eq. (3.145), we will
show the equivalence between the material, Gm, and spatial, Gs, phrasing of this scalar quantity
as it has been noted in Remark 3.6.
Consider again any admissible variation in spatial description η̂s ∈ TΦCt∗ superposed onto the
configuration (ϕ̂∗,Λ∗) ∈ Ct at time t∗. Substituting Eqs. (5.8b), (5.8c), (5.10b) and (5.10c)
into Eq. (3.147) one obtains the internal part of the material description of the weak form of
the momentum balance equations [363, 365], Gm(ϕ̂∗,Λ∗, η̂s), or virtual work; taking the internal
contribution of this expression one has that

Gm
int(ϕ̂∗,Λ∗, η̂s) =

∫ L

0
(δΓ̂n∗ · n̂m

∗ + δΩ̂n∗ · m̂m
∗ )dS

=
∫ L

0

{[
ΛT
∗ (δϕ̂,S +ΠΠΠ[ϕ̂∗,S ]δθ̂)

] · n̂m
∗ + (ΛT

∗ δθ̂,S ) · m̂m
∗

}
dS

=
∫ L

0

{
(δϕ̂,S +ΠΠΠ[ϕ̂∗,S ]δθ̂) · (Λ∗n̂m

∗ ) + δθ̂,S ·(Λ∗m̂m
∗ )

}
dS

=
∫ L

0

{
(δϕ̂,S +ΠΠΠ[ϕ̂∗,S ]δθ̂) · n̂∗ + δθ̂,S ·m̂∗

}
dS

=
∫ L

0

{
δ

O[
γ̂n

]
∗·n̂∗ + δ

O[
ω̂n

]
∗·m̂∗

}
dS

= Gs
int(ϕ̂∗,Λ∗, η̂s). (5.61)

Considering the external contribution contribution, Gs
ext, we obtain

Gs
ext(ϕ̂∗,Λ∗, η̂s) =

∫ L

0

{
δϕ̂ · N̂ s

∗ + δθ̂ · M̂s
∗
}

dS =
∫

[0,L]

{
δϕ̂ ·Λ∗N̂m

∗ + δθ̂ ·Λ∗M̂m
∗

}
dS

=
∫ L

0

{
ΛT
∗ δϕ̂ · N̂m

∗ + ΛT
∗ δθ̂ · M̂m

∗
}

dS =
∫ L

0

{
ΛT
∗ δϕ̂ · N̂m

∗ + δΘ̂ · M̂m
∗

}
dS

= Gm
ext(ϕ̂∗,Λ∗, η̂s). (5.62)

where ΛT∗ δϕ̂ can be seen as the materialization of the spatial quantity δϕ̂.

Gs
ine(ϕ̂,Λ, η̂s) =

∫ L

0

{
δϕ̂ · Aρ0

¨̂ϕ∗ + δθ̂ ·
[
IIIρ0∗α̂∗ + ṽvv∗(IIIρ0∗v̂∗)

]}
dS

=
∫ L

0

{
δϕ̂ · Aρ0

¨̂ϕ∗ + δΘ̂ ·
[
Iρ0∗Ân∗ + ṼVV n∗(Iρ0∗V̂n∗)

]}
dS

= Gm
ine(ϕ̂∗,Λ∗, η̂s). (5.63)
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In Eqs. (5.62) to (5.63) the relation between spatial and material descriptions for the angular
velocity and acceleration, via the pullback operator by the rotation tensor Λ, V̂n = ΛT v̂n and
Ân = ΛT α̂n, have been used. The material form of the inertia tensor, (rotational mass), given
in Eq. (3.134) in spatial form is obtained by means of the pullback operator for second order
tensors Iρ0 = ΛTIIIρ0Λ. In the same way the material forms of the external applied forces
and moments N̂ and M̂ are obtained as N̂m = ΛT N̂ , M̂m = ΛTM̂ respectively. Note that
independently if the material or spatial form is selected for linearization, always the admissible
variation η̂s is given in spatial form.

5.3 Linearization of the virtual work functional

In order to obtain numerical solution procedures of Newton type one need the linearized equi-
librium or state equation, which can be achieved through the linearization of the principle of
virtual work in its continuum form. The main objective of this section is to obtained the lin-
earized form of the virtual work functional in the form more convenient to a C1 continuous finite
element formulation, thought a C0 continuous curved rod element5. In this section advantages
of the results obtained in the previous sections is taken.
Considering the spatial form for the admissible variation η̂s and denoting by L [G(ϕ̂∗,Λ∗, η̂s)] the
linear part of the functional G(ϕ̂,Λ, η̂s) at the configuration defined by (ϕ̂,Λ) ≡ (ϕ̂∗,Λ∗) ∈ Ct;
by definition we have

L [G(ϕ̂∗,Λ∗, η̂s)] , G(ϕ̂∗,Λ∗, η̂s) + DG(ϕ̂∗,Λ∗, η̂s) · p̂s (5.64)

where the Frêchet differential DG(ϕ̂∗,Λ∗, η̂s) · p̂s is obtained through the directional derivative
formula (see Defs. A.21 and A.22 of §A.5)

DG(ϕ̂∗,Λ∗, η̂s) · p̂s =
d
dβ

∣∣∣
β=0

G(ϕ̂∗,Λ∗, η̂s, βp̂s)

and p̂s ≡ (∆ϕ̂,∆θ̂) ∈ TΦCt is an admissible variation as described in §5.1. The physical inter-
pretation of Eq. (5.64) is standard [363, 186]. The term G(ϕ̂∗,Λ∗, η̂s) supplies the unbalanced
force at the configuration (ϕ̂∗,Λ∗) ∈ Ct and the term DG(ϕ̂∗,Λ∗, η̂s) · p̂s, linear in p̂s, yields
the so called tangential stiffness. If (ϕ̂∗,Λ∗) is an equilibrium configuration, we must have
G(ϕ̂∗,Λ∗, η̂s) = 0 for any η̂s ≡ (δϕ̂, δθ̂).

5.3.1 Linearization of Gint

Before to develop the linearization of the internal force term, Eq. (3.143), it is necessary to

obtain the linear part of the co–rotated variations of the reduced strain vectors, δ
O

[Φ̂], given in
matrix form in Eq. (5.12c) i.e.

Dδ
O

[Ψ̂∗] ·p̂s = D(BBB∗η̂s) · p̂s

=
[

D(δϕ̂,S +ΠΠΠ[ϕ̂∗,S ]δθ̂) · p̂s

D(δθ̂,S ) · p̂s

]

=
[

∆δϕ̂,S +ΠΠΠ[∆ϕ̂,S ]δθ̂
∆δθ̂,S

]
=

[
0 ΠΠΠ[∆ϕ̂,S ]
0 0

][
δϕ̂

δθ̂

]
= ΨΨΨ(p̂s)T η̂s (5.65)

5A rigorous mathematical foundation of the linearization procedures can be found in [251].
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where δ
O

[Ψ̂]∗= [δ
O
[γ̂]n, δ

O
[ω̂]n]T and it has been neglected the terms of order ∆δ(•) ≈ 0. The matrix

denoted by ΨΨΨ has been given in the transposed form by convenience.
Moreover, considering the previous result, employing Eqs. (5.59a) and (5.59c) for the linearized
increment of the internal cross sectional force and moment vectors and Eq. (5.12c) for the
co–rotated variations of the reduced strain vectors it is possible to express in matrix form the
linearization of the internal term of the virtual work as

DGint∗ · p̂s =
∫ L

0
D(δ

O
[Ψ̂]∗·Φ̂∗) · p̂sdS

=
∫ L

0

(
(Dδ

O
[Ψ̂]∗·p̂s) · Φ̂∗ + δ

O
[Ψ̂]∗·(DΦ̂∗ · p̂s)

)
dS

=
∫ L

0

(
η̂sTΨΨΨ(p̂s)Φ̂∗ + η̂sTBBBT

∗ (C̄sv
∗ BBB∗ + Ῡss

∗ VVV∗ + NNN ∗)p̂s
)
dS. (5.66)

By other hand, it is necessary to note that

ΨΨΨ(p̂s)Φ̂∗ =
[

0 0
−ΠΠΠ[∆ϕ̂,S ] 0

][
n̂∗
m̂∗

]
=

[
0 0

ñnn∗[ d
dS I] 0

][
∆ϕ̂

∆θ̂

]
= FFF ∗p̂s (5.67)

which allows to rewrite Eq. (5.66) as

DGint∗ · p̂s =
∫ L

0
η̂sT

(
FFF ∗ + BBBT

∗ C̄
sv
∗ BBB∗ + BBBT

∗ Ῡ
ss
∗ VVV∗ + BBBT

∗NNN ∗
)
p̂sdS

=
∫ L

0
η̂sT

(
BBBT
∗ C̄

sv
∗ BBB∗

)
p̂sdS

︸ ︷︷ ︸
KM∗

+
∫

[0,L]
η̂sT

(
FFF ∗ + BBBT

∗NNN ∗
)
p̂sdS

︸ ︷︷ ︸
KG∗

+
∫ L

0
η̂sT

(
BBBT
∗ Ῡ

ss
∗ VVV∗

)
p̂sdS

︸ ︷︷ ︸
KV ∗

= KM∗ + KG∗ + KV ∗ (5.68)

where the scalars KM∗ KG∗ and KV ∗ correspond to the material (constitutive), geometric (stress
dependant) and viscous tangential stiffness.

REMARK 5.2. Several observations can be made in Eq. (5.68):

(i) The linear part DGint(ϕ̂∗,Λ∗, η̂s) · p̂s constitutes a bilinear form (operator) on Tx̂Ct∗ .
(ii) The matrix [BBBT C̄svBBB]∗ of KM∗ is always symmetric although configuration dependent; in

contrast with the matrices [FFF + BBBTNNN ]∗ and [BBBT ῩssVVV]∗ of KG∗ KV ∗ respectively; which
are always nonsymmetric away from equilibrium ¥

5.3.2 Linearization of Gine

Considering the spatial form of the kinematically admissible variation η̂s ∈ TΦCt, the inertial
term of the virtual work functional, Eq. (3.144), can be expressed as

Gine(ϕ̂∗,Λ∗, η̂s)=
∫ L

0
η̂sT

[ Aρ0
¨̂ϕ∗

IIIρ0α̂n∗ + ṽvvn∗IIIρ0 v̂n∗

]
dS =

∫ L

0
η̂sT

[
Aρ0

¨̂ϕ∗
Λ(Iρ0Ân∗ + ṼVV n∗Iρ0 V̂n∗)

]
dS (5.69)
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where the spatial form of the rotational terms is phrased in terms of the material angular
acceleration and velocity of the current rod relative to the curved reference rod, by means of
the push-forward operation by Λ, by convenience. Employing the same procedure as for the
internal virtual work, we have that the linearized increment of the acceleration term Gine is

DGine(ϕ̂∗,Λ∗, η̂s) · p̂s =

=
∫ L

0
η̂sT

[
D[Aρ0

¨̂ϕ∗] · p̂s

D[Λ∗{Iρ0Ân∗ + ṼVV n∗Iρ0 V̂n∗}] · p̂s

]
dS

=
∫ L

0
η̂sT




Aρ0∆¨̂ϕ∗
(∆Λ∗)[Iρ0Ân∗ + ṼVV n∗Iρ0 V̂n∗]︸ ︷︷ ︸

Ξ̂θ1

+Λ∗[∆(Iρ0Ân∗ + ṼVV n∗Iρ0 V̂n∗)]︸ ︷︷ ︸
Ξ̂θ2


dS. (5.70)

Considering that ∆Λ = ∆θ̃θθΛ and ΠΠΠ[v̂a]v̂b = −ΠΠΠ[v̂b]v̂a, ∀v̂a, v̂b ∈ R3, it is possible to give the
following expressions for the terms Ξ̂θ1 and Ξ̂θ2 in Eq. (5.70) as

Ξ̂θ1 = −ΠΠΠ[Λ∗(Iρ0Ân∗ + ṼVV n∗Iρ0 V̂n∗)]∆θ̂ (5.71a)

Ξ̂θ2 = Λ∗Iρ0(∆Ân∗) + Λ∗ΠΠΠ[∆V̂n∗](Iρ0 V̂n∗) + Λ∗ṼVV n∗Iρ0(∆V̂n∗)

= Λ∗Iρ0∆Ân∗ + (Λ∗ṼVV n∗Iρ0 −Λ∗ΠΠΠ[Iρ0 V̂n∗])∆V̂n∗ (5.71b)

Noticing that from Eqs. (5.19a) and (5.19b) that ∆V̂n = ΛT ∆ ˙̂
θ and ∆Ân = ΛT (∆¨̂

θ− ṽvvn∆ ˙̂
θ); it

is possible to rewrite Eqs. (5.71a) and (5.71b) as

Ξ̂θ1 = −ΠΠΠ[IIIρ0∗α̂n∗ + ṽvvn∗IIIρ0∗v̂n∗]∆θ̂ (5.72a)

Ξ̂θ2 = (Λ∗Iρ0Λ
T
∗ )∆¨̂

θ + Λ∗(ṼVV n∗Iρ0 − Iρ0ṼVV n∗ −ΠΠΠ[Iρ0 V̂n∗])ΛT
∗∆ ˙̂

θ

= IIIρ0∗∆
¨̂
θ + (ṽvvn∗IIIρ0∗ −IIIρ0∗ṽvvn∗ −ΠΠΠ[IIIρ0∗v̂n∗])∆

˙̂
θ. (5.72b)

This last results alow to rewrite the linear part of the acceleration term Gine as

DGine(ϕ̂∗,Λ∗, η̂s) · p̂s =
∫ L

0
η̂sT

[
MMM∗

[
∆¨̂ϕ

∆¨̂
θ

]
+ CCCgyr∗

[
∆ ˙̂ϕ

∆ ˙̂
θ

]
+ KKKcent∗

[
∆ϕ̂

∆θ̂

] ]
dS

= M∗ + Kgyr∗ + Kcent∗ (5.73)

where the mass, gyroscopic and centrifugal stiffness matrices are defined as follows [88]

[
MMM

]
=

[Aρ0I 0
0 IIIρ0

]
(5.74a)

[
CCCgyr

]
=

[
0 0
0

{
ṽvvnIIIρ0 −IIIρ0ṽvvn −ΠΠΠ[IIIρ0 v̂n]

}
]

(5.74b)

[
KKKcent

]
=

[
0 0
0 −ΠΠΠ[{IIIρ0α̂n + ṽvvn(IIIρ0 v̂n)}]

]
(5.74c)

and M∗, Kgyr∗ and Kcent∗ are the corresponding translational, gyroscopic and centrifugal terms
of the tangential stiffness, respectively.
From the previous equations it is possible to appreciate the mass matrix MMM is always symmetric;
the gyroscopic matrix depends linearly on angular velocities and the centrifugal stiffness matrix
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depends linearly on angular acceleration and quadratically on angular velocity.

5.3.3 Linearization of Gext

Following the same procedure as for the internal and inertial terms of the virtual work, the
external contribution to the virtual work, Eq. (3.146), can be written as

Gext(ϕ̂∗,Λ∗, η̂s) =
∫ L

0
η̂sT

[N̂ ∗

M̂∗

]
dS +

Np∑

k=1

η̂sT
k

[
P̂ k

g + Λ∗ ˆ̄P k
p

M̂k
g

]
(5.75)

where the termsN ∗ andM∗ consider the contribution of distributed and body external loadings.
The summation term consider the contribution of all concentrated forces and moments. Np is
the number of points where external loads are applied. Recalling Eqs. (3.169) through (3.173b),
Eq. (5.75) can be rewritten as

Gext(ϕ̂∗,Λ∗, η̂s) =
∫ L

0
η̂sT (

[
df̂g + df̂d∗ + df̂p∗

dm̂g + dm̂d∗ + dm̂p∗

]
+

[
R̂ϕ

R̂θ

]
)dS +

Np∑

k=1

η̂sT
k

[
P̂ k

g + P̂ k
p∗

M̂k
g

]

= λ(
∫ L

0
η̂sT (

[
N̂g + cN∗N̂d + Λ∗ ˆ̄Np

M̂g + cM∗M̂d + Λ∗ ˆ̄Mp

]
+

[∫
A0

g0ρ0(b̂ + ¨̂a)dA0∫
A0

g0J̃JJ (b̂ + ¨̂a)dA0

]

︸ ︷︷ ︸
Q̂bd

)dS

+
Np∑

k=1

η̂sT
k

[
P̂ k

g + Λ∗ ˆ̄P k
p

M̂k
g

]
) (5.76)

which give rise to the external loading. In many practical engineering application the body
load contribution arranged in the term Q̂bd = [R̂ϕR̂θ], which considers the earthquake loading,
can be reduced to the form of distributed forces and moments and therefore, no additional
considerations will be made about it. In the case of earthquake loading the external body
moment contribution can be neglected remaining only the force body loads due to the base
acceleration ¨̂a which is configuration independent and it vanish in the linearization process for
obtaining the tangential stiffness tensor. The corresponding linearization is given by

DGext(ϕ̂∗,Λ∗, η̂s) · p̂s = λ(
∫ L

0
η̂sT ∆

[
N̂g + cN∗N̂d + Λ∗ ˆ̄Np

M̂g + cM∗M̂d + Λ∗ ˆ̄Mp

]
dS +

Np∑

k=1

η̂sT
k

[
P̂ k

g + Λ∗ ˆ̄P k
p

M̂k
g

]
)

= λ(
∫ L

0
η̂sT

[
N̂d∆cN∗ + ∆Λ∗ ˆ̄Np

M̂d∆cM∗ + ∆Λ∗ ˆ̄Mp

]
dS +

Np∑

k=1

η̂sT
k

[
∆Λ∗ ˆ̄P k

p

0

]
)

= λ(
∫ L

0
η̂sT

[
−N̂d(ĈN∗ ·∆ϕ̂,S ) + ∆θ̃θθN̂p

−M̂d(ĈM∗ ·∆ϕ̂,S ) + ∆θ̃θθM̂p

]
dS +

Np∑

k=1

η̂sT
k

[
∆θ̃θθP̂ k

p∗
0

]
)

= λ(
∫ L

0
η̂sT

[
−(N̂d ⊗ ĈN∗)∆ϕ̂,S −ÑNN p∆θ̂

−(M̂d ⊗ ĈM∗)∆ϕ̂,S −M̃MMp∆θ̂

]
dS −

Np∑

k=1

η̂sT
k

[
P̃PP

k

p∗∆θ̂

0

]
)

= −λ(
∫ L

0
η̂sT (

[
(N̂d ⊗ ĈN∗)[ d

dS I] + ÑNN p

(M̂d ⊗ ĈM∗)[ d
dS I] +M̃MMp

]
p̂sdS +

Np∑

k=1

η̂sT
k

[
P̃PP

k

p∗
0

]
p̂s

k)(5.77)
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where the vectors ĈN∗ and ĈM∗ are defined as

ĈN∗ =
2
λ

∫ λ

0
(d̃ddN )2ϕ̂,S dλ; ĈM∗ =

2
λ

∫ λ

0
(d̃ddM )2ϕ̂,S dλ, (5.78)

respectively. Therefore, it is possible to write

∆cN∗ = −ĈN∗ ·∆ϕ̂,S ; ∆cM∗ = −ĈM∗ ·∆ϕ̂,S , (5.79)

for the deformation-dependent loading of type II or ĈN∗ = 0 and ĈM∗ = 0 for deformation-
independent loading of type I.
The term DGext(ϕ̂∗,Λ∗, η̂s) · p̂s = KP∗ corresponds to the loading dependent part of the tan-
gential stiffness.
Finally, Eq. (5.64) can be rewritten as

L [G(ϕ̂∗,Λ∗, η̂s, p̂s)] = G∗ + KM∗ + KV ∗ + KG∗ + KP∗ + M∗ + Kgyr∗ + Kcent∗. (5.80)

The discretization of Eq. (5.80) by using the FEM will be explained in detail in Chapter 7.

5.4 Material updating rule of the rotational field

Analogously as for the case of the spatial updating of the rotation field, it is possible to chose
the material form of the admissible variation p̂m ∈ TΦCt yielding to the result that are presented
in the next sections.

5.4.1 Linearization of Gint

In this case, the linear part of the co–rotated variations of the reduced strain vectors, Eq. (5.12c),
is given by

Dδ
O

[Ψ̂∗] ·p̂m = D(B̄BB∗η̂m) · p̂m

=

[
D(δϕ̂,S +Λ∗ΠΠΠ[ΛT∗ ϕ̂∗,S ]δΘ̂) · p̂m

D(Λ∗δΘ̂,S +Λ∗Ω̃n∗δΘ̂) · p̂m

]

=

[
Λ∗[δΘ̃ΘΘ∆Θ̃ΘΘ−∆Θ̃ΘΘδΘ̃ΘΘ]ΛT∗ ϕ̂∗,S +Λ∗ΠΠΠ[ΛT∗∆ϕ̂,S ]δΘ̂

Λ∗∆Θ̃ΘΘδΘ̂,S +Λ∗∆Θ̃ΘΘΩ̃n∗δΘ̂ + Λ∗(∆Θ̃ΘΘ,S +[[[Ω̃n∗, ∆Θ̃ΘΘ]]])δΘ̂

]

=


 0 Λ∗

[
ΠΠΠ[ΛT∗ ϕ̂∗,S ]∆Θ̃ΘΘ + ΠΠΠ[ΛT∗∆ϕ̂,S ]

]

0 Λ∗
[
∆Θ̃ΘΘ[ d

dS I] + ∆Θ̃ΘΘΩ̃n∗ + ∆Θ̃ΘΘ,S +ΠΠΠ[Ω̃n∗∆Θ̂]
]



[

δϕ̂

δΘ̂

]

= Ψ̄ΨΨT (p̂m)η̂m (5.81)

where δ
O

[Ψ̂]∗= [δ
O
[γ̂]n, δ

O
[ω̂]n]T and it has been neglected the terms of order ∆δ(•) ≈ 0. The

matrix Ψ̄ΨΨ has been given in the transposed for by convenience. Then, employing Eqs. (5.60a)
and (5.60c) for the linearized increment of the internal cross sectional force and moment vectors,
it is possible to express in matrix form the linearization of the internal term of the virtual work
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as

DGint∗ · p̂m =
∫ L

0
D(δ

O
[Ψ̂]∗·Φ̂∗) · p̂mdS =

∫ L

0

(
(Dδ

O
[Ψ̂]∗·p̂m) · Φ̂∗ + δ

O
[Ψ̂]∗·(DΦ̂∗ · p̂m)

)
dS

=
∫ L

0

(
η̂mTΨ̄ΨΨ(p̂m)Φ̂∗ + η̂mTB̄BB

T
∗ (C̄sv

∗ B̄BB∗ + Ῡss
∗ V̄VV∗ + NNN ∗)p̂m

)
dS. (5.82)

By other hand, it is necessary to note that

Ψ̄ΨΨ(p̂m)Φ̂∗ =




0 0[
∆Θ̃ΘΘΠΠΠ[ΛT∗ ϕ̂∗,S ]−
−ΠΠΠ[ΛT∗∆ϕ̂,S ]

]
ΛT∗

[
Ω̃n∗∆Θ̃ΘΘ−∆Θ̃ΘΘ[ d

dS I]−
−∆Θ̃ΘΘ,S −ΠΠΠ[Ω̃n∗∆Θ̂]

]
ΛT∗



[

n̂∗
m̂∗

]

=




0 0

ñnnmΛT∗ [ d
dS I]

[
ΠΠΠ[ΛT∗ ϕ̂∗,S ]ñnnm+

+m̃mm,mS +m̃mmm[ d
dS I]

+{m̃mmmΩ̃n∗ − Ω̃n∗m̃mmm}
]




[
∆ϕ̂

∆Θ̂

]
= F̄FF ∗p̂m (5.83)

which allows to rewrite Eq. (5.82) as

DGint∗ · p̂m =
∫ L

0
η̂mT

(
F̄FF ∗ + B̄BB

T
∗ C̄

sv
∗ B̄BB∗ + B̄BB

T
∗ Ῡ

ss
∗ V̄VV∗ + B̄BB

T
∗NNN ∗

)
p̂mdS

=
∫ L

0
η̂mT

(
B̄BB

T
∗ C̄

sv
∗ B̄BB∗

)
p̂mdS

︸ ︷︷ ︸
Km

M∗

+
∫

[0,L]
η̂mT

(
F̄FF ∗ + B̄BB

T
∗NNN ∗

)
p̂mdS

︸ ︷︷ ︸
Km

G∗

+
∫ L

0
η̂mT

(
B̄BB

T
∗ Ῡ

ss
∗ V̄VV∗

)
p̂mdS

︸ ︷︷ ︸
Km

V ∗

= Km
M∗ + Km

G∗ + Km
V ∗ (5.84)

where the scalars Km
M∗ Km

G∗ and Km
V ∗ correspond to the material (constitutive), geometric (stress

dependant) and viscous tangential stiffness. The same observations made in Remark 5.2 hold
when using the material updating rule for the rotations.

5.4.2 Linearization of Gine

Considering the material updating rule for rotations, η̂m ∈ Tx̂Ct, the inertial term of the virtual
work functional can be expressed as

Gine(ϕ̂∗,Λ∗, η̂m) =
∫

[0,L]
η̂mT

[
Aρ0

¨̂ϕ∗
Iρ0Ân∗ + ṼVV n∗Iρ0 V̂n∗

]
dS (5.85)

Employing the same procedure as for the internal virtual work, we have that the linearized
increment of the acceleration term Gine is

DGine(ϕ̂∗,Λ∗, η̂m) · p̂m =
∫ L

0
η̂mT

[
D[Aρ0

¨̂ϕ∗] · p̂s

D[Iρ0Ân∗ + ṼVV n∗Iρ0 V̂n∗] · p̂m

]
dS



130 Chapter 5. Linearization of the virtual work principle

=
∫ L

0
η̂mT




Aρ0∆¨̂ϕ∗
Iρ0∆Ân∗ + ∆ṼVV n∗Iρ0 V̂n∗ + ṼVV n∗Iρ0∆V̂n∗︸ ︷︷ ︸

Ξ̂m
Θ


dS (5.86)

considering Eqs. (5.21b) and (5.21d), it is possible to give the following expression for the terms
Ξ̂m in Eq. (5.86) as

Ξ̂m
Θ = Iρ0∆Ân∗ + (ṼVV n∗Iρ0 −ΠΠΠ[Iρ0 V̂n∗])∆V̂n∗

= Iρ0(∆
¨̂Θ + ÃAAn∗∆Θ̂ + ṼVV n∗∆

˙̂Θ) + (ṼVV n∗Iρ0 −ΠΠΠ[Iρ0 V̂n∗])(∆
˙̂Θ + ṼVV n∗∆Θ̂)

= Iρ0∆
¨̂Θ + (Iρ0ṼVV n∗−ΠΠΠ[Iρ0 V̂n∗] + ṼVV n∗Iρ0)∆

˙̂Θ

+(Iρ0ÃAAn∗−ΠΠΠ[Iρ0 V̂n∗]ṼVV n∗ + ṼVV n∗Iρ0ṼVV n∗)∆Θ̂ (5.87)

This last results alow to rewrite the linear part of the acceleration term Gine as

DGine(ϕ̂∗,Λ∗, η̂m) · p̂m =
∫ L

0
η̂mT

[
MMMm

∗

[
∆¨̂ϕ

∆¨̂Θ

]
+ CCCm

gyr∗

[
∆ ˙̂ϕ

∆ ˙̂Θ

]
+ KKKm

cent∗

[
∆ϕ̂

∆Θ̂

] ]
dS

= Mm
∗ + Km

gyr∗ + Km
cent∗ (5.88)

where the mass, gyroscopic and centrifugal stiffness matrices are defined as follows

[
MMMm

]
=

[Aρ0I 0
0 Iρ0

]
(5.89a)

[
CCCm

gyr

]
=

[
0 0
0 (Iρ0ṼVV n −ΠΠΠ[Iρ0 V̂n] + ṼVV nIρ0)

]
(5.89b)

[
KKKm

cent

]
=

[
0 0
0 (Iρ0ÃAAn −ΠΠΠ[Iρ0 V̂n]ṼVV n + ṼVV nIρ0ṼVV n)

]
(5.89c)

and M∗, Kgyr∗ and Kcent∗ are the corresponding translational, gyroscopic and centrifugal terms
of the tangential stiffness, respectively.
From the above equations it is possible to appreciate the mass matrix MMMm is always symmetric
and constant; the gyroscopic and centrifugal stiffness matrices depend on the angular velocities
and accelerations.

5.4.3 Linearization of Gext

Considering the material updating rule for the rotational field and taking admissible variation
p̂m ∈ ηm, Eq. (3.146), can be written as

Gext(ϕ̂∗,Λ∗, η̂m) =
∫ L

0
η̂mT (

[
df̂g + df̂d∗ + df̂p∗

dm̂g + dm̂d∗ + dm̂p∗

]
+

[
R̂ϕ

R̂θ

]
)dS +

Np∑

k=1

η̂m
k

T

[
P̂ k

g + P̂ k
p∗

M̂k
g

]

=λ(
∫ L

0
η̂mT (

[
N̂g +R̂ϕ+cN∗N̂d+Λ∗ ˆ̄Np

M̂g +R̂θ +cM∗M̂d+Λ∗ ˆ̄Mp

]
)dS +

Np∑

k=1

η̂m
k

T

[
P̂ k

g + Λ∗ ˆ̄P k
p

M̂k
g

]
) (5.90)

where R̂ϕ =
∫
A0

g0ρ0(b̂ + ¨̂a)dA0 and R̂θ =
∫
A0

g0J̃JJ (b̂ + ¨̂a)dA0 consider the earthquake loading
and, along with N̂g and M̂g, vanish in the linearization process. The corresponding linear part
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is given by

DGext∗(η̂m) · p̂m = λ(
∫ L

0
η̂mT ∆

[
N̂g + cN∗N̂d + Λ∗ ˆ̄Np

M̂g + cM∗M̂d + Λ∗ ˆ̄Mp

]
dS +

Np∑

k=1

η̂m
k

T

[
P̂ k

g + Λ∗ ˆ̄P k
p

M̂k
g

]
)

= λ(
∫ L

0
η̂mT

[
N̂d∆cN∗ + ∆Λ∗ ˆ̄Np

M̂d∆cM∗ + ∆Λ∗ ˆ̄Mp

]
dS +

Np∑

k=1

η̂m
k

T

[
∆Λ∗ ˆ̄P k

p

0

]
)

= λ(
∫ L

0
η̂mT

[
−N̂d(ĈN∗ ·∆ϕ̂,S ) + ∆Θ̃ΘΘN̂p

−M̂d(ĈM∗ ·∆ϕ̂,S ) + ∆Θ̃ΘΘM̂p

]
dS +

Np∑

k=1

η̂m
k

T

[
∆Θ̃ΘΘP̂ k

p∗
0

]
)

= λ(
∫ L

0
η̂mT

[
−(N̂d ⊗ ĈN∗)∆ϕ̂,S −ÑNN p∆Θ̂
−(M̂d ⊗ ĈM∗)∆ϕ̂,S −M̃MMp∆Θ̂

]
dS −

Np∑

k=1

η̂m
k

T

[
P̃PP

k

p∗∆Θ̂
0

]
)

= −λ(
∫ L

0
η̂mT (

[
(N̂d ⊗ ĈN∗)[ d

dS I] + ÑNN p

(M̂d ⊗ ĈM∗)[ d
dS I] +M̃MMp

]
p̂mdS +

Np∑

k=1

η̂m
k

T

[
P̃PP

k

p∗
0

]
p̂m

k )

= Km
P∗ (5.91)

where the vectors ĈN∗, ĈM∗, cN∗ and cM∗ have been defined in Eqs. (5.78) and (5.79).

Finally, Eq. (5.64) can be rewritten as

L [G(ϕ̂∗,Λ∗, η̂s, p̂s)] = G∗ + Km
M∗ + Km

V ∗ + Km
G∗ + Km

P∗ + Mm
∗ + Km

gyr∗ + Km
cent∗. (5.92)

The discretization of Eq. (5.92) by using the FEM will be explained in detail in Chapter 7.

5.4.4 Symmetry of the tangent stiffness

The symmetry of the material part KKKM is obvious, while the geometric part KKKG is not symmetric
in general. The symmetry of the tangent stiffness, or more precisely the second variation of the
internal virtual power, is in general a rather involved issue. A detailed derivation and analysis
can be found in the work of Simo [371]. In this work only a simple explanation following Ref.
[245] is presented.
Consider a unrestricted finite dimensional manifold M. Let us introduce a r-parametrized curve
on this manifold such that

α̂ : R → M
r 7→ α̂(r), q̂ = α̂(0), δq̂ = α̂,r (0)

where δq̂ is the tangent to the curve α at the point q on the manifold M, see Fig. 5.1.
Let W ∈ R be a (scalar) work function on the manifold i.e.

W : M → R
q̂ 7→ W (q̂).

The first variation of the work function at the point q̂ ∈M in the direction δq̂ ∈ Tq̂M reads

δW (q̂, δq̂) :=
dW (α̂(r))

dr

∣∣∣
r=0
= Dα̂W (α̂(0)) · δq̂. (5.93)
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Figure 5.1: A geometric representation of the parameterized curve α̂(r) and the work function
W (q̂) on the manifold M.

The first variation depends linearly on the direction δq̂, hence we may write δW = f̂∗ ·δq̂, where
the pseudo-force vector f̂∗(q̂) belongs at T ∗q̂M.
By other hand, we call the point q̂0 ∈M a critical point of W , i.e. an equilibrium, if δW (q̂0, δq̂)
vanishes for arbitrary δq̂ ∈ Tq̂M. At the critical point the corresponding force vector f̂∗(q̂0)
vanishes.
In order to give the second variation of W on M, we introduce another curve with the following
properties:

β̂ : R → M
s 7→ β̂(s), q̂ = β̂(0), δq̂ = β̂,s (0)

where ∆q̂ ∈ Tq̂M is the tangent to the curve β̂. Note that the virtual displacement δq̂(s) ∈
Tβ̂(s)M depends on the curve β̂ if the base point varies according to the curve β̂, see Fig. 5.1.
It is possible to write the second variation of W on M as

δ2W (q̂; δq̂;∆q̂) :=
dδW (β̂(s))

ds

∣∣∣
s=0

=
d
(
f̂∗(β̂(s))

) · δq̂(β̂(s))
ds

∣∣∣
s=0

= [Dβ̂ f̂∗(β̂(0)) ·∆q̂] · δq̂(β̂(0)) + f̂∗(β̂(0)) · [Dβ̂δq̂(β̂(0)) ·∆q̂] (5.94)

where the first term is often denoted by H(q̂, δq̂,∆q̂) that is the Hessian of the function W ,
which could be denoted by

H(q̂, δq̂,∆q̂) := Dα̂β̂W (α̂(0), β̂(0)) : (δq̂ ⊗∆q̂),

that is a symmetric form on M i.e. H(q̂, δq̂, ∆q̂) = H(q̂;∆q̂; δq̂) since the Fréchet partial
derivatives commute Dα̂β̂W = Dβ̂α̂W for the smooth function W .

However, the second term in Eq. (5.94), f̂∗(β̂(0)) · (Dβ̂δq̂(β̂(0)) ·∆q̂), is generally nonsymmetric,

unless q̂0 = q̂(β̂(0)) is a critical point. At the critical point we have the force vector f̂∗(q̂0) = 0,
recovering the symmetry to the second variation of the function W .
An important result is that the nonsymmetric term vanishes also if M is flat as in the case of
the general problems of solid mechanics parameterized in terms of Euclidean coordinates, then
we get Dβ̂δq̂(β̂(0)) ≡ 0.
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As it has been explained in previous sections the current rod placement Ct, Eq. (3.23), is
a nonlinear manifold. Independently if we use the spatial or the material updating rule for
rotations, we obtain a nonsymmetric geometric stiffness, KG, after linearizing the virtual work
functional, Eq. (5.68) or Eq. (5.84). Therefore, we have a nonsymmetric tangent stiffness
tensor away from the equilibrium of the system. However, at an equilibrium point we recover
the symmetry for conservative loadings [178, 363].

Figure 5.2: Geometric representation for the parametrization of the two-manifold M. χ is the
parametrization mapping and W ◦ χ the decomposition mapping.

Mäkinen [246, 245] suggest a way to obtain symmetric stiffness tensor for rods even away from
the equilibrium points employing an appropriated parametrization of the manifold Ct. The
chosen parametrization χ maps from a open set in an Euclidean space into a open set of the
manifold M (see Fig. 5.2).
The parameterized work function W ◦ χ : U ⊂ R→ R is mapping from an Euclidean set into a
set of real numbers R. Since the set of an Euclidean space is a flat manifold, the nonsymmetric
term of Eq. (5.94) will always vanish. Specifically, the rotation manifold SO(3) could be
parameterized by the material rotation vector Ψ̂ ∈ Tmat

I = R3 (see §A.4 of Chapter A), however
in this case the linearization process become considerably more involved (see e.g. Cardona and
Gerardin [88]).





Chapter 6

Time-steeping schemes and
configuration update

This chapter concerns with the presentation of a time–stepping scheme consistent with the
kinematic assumptions made for the rod model (see §3) i.e. able to manage variables belonging to
SO(3) and its tangent space [92]. The time–stepping scheme chosen for the updating procedure
corresponds to the classical Newmark algorithm for the translational part of the motion and it
can be consulted, for example in Refs. [42, 107, 170] among others. In the case of the rotational
part, explanations and new developments follow the procedures originally proposed by Simo and
Vu-Quoc1 [365], which has been also applied in a large set of posterior works (see §2).
The crucial difficulty rely on the development of a version of the Newmark scheme consistent with
the nonlinear nature of rotations. To this end, time is considered as a set of discrete instants. The
problem consists in determining values of points in the configuration manifold (and their related
kinematical objects) at these instants, which fulfils the equilibrium equations. As usual, at each
time step the linearized problem is solved by means of an iterative scheme until convergency
is achieved. Therefore, consistent updating procedures for strains, strain rates, stresses, etc,
have to be developed. In the present work, an iterative updating procedure is performed i.e.
the kinematics variables are updated with respect to the last iterative configuration attained
in a given time step. In this sense, the present approach corresponds to an Eulerian updating
procedure. Other works prefers to carry out the updating, as well as the consistent linearization,
on the last converged configuration [183] yielding to an updated Lagrangian procedure or work
directly on the initial configuration yielding to a total Lagrangian formulation [88, 247]. Even
when both, the updated lagrangian and the total one, can present some advantages such as
symmetric stiffness tensors, in the author opinion, the algebraic processes required for obtaining
consistent updating procedures as well as tangential stiffness tensors are much more involved.
Each section of the present work covers both possibilities: the spatial and the material updating
rule for the rotational part of the motion.
Some discussions about the validness of more refined formulations of the Newmark’s method,
[246, 244, 247], are also addressed. On other hand, more refined energy–momentum conserving
algorithms [19, 186, 340, 372] are also presented by completeness and with the objective of
developing an energy conserving–decaying scheme based on constitutive damping. Finally, and
in the category of a proposal, some results are presented about the possibility of deducing
consistent time–stepping schemes based on the use of variational integrators which inherit in
the discrete case some conserving properties arising from Hamiltonian structure of the problem.

1Other authors have developed specific time–stepping schemes for the co–rotational approach [169].

135
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6.1 Formulation of the problem

An iterative step-by-step integration scheme, which considers finite rotations, is here presented
following the work of Ref. [365]. The proposed method employs the discrete counterparts of the
exponential map, summarized in Table A.1, and the parallel transport2 in SO(3) as it will be
explained in the next sections. The algorithm and the associated configuration update procedure
can be formulated in either the material or the spatial descriptions.
Let the subscript n to denote the temporal discrete approximation of a given time–varying
quantity at time tn ∈ R+. Thus, for the field corresponding to the translational part of the
motion one has,

ϕ̂n(S) , ϕ̂(S, tn) (6.1a)
˙̂ϕn(S) , ˙̂ϕ(S, tn) (6.1b)
¨̂ϕn(S) , ¨̂ϕ(S, tn) (6.1c)

and for the rotational field and its associated kinetics variables

Λn(S) , Λ(S, tn) ∈ SO(3) (6.2a)
v̂n(S) , v̂(S, tn), α̂n(S) , α̂(S, tn) ∈ T spa

Λ (6.2b)

V̂n(S) , V̂ (S, tn), Ân(S) , Â(S, tn) ∈ Tmat
Λ (6.2c)

where the subscript n in Eqs. (6.2a) to (6.2c) denotes time and do not refers to the incremental
quantity from the curved reference rod to the current one. The corresponding angular velocity
and angular acceleration tensors can be obtained as usual suing the ΠΠΠ[•] = •̃ operator.
The basic problem consists in:

(i) Given a configuration (ϕ̂n,Λn) ∈ Ctn , its associated linear and angular velocity vectors,
( ˙̂ϕn, v̂n) ∈ R3 × T spa

Λn
, and linear and angular acceleration vectors ( ¨̂ϕn, α̂n) ∈ R3 × T spa

Λn
,

(ii) obtain the updated configuration (ϕ̂n+1,Λn+1) ∈ Ctn+1 and the corresponding associated
linear and angular velocity vectors ( ˙̂ϕn+1, v̂n+1) ∈ R3×T spa

Λn+1
, and the updated linear and

angular acceleration vectors ( ¨̂ϕn+1, α̂n+1) ∈ R3 × T spa
Λn+1

, in a manner that is consistent
with the virtual work principle.

The material forms of the angular velocity and acceleration vectors can be obtained by using
the discrete version of the pullback and push-forward relations between material and spatial
descriptions at times tn and tn+1. These relations have been summarized in Table 6.1.

Table 6.1: Discrete push–forward relations between angular velocity and acceleration vectors at
times tn and tn+1.

Material Spatial
tn tn+1

V̂n V̂n+1

Ân Ân+1

tn tn+1

v̂n = ΛnV̂n v̂n+1 = Λn+1V̂n+1

α̂n = ΛnÂn α̂n+1 = Λn+1Ân+1

2For a formal definition of the parallel transport see e.g. [119, 251].
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REMARK 6.1. It is worth to note that ṽvvn ∈ T spa
Λn

SO(3) and ṽvvn+1 ∈ T spa
Λn+1

SO(3) i.e. they
belong to different tangent spaces on the rotational manifold i.e. with different base points,
therefore they should not be added directly. The same applies for α̃ααn, α̃ααn+1; ṼVV n, ṼVV n+1; and ÃAAn,
ÃAAn+1 and the corresponding associated skew–symmetric tensors ¥

6.1.1 Newmark algorithm on the rotational manifold

In this work the classical Newmark algorithm for nonlinear elastodynamics [365] is employed
to update the translational part of the configuration and its associated dynamic variables,
(ϕ̂n, ˙̂ϕn, ¨̂ϕn) and, therefore, no explicit details are given in this section3.
In the case of the rotational part, Simo and Vu-Quoc [365] purpose the Newmark time–stepping
algorithm formulated in material form and given in Table 6.2, where β ∈ [0, 1

2 ], γ ∈ [0, 1] are the
classical (scalar) parameters of the algorithm and ∆t is the time step length.

Table 6.2: Newmark algorithm on R3 × SO(3).

Translation

ϕ̂n+1 = ϕ̂n + ûn

ûn = ∆t ˙̂ϕn + (∆t)2
[
(1
2 − β) ¨̂ϕn + β ¨̂ϕn+1

]
˙̂ϕn+1 = ˙̂ϕn + ∆t

[
(1− γ) ¨̂ϕn + γ ¨̂ϕn+1

]

Rotation

Λn+1 = Λnexp
[
Θ̃ΘΘn

] ≡ exp
[
θ̃θθn

]
Λn

Θ̂n = ∆tV̂n + (∆t)2
[
(1
2 − β)Ân + βÂn+1

]

V̂n+1 = V̂n + ∆t
[
(1− γ)Ân + γÂn+1

]

Figure 6.1: Discrete configuration updating in spatial form. (a): Translational part in R3. (b):
Rotational part in SO(3).

The geometric interpretation of the algorithm is shown in Fig. 6.1. For the translational part
the time–stepping procedure takes place in R3 and, therefore, the exponential map reduces to
the identity and the parallel transport is simply a shift in the base point. For the rotation
part the time–stepping procedure takes place in SO(3). A given configuration Λn ∈ SO(3) is
updated forward in time by means of exponentiating the incremental rotation θ̂n ∈ R3 to obtain
Λn+1 = exp[θ̃θθn]Λn (or in material description Λn+1 = Λnexp[Θ̃ΘΘn]). This procedure ensure Λn+1

3A formal presentation of time–stepping algorithms can be reviewed in [42, 107, 108, 170, 307].
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remains in SO(3) by making use of the discrete form of the exponential map. Note that in Fig.
6.1b the step forward in time is performed in material description by employing

ṽvvn+1 = Λn+1ṼVV n+1ΛT
n+1 and α̃ααn+1 = Λn+1ÃAAn+1ΛT

n+1.

This makes sense since V̂n+1 and Ân+1 belongs in the same vector space Tmat
Λn+1

≈ R3.

REMARK 6.2. Mäkinen in Ref. [244] notes that the scheme presented for the rotational part
by Simo and Vu-Quoc is only an approximated version to the correct one, due to the fact that
the second and third formulas in Table 6.2 make no sense because the angular velocity vector V̂n

and the angular acceleration Ân belongs to different tangent space than the angular velocity and
acceleration, Ω̂n+1 and Ân+1 i.e. Θ̂n, V̂n, Ân ∈ Tmat

n and Θ̂n+1, V̂n+1, Ân+1 ∈ Tmat
n+1. However,

that is not necessarily correct due to the fact that the material (respectively spatial) spin vectors
by itself belongs to Tm

I (respectively T s
I ) and therefore, they should be additive. The nonadditive

case has been explained above ¥

If material form of the angular velocity and acceleration vectors are considered as indepen-
dent variables using the Newmark scheme of Table 6.2, the obtained solution procedure yields to
the case where the rotational and translational parts are integrated in similar way. However, this
would be in contradiction with the fact that the rotation group SO(3) is a non-trivial manifold
and not a linear space.
Mäkinen [244] purpose a remedy for this contradiction employing the tangential transformation
defined in Eq. A.74 to obtain a linearized and additive approximation between two consecutive
rotation vectors which define the rotational part of the configuration of the system.
In this work only the approximated version of the Newmark algorithm on rotational manifold,
as originally proposed in [365], will be employed, due to the fact that the present study is con-
cerned with structures which dissipate most of the energy throughout inelastic mechanisms and
therefore, no great advantages are obtained by means of using more sophisticated formulations
for time–stepping algorithms4.

6.1.2 Configuration update

The linearized form of Eq. (3.146) (see §5.3 and §5.4 of Chapter 5) is solved in a Newton–Raphson
scheme for each time step tn+1. Usually, each time step require several iterations to converge; lets
denote generically by (i) to the ith iteration. Assuming that the configuration (ϕ̂(i)

n+1,Λ
(i)
n+1) ∈

Ctn+1 is known, by solving the linearized system it is possible to obtain a incremental field
p̂s

n+1 = (∆ϕ̂
(i)
n+1, ∆θ̂

(i)
n+1) such as

L [G(ϕ̂(i)
n+1,Λ

(i)
n+1, η̂

s)] = G(ϕ̂(i)
n+1,Λ

(i)
n+1, η̂

s) + DG(ϕ̂(i)
n+1,Λ

(i)
n+1, η̂

s) · p̂s(i)
n+1 ≈ 0 (6.3)

which is approximately zero for a new family of configuration variables in equilibrium (see §5.4.4).
Then, the basic setup [365] is:

¤ Given (ϕ̂(i)
n+1,Λ

(i)
n+1) ∈ Ctn+1 and the incremental field (∆ϕ̂

(i)
n+1,∆θ̂

(i)
n+1) ∈ TCtn+1 .

4See Mäkinen [244, 247] for an improved Newmark scheme, Betsch and Steinmann [62] for a constrained version
of the problem of determining a precise dynamics of rods; Energy/momentum schemes can be consulted in the
works of Simo et al. [373], Armero and Romero [19, 20, 21, 340] or Ibrahimbegović [189].
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¤ Update (ϕ̂(i)
n+1,Λ

(i)
n+1) ∈ Ctn+1 to (ϕ̂(i+1)

n+1 ,Λ(i+1)
n+1 ) ∈ Ctn+1 in a manner consistent with the

time–stepping algorithm given in Table 6.2.

The translational part is updated as usual in R3, in this case the exponential map reduces to
the identity and parallel transport reduces to shift the base point (see Fig. 6.2a). The central
issue concerns the update of incremental rotation.

Figure 6.2: Iterative configuration updating in spatial form. (a): Translational part in R3. (b):
Rotational part in SO(3).

Taking into account the results of Appendix A and using the exponential map, one has

Λ(i)
n+1 = exp[θ̃θθ

(i)

n ]Λn (6.4a)

Λ(i+1)
n+1 = exp[θ̃θθ

(i+1)

n ]Λn (6.4b)

where θ̃θθ
(i)

n and θ̃θθ
(i+1)

n are the skew–symmetric tensors associated to the spatial form of the
rotation vectors which parameterize the rotation from Λn to Λ(i)

n+1 and Λ(i+1)
n+1 corresponding

to the iterations (i) and (i + 1), respectively. Note that the incremental rotation ∆θ̂
(i)
n+1 is

non-additive to θ̂
(i)
n+1 but

Λ(i+1)
n+1 = exp[∆θ̃θθ

(i)

n+1]Λ
(i)
n+1. (6.5)

By other hand, it is interesting to note the fact that both θ̃θθ
(i)

n Λn and θ̃θθ
(i+1)

n Λn are elements

of the same tangent space ∈ T spa
Λn

SO(3) and ∆θ̃θθ
(i)

n+1Λ
(i)
n ∈ T spa

Λn+1
SO(3), therefore, the updating

procedure described in Eqs. (6.4a) to (6.5) makes perfect sense (see Fig. 6.2b).
The second formula in Eq. (6.4a) requires the obtention of θ̂

(i+1)
n from θ̂

(i)
n and ∆θ̂

(i)
n+1; this

procedure can be carried out with the aid of Eq. (A.76) as

θ̂(i+1)
n = θ̂(i)

n + T(θ̂(i)
n )∆θ̂

(i)
n+1. (6.6)

REMARK 6.3. In Ref. [365] the procedure defined in Eq. (6.5) is preferred for updating the
rotation tensor in each iteration of a time-step. Other authors [178, 182] prefer to use Eqs. (6.4a)
and (6.6) i.e. the total incremental rotation vector is the main independent variable selected
for describing rotations. This last choice of parametrization for rotations produce symmetric
tangential stiffness matrices but the deduction and implementation of the resulting numerical
problem become much more complicated and time consuming during calculations ¥
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6.1.3 Updating procedure for the angular velocity and acceleration

As it has been described translational velocities ˙̂ϕ(i)
n+1 and accelerations ¨̂ϕ(i+1)

n+1 in each point
of the current rod can be obtained by means of employing the formulas of Table 6.2 as usual
in elastodynamics. The iterative version of the time–stepping algorithm is presented in Table
6.3. The updated angular velocity V̂

(i+1)
n+1 and acceleration Â

(i+1)
n+1 vectors in material form5 are

obtained assuming the following approximation for the time-step tn+1 iterations (i) and (i + 1):

Θ̂(i+1)
n = ∆tV̂n + (∆t)2

[
(
1
2
− β)Ân + βÂ

(i+1)
n+1

]

Θ̂(i)
n = ∆tV̂n + (∆t)2

[
(
1
2
− β)Ân + βÂ

(i)
n+1

]
(6.7)

where Θ̂(i)
n = ΛT

n θ̂
(i)
n and Θ̂(i+1)

n = ΛT
n θ̂

(i+1)
n . Subtracting the two expressions of Eq. (6.7) one

obtains
Â

(i+1)
n+1 = Â

(i)
n+1 +

1
(∆t)2β

[
Θ̂(i+1)

n − Θ̂(i)
n

]
. (6.8)

Similarly, in the case of the material angular velocities one has,

V̂ (i+1)
n = V̂n + ∆t

[
(1− γ)Ân + γÂ

(i+1)
n+1

]

V̂ (i)
n = V̂n + ∆t

[
(1− γ)Ân + γÂ

(i)
n+1

]
(6.9)

subtracting the two expressions of Eqs. (6.9) and employing Eq. (6.8) one obtains

V̂
(i+1)
n+1 = V̂

(i)
n+1 +

γ

∆tβ

[
Θ̂(i+1)

n − Θ̂(i)
n

]
. (6.10)

The complete iterative updating procedure for the dynamic variables employing the Newmark
algorithm has been summarized in Table 6.3.

Table 6.3: Discrete Newmark algorithm.

Translation Rotation

ϕ̂
(i+1)
n+1 = ϕ̂

(i)
n+1 + û

(i)
n+1

˙̂ϕ(i+1)
n+1 = ˙̂ϕ(i)

n+1 + γ
∆tβ ∆ϕ̂

(i)
n+1

¨̂ϕ(i+1)
n+1 = ¨̂ϕ(i)

n+1 + 1
(∆t)2β

∆ϕ̂
(i)
n+1

Λ(i+1)
n+1 = exp

[
∆θ̃θθ

(i)

n+1

]
Λ(i)

n+1

exp
[
θ̃θθ

(i+1)

n

]
= exp

[
∆θ̃θθ

(i)

n+1

]
exp

[
θ̃θθ

(i)

n

]

V̂
(i+1)
n+1 = V̂

(i)
n+1 + γ

∆tβ

[
Θ̂(i+1)

n − Θ̂(i)
n

]

Â
(i+1)
n+1 = Â

(i)
n+1 + 1

(∆t)2β

[
Θ̂(i+1)

n − Θ̂(i)
n

]

In each iteration the angular velocity and acceleration are updated in the material description,
their spatial counterparts are obtained throughout the push-forward relations:

v̂
(i+1)
n+1 = Λ(i+1)

n+1 V̂
(i+1)
n+1 ; and α̂

(i+1)
n+1 = Λ(i+1)

n+1 Â
(i+1)
n+1 .

5As it has been highlighted in [365] the material description is more advantageous for writing time–stepping
algorithms in SO(3) due to the inertia tensor has constant components.
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A geometric interpretation of the procedure summarized in Table 6.3 is given in spatial descrip-
tion taking into account that

v̂
(i+1)
n+1 = Λ(i+1)

n+1 Λ(i)T
n+1v̂

(i)
n+1 +

γ

(∆t)2β
Λ(i+1)

n+1 ΛT
n

[
θ̂(i+1)
n − θ̂(i)

n

]
(6.11)

Since Λ(i+1)
n+1 Λ(i)T

n+1 : T spa

Λ
(i)
n+1

SO(3) → T spa

Λ
(i+1)
n+1

SO(3) and Λ(i+1)
n+1 ΛT

n : T spa
Λn

SO(3) → T spa

Λ
(i+1)
n+1

SO(3),

the first term in Eq. (6.11) may be interpreted as the parallel transport of v̂
(i)
n+1 from T spa

Λ
(i)
n+1

SO(3)

to T spa

Λ
(i+1)
n+1

SO(3); whereas the second term is the parallel transport of
[
θ̂
(i+1)
n − θ̂

(i)
n

]
from

T spa
Λn

SO(3) to T spa

Λ
(i+1)
n+1

SO(3) (see Figure 6.1).

The update procedure summarized in Table 6.3 applies for i ≥ 1. For i = 0, the initial guess in
the Newton process, one sets:

ϕ̂
(0)
n+1 = ϕ̂n, Λ(0)

n+1 = Λn. (6.12)

With this assumption ( ˙̂ϕ(0)
n+1, v̂

(0)
n+1) and ( ¨̂ϕ(0)

n+1, α̂
(0)
n+1) are computed by the Newmark formulae

of Table 6.2 giving

Â
(0)
n+1 =

[
1− 1

2β

]
Ân − V̂n

β∆t
(6.13)

V̂
(0)
n+1 = V̂n + ∆t

[
(1− γ)Ân + γÂ

(0)
n+1

]
. (6.14)

6.1.3.a Corrected Newmark scheme

As it has been explained in Section 6.1.1 (see Remarks 6.1 and 6.2) the Newmark scheme on
the rotation manifold presented in Table 6.2 or equivalently in Eqs. (6.7) and (6.9) is only an
approximated formulation (see Mäkinen [244]).
This scheme can not be corrected directly with the aid of the tangential transformation T given
in Eq. (A.76), because it is a linearized operator and the incremental rotation vector θ̂n is not
necessarily a small quantity. However, the iterative form of the Newmark scheme (see Table 6.3)
may be adjusted with the aid of T obtaining

Θ̂(i+1)
n = Θ̂(i)

n + ∆Θ̂(i)
n ∈ Tmat

Λn
(6.15a)

V̂
(i+1)
n+1 = V̂

(i)
n+1 +

γ

∆tβ
T(Θ̂(i+1)

n )∆Θ̂(i)
n (6.15b)

Â
(i+1)
n+1 = Â

(i)
n+1 +

1
(∆t)2β

T(Θ̂(i+1)
n )∆Θ̂(i)

n +
γ

∆tβ
Ṫ(Θ̂(i+1)

n )∆Θ̂(i)
n (6.15c)

Λn+1 = Λnexp[Θ̂m
n ] = exp[θ̂m

n ]Λn; for convergent solution Θ̂m
n . (6.15d)

In this case, the tangential transformation is a map T : Tmat
n → Tmat

n+1 so the scheme defined in
Eqs. (6.15a) to (6.15d) makes sense due to all the vectors belongs to the same vector space on
the rotation manifold. During iteration, they occupy on a linear space, (a fixed tangential vector
space), which changes with time-step. The last term in Eq. (6.15c) arise from the existence
of the non-constant tangential transformation T in Eq. (6.15b). This Newmark time–stepping
algorithm can be called exact updated Lagrangian formulation, where unknown rotational vectors
belongs to the tangential space of previously converged configuration, (see [246, 245, 244] for
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more details).

6.1.4 Iterative strain and strain rate updating procedure

The discrete form, about the configuration (ϕ̂(i)
n+1,Λ

(i)
n+1) ∈ Ctn+1 of the spatial form of the

translational and rotational strains, existing in each point S ∈ L of the mid-curve of the current
rod configuration relative to the curved reference configuration (summarized in Table 3.1 of
§3.4.1), can be written as

{γ̂n}(i)
n+1 = {ϕ̂,S }(i)

n+1 − {t̂1}(i)
n+1 (6.16a)

{ω̂n}(i)
n+1 = axial

[
(Λn,S )(i)n+1(Λ

T
n )(i)n+1

]
(6.16b)

where the material description is obtained employing the pullback operation as

{Γ̂n}(i)
n+1 = Λ(i)T

n+1{γ̂n}(i)
n+1 (6.17a)

{Ω̂n}(i)
n+1 = Λ(i)T

n+1{ω̂n}(i)
n+1. (6.17b)

Given an incremental field (∆ϕ̂
(i)
n+1,∆θ̂

(i)
n+1), it is possible to construct an update algorithm as

it is described in the next subsections.

6.1.4.a Translational strains

Displacements are updated as described in Table 6.3, the vector normal to the cross section t̂1
is updated by means of the application of the incremental (iterative) rotation tensor, obtained
from the exponentiation of the iterative rotation increment exp

[
∆θ̂

(i)
n+1

]
, on the previous iterative

rotation tensor to obtain the updated orientation triad {t̂j}(i)
n+1 at time tn+1, iteration (i + 1).

Therefore, the spatial form of the updated translational strains vector is computed as

{γ̂n}(i+1)
n+1 = {ϕ̂,S }(i)

n+1 + {∆ϕ̂,S }(i)
n+1 − exp

[
∆θ̂

(i)
n+1

]{t̂1}(i)
n+1

= {ϕ̂,S }(i+1)
n+1 − {t̂1}(i+1)

n+1 (6.18a)

and
{Γ̂n}(i+1)

n+1 = exp
[
∆θ̂

(i)
n+1

]
Λ(i)T

n+1{γ̂n}(i+1)
n+1 = Λ(i+1)T

n+1 {γ̂n}(i+1)
n+1 (6.18b)

for the material description.

6.1.4.b Rotational strains

An additive updating rule for the spatial form of the rotational strain tensor (curvature tensor)
can be constructed based on Eq. (3.37a) of Section 3.1.6 as follows

{ω̃ωωn}(i+1)
n+1 = ∆{ω̃ωωn}(i)

n+1 + exp[∆θ̃θθ
(i)

n+1]{ω̃ωωn}(i)
n+1exp[∆θ̃θθ

(i)

n+1]
T ∈ T spa

Λ
(i+1)
n+1

SO(3)

=
d(exp[∆θ̃θθ

(i)

n+1])
dS

exp[−∆θ̃θθ
(i)

n+1] + exp[∆θ̃θθ
(i)

n+1]{ω̃ωωn}(i)
n+1exp[∆θ̃θθ

(i)

n+1]
T (6.19a)
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and for the material description one obtains

{Ω̃ΩΩn}(i+1)
n+1 = Λ(i)T

n+1exp
[
∆θ̃θθ

(i)

n+1

]T {ω̃ωωn}(i+1)
n+1 = Λ(i+1)T

n+1 {ω̃ωωn}(i+1)
n+1 ∈ Tmat

Λ
(i+1)
n+1

SO(3). (6.19b)

Finally, the updated rotational strain vectors are obtained as

{ω̂n}(i+1)
n+1 = axial[{ω̃ωωn}(i+1)

n+1 ] (6.19c)

{Ω̂n}(i+1)
n+1 = axial[{Ω̃ΩΩn}(i+1)

n+1 ]. (6.19d)

In Eq. (6.19a) it is necessary to compute the term (d(exp[∆θ̂
(i)
n+1])/dS)exp[−∆θ̂

(i)
n+1] which can

be done according to the methods described in Ref. [363] or [199]. The first method due to Simo
and Vu-Quoc is described in §B.2 of Appendix B but details will be omitted in this section by
briefly.

6.1.4.c Strain vector at material point level

The spatial form of the iterative strain vector at given material point on the current cross section,
Eq. (3.59), is obtained from the results of Eqs. (6.18a) and (6.19a) as

{ε̂n}(i+1)
n+1 =

1
|F0|

[
{γ̂n}(i+1)

n+1 + {ω̃ωωn}(i+1)
n+1 {T̂ }(i+1)

n+1

]
. (6.20)

The material form of {ε̂n}(i+1)
n+1 , which is used for integrating the constitutive equations, is

obtained by means of the pullback operation with the updated rotation tensor Λ(i+1)
n+1 as

{Ên}(i+1)
n+1 = Λ(i+1)

n+1
T {ε̂n}(i+1)

n+1 =
1
|F0|

[
{Γn}(i+1)

m + {Ω̃n}(i+1)
n+1 Ê

]
(6.21)

with |F0|−1 = (ΛT
0 ϕ̂0,S ·Ê1 + ξ3Ω̂02 − ξ2Ω̂03) [207], which is a initial geometric parameter.

6.1.4.d Strain rate vector

An objective measure [300] of the strain rate vector on each material point of the cross section
of the current rod is obtained from Eq. (3.81c). Having estimated ϕ̂

(i+1)
n+1 , ˙̂ϕ(i+1)

n+1 and v̂
(i+1)
n+1 from

Newmark’s algorithm, it is possible to construct the discrete form of the co–rotated strain rate
vector as

{ŝn}(i+1)
m+1 = { ˙̂ϕ,S }(i+1)

n+1 − {ṽvvn+1}(i+1)
n+1 {ϕ̂,S }(i+1)

n+1 + {ṽvvn,S }(i+1)
n+1 Ê

(i+1)
n+1 (6.22a)

{Ŝ}(i+1)
n+1 = Λ(i+1)T

n+1 {ŝn}(i+1)
n+1 . (6.22b)

In Eq. (6.22a) it has been supposed that ϕ̂
(i+1)
n+1 , ˙̂ϕ(i+1)

n+1 and {ṽvvn}(i+1)
n+1 = ΠΠΠ[{v̂n}(i+1)

n+1 ] are known
functions of the coordinate S ∈ [0, L]; this assumption will be explicitly explained in Section 7
about finite element implementation.

REMARK 6.4. In Eq. (6.22a) it has been supposed that the angular velocity tensor is in-
terpolated at the integration point bye means of using an isoparametric [170] approximation
i.e. {ṽvvn}(i+1)

n+1 (S) =
∑Nd

I NI(S){ṽvvI
n}(i+1)

n+1 and, therefore, the term {ṽ,S }(i+1)
m is calculated as∑Nd

I NI(S),S {ṽvvI
n}(i+1)

m , where Nd is the number of nodal points on a beam element ¥
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Another possibility for estimating the discrete form of the strain rate vector is by means of
applying the finite difference method as follows:

{ŝn}(i+1)
n+1 = Λ(i+1)

n+1

[{Ên}(i+1)
n+1 − {Ên}n

∆t

]
(6.23)

where ∆t is the length of the time-step between the current configuration and the previous one
at tn.

6.2 Discrete form of the linearized functional

In order to give an explicit expression for the term DG(ϕ̂(i)
n+1,Λ

(i)
n+1, η̂

s), Eq. (6.3), entering in the
iterative Newton–Raphson scheme, one has to be able to write the discrete version of the linear
forms of §5 in terms of the spatial form of the incremental (iterative) field (∆ϕ̂

(i)
n+1, ∆θ̂

(i)
n+1) ∈

TCtn+1 .
First, in analogous manner as in §5.1.1, it is necessary to calculate the discrete counterpart of a
curve of perturbed configurations in Ctn+1 , that is, a map

R → Ctn+1

ε 7→ (ϕ̂(i)
ε(n+1),Λ

(i)
ε(n+1))

(6.24)

by setting

ϕ̂
(i)
ε(n+1) , ϕ̂

(i)
n+1 + ε∆ϕ̂

(i)
n+1 (6.25a)

Λ(i)
ε(n+1) , exp[ε∆θ̃θθ

(i)

n+1]exp[θ̃θθ
(i)

n+1]Λn. (6.25b)

Then one defines the linearized quantities (∆ϕ̂
(i)
ε(n+1), ∆Λ(i)

ε(n+1)) as the objects in the tangent
space TCn+1 given in terms of the directional derivative by the following expressions:

∆ϕ̂
(i)
n+1 , d

dε

∣∣∣
ε=0

ϕ̂
(i)
ε(n+1) = ∆ϕ̂

(i)
n+1 (6.26a)

δΛ(i)
n+1 , d

dε

∣∣∣
ε=0

Λ(i)
ε(n+1) = ∆θ̃θθ

(i)

n+1Λ
(i)
n . (6.26b)

To proceed further with the linearization of the incremental rotational vector, we make use of
representations for Λ(i)

ε(n+1) and Λ(i)
n+1 in terms of exponential maps starting at Λn.

By one hand, one has that Λ(i)
ε(n+1) = exp[θ̃θθ

(i)

ε(n)]Λn and, θ̃θθ
(i)

ε(n)Λn and θ̃θθ
(i)

n Λn belong to T spa
Λn

SO(3).

We have to note that [365] ∆θ̃θθ
(i)

n+1Λ
(i)
n+1 belongs to the tangent space T spa

Λ
(i)
n+1

SO(3) at Λ(i)
n+1 and

hence,

exp
[
θ̃θθ

(i)

ε(n)

]
= exp

[
ε∆θ̃θθ

(i)

n+1

]
exp

[
θ̃θθ

(i)

n

]
(6.27)

with this relation in mind, we obtain the linearization of the discrete incremental rotation θ̂
(i)
ε(n),

which is the axial vector of θ̃θθ
(i)

ε(n) in Eq. (6.27), as

Dθ̂(i)
n ·∆θ̂

(i)
n+1 , δθ̂(i)

n =
d
dε

∣∣∣
ε=0

θ̂
(i)
ε(n) = T(θ̂(i)

n )∆θ̂
(i)
n+1 (6.28)
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where T : T spa

Λ
(i)
n+1

SO(3) → T spa
Λn

SO(3) is the linear tangential map defined in Eq. (A.76) of

§A.4.4. From Eq. (6.28) and the time–stepping algorithm of Table 6.3 it is possible to write the
linearized forms of the angular velocity and acceleration in material form about the configuration
(ϕ̂(i)

n+1,Λ
(i)
n+1) as

δV̂
(i)
n+1 =

γ

∆tβ
ΛT

nT(θ̂(i)
n )∆θ̂

(i)
n+1 (6.29a)

δÂ
(i)
n+1 =

1
(∆t)2β

ΛT
nT(θ̂(i)

n )∆θ̂
(i)
n+1 (6.29b)

If the material form of the incremental (iterative) field (∆ϕ̂
(i)
n+1, ∆Θ̂(i)

n+1) ∈ TCtn+1 is preferred
a set of equivalent iterative rules are obtained. First, it is necessary to calculate the discrete
counterpart of a curve of perturbed configurations (ϕ̂(i)

ε(n+1),Λ
(i)
ε(n+1)) ∈ Ctn+1 . Here we only will

concentrate on the rotational field because the translational part is the same as for the spatial
incremental field. Then we have

Λ(i)
ε(n+1) := Λnexp[Θ̃ΘΘ

(i)

n+1]exp[ε∆Θ̃ΘΘ
(i)

n+1]. (6.30)

and
δΛ(i)

n+1 :=
d
dε

∣∣∣
ε=0

Λ(i)
ε(n+1) = Λ(i)

n ∆Θ̃ΘΘ
(i)

n+1. (6.31)

By one hand, one has that Λ(i)
ε(n+1) = Λnexp[Θ̃ΘΘ

(i)

ε(n)], ΛnΘ̃ΘΘ
(i)

ε(n) and ΛnΘ̃ΘΘ
(i)

n ∈ T spa
Λn

SO(3), in the

same manner, Λ(i)
n+1∆Θ̃ΘΘ

(i)

n+1 ∈ Tmat

Λ
(i)
n+1

SO(3) which allow to write

exp
[
Θ̃ΘΘ

(i)

ε(n)

]
= exp

[
Θ̃ΘΘ

(i)

n

]
exp

[
ε∆Θ̃ΘΘ

(i)

n+1

]
. (6.32)

Then, the linearization of the material form of the discrete incremental rotation Θ̂(i)
ε(n), which is

the axial vector of Θ̃ΘΘ
(i)

ε(n) is obtained as

DΘ̂(i)
n ·∆Θ̂(i)

n+1 = δΘ̂(i)
n =

d
dε

∣∣∣
ε=0

Θ̂(i)
ε(n) = TT (Θ̂(i)

n )∆Θ̂(i)
n+1 (6.33)

where T is the same tensor as in Eq. (6.28) but written in terms of Θ̂(i)
n and TT : Tmat

Λ
(i)
n+1

SO(3) →
Tmat
Λn

SO(3) (see §A.4.4). In this case, the linearized forms of the angular velocity and acceleration

in material form about the configuration (ϕ̂(i)
n+1,Λ

(i)
n+1) reads

δV̂
(i)
n+1 =

γ

∆tβ
TT (Θ̂(i)

n )∆Θ̂(i)
n+1 (6.34a)

δÂ
(i)
n+1 =

1
(∆t)2β

TT (Θ̂(i)
n )∆Θ̂(i)

n+1 (6.34b)

6.2.1 Discrete form of the out of balance forces

The discrete form of the out-of-balance force term of Eq. (6.3), G(ϕ̂(i)
n+1,Λ

(i)
n+1, η) ∼= G

(i)
n+1, is

obtained from the contribution of the internal, external and inertial terms as follows
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6.2.1.a Internal component

The discrete contribution of the internal component to the residual force vector is obtained as

G
(i)
int(n+1) =

∫ L

0
η̂sTBBB(ϕ̂(i)

n+1)
T Φ̂(i)

n+1dS

=
∫ L

0
η̂mTB̄BB(ϕ̂(i)

n+1,Λ
(i)
n+1)

T Φ̂(i)
n+1dS (6.35)

where the discrete forms of the operators BBB
(i)
n+1 and B̄BB

(i)
n+1 are obtained evaluating the expressions

of Eqs. (5.12c) and (5.16c) at the configuration (ϕ̂(i)
n+1,Λ

(i)
n+1). Observe that the internal force

and moment vector Φ̂(i)
n+1 corresponds to those calculated at the time step tn+1 iteration (i).

6.2.1.b Inertial component

The discrete contribution of the inertial forces to the out of balance force vector is obtained as

G
(i)
ine(n+1) =

∫ L

0
η̂sT

[
Aρ0

¨̂ϕ(i)
n+1

III(i)
ρ0(n+1){α̂n}(i)

n+1 + {ṽvvn}(i)
n+1(III(i)

ρ0(n+1){v̂n}(i)
n+1)

]
dS

=
∫ L

0
η̂mT

[
Aρ0

¨̂ϕ(i)
n+1

Iρ0{Ân}(i)
n+1 + {ṼVV n}(i)

n+1(Iρ0{V̂n}(i)
n+1)

]
dS (6.36a)

where the discrete form of the spatial inertial tensor IIIρ0 is obtained bey means of the push–
forward operation by the rotation tensor Λ(i)

n+1 acting on the material form of the inertial tensor

Iρ0 , according to I(i)
ρ0(n+1) = Λ(i)

n+1
→

(Iρ0) = Λ(i)
n+1Iρ0Λ

T (i)
n+1.

Additionally, considering the time–stepping algorithm of Table 6.3 it is possible to construct an
iterative updating for the inertial component of the out of balance force vector as

G
(i+1)
ine(n+1) = G

(i)
ine(n+1) +

1
(∆t)2β

∫ L

0
η̂mT

[
Aρ0∆ϕ̂

(i)
n+1

f̂(i+1)
n + (γ∆t)2f̃ff

(i+1)

n (Iρ0f̂
(i+1)
n )

]
dS (6.36b)

where f̂(i+1)
n = [Θ̂(i+1)

n − Θ̂(i)
n ].

6.2.1.c External component

By the other hand, the discrete contribution of the external loading to the out of balance force
vector is obtained as

G
(i)
ext(n+1) =λ(

∫ L

0
η̂sT (

[
N̂g +R̂ϕ+c

(i)
N(n+1)N̂d+Λ(i)

(n+1)
ˆ̄Np

M̂g +R̂θ +c
(i)
M(n+1)M̂d+Λ(i)

(n+1)
ˆ̄Mp

]
)dS +

Np∑

k=1

η̂s
k
T

[
P̂ k

g + Λ(i)
(n+1)

ˆ̄P k
p

M̂k
g

]
)(6.37)

which is obtained evaluating the configuration dependent terms of the different types of applied
forces and moments (see §3.8) at the configuration (ϕ̂(i)

n+1,Λ
(i)
n+1).
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6.2.2 Discrete tangential stiffness

Of course, if the configuration (ϕ̂(i)
n+1,Λ

(i)
n+1) ∈ Ctn+1 is an equilibrium configuration, it follows

that G
(i)
n+1 ≈ 0 ∀η̂ ∈ TCn+1. On the contrary a next iteration has to be performed using the

discrete form of the tangential stiffness DG
(i)
n+1 · p̂s(i)

n+1, Eq. (6.3), which is obtained as the sum
of the three contributions i.e. the internal, external and inertial terms as

DG
(i)
n+1 · p̂s(i)

n+1 =
[
DG

(i)
int(n+1) + DG

(i)
ine(n+1) + DG

(i)
ext(n+1)

] · p̂s(i)
n+1

=
[
KM + KV + KG + KP + M + Kgyr + Kcent

](i)

n+1

=
[
Km

M + Km
V + Km

G + Km
P + Mm + Km

gyr + Km
cent

](i)

n+1

= DG
(i)
n+1 · p̂m(i)

n+1 . (6.38)

In this section, explicit expressions for the different terms which contributes to the discrete
tangent stiffness are given according to Section 5.3.

6.2.2.a Internal tangential stiffness

According to Eq. (5.68) we have that the discrete version of the tangential stiffness due to the
contribution of the internal forces, [KM + KG + KV ](i)n+1, is obtained as

K
(i)
M(n+1) =

∫ L

0
η̂s[BBB(ϕ̂(i)

n+1)]
T

[
C̄sv

nn C̄sv
nm

C̄sv
mn C̄sv

mn

](i)

n+1

[B(ϕ̂(i)
n+1)]p̂

s(i)
n+1dS

=
∫ L

0
η̂sBBB

(i)T
n+1C̄

sv(Λ(i)
n+1)BBB

(i)
n+1p̂

s(i)
n+1dS (6.39a)

where C̄sv
ij (Λ(i)

n+1) = Λ(i)
n+1C̄

mv
ij Λ(i)T

n+1 i, j ∈ {n,m} and BBB
(i)
n+1 is obtained from Eq. (5.12c) evalu-

ating at ϕ̂,
(i)
S(n+1). By the other hand, the geometric part given by

K
(i)
G(n+1) =

∫ L

0
η̂s

[
BBB

(i)T
n+1NNN (i)

n+1 + FFF
(i)
n+1

]
p̂
s(i)
n+1dS (6.39b)

where the stress dependent tensors NNN and FFF are calculated according to Eqs. (5.58) and
(5.67) but the associated values of the stress resultant and couples are those corresponding to
Φ̂(i)

n+1 ∈ T ∗Cn+1.
The viscous dependent part is obtained as

K
(i)
G(n+1) =

∫ L

0
η̂s

[
BBB

(i)T
n+1ῩΥΥ

ss(i)
n+1VVV(i)

n+1

]
p̂
s(i)
n+1dS (6.39c)

where ῩΥΥss(i)
ij(n+1)(Λ

(i)
n+1) = Λ(i)

n+1ῩΥΥ
ss
ijΛ

T (i)
n+1 i, j ∈ {n,m} are calculated according to Eqs. (4.53a)

and (4.53b). The strain rate dependent tensor VVV(i)
n+1 can be calculated considering the fact that

Newmark’s time stepping scheme, Eq. (6.29a), along with the discrete form of the result of Eq.
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(5.19a), which allow to establish the following equivalences:

∆ ˙̂ϕ(i)
n+1 = [γ/(∆tβ)]I∆ϕ̂

(i)
n+1

∆V̂
(i)
n+1 = [γ/(∆tβ)]ΛT

nT(θ̂(i)
n )∆θ̂

(i)
n+1 = ΛT

n∆ ˙̂
θ(i)
n

identifying the tensors [γ/(∆tβ)]I and [γ/(∆tβ)]T(θ̂(i)
n ) with HHH a and HHH b of Eqs. (5.27a) and

(5.27b), respectively; Therefore, the following expressions are obtained:

∆ ˙̂
θ(i)
n =

γ

∆tβ
T(θ̂(i)

n )∆θ̂
(i)
n+1 (6.40a)

∆ ˙̂
θ,

(i)
S(n) =

γ

∆tβ

[
T(θ̂(i)

n )∆θ̂,
(i)
S(n+1) +T(θ̂(i)

n ),S ∆θ̂
(i)
n+1

]
(6.40b)

and δ ˙̂ϕ(i)
n+1 = [γ/(∆tβ)]I∆ϕ̂,

(i)
S(n+1). In Eqs. (6.40a) and (6.40b) the explicit expression for

T(θ̂),S can be consulted in Ref. [88]. Finally, the discrete form of Eqs. (5.23c) and (5.23d) can
be rearranged as

δ
O

[Φ̂]=

[
γtβI[ d

dS I]− ṽvv
(i)
n+1[

d
dS I] ˙̃ϕϕϕ,

(i)
S(n+1) +ϕ̃ϕϕ,

(i)
S(n+1) γtβT

(i)
n − ṽvv

(i)
n+1ϕ̃ϕϕ,

(i)
S(n+1)

0 (γtβT
(i)
n − ṽvvn)[ d

dS I] + γtβ[T(i)
n [ d

dS I] + T(i)
n ,S ]

][
δϕ̂

∆θ̂

]
= VVV(i)

n+1p̂
s(i)
n+1

(6.41)
where the scalar γtβ = γ

∆tβ and T(i)
n = T(θ̂(i)

n ).
On the other hand, if the material updating rule is preferred for the rotational part and according
to Eq. (5.84) we have that the discrete version of the tangential stiffness due to the contribution
of the internal forces, [Km

M + Km
G + Km

V ](i)n+1, is obtained as

K
m(i)
M(n+1) =

∫ L

0
η̂mB̄BB

(i)T
n+1C̄

sv(Λ(i)
n+1)B̄BB

(i)
n+1p̂

m(i)
n+1dS (6.42a)

where the sub-matrices C̄sv
ij (Λ(i)

n+1) i, j ∈ {n, m} of the reduced constitutive tensor C̄sv are as in

Eq. (6.39a) and B̄BB
(i)
n+1 = B̄BB(ϕ̂(i)

n+1,Λ
(i)
n+1) is obtained from Eq. (5.16c) evaluating at (ϕ̂(i)

n+1,Λ
(i)
n+1)

and its derivatives with respect to the arch–length S ∈ [0, L]. The geometric part given by

K
m(i)
G(n+1) =

∫ L

0
η̂m

[
B̄BB

(i)T
n+1NNN (i)

n+1 + F̄FF
(i)
n+1

]
p̂
m(i)
n+1dS (6.42b)

where the stress dependent tensor F̄FF ((ϕ̂,Λ)(i)n+1, Φ̂
(i)
n+1) is calculated according to Eq. (5.83).

The viscous dependent part is obtained as

K
m(i)
G(n+1) =

∫ L

0
η̂m

[
B̄BB

(i)T
n+1ῩΥΥ

ss(i)
n+1V̄VV(i)

n+1

]
p̂
m(i)
n+1dS. (6.42c)

In this case, the material strain rate dependent tensor V̄VV(i)
n+1 can be calculated considering Eqs.

(6.29a) and (5.21b), being established the following equivalences:

∆V̂
(i)
n+1 = [γ/(∆tβ)]TT (Θ̂(i)

n )∆Θ̂(i)
n+1 = ∆ ˙̂Θ(i)

n+1 + ṼVV
(i)

n+1∆Θ̂(i)
n+1 (6.42d)



6.2. Discrete form of the linearized functional 149

which allows to deduce the following expressions for the tensor HHH m
b of Eq. (7.47) and its

derivative HHH m
b ,S as follows:

∆ ˙̂Θ(i)
n+1 =

[
γtβTT (i)

n − ṼVV
(i)

n+1

]
∆Θ̂(i)

n+1 (6.43a)

∆ ˙̂Θ,S
(i)
n =

[
γtβTT (i)

n − ṼVV
(i)

n+1

]
∆Θ̂,

(i)
S(n+1) +

[
γtβT,

T (i)
S(n)−ṼVV ,

(i)
S(n+1)

]
∆Θ̂(i)

n+1

= HHH
m(i)
b(n+1)∆Θ̂,

(i)
S(n+1) +HHH m

b ,
(i)
S(n+1) ∆Θ̂(i)

n+1 (6.43b)

where TT (i)
n = TT (Θ̂(i)

n ), T,
T (i)
S(n) = T,TS (Θ̂(i)

n ) and the explicit expression for T,TS can be consulted
in Ref. [88]. Finally, the discrete form of Eq. (7.47) can be expressed as

δ
O

[Φ̂]=




γtβI[ d
dS I]− ṽvv

(i)
n+1[

d
dS I]

O
[ ˙̃γγγn] (i)

n+1Λ
(i)
n+1+

Λ(i)
n+1ΠΠΠ[ΛT (i)

n+1ϕ̂,
(i)
S(n+1) ]HHH m(i)

b(n+1)

0 Λ(i)
n+1(HHH

m(i)
−

b(n+1)[
d
dS I]+

HHH m
b ,

(i)
S(n+1) + ˙̃Ω(i)

n+1 + Ω̃(i)
n+1HHH

m(i)
b(n+1))




[
δϕ̂

δΘ̂

]
= V̄VV(i)

n+1p̂
m(i)
n+1 .

(6.44)
It is worth to note that, in general, V̄VV is configuration dependent and it couples the rotational
and translational parts of the motion.

6.2.2.b Inertial tangent stiffness

Considering the iterative Newmark time–stepping scheme of Table 6.3, it is possible to rewrite
the discrete form of the term Aρ0

¨̂ϕ in Eq. (5.70) as

Aρ0∆¨̂ϕ(i)
n+1 =

1
h2β

Aρ0I∆ϕ̂
(i)
n+1 = ΞΞΞϕ∆ϕ̂

(i)
n+1 (6.45)

where it is possible to see that ΞΞΞϕ is a constant (configuration independent) tensor. Employing
the results of Eqs. (6.29a) and (6.29b), it is possible to rewrite the terms Ξ̂θ1 and Ξ̂θ2 of Eqs.
(5.71a) and (5.71a) in discrete form as

Ξ̂(i)
θ1(n+1) = −ΠΠΠ

[
Λ(i)

n+1{Iρ0{Ân}(i)
n+1 + {ṼVV n}(i)

n+1(Iρ0{V̂n}(i)
n+1)}

]
∆θ̂

(i)
n+1 (6.46a)

Ξ̂(i)
θ2(n+1) =

1
(∆t)2β

Λ(i)
n+1

{
Iρ0 + ∆tγ

(
{ṼVV n}(i)

n+1Iρ0 −ΠΠΠ[Iρ0{V̂n}(i)
n+1]

)}
ΛT

nT(θ̂(i)
n )∆θ̂

(i)
n+1 (6.46b)

then, the following result is obtained:

Ξ̂(i)
θ1(n+1) + Ξ̂(i)

θ2(n+1) = ΞΞΞ(i)
θ(n+1)∆θ̂

(i)
n+1 (6.47)

where the ΞΞΞ(i)
θ(n+1) is a nonsymmetric and configuration dependent tensor. This last result allows

to obtain the discrete form of the inertial contribution to the tangential stiffness as

DG(i)
ine(n+1) · p̂

s(i)
n+1 = [M + Kgyr + Kcent]

(i)
n+1 = K

(i)
ine(n+1)

=
∫ L

0
η̂sT

[
ΞΞΞϕ 0
0 ΞΞΞ(i)

θ(n+1)

]
p̂
s(i)
n+1dS =

∫ L

0
η̂sTM(i)

ϕθ(n+1)p̂
s(i)
n+1dS (6.48)
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where the explicit expression (in matrix form) of the inertial stiffness tensor M(i)
ϕθ(n+1) is

M(i)
ϕθ(n+1) =




1
(∆t)2β

Aρ0I 0

0
−ΠΠΠ

[
Λ(i)

n+1{Iρ0{Ân}(i)
n+1 + {ṼVV n}(i)

n+1(Iρ0{V̂n}(i)
n+1)}

]
+

1
(∆t)2β

Λ(i)
n+1

{
Iρ0+∆tγ

(
{ṼVV n}(i)

n+1Iρ0−ΠΠΠ[Iρ0{V̂n}(i)
n+1]

)}
ΛT

nT(i)
n


 .(6.49)

By the other hand, if the material updating rule for rotations is preferred one has, from Eqs.
(6.34a) and (6.34b), that

Ξ̂m(i)
Θ(n+1) = Iρ0∆Â

(i)
n(n+1)+ (ṼVV

(i)

n(n+1)Iρ0−ΠΠΠ[Iρ0 V̂
(i)
n(n+1)])∆V̂

(i)
n(n+1)

=
[ 1
(∆t)2β

Iρ0+
γ

∆tβ
(ṼVV

(i)

n(n+1)Iρ0−ΠΠΠ[Iρ0 V̂
(i)
n(n+1)])

]
TT (i)

n ∆Θ̂(i)
n+1 = ΞΞΞm(i)

Θ(n+1)∆Θ̂(i)
n+1 (6.50)

where TT (i)
n = TT (Θ̂(i)

n ) and ΞΞΞm(i)
Θ(n+1) is also a nonsymmetric and configuration dependent tensor,

which considers the contributions of the centripetal and centrifugal effects. Eq. (6.51) allows to
rewrite the discrete form of the inertial contribution to the tangential stiffness as

DG(i)
ine(n+1) · p̂

m(i)
n+1 = [Mm + Km

gyr + Km
cent]

(i)
n+1 = K

m(i)
ine(n+1)

=
∫ L

0
η̂mT

[
ΞΞΞϕ 0
0 ΞΞΞm(i)

Θ(n+1)

]
p̂
m(i)
n+1dS =

∫ L

0
η̂sTMm(i)

ϕΘ(n+1)p̂
m(i)
n+1dS (6.51)

where the explicit expression (in matrix form) of the inertial stiffness tensor Mm(i)
ϕΘ(n+1) is

Mm(i)
ϕΘ(n+1) =




1
(∆t)2β

Aρ0I 0

0
[

1
(∆t)2β

Iρ0 + γ
∆tβ (ṼVV

(i)

n(n+1)Iρ0 −ΠΠΠ[Iρ0 V̂
(i)
n(n+1)])

]
TT (i)

n

]C


 . (6.52)

6.2.2.c External load tangential stiffness

The discrete form of the contribution to the tangential stiffness due to external loading KL is
obtained directly from Eq. (5.77) as

DG(i)
ext(n+1) · p̂

m(i)
n+1 = −λ(

∫ L

0
η̂sT (


 (N̂ (i)

d(n+1) ⊗ Ĉ
(i)
N(n+1))[

d
dS I] + ÑNN (i)

p(n+1)

(M̂(i)
d(n+1) ⊗ Ĉ

(i)
M(n+1))[

d
dS I] +M̃MM(i)

p(n+1)


 p̂

s(i)
n+1dS

+
Np∑

k=1

η̂sT
k

[
P̃PP

k(i)

p(n+1)

0

]
p̂
s(i)
k(n+1)) (6.53)

where the involved loading quantities as well as the vectors ĈN and ĈM have to be evaluated at
the configuration (ϕ̂(i)

n+1,Λ
(i)
n+1) ∈ Ctn+1 .
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6.3 Lagrangian and Hamiltonian formulation of the problem

6.3.1 Lagrangian formulation

Preliminaries. The Lagrangian formulation of mechanics can be based on the variational prin-
ciples behind Newton’s fundamental laws of force balance. One chooses a configuration space
manifold Ct with generic coordinates denoted by q̂Φ = (ϕ̂,Λ) that describe the configuration of
the system under study.
The velocity phase space TCt corresponds to the tangent bundle of Ct (see §3.1.2). Coordinates
on TCt are denoted by (q̂Φ, ˙̂qΦ) ≡ (ϕ̂,Λ, ˙̂ϕ, Λ̇). The Lagrangian is regarded as a function

Lg : TCt → R
(q̂Φ, ˙̂qΦ) 7→ Lg(q̂Φ, ˙̂qΦ, t)

(6.54)

or equivalently, Lg(q̂Φ, ˙̂qΦ, t) ≡ Lg(ϕ̂,Λ, ˙̂ϕ, Λ̇, t). Usually, Lg is the kinetic minus the potential
energy of the system and the following relations hold ˙̂qΦ = dq̂Φ/dt for the variables characterizing
the system’s velocity. The variational principle of Hamilton states that the variation of the action
is stationary at a solution [252]:

δS = δ

∫ b

a
Lg(q̂Φ, ˙̂qΦ, t)dt = 0. (6.55)

where the limits of the integral dotes the initial a final time, a ≈ ta and b ≈ tb, respectively. In
this principle, one chooses curves q̂Φ(t) joining two fixed points in Ct over a fixed time interval
[a, b], and calculates the action S, which is the time integral of the Lagrangian, regarded as
a function of this curve. Hamiltons principle states that the action has a critical point at a
solution in the space of curves, which is equivalent to the Euler-Lagrange equations:

d
dt

∂Lg

∂ ˙̂qΦ

− dLg

dq̂Φ
= 0. (6.56)

If external forces are applied on the system, they have to be added to the right side of Eq.
(6.56).
Lagrangian formulation of the rod theory. By one hand, the kinetic energy of the rod model is
calculated as

K(q̂Φ, ˙̂qΦ, t) =
1
2

∫

Bt

ρ0〈 ˙̂x, ˙̂x〉dV =
1
2

∫ L

0
(Aρ0 | ˙̂ϕ|2dS + v̂n · IIIρ0 v̂n)dS

=
1
2

∫ L

0
(Aρ0 | ˙̂ϕ|2dS + V̂n · IIIρ0 V̂n)dS. (6.57)

By the other hand, the remaining term is the potential energy. The following consideration is
the case in which the external loading is conservative, which implies the existence of a potential
function Wext : Ct → R such that the potential energy of the system is obtained as

V (ϕ̂,Λ) = Vint(ϕ̂,Λ) + Vext(ϕ̂,Λ) (6.58a)

Vint(ϕ̂,Λ) =
∫ L

0
Wstr(Γ̂n, Ω̂n)dS (6.58b)

Vext(ϕ̂,Λ) =
∫ L

0
Wext(ϕ̂,Λ)dS (6.58c)
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where Wstr is the strain energy function per unit of volume defined in §3.7 and the potential
Vint(q̂Φ) is left SO(3) invariant i.e. Vint(Qq̂Φ) = Vext(q̂Φ),∀Q ∈ SO(3). Simo et al. demonstrated
in [373] that if this is the case, then

Vext = Vext(ΛT ϕ̂)

with a particular case given by Vext(‖ϕ̂‖) (central forces).
In this manner, the Lagrangian for a rod subjected to a conservative system of loads is obtained
as Lg(q̂Φ) = K(q̂Φ, ˙̂qΦ)− Vint(q̂Φ)− Vext(q̂Φ) and the Hamilton principle reads

δS = δ

∫ b

a
Lg(q̂Φ, ˙̂qΦ, t)dt =

∫ b

a
(δK(q̂Φ, ˙̂qΦ)− δVint(q̂Φ)− δVext(q̂Φ))dt = 0. (6.59)

Prior to the linearization of the action the linearization of the kinetic energy, considering the
spatial updating rule for rotations and Eqs. (6.57) and (5.19a), is obtained:

DK · η̂s = δK =
1
2

[ ∫ L

0
2Aρ0

˙̂ϕ · δ ˙̂ϕdS +
∫ L

0
(δV̂n · Iρ0 V̂n + V̂m · Iρ0δV̂n)dS

]

=
∫ L

0
Aρ0

˙̂ϕ · δ ˙̂ϕdS +
1
2

[ ∫ L

0
(δ ˙̂

θ ·ΛIρ0 V̂n + V̂n · Iρ0Λ
T δ

˙̂
θ)dS

]

=
∫ L

0
Aρ0

˙̂ϕ · δ ˙̂ϕdS +
1
2

[ ∫ L

0
(δ ˙̂

θ · IIIρ0 v̂n + v̂n · IIIρ0δ
˙̂
θ)dS

]

=
∫ L

0
(Aρ0

˙̂ϕ · δ ˙̂ϕ + IIIρ0 v̂n · δ ˙̂
θ)dS. (6.60)

The linearization of Eq. (6.72b) is obtained considering the results of Eqs. (5.16a) and (5.61)
as

DVint · η̂s = δVint =
∫ L

0
(∂Γ̂n

Wstr · δΓ̂n + ∂Ω̂n
Wstr · Ω̂n)dS

=
∫ L

0
(n̂m · δΓ̂n + m̂m · δΩ̂n)dS

=
∫ L

0
(Φ̂ ·BBBη̂s)dS = Gint(q̂Φ, η̂s) (6.61)

where the notations ∂Γ̂n
Wstr · δΓ̂n = n̂m and∂Ω̂n

Wstr · Ω̂n = m̂m for the hyperelastic constitutive
relations have been used.
Denoting ΛT ϕ̂ ≡ ϕ̂m, considering δϕ̂m = ΛT (δϕ̂ + ϕ̃ϕϕδθ̂) one obtains that the linear part of Eq.
(6.58c) is given by

DVext · η̂s = δVext =
∫ L

0
δWext(ΛT ϕ̂)dS =

∫ L

0
(∂ϕ̂mWext · [ΛT (δϕ̂ + ϕ̃ϕϕδθ̂)]dS

=
∫ L

0
(Λ∂ϕ̂mWext · δϕ̂− ϕ̂×Λ∂ϕ̂mWext · δθ̂)dS

=
∫ L

0
(N̂ · δϕ̂− ϕ̂× N̂ · δθ̂)dS

=
∫ L

0
(N̂ · δϕ̂ + M̂ · δθ̂)dS = Gext(q̂Φ, η̂s). (6.62)
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From the above equation it is possible to see that in the conservative case, the external loads
per unit of arch–length are N̂ = −Λ∂ϕ̂mWext and M̂ = −ϕ̂× N̂ recovering a result of [373].
Then, the Hamilton principle, Eq. 6.59, can be rewritten as

δS =
∫ b

a

[ ∫ L

0
(Aρ0

˙̂ϕ · δ ˙̂ϕ + IIIρ0 v̂n · δ ˙̂
θ)dS −Gint(q̂Φ, η̂s)−Gext(q̂Φ, η̂s)

]
dt = 0. (6.63)

By one hand,
∫ b

a

∫ L

0
Aρ0

˙̂ϕ · δ ˙̂ϕdSdt =
∫ L

0
[Aρ0

˙̂ϕ · δϕ̂]
∣∣∣
b

a
dS −

∫ b

a

∫ L

0
Aρ0

¨̂ϕ · δϕ̂dSdt (6.64a)
∫ b

a

∫ L

0
IIIρ0 v̂n · δ ˙̂

θdSdt =
∫ L

0
[IIIρ0 v̂n · δθ̂]

∣∣∣
b

a
dS −

∫ b

a

∫ L

0

·
(IIIρ0 v̂n) ·δθ̂dSdt (6.64b)

and, therefore, δK becomes

δK =
∫ b

a

∫ L

0

[Aρ0
¨̂ϕ · δϕ̂+

·
(IIIρ0 v̂n) ·δθ̂]dSdt (6.65)

where it has been used the fact that the admissible variations of the configuration variables are
zero in the initial and final times i.e. η̂s|a = 0 and η̂s|b = 0.
By the other hand,

Gint =
∫ b

a

∫ L

0
(n̂ · δϕ̂,S −ϕ̃ϕϕ,S n̂ · δθ̂ + m̂ · δθ̂,S )dSdt

=
∫ b

a
(n̂ · δϕ̂ + m̂ · δθ̂)

∣∣∣
L

0
dt−

∫ b

a

∫ L

0
(n̂,S ·δϕ̂ + ϕ̂,S ×n̂ · δθ̂ + m̂,S ·δθ̂)dSdt

=
∫ b

a
(Φ̂ · δq̂Φ)

∣∣∣
∂Φϕ̂

dt−
∫ b

a
(
∫ L

0
n̂,S ·δϕ̂dS +

∫ L

0
(m̂,S +ϕ̂,S ×n̂) · δθ̂dS)dt. (6.66)

Considering Neumann boundary conditions of the type ∂Φϕ̂ = ∅; ∀t, one obtains

δS =
∫ b

a

∫ L

0

[Aρ0
¨̂ϕ− (n̂,S +N̂ )

] · δϕ̂dSdt

+
∫ b

a

∫ L

0

[ ·
(IIIρ0 v̂n) −(m̂,S +ϕ̂,S ×n̂ + M̂)

] · δθ̂dSdt = 0 (6.67)

Taking into account that η̂s is arbitrary, the reduced equilibrium equations of Eqs. (3.121) and
(3.133) are recovered. Analogously, in the general cases those equations have to be supplemented
with the boundary conditions (3.137a) to (3.137d).

6.3.2 Hamiltonian formulation

The Hamiltonian formulation of the mechanics6 provides an alternative framework for the treat-
ment of the dynamic response of geometrically exact rod theories [116]. In this section a brief
review of the main consequences of exploiting the Hamiltonian structure of the present rod the-
ory will be summarized. One of the most attractive aspect of the formulation of the mechanical

6A theoretical treatment of the Lagrangian and Hamiltonian formulations of mechanics can be found in Marsden
and Ratiu [255]
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problem staring from the construction of the Hamiltonian functional rather that a weak form
of the equilibrium equations, as in §3.6, is the possibility of the development of time–stepping
algorithms which inherit in the discrete case the conservation properties, that is momentum
maps, of the continuum problem and exhibit good energy conservation in the long term (see
the works of Simo and Simo et al. [372, 373]. More details about some works devoted to the
development of the so called energy-momentum conserving time–stepping schemes, highlighting
their advantages, will be addressed in next sections.
Considering the Eqs. (3.122) and (3.134) the following definitions can be constructed:

p̂ := Aρ0
˙̂ϕ ∈ R3 (6.68a)

π̂ := IIIρ0 v̂n = ΛIρ0 V̂n ∈ T spa
Λ (6.68b)

which provide the definition for the spatial field Π̂Φ(p̂, π̂) of generalized momenta via the Legendre
transformations (see [372, 373, 255]).
Further, Ẑ = (ϕ̂,Λ, Π̂Φ) designates an arbitrary point in the infinite dimensional phase space
PCt = T ∗Ct i.e. the co–tangent space to the configuration manifold of Def. 3.7 and §A.
The linear and angular momentum associated to Ẑ ∈ PCt are

L̂(Ẑ) =
∫ L

0
p̂dS =

∫ L

0
Aρ0

˙̂ϕdS (6.69a)

Ĵ(Ẑ) =
∫ L

0
(ϕ̂× p̂ + π̂)dS =

∫ L

0
(ϕ̂× ˙̂ϕ + ΛIρ0 V̂n)dS (6.69b)

and the total force and total torque acting on the rod are

F̂ext =
∫ L

0
N̂dS + [n̂Σ]∂Σϕ̂0 (6.70a)

T̂ext =
∫ L

0
[ϕ̂× N̂ + M̂]dS + [ϕ̂× n̂Σ + m̂Σ]∂Σϕ̂0 (6.70b)

which constitute the external loading. As stated by Simo et al. in [373] if: (i) the external
loading is equilibrated i.e. F̂ext = 0 and T̂ext = 0 ∀t ∈ [0, T ] and (ii) the prescribed boundary
conditions are of the Neumann type i.e. ∂Φϕ̂0 = ∅, then

dL̂

dt
= 0 and

dĴ

dt
= 0 (6.71)

which is a consequence of the Euler laws of motion which implies that if total force and torque on
a mechanical system are zero then the time rate of change in the linear and angular momentum
is also zero, therefore the quantities L̂ and Ĵ of Eq. (6.70a) and (6.70b) are conserved.
A demonstration of the preceding result can be deduced taking into account Eq. (6.67) as

dL̂

dt
=

∫ L

0

˙̂pdS =
∫ L

0
(n̂,S +N̂ )dS

=
∫ L

0
N̂dS + n̂

∣∣
∂Σϕ̂0

= F̂ext (6.72a)
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dĴ

dt
=

∫ L

0
(ϕ̂× ˙̂p + ˙̂π)dS

=
∫ L

0
(ϕ̂× (n̂,S +N̂ ) + m̂,S +ϕ̂,S ×n̂ + M̂)dS

=
∫ L

0

[
(ϕ̂× n̂),S +m̂,S

]
dS +

∫ L

0
(ϕ̂× N̂ + M̂)dS

=
∫ L

0
(ϕ̂× N̂ + M̂)dS + (ϕ̂× n̂ + m̂)

∣∣
∂Σϕ̂0

= T̂ext (6.72b)

where it has been used ˙̂ϕ× ˆ̇p = 0.
Additionally, the total energy of the system is the Hamiltonian Hg := K + Vint + Vext, (Hg :
PCt → R). It is worth to note that

K(Ẑ, t) =
1
2

∫ L

0
( ˙̂ϕ · p̂dS + v̂n · π̂n)dS. (6.73)

The following property holds: The Hamiltonian Hg is conserved by the dynamics in the sense
that

dHg

dt
= 0 in [0, T ]. (6.74)

A length but straightforward manipulation shows, considering Ẇint = ∂Γ̂n
Wint · ˙̂Γn+∂Ω̂n

·Wint
˙̂Ωn,

the Lie definition of co–rotated derivative of §3.2.4, Eqs. (3.79c) and (3.81c) and integration by
parts, that

K̇ =
1
2

∫ L

0
( ¨̂ϕ · p̂ + ˙̂ϕ · ˙̂p + ˙̂v · π̂ + v̂ · ˙̂π)dS =

∫ L

0
( ˙̂ϕ · ˙̂p + v̂ · ˙̂π)dS (6.75a)

V̇int =
∫ L

0
(∂Γ̂n

Wint · ˙̂Γn + ∂Ω̂n
Wint · ˙̂Ωn)dS =

∫ L

0
(n̂·

O
[γ̂]n +m̂·

O
[ω̂]n)dS

=
∫ L

0
n̂ · ˙̂ϕ,S dS −

∫ L

0
n̂ · ṽvvnϕ̂,S dS +

∫ L

0
m̂ · v̂,S dS

= (Φ̂ · ˙̂qΦ)
∣∣L
0
− (

∫ L

0
n̂,S · ˙̂ϕdS −

∫ L

0
(ϕ̂× n̂) · v̂dS +

∫ L

0
m̂,S ·v̂dS) (6.75b)

V̇ext =
∫ L

0
(N̂ · ˙̂ϕ + M̂ · v̂)dS. (6.75c)

Then, considering the fact that ˙̂qΦ also belongs in the space of admissible variations, Ḣg =
K̇ + V̇int + V̇ext and after replacing Eqs. (6.75a) to (6.75c) and regrouping terms, one yields
Ḣg = 0.

6.4 Energy–momentum conserving schemes

The main motivation for the development of numerical algorithms which inherit the conserva-
tion properties of the Hamiltonian dynamical systems are [373]: (i) Conserved quantities often
capture important characteristics of the long–term dynamics. (ii) Conservation of energy usually
leads to algorithmic stability. In this section and by completeness, the description of the most
representatives results in this area is performed.
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In the case of the rod models, probably the pioneering work in the development of such algo-
rithms were carried out by Simo et al. [372, 373]. In that case, the design of the algorithm is
carried out in two steps: (i) Construction of a family of algorithms which conserve the linear and
angular momentum under equilibrated external loadings. (ii) The construction of an algorithmic
counterpart of the elastic constitutive equations, in a manner that ensures energy conservation.
To this end, the weak form of the problem is written as

G(Ẑ, η̂s) =
∫ L

0
(Π̂Φ · η̂s)dS + Gint(q̂Φ, η̂s)−Gext(q̂Φ, η̂s) (6.76)

with Gint and Gext as given in Eqs. (6.62) and (6.67), respectively and the spatial updating rule
for the rotational field is preferred.

6.4.1 Momentum conserving time–stepping algorithm

Let [tn, tn+1] (tn+1 − tn = ∆t) be the time interval, then a midpoint approximation to the time
evolution of the configuration variables is given by

(ϕ̂n+1 − ϕ̂n)
∆t

=
1
2
[ ˙̂ϕn+1 + ˙̂ϕn] = A−1

ρ0
p̂n+1/2 = ûm (6.77a)

(Λn+1 −Λn)
∆t

=
1
2
(Λn+1 + Λn)

1
2
(ṼVV n+1 + ṼVV n) (6.77b)

where both the rotation tensor and the material form of the angular velocity are simultaneously
approximated. Denoting ṼVV m = ∆t1/2(ṼVV n+1 + ṼVV n) it is possible to develop an updating rule for
the rotation tensor, using the Cayley transform, cay[•], as

Λn+1 = Λncay[ṼVV m] = cay[ṽvvm]Λn (6.78)

cay[ṼVV m] = I +
2

1 + 1
2 |Vm|2

[
1
2
ṼVV m +

1
4
ṼVV

2

m], v̂m = ΛnV̂m. (6.79)

The algorithmic approximation of Eq. (6.76) is then provided by

1
∆t

∫ L

0
(δϕ̂ · [p̂n+1 − p̂n] + δθ̂ · [π̂n+1 − π̂n])dS

+
∫ L

0
(n̂ · [δϕ̂,S −δθ̂ × ϕ̂,S(n+1/2) ] + m̂ · δθ̂,S )dS = Gext(Ψ̂, q̂Φ, η̂s) (6.80)

where ϕ̂n+1/2 := 1/2(ϕ̂n+1 + ϕ̂n), Λn+1/2 := 1/2(Λn+1 + Λn); Ψ̂ := [n̂T , m̂T ] are arbitrary
and the contribution of the external loading Gext is assumed conservative. Note that the algo-
rithmic approximation of Eq. (6.80) avoids the inclusion of terms depending on the acceleration.
Assuming Neumann boundary conditions and equilibrated loading (Gext(Ψ̂, ζ̂, η̂s) = 0, Gext(Ψ̂, ζ̂×
ϕ̂n+1/2, η̂

s) = 0, ∀ζ̂ ∈ R3), then the total linear and angular momentum is conserved i.e. (i)
L̂n+1 = L̂n and (ii) Ĵn+1 = Ĵn); independently of Ψ̂.
The demonstration is based on [373]:

(i) Taking δϕ̂ = ζ̂=constant ∈ R3, δθ̂ = 0 and replacing in Eq. (6.80) one obtains

1
∆t

∫ L

0
ζ̂ · [p̂n+1 − p̂n]dS = ζ̂ · [L̂n+1 − L̂n] = 0 → L̂n+1 = L̂n (6.81)
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(ii) For the conservation of angular momentum one choose δϕ̂ = ζ̂ × ϕ̂n+1/2 and δθ̂ =
ζ̂=constant (but arbitrary). After replacing in Eq. (6.80) the term depending on Ψ̂
vanish (ζ̂,S = 0) yielding to

1
∆t

∫ L

0
(ζ̂ × ϕ̂n+1/2) · [p̂n+1 − p̂n] + ζ̂ · [π̂n+1 − π̂n]dS (6.82)

using the identities

(ζ̂ × ϕ̂n+1/2) · [p̂n+1 − p̂n] = ζ̂ · (ϕ̂n+1/2 × [p̂n+1 − p̂n]) (6.83a)
ϕ̂n+1/2 × (p̂n+1 − p̂n) = ϕ̂n+1 × p̂n+1 − ϕ̂n × p̂n − (ϕ̂n+1 − ϕ̂n)× p̂n+1/2 (6.83b)

with the fact that (ϕ̂n+1 − ϕ̂n) = A−1
ρ0

∆tp̂n+1/2 and replacing in Eq. (6.82) one obtains

ζ̂ · [Ĵn+1 − Ĵn] = 0 → Ĵn+1 = Ĵn (6.84)

REMARK 6.5. It is worth to note that the algorithm proposed in Eq. (6.80) conserves the
linear and angular momentum with independence of the stress field Ψ̂ ¥

6.4.2 Conservation of Energy

The second step in the design of an energy conserving time stepping scheme is to specify the
algorithmic constitutive equations consistent with §3.7 and enforcing energy conservation.
The updating rule defined in Eqs. (6.77a) and (6.77b) determine the following incremental
relations for the strain fields:

Γ̂n+1 − Γ̂n = ΛT
n+1/2(ûm,S −v̂m × ϕ̂,S(n+1/2) ) (6.85a)

Ω̂n+1 − Ω̂n = Λ∗T
n+1/2v̂n,S , Λ∗

n+1/2 = Det[Λn+1/2]Λ
−T
n+1/2 (6.85b)

The demonstration of the fact that the updating procedure defined in Eqs. (??) and (6.86) is
deduced from the midpoint approximation to the time evolution of the configuration variables
can be consulted in [373].
Following restrictions on the law of conservation of energy have to be imposed. To this end, it is
sufficient to show that Eqs. (6.77a), (6.77b) and (6.80) (under the assumption of conservation of
dead loading) exactly conserve the energy conservation of the Hamiltonian system (Hg(Ẑn+1) =
Hg(Ẑn)) if the algorithmic constitutive equations hod the following relation:

Wint(Γ̂n+1, Ω̂n+1)−Wint(Γ̂nΩ̂n) = n̂m · (Γ̂n+1 − Γ̂n) + m̂m · (Ω̂n+1 − Ω̂n) (6.86)

where n̂ = Λn+1/2n̂
m and m̂m = Λ∗

n+1/2n̂
m.

The proof is constructed considering as admissible variations δϕ̂ = ûm and δθ̂ = v̂m and the fact
that ΛT

n+1v̂m = ΛT
n v̂m = V̂m. Then,

1
∆t

v̂m · (π̂n+1 − π̂n) =
1

∆t
[ΛT

n+1v̂m · Iρ0 V̂n+1 −ΛT
n v̂m · Iρ0 V̂n]

=
1
2
[V̂n+1 · Iρ0 V̂n+1 − V̂n · Iρ0 V̂n]. (6.87)
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Considering ûm = ∆tϕ̂n+1/2 it is obtained that

1
∆t

ûm · (p̂n+1 − p̂n) = ϕ̂n+1/2 · Aρ0(ϕ̂n+1 − ϕ̂n) =
1
2
Aρ0 [|ϕ̂n+1|2 − |ϕ̂n|2] (6.88)

Therefore, considering the form chosen for the admissible variations, one has

K(Π̂Φ(n+1))−K(Π̂Φ(n)) = Gext −Gint (6.89)

and additionally, considering the updating rule for strains given in Eqs. (6.85a) and (6.85b) one
has that

n̂ · (ûm,S −v̂m × ϕ̂,S(n+1/2) ) + m̂ · v̂n,S = n̂m · (Γ̂n+1 − Γ̂n) + m̂m · (Ω̂n+1 − Ω̂n) (6.90)

Taking into account that the external loading is assumed conservative and inserting the previous
equation int Eq. (6.89) the following result is obtained:

∫ L

0
(Wint(Γ̂n+1, Ω̂n+1)−Wint(Γ̂nΩ̂n)− n̂m · (Γ̂n+1 − Γ̂n) + m̂m · (Ω̂n+1 − Ω̂n))dS = 0 (6.91)

which hods if conservation of energy holds yielding the desired result. Then, the algorithmic
constitutive equations in its simplest form are given by

n̂m = CCCme
nn

1
2
[Γ̂n+1 − Γ̂n] (6.92a)

m̂m = CCCme
mm

1
2
[Ω̂n+1 − Ω̂n] (6.92b)

which fulfill Eq. (6.86).

The spatial discretization (using a Galerkin approximation) and the finite element implementa-
tion of the present time discrete algorithms which fulfill the conservation of momentum maps
and energy is carried out in detail in [373]; additionally, the corresponding linearization of Eq.
(6.80) and its implementation in a iterative scheme is deduced and supplemented by a set of
numerical examples. Those results are omitted here and can be consulted in the mentioned
reference.
Posteriorly, several works have contributed to improve the formulation presented in [373]: For
example, in [340] Romero and Armero present new FE formulation for the dynamics 3D (elas-
tic) geometrically exact rods which leads to an objective7 approximation of the strain measures
(avoiding path-dependence in the numerical results). They employ a direct FE interpolation of
the vector directors of the cross section. The proposed formulation includes a energy-momentum
(by construction) conserving time-stepping algorithm which provides a improved approach to
the dynamics of the underlined Hamiltonian system (see also [19, 20, 23, 21] and references
there in). Betsch and Steinmann [57, 62] propose a new beam FE formulation based upon
the geometrically exact beam theory which also retains the frame-indifference of the underlying
beam theory. (see also [58, 59, 60, 61]). To this end, they introduces a re-parametrization of
the weak form corresponding to the equations of motion of rod. Ibrahimbegović and Mamouri
in [189] an extension of a time-integration energy conserving scheme for geometrically exact
rods which includes properties of controllable energy decay, as well as numerical dissipation of
high-frequency contribution to total response (see also [182, 186, 183, 191]). The list of works

7Objective in the sense of frame-indifferent under superposed rigid body motions.



6.5. Variational integration 159

is large, additional contributions can be reviewed in §2.1.3.

6.5 Variational integration

The variational method for deriving integrators means that the resulting algorithms automat-
ically have a number of properties. In particular, they are symplectic methods, they exactly
preserve momenta associated to symmetries of the system, and they have excellent longtime en-
ergy stability (see §2.1.3 for a more complete review of relevant references). Variational methods
preserve the geometry of the geometric structure of the continuum system. In the present case it
corresponds to the nonlinear nature of the configuration manifold. We are primarily interested
in discrete Lagrangian mechanics for deriving integrators for mechanical systems. In this section
a proposal for the development a variational integrator for the present rod theory is presented.

6.5.1 Summary of the method

In following a brief review of the method for deriving variational integrators is presented fol-
lowing the developments of [222, 253, 254] and references therein. When deriving a varia-
tional integrator, the velocity phase space Ẑ ∈ PCt of the continuous Lagrangian is replaced by
(q̂Φ(n), q̂Φ(n+1)) ∈ Ct × Ct and the discrete Lagrangian LD is chosen such that it approximates a
segment of the action integral

LD(q̂Φ(n), q̂Φ(n+1)) ≈
∫ ∆t

0
Lg(q̂Φ(n,n+1), ˙̂qΦ(n,n+1))dt

where q̂Φ(n,n+1) is the solution of the Euler-Lagrange equation satisfying boundary condi-
tions q̂Φ(n,n+1)(0) = q̂Φ(n) and q̂Φ(n,n+1)(∆t) = q̂Φ(n+1). Then, the discrete action sum
GD =

∑
LD(q̂Φ(n), q̂Φ(n+1)) approximates the action integral G. Taking the variations of the

action sum, we obtain the discrete Euler-Lagrange equation

Dq̂Φ(n)
LD(q̂Φ(n−1), q̂Φ(n)) + Dq̂Φ(n)

LD(q̂Φ(n), q̂Φ(n+1))

where Dq̂Φ(n)
LD denotes the partial derivative of LD with respect to q̂Φ(n). This yields a discrete

Lagrangian map FLD
: (q̂Φ(n−1), q̂Φ(n)) → (q̂Φ(n), q̂Φ(n+1)). Using a discrete analogue of the Leg-

endre transformation, referred to as a discrete fiber derivative FLD : Ct×Ct → T ∗Ct, variational
integrators can be expressed in Hamiltonian form as

p̂Φ(n) = −Dq̂Φ(n)
LD(q̂Φ(n), q̂Φ(n+1)) (6.93a)

p̂Φ(n) = Dq̂Φ(n+1)
LD(q̂Φ(n), q̂Φ(n+1)). (6.93b)

This yields a discrete Hamiltonian map F̄LD
: (q̂Φ(n), p̂Φ(n)) 7→ (q̂Φ(n+1), p̂Φ(n)) which constitutes

the integrator of the equation of motion and inherit the previous mentioned advantages (see
§2.1.3. The method consist in implicitly Eq. (6.93a) for q̂Φ(n+1) then introduce it into Eq. (6.93b)
to obtain q̂Φ(n+1). Therefore, Any integrator which is the discrete Euler-Lagrange equation for
some discrete Lagrangian is called a variational integrator.
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6.5.2 Variation integrator for the rod model

Given two time steps tn and tn+1 the updating procedure for the configurational variables is

ϕ̂n+1 = ϕ̂n + ϕ̂in (6.94a)
Λn+1 = ΛinΛn (6.94b)

where ϕ̂in ∈ R3 and Λin ∈ SO(3) are the incremental (between two time steps) displacement
and rotation. Therefore, Λn+1 ∈ SO(3).
Considering that Λ̇ = ṽvvΛT , ṽvv ∈ T spa

Λ SO(3) on has that the translational velocity ˙̂ϕ and the
skew–symmetric tensors ṽvv and ṼVV (angular velocities) can be approximated by

˙̂ϕn =
ϕ̂n+1 − ϕ̂n

∆t
=

ϕ̂in

∆t
(6.95a)

ṽvvn =
Λn+1 −Λn

∆t
ΛT

n =
1

∆t
(Λin − I) (6.95b)

ṼVV n = ΛT
n

Λn+1 −Λn

∆t
=

1
∆t

(ΛT
nΛinΛn − I), (6.95c)

with ṼVV n = ΛT
n ṽvvnΛn and the corresponding axial vectors obtained as

V̂n = axial[ṼVV n] and v̂n = axial[ṽvvn].

REMARK 6.6. Note that due to the nature approximation used for ṽvvn and ṼVV n, both are not
skew–symmetric and

ṽvvn + ṽvvT
n = (∆t)−1(Λin + ΛT

in − 2I) 6= 0 (6.96a)

ṼVV n + ṼVV
T

n = (∆t)−1(ΛT
nΛn+1 + ΛT

n+1Λn − 2I) 6= 0 (6.96b)

therefore, in the algebraic manipulations it has to considered that ṽvvnâ · b̂ = â · ṽvvT
n b̂ 6= −â · ṽvvnb̂,

∀â, b̂ ∈ R3 (the same applies for ṼVV n) ¥

Then the kinetic energy, Eq. (6.57), is approximated by

Kn =
1

2(∆t)2

∫ L

0
(Aρ0 |ϕ̂in|2dS + axial[ΛT

nΛn+1 − I] · IIIρ0axial[ΛT
nΛn+1 − I])dS (6.97a)

considering that

|ṼVV nÊ |2 = |[ΛT
nΛn+1 − I]Ê |2 =

[ΛT
n+1Λn − I][ΛT

nΛn+1 − I]Ê · Ê
(∆t)2

=
Tr([ΛT

n+1Λn −ΛT
nΛn+1]EEE d)

(∆t)2
.

where EEE d = Ê ⊗ Ê and considering EEE =
∫
A0

EEE ddA0 Eq. (6.97a) can be rewritten as

Kn =
1

2(∆t)2

∫ L

0
(Aρ0 |ϕ̂in|2 + Tr([ΛT

n+1Λn −ΛT
nΛn+1]EEE ))dS (6.97b)

The potential energy is at time tn (equivalently for tn+1) is obtained from Eqs. (6.72a) to (6.58c)
as

Vn = Vint(n) + Vext(n) =
∫ L

0
Wstr(Γ̂n(n), Ω̂n(n))dS +

∫ L

0
Wext(ϕ̂nn,Λn)dS (6.98)
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A discrete version of the Lagrangian of the system in the time interval [tn, tn+1] is constructed
as an approximation of the action integral A as

LD(q̂Φ(n), q̂Φ(n+1)) =
∆t

2

[
Lg(ϕ̂n,

ϕ̂in

∆t
,Λn,

[ΛT
nΛn+1 − I]

∆t
)

+Lg(ϕ̂n+1,
ϕ̂in

∆t
,Λn+1,

[ΛT
nΛn+1 − I]

∆t
)
]

=
∆t

2

[
2Kn − (Vint(n) + Vext(n))− (Vint(n+1) + Vext(n+1))

]
(6.99)

The corresponding linear forms, using the spatial updating rule for rotations, are

δ ˙̂ϕn =
δϕ̂n+1 − δϕ̂n

∆t
=

δϕ̂in

∆t
(6.100a)

δΛin = δθ̃θθn+1Λn+1ΛT
n + Λn+1(δΛn)T = δθ̃θθn+1Λin −Λinδθ̃θθn (6.100b)

δṽvvn =
δ(Λn+1 −Λn)

∆t
ΛT

n +
Λn+1 −Λn

∆t
(δΛn)T

=
δθ̃θθn+1Λin

∆t
− Λinδθ̃θθn

∆t
= δθ̃θθn+1ṽvvn − ṽvvnδθ̃θθn+1 + (δθ̃θθn+1 − δθ̃θθn)(∆t)−1

= δθ̃θθn+1ṽvvn − ṽvvnδθ̃θθn+1 + δ
˙̃
θθθn (6.100c)

δṼVV n = (δΛn)T Λn+1 −Λn

∆t
+ ΛT

n

δ(Λn+1 −Λn)
∆t

= ΛT
n (δθ̃θθn+1 − δθ̃θθn)(∆t)−1Λn+1

= ΛT
n δ

˙̃
θθθnΛn+1. (6.100d)

Considering the previous results one obtains that linearization of the discrete form of the kinetic
and potential energy are

δKn =
1

2(∆t)2

∫ L

0
(2Aρ0(δ ˙̂ϕn+1 · [ ˙̂ϕn+1 − ˙̂ϕn]− δ ˙̂ϕn · [ ˙̂ϕn+1 − ˙̂ϕn])

+Tr([ΛT
n (Λinδθ̃θθn + δθ̃θθnΛin)Λn −ΛT

n (Λinδθ̃θθn+1 + δθ̃θθnΛin)Λn]EEE ))dS(6.101)

δVint(n) =
∫ L

0
(n̂m

n ·ΛT
n [δϕ̂,S(n)−δθ̃θθnϕ̂,S ] + m̂m

n ·ΛT
n δθ̂n,S )dS

=
∫ L

0
(n̂n · [δϕ̂,S(n)−δθ̃θθnϕ̂,S ] + m̂n · δθ̂n,S )dS (6.102)

δVext(n) =
∫ L

0
(N̂ · δϕ̂n + M̂ · δθ̂n)dS (6.103)

Then, considering N = (tb−ta)/(∆t) one obtains that the discrete variation of the action integral
over two times ta, tb is

δGD =
(N∆t−1)∑

k=0

δLD(q̂Φ(k), q̂Φ(k+1)) =
(N∆t−1)∑

k=0

∆t

2

[
2δKn − δVn)− δVn+1

]
. (6.104)

Replacing the results of Eqs. (6.101) to (6.103), rearranging the index of the summation and
grouping terms should provide a set of equations equivalent to those of Eqs. (6.93a) and (6.93a),
which are the variational integrator.





Chapter 7

Finite element implementation

This chapter describes the spatial discretization used in the Galerkin [170] finite element approx-
imation of the time discretization presented in §6 for the (weak) variational equations described
in §5.3.3. As usual in the FEM the applied procedure yields to a system of nonlinear algebraic
equations well suited for the application of the Newton iterative method. Then, the main pur-
pose of this part of the work is to develop a Galerkin discretization of the linearized form of the
virtual work functional consistent with the time discretization previously discussed.
As in the case of the formulation of a time-discrete version of the problem, the main difficulty
arises in the fact that the spatial interpolation of the configuration variables should be consistent
with the nonlinear nature of the configuration manifold R3×SO(3). The developed elements are
based on isoparametric interpolations of both the incremental displacement and the incremental
rotation vectors.
It should be addressed again that, the material or spatial updating rule for the rotations are
equivalent and, therefore, their corresponding interpolated (iterative or incremental) rotation
vectors can be used to parameterize and update the rotational variables. In this manner and
by completeness, both schemes are presented yielding to the corresponding tangential stiffness
matrices and unbalanced force vectors. However, the numerical procedures based on the spatial
form of the iterative incremental rotation vector are preferred to others1, due to the fact that it
makes the expressions for the internal, external and inertial vectors and the tangential matrices
concise and explicit, as opposed to the case when using the incremental rotation vector. This
choice seems to be more efficient and robust for computations and more convenient for program-
ming. The obtained inertial and viscous tangential matrices are consistent with the Newmark
updating procedure described in §6.
Finally, a section devoted to the cross sectional analysis is included, explaining the numeri-
cal obtention of the iterative cross sectional forces and moments as well as the cross sectional
tangential tensors required in the full Newton–Raphson scheme.

7.1 Finite element discretization

In following we consider a FE discretization of a generic one–dimensional domain [0, L]:

[0, L] =
Ne⋃⋃⋃⋃⋃⋃⋃⋃⋃

e = 1

Ihe ; (Ihi ∩ Ihj = ∅; ∀ i, j ∈ {1 · · ·Ne}) (7.1)

1See e.g. Ibrahimbegović Ref. [178] for the employment of an updated additive rotation vector or Cardona et
al. Ref. [88] for the total Lagrangian formulation
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where Ihe ⊂ [0, L] denotes a typical element with length h > 0, and Ne is the total number
of elements. The space of admissible variations TCt is approximated by a finite dimensional
subspace V h ⊂ TCt.
As usual, the calculations are performed on an element basis [365]. Accordingly, let η̂sh be the
restriction to a typical element Ihe of the incremental displacement field/rotation field (using the
spatial updating rule for rotations) η̂sh ≡ (∆ϕ̂h, ∆θ̂h) ∈ V h superposed onto the configuration
(ϕ̂∗,Λ∗) ∈ Ĉt∗ (at t = t∗).
The conventional Lagrangian interpolation [42] is used for describing the initially curved/twisted
reference rod configuration ϕ̂0(e), the current rod position vector ϕ̂(e), the displacement vector,
û(e) and the linearized increments ∆ϕ̂(e) and ∆θ̂(e) of any rod element2 i.e.

s ∈ [−1, 1] 7→





ϕ̂0(e)(s) =
∑Nd

I=1 NI(s)ϕ̂0I(e)

ϕ̂(e)(s) =
∑Nd

I=1 NI(s)ϕ̂I(e)

∆θ̂(e)(s) =
∑Nd

I=1 NI(s)∆θ̂I(e)

∆ϕ̂(e)(s) =
∑Nd

I=1 NI(s)δϕ̂I(e);

(7.2)

where Nd is the number of nodes on a given element and NI(s) I = 1 · · ·Nd are the local
(elemental) shape functions. Note that in Eq. (7.2) the symbol ∆ denoting the linearized
increment can be replaced by δ denoting the admissible variation. Therefore, the value at
s ∈ [−1, 1] of any vectorial quantity, denoted generically by Ĥ(s)(e), is obtained from the values
at the nodes as

Ĥ(e)(s)=



N11 · · · 0

...
. . .

...
0 · · · N16

∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣

NI1 · · · 0
...

. . .
...

0 · · · NI6

∣∣∣∣∣∣∣
︸ ︷︷ ︸

[NI(S)]

· · ·

∣∣∣∣∣∣∣

NNd1 · · · 0
...

. . .
...

0 · · · NNd6







Ĥ1
...

ĤI
...

ĤNd1




(e)

=
[
N1| · · · |NI | · · · |NNd1

]
Ĥ

(e)
= [N]Ĥ(e) (7.3)

where Ĥ(e)I is the value of the vectorial quantity Ĥ(e) at the node I; [N(s)I ] = Diag[N(s)Ii],
(i = 1, . . . , 6) is the diagonal matrix with the values of the shape function corresponding to the
node I evaluated at s. With this notation in mind, for example, the value of the admissible
variation in the third degree of freedom of displacement at s in the element (e) is obtained as
δϕe3(s) = [N]3• · δĤe, with δĤe = [δϕ̂T

1 · · · δθ̂1, · · · , δϕ̂Nd
· · · δθ̂T

Nd
](e) and [N]3• the third row of

the matrix N. The same holds for the components of δθ̂(e), δΘ̂(e), etc. Recovering the expres-
sions given in Eqs. (7.2).
The updating procedure for the rotations can be carried out in either material or spatial repre-
sentations [245] due to the fact that both representations are equivalents and the denominations
material or spatial are employed only to indicate the way in which rotations are handled. A
comparison between both formulations can be found in [88].

REMARK 7.1. A possibility for calculating the interpolated values of the skew–symmetric
tensor θ̃θθ(s)(e) (or Θ̃ΘΘ(s)(e)) is given by calculating θ̂(s)(e) (Θ̂(s)(e) respectively) using Eq. (7.3)
and then applying the operator ΠΠΠ[•] (see §A.2.1 of Appendix A). Other possibility is the direct

2The superscript (e) is used in reference to the eth element in the mesh.



7.2. FE approximation of the out of balance force vector 165

interpolation using the matrix N of the values of the skew–symmetric tensors Θ̃ΘΘ(s)(e)I at the
nodes, taking advantages of the linearity of so(3). ¥

By contrast with the result of the preceding Remark, if the rotation tensor Λ(S) has to be
determined we have

Λ(s)(e) = exp[θ̃θθ(s)(e)] 6= [N](4−6)•exp[θ̃θθI(e)] = Λ (7.4)

where [N](4−6)• is the matrix corresponding to the rows 4 to 6 of the matrix N. Therefore, the
rotation tensor obtained from the interpolated values of the rotation tensor is a rotation tensor;
however, in general we have that ΛΛT 6= I and in this way the interpolation by the shape forms
of the nodal values of the rotation tensor do not produce a rotation tensor due to the fact that
SO(3) is not a linear space.

7.1.1 Spatial derivatives

The derivative with respect to the parameter S ∈ [0, L] of the quantities defined by in Eqs. (7.2)
can be calculated starting from Eq. (7.3) as

Ĥ(s)(e),S =
[
N1,S | · · · |NI,S | · · · |NNd,S

]
Ĥ

(e)
= [N,S ]Ĥ

(e)
(7.5)

where it has been used the generic notation Ĥ(s)(e) and [NI,S ] = Diag[N(S)Ii,S ], (i = 1, . . . , 6)
corresponds to the diagonal matrix constructed from the derivatives with respect to S of the
shape functions NI corresponding to the node I of the element.
As usual in FE implementations shape functions normalized with respect to a curvilinear coor-
dinate3 s ∈ [−1, 1] are used; and in this case Eq. (7.5) is rewritten as

Ĥ(s)(e),S = J−1
s [N,s ]Ĥ

(e)
(7.6)

with Js =
√

ϕ̂0,S ·ϕ̂0,S being the Jacobian of the transformation between S and s.

7.2 FE approximation of the out of balance force vector

Following standard procedures for nonlinear finite element analysis [310], the element contribu-
tion to the residual force vector is obtained from the discrete approximation to the weak form
of momentum balance.

7.2.1 Internal force vector

The finite element approximation of the internal component of the virtual work principle, given in
Eq. (3.147), Gh

int(ϕ̂,Λ, η̂sh)(e), with η̂sh=[η̂s
1 · · · η̂s

I · · · η̂s
Nd

]T =[(δϕ̂1, δθ̂1) · · · (δϕ̂Nd
, δθ̂Nd

)]T ∈ V h

the vector containing nodal values of the admissible variation of the configuration variables

3Usually called it natural coordinates.
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(ϕ̂,Λ)(e) is

Gh
int(ϕ̂,Λ, η̂sh)(e) =

∫

[0,Le]
(


δ

O
[γ̂n]

δ
O

[ω̂n]


·

[
n̂
m̂

]
)dS =

∫

[0,L]
(
[
[BBB][N]η̂sh

]T
[

n̂
m̂

]
)dS

=
∫

[0,Le]
([η̂s

1 · · · η̂s
I · · · η̂s

Nd
][N1 · · ·NI · · ·NNd

]T [BBB]T
[

n̂
m̂

]
)dS (7.7)

where it has been considered Eq. (5.12c) and the following expression is obtained for the generic
term NT

I BBBT :

NT
I BBBT =

[
NI ,S I 0
−NIϕ̃ϕϕ,S NI ,S I

]
(7.8)

with ϕ̃ϕϕ,S = J−1
s ΠΠΠ

[
[N(1−3)•,s ]ϕ̂(e)

]
according to Eq. (7.5). In this way , it is possible to rewrite

Eq. (7.7) as

Gh
int(ϕ̂,Λ, η̂sh)(e) =




η̂s
1
...
η̂s

I
...

η̂s
Nd



·
∫

[0,Le]
(J−1

s




N1,s I 0
−N1ϕ̃ϕϕ,s N1,s I

...
NI ,s I 0
−NIϕ̃ϕϕ,s NI ,s I

...
NNd

,s I 0
−NNd

ϕ̃ϕϕ,s NNd
,s I




[
n̂
m̂

]
)dS

=
Nd∑

I=1

[
δϕ̂I

δθ̂I

]
·
∫

[0,L(e)]
(J−1

s

[
NI ,s n̂

NI ,s m̂−NIϕ̃ϕϕ,s n̂

]
)dS

= η̂shT
Nd∑

I=1

q̂h
int(e)I . (7.9)

Here, q̂h
int(e)I denotes the internal force vector related to the node I in a typical element Ih

e .
The integral appearing in this equation can be calculated using a standard numerical procedure
selecting a set of Nip integration points on the element and using the corresponding weighting
factors WJ (J = 1, . . . , Nip) (e.g. Gauss, Lobbato etc. [170]). Therefore, the term q̂h

int(e)I is
obtained as

q̂h
int(e)I =

[ ∫ Le

0 (J−1
s NI ,s n̂)dS∫ Le

0 J−1
s (NI ,s m̂−NIϕ̃ϕϕ,s n̂)dS

]
=

Nip∑

J=1

[
J−1

s NI ,s n̂
J−1

s (NI ,s m̂−NIϕ̃ϕϕ,s n̂)

]∣∣∣∣
J

JsWJ (7.10)

where (•)|J denotes the evaluation of the given quantity at the integration point number J .
The evaluation of the spatial form of the cross sectional forces and moments, n̂ and m̂, at the
integration points is carried out by means of and appropriated cross sectional analysis as it will
be explained in the next sections.
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7.2.2 External force vector

In the same way as for the internal force vector, the finite element approximation of the external
component of the virtual work principle, given in Eq. (3.142), Gh

ext(ϕ̂,Λ, η̂sh)(e) = Gh
ext(e) is

Gh
ext(e) = η̂sh

(e) ·
∫

[0,Le]
([N]T

[ N̂
M̂

]

(e)

)dS

=
Nd∑

I=1

[
∆ϕ̂I

∆θ̂I

]
·
∫

[0,Le]
NI

[
N̂g + cN N̂d + Λ ˆ̄Np

NI [M̂g + cMM̂d + Λ ˆ̄Mp]

]
dS

=
Nd∑

I=1

[
∆ϕ̂I

∆θ̂I

]
·
Nip∑

J=1

[
NI [N̂g + cNN̂d + Λ ˆ̄Np]

NI [M̂g + cMM̂d + Λ ˆ̄Mp]

]∣∣∣∣∣
J

JsWJ = η̂shT
Nd∑

I=1

q̂h
ext(e)I (7.11)

where q̂h
ext(e)I is the external load vector at the node I.

7.2.3 Inertial force vector

The internal nodal forces in the dynamic case correspond to those of the static case but adding
the inertial contribution, which can be calculated starting from Eq. (3.144), Gh

ine(ϕ̂,Λ, η̂sh)(e)
as

Gh
int(ϕ̂,Λ, η̂sh)(e) = η̂sh

(e) ·
∫

[0,L(e)]
([N]T

[
Aρ0

¨̂ϕ
IIIρ0α̂n + ṽvvnIIIρ0 v̂n

]

(e)

)dS

=
Nd∑

I=1

[
∆ϕ̂I

∆θ̂I

]
·
∫

[0,Le]
NI

[
Aρ0

¨̂ϕ
IIIρ0α̂n + ṽvvnIIIρ0 v̂n

]

(e)

dS

=
Nd∑

I=1

[
∆ϕ̂I

∆θ̂I

]
·

Nip∑

J=1

[
NIAρ0

¨̂ϕ
NI [IIIρ0α̂n + ṽvvnIIIρ0 v̂n]

]∣∣∣∣
J

JsWJ (7.12)

= η̂shT
Nd∑

I=1

q̂h
ine(e)I (7.13)

where q̂h
ext(e)I is the inertial force load vector at the node I.

Finally, considering the results of Eqs. (7.10), (7.11) and (7.13), the unbalanced force term is
written as

Gh
(e)(ϕ̂,Λ, η̂sh) = η̂sh · q̂h

(e) = η̂shT
Nd∑

I=1

(q̂h
int(e)I + q̂h

ine(e)I − q̂h
ext(e)I) (7.14)

7.3 FE approximation of the tangential stiffness

The FE discretization of the tangent stiffness matrix is obtained from the linearized form of the
virtual work principle as given in Section 6.2.1 [178, 228, 207, 363], or equivalently by means of
the linearization of the nodal unbalanced load vector as

∆q̂h
(e)I = [Kh

e ]IJ · [∆ϕ̂, ∆θ̂]eJ . (7.15)
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Here [KIJ ]he is the tangential stiffness matrix, relating the nodes I and J at a given configuration,
in the element e. In the same manner as it was done for the unbalance load vector, the static
and dynamic cases will be treated separately.

7.3.1 Internal contribution to the tangential stiffness

Considering η̂sh(S) = Nη̂sh
(e) and p̂sh(S) = Np̂sh

(e) (see Eq. (7.3)), it is possible to consider the FE
approximation of the linearized form of the internal contribution to the virtual work principle,
Eq. (5.68), relative to the element Ih

e at a given configuration, which can be expressed as

DGh
int(e) · p̂sh = η̂shT

[ ∫ Le

0
(NTBBBT C̄svBBBN)dS

]

︸ ︷︷ ︸
KM(e)

p̂sh

+ η̂shT
[ ∫ Le

0
(NT (FFF + BBBTNNN )N)dS

]

︸ ︷︷ ︸
KG(e)

p̂sh + η̂shT
[ ∫ Le

0
(NT (BBBT ῩssVVV)N)dS

]

︸ ︷︷ ︸
KV (e)

p̂sh

= η̂shT (KM(e) + KG(e) + KV (e))p̂
sh (7.16)

where [KM(e)], [KG(e)] and [KV (e)] are the material (constitutive), geometric and viscous com-
ponents of the element stiffness matrix at the current configuration.
Then we have that the material stiffness matrix can be written as

[KM(e)] =
Nd∑

I,J

∫

[0,L]
NT

I BBBT C̄svBBBNJdS =
Nd∑

I,J

[KM(e)]IJ (7.17)

where [KM(e)]IJ denote the sub-matrix coupling the nodes I and J of the finite element with
explicit expression, after the numerical integration procedure, given by

[KM(e)]IJ =
Nip∑

K

J−1
s




NI ,s NJ ,s Csv
nn NI ,s (Csv

nnϕ̃ϕϕ,s +Csv
nmNJ ,s )

Csv
mnNI ,s NJ ,s

−NINJ ,s Csv
nnϕ̃ϕϕ,s

NI ,s (Csv
mnϕ̃ϕϕ,s NJ + Csv

mmNJ ,s )
−NIϕ̃ϕϕ,s (Csv

nnϕ̃ϕϕ,s NJ + Csv
nmNJ ,s )




∣∣∣∣∣∣
K

WK

(7.18)
which is always symmetric.
In an analogous manner for the term [KG(e)]IJ , taking into account Eq. (7.8) one has

[KG(e)]IJ =
Nip∑

K

(
[

0 0
NIñnnNJ ,s 0

]

︸ ︷︷ ︸
NIFFFNJ

+
[

0 −NI ,s ñnnNJ

0 (NIϕ̃ϕϕ,s ñnnNJ −NI ,s m̃mmNJ)

]

︸ ︷︷ ︸
NT

I BBBTNNNNJ

)

∣∣∣∣∣
K

WK

=
Nip∑

K

(
[

0 −NI ,s ñnnNJ

NIñnnNJ ,s (NI(n̂⊗ ϕ̂,s−n̂ · ϕ̂,s I) + NI ,s m̃mm)NJ

] ∣∣∣∣∣
K

WK (7.19)

which is not necessarily symmetric and it has been used the identity of Eq. (A.21b) of §A.
Analogously, the FE discretization of the viscous component off the tangential stiffness is com-
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puted as

[KV (e)] =
Nd∑

IJ

∫

[0,L]
NT

I (BBBT ῩssVVV)NJdS =
Nd∑

IJ

[KV (e)]IJ (7.20)

where the sub-matrix I–J of the viscous component of the tangential stiffness matrix is given
by

[KV (e)]IJ = J−1
s

Nip∑

K




NI ,s ῩΥΥss
nnNJ ,s (γtβI− ṽvv)

NI ,s
{
ῩΥΥss

nnNJ( ˙̃ϕϕϕ,s +ϕ̃ϕϕ,s γtβT−
−ṽvvϕ̃ϕϕ,s ) + ῩΥΥss

nm((2γtβT−
+ṽvvn)NJ ,s +γtβT,s NJ)

}

NJ ,s (γtβI− ṽvv)(NI ,s ῩΥΥss
mn

−NIϕ̃ϕϕ,s ῩΥΥss
nn)

(NI ,s ῩΥΥss
mm −NIϕ̃ϕϕ,s ῩΥΥss

nn)NJ( ˙̃ϕϕϕ,s +
+ϕ̃ϕϕ,s γtβT− ṽvvϕ̃ϕϕ,s )+

+(NI ,s ῩΥΥss
nm−

−NIϕ̃ϕϕ,s ῩΥΥss
nn)((γtβ2T−

−ṽvvn)NJ ,s +γtβT,s NJ)




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
K

WK .(7.21)

7.3.2 Inertial contribution to the tangential stiffness

The finite element discretization of the inertial contribution to the elemental tangent stiffness
Kine(e), Eq. (6.48), is obtained as

Kine(e) = η̂shT
[ ∫ L(e)

0
NTMϕθNdS

]
p̂sh = η̂shT [Kine(e)]p̂

sh (7.22)

where the elemental inertial stiffness matrix [Kine(e)] is calculated as

[Kine(e)] =
Nd∑

IJ

∫ L(e)

0
NT

I MϕθNJdS =
Nd∑

IJ

[Kine(e)]IJ (7.23)

where [Kine(e)]IJ , coupling the degree of freedom of node I and of node J , is the sum of the
operators {[KM ]he + [KG]he + [KL]he}IJ of Eq. (7.16). The explicit expression for [Kine(e)]IJ Eq.
(6.49) is the following:

[Kine(e)]IJ =
∫ L(e)

0
NT

I

[
ΞΞΞϕ 0
0 ΞΞΞθ

]
NJdS ∈ R6×6

=
Nip∑

k




1
(∆t)2β

Aρ0NINJ 0

0

[
−ΛΠΠΠ[Iρ0Ân + V̂n × Iρ0 V̂n]

+ 1
(∆t)2β

Λ(Iρ0 −∆tγΠΠΠ[Iρ0 V̂n]

∆tγΠΠΠ[V̂nIρ0 ])
]
Λ∗TTNINJ




∣∣∣∣∣∣∣∣∣∣∣
K

JsWK(7.24a)

where Λ∗T corresponds to the last converged configuration and the remaining Λ’s are the it-
erative ones as described in §6.2. Both ΞΞΞϕ and ΞΞΞθ are elements of R3×3. As noted in Section
6.2.2.b, the tangent inertia matrix is nonsymmetric and configuration dependent. This property
concerns only the rotational degrees of freedom. The sub-matrix ΞΞΞϕ corresponds to the transla-
tional degrees of freedom and is constant, as usually found in the expression for the consistent
matrix when the deformation map takes values in a linear space.
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7.3.3 External contribution to the tangential stiffness

By the linearization of the external load vector, (see Eq. (5.77)), one obtains the discrete form
of the tangential stiffness matrix due to the applied loadings.

KP (e) = η̂shT

[∫ Le

0
NT

[
(N̂d ⊗ ĈN )[ d

dS I] + ÑNN p

(M̂d ⊗ ĈM )[ d
dS I] +M̃MMp

]
NdS

]
p̂sh

= η̂shT ([KP (e)]p̂
sh = η̂shT ([KP1(e)] + [KP1(e)])p̂

sh (7.25)

where

[KP1(e)] =
Nd∑

IJ

∫ Le

0
NT

I

[
(N̂d ⊗ ĈN )[ d

dS I]
(M̂d ⊗ ĈM )[ d

dS I]

]
NJdS =

Nd∑

IJ

[KP1(e)]IJ

[KP2(e)] =
Nd∑

IJ

∫ Le

0
NT

I

[
ÑNN p

M̃MMp

]
NJdS =

Nd∑

IJ

[KP2(e)]IJ .

The two components of the tangent stiffness matrix due to external loading coupling the nodes
I and J are explicitly given by

[KP1(e)]IJ =
Nip∑

k

[
NINJ ,s N̂d ⊗ ĈN

NINJ ,s M̂d ⊗ ĈM

]∣∣∣∣∣
K

WK (7.26a)

the second part is known as the pressure stiffness matrix and is given by

[KP2(e)]IJ =
Nip∑

k=1

[
NINJÑNN p

NINJM̃MMp

]∣∣∣∣∣
K

JsWK . (7.26b)

REMARK 7.2. According to Li [228] both [KP1]e and [KP2]e can be neglected for small
displacements/rotations but not for large displacements/rotations, especially when an exact
bifurcation analysis is needed [180, 89, 187] ¥

Finally, the tangent stiffness matrix of Eq. (7.15), relating the nodes I and J , is given by

[Kh
(e)]IJ =

[
[KM(e)] + [KG(e)] + [KV (e)] + [Kine(e)] + [KP1(e)] + [KP2(e)]

]
IJ

. (7.27)

7.4 Material updating of the rotational field

In the case of the material updating rule of the rotational field we have that the space of admissi-
ble variations TCt is approximated by a finite dimensional subspace V mh ⊂ TCt. Accordingly, an
element in V mh is given by η̂mh

e ≡ (∆ϕ̂h, ∆Θ̂h) superposed onto the configuration (ϕ̂∗,Λ∗) ∈ Ĉt∗ .
The conventional Lagrangian interpolation [42] is used for describing the incremental rotation
Θ̂(e) and its linearized (iterative) increment ∆Θ̂(e) of any rod element i.e.

Θ̂(e)(s) =
Nd∑

I=1

NI(s)Θ̂I(e) ∆Θ̂(e)(S) =
Nd∑

I=1

NI(s)∆Θ̂I(e). (7.28)
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Note that in Eq. (7.28) the symbol ∆ denoting the linearized increment can be replaced by δ
denoting the admissible variation. Therefore, the value at s ∈ [−1, 1] of any (material) vectorial

quantity, denoted generically by Ĥ
m(e)

, is obtained from the values at nodes as

Ĥ(S)me =
[
N1| · · · |NI | · · · |NNd

]
Ĥ

m
e = [N]Ĥ

m
e (7.29)

where Ĥ
m
e = [Ĥ

m
1e · · · Ĥ

m
Nde] with Ĥ

m
Ie is the value of the material form of the vectorial quantity

Ĥ
m

at the node I. For example, the value of the admissible variation in the third degree
of freedom of rotation at s in the element (e) is obtained as δΘe3(S) = (δN6•) · δĤm

e , with
δĤ

m
e = [δϕ̂T

1 · · · δΘ̂1, · · · , δϕ̂Nd
· · · δΘ̂T

Nd
]e and N6• the sixth row of the matrix N.

The derivative with respect to the parameter S ∈ [0, L] of the quantities defined in Eq. (7.29)
can be calculated in analogous manner as in Eq. (7.5) i.e.

Ĥ(s)m(e),S =
[
N1,S | · · · |NI,S | · · · |NNd,S

]
Ĥ

m
e = [N,S ]Ĥ

m
e (7.30)

where it has been used the generic notation Ĥ(S)me and Eq. (7.5) can be rewritten as

Ĥ(S)m(e),S = J−1
s [N,s ]Ĥ

m
e (7.31)

with Js =
√

ϕ̂0,S ·ϕ̂0,S being the Jacobian of the transformation between S and s (see §7.1.1).

7.5 FE approximation of the out of balance force vector

Following standard procedures for nonlinear finite element analysis [310], the element contribu-
tion to the residual force vector is obtained from the discrete approximation to the weak form
of momentum balance.

7.5.1 Internal force vector

The FE approximation of the internal component of the virtual work principle, given in Eq.
(3.147), Gh

int(ϕ̂,Λ, η̂mh)(e), with η̂mh=[η̂m
1 · · · η̂m

I · · · η̂m
Nd

]T =[(δϕ̂1, δΘ̂1) · · · (δϕ̂Nd
, δΘ̂Nd

)]T ∈ V mh

the vector containing nodal values of the admissible variation of the configuration variables
(ϕ̂,Λ)(e) is

Gh
int(ϕ̂,Λ, η̂h)(e) =

∫ Le

0
([η̂m

1 · · · η̂m
I · · · η̂m

Nd
][N1 · · ·NI · · ·NNd

]T [B̄BB]T
[

n̂
m̂

]
)dS (7.32)

where it has been considered Eq. (5.12c) and the following expression is obtained for the generic
term NT

I B̄BB
T :

NT
I B̄BB

T =
[

NI ,S I 0
−NIΛT ϕ̃ϕϕ,S [NI ,S I−NIΩ̃n]ΛT

]
(7.33)
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with ϕ̃ϕϕ,S = J−1
s ΠΠΠ

[
[N(1−3)•,s ]ϕ̂(e)

]
according to Eq. (7.5). In this way , it is possible to rewrite

Eq. (7.32) as

Gh
int(ϕ̂,Λ, η̂mh)(e) = η̂mh ·

∫ Le

0
(J−1

s




N1,s I 0
−N1ΛT ϕ̃ϕϕ,S [N1,s I−N1Ω̃n]ΛT

...
NNd

,s I 0
−NNd

ΛT ϕ̃ϕϕ,S [NNd
,s I−NNd

Ω̃n]ΛT




[
n̂
m̂

]
)dS

=
Nd∑

I=1

[
δϕ̂I

δΘ̂I

]
·
∫ Le

0
(J−1

s

[
NI ,s n̂

−NIϕ̃ϕϕ,s n̂m + [NI ,s I−NIΩ̃n]m̂m

]
)dS

=
Nd∑

I=1

η̂m
I · q̂h

int(e)I . (7.34)

Here, q̂h
int(e)I denotes the internal force vector related to the node I in a typical element Ih

e .
Numerically, the term q̂h

int(e)I is obtained as

q̂h
int(e)I =

Nip∑

J=1

[
NI ,s n̂

−NIϕ̃ϕϕ,s n̂m + [NI ,s I−NIΩ̃n]m̂m

] ∣∣∣∣
J

WJ . (7.35)

As in Section 7.5.1, the evaluation of the spatial form of the cross sectional forces and moments,
n̂ and m̂ is carried out by means of and appropriated cross sectional analysis.

7.5.2 External force vector

The FE approximation of the external component of the virtual work principle, given in Eq.
(3.142), Gh

ext(ϕ̂,Λ, η̂mh)e = Gmh
ext(e) is

Gmh
ext(e) = η̂mh

(e) ·
∫

[0,Le]
([N]T

[ N̂
M̂

]

(e)

)dS

=
Nd∑

I=1

[
∆ϕ̂I

∆Θ̂I

]
·
∫

[0,Le]
NI

[
N̂g + cNN̂d + Λ ˆ̄Np

NI [M̂g + cMM̂d + Λ ˆ̄Mp]

]
dS

=
Nd∑

I=1

[
∆ϕ̂I

∆Θ̂I

]
·
Nip∑

J=1

[
NI [N̂g + cN N̂d + Λ ˆ̄Np]

NI [M̂g + cMM̂d + Λ ˆ̄Mp]

]∣∣∣∣∣
J

JsWJ

=
Nd∑

I=1

η̂m
I · q̂h

ext(e)I (7.36a)

where q̂h
ext(e)I is the external load vector at the node I.
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7.5.3 Inertial force vector

The FE discretization of the inertial contribution to the out of balance force vector can be
calculated starting from Eq. (3.144), Gh

ine(ϕ̂,Λ, η̂mh)(e) as

Gh
int(ϕ̂,Λ, η̂mh)(e) = η̂mh

(e) ·
∫

[0,Le]
([N]T

[
Aρ0

¨̂ϕ
Iρ0Ân + ṼVV nIρ0 V̂n

]

(e)

)dS

=
Nd∑

I=1

[
∆ϕ̂I

∆Θ̂I

]
·
Nip∑

J=1

[
NIAρ0

¨̂ϕ
NI [Iρ0Ân + ṼVV nIρ0 V̂n]

] ∣∣∣∣∣
J

JsWJ (7.37)

=
Nd∑

I=1

η̂I · q̂mh
ine(e)I (7.38)

where q̂mh
ext(e)I is the inertial force load vector at the node I. Finally, considering the results of

Eqs. (7.34), (7.36a) and (7.37), the unbalanced force term is written as

Gh
(e)(ϕ̂,Λ, η̂mh) = η̂h · q̂mh

(e) =
Nd∑

I=1

η̂h
(e)I · (q̂mh

int(e)I + q̂mh
ine(e)I − q̂mh

ext(e)I) (7.39)

7.6 FE approximation of the tangential stiffness

In this section the FE discretization of the tangent stiffness deduced considering the material
updating rule for rotations is presented, according with the results of Section 6.2.2.

7.6.1 Internal contribution to the tangential stiffness

Considering η̂mh(S) = Nη̂m(e) and p̂mh(S) = Np̂m(e), one obtains that the FE approximation of
the linearized form of the internal contribution to the virtual work principle, Eq. (5.84) can be
expressed as

DGh
int(e) · p̂mh = η̂mhT (

[ ∫ Le

0
(NTB̄BB

T C̄svB̄BBN)dS
]

︸ ︷︷ ︸
Km

M(e)

+
[ ∫ Le

0
(NT (F̄FF + B̄BB

T
NNN )N)dS

]

︸ ︷︷ ︸
Km

G(e)

p̂mh +
[ ∫ Le

0
(NT (B̄BBT ῩssV̄VV)N)dS

]

︸ ︷︷ ︸
Km

V (e)

)p̂mh

= η̂mhT (Km
M(e) + Km

G(e) + Km
V (e))p̂

mh (7.40)

where [Km
M(e)], [Km

G(e)] and [Km
V (e)] are the material (constitutive), geometric and viscous com-

ponents of the element stiffness matrix at the current configuration consistent with a material
updating of the rotational field. Then, we have

[Km
M(e)] =

Nd∑

I,J

∫ Le

0
NT

I B̄BB
T C̄svB̄BBNJdS =

Nd∑

I,J

[Km
M(e)]IJ (7.41)
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with [Km
M(e)]IJ given by

[Km
M(e)]IJ =

Nip∑

K

J−1
s




NI ,s NJ ,s Csv
nn

NI ,s

[
Csv

nnϕ̃ϕϕ,s ΛNJ+

+Csv
nmΛ[NJ ,s I + Ω̃nNJ ]

]

[NI ,s I−NIΩ̃n]ΛTCsv
mnNJ ,s

−NIΛT ϕ̃ϕϕ,s Csv
nnNJ ,s

−NIΛT ϕ̃ϕϕ,s
[
Csv

nnϕ̃ϕϕ,s ΛNJ+
Csv

nmΛ[NJ ,s I + Ω̃nNJ ]
]
+

[NI ,s I−NIΩ̃n]ΛT
[
Csv

mnϕ̃ϕϕ,s ΛNJ

+Csv
mmΛ[NJ ,s +Ω̃nNJ ]

]




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
K

WK

(7.42)
which is always symmetric. In an analogous manner for the term [KG(e)]IJ , taking into account
Eq. (7.8) one has

[KG(e)]IJ =
Nip∑

K

(NIF̄FFNJ + NT
I B̄BB

TNNNNJ)
∣∣∣
K

JsWK

=
Nip∑

K

([KG1(e)]IJ + [KG2(e)]IJ)
∣∣∣
K

WK (7.43)

where

[KG1(e)]IJ =




0 0

NIñnn
mΛT NJ ,s

NI

[
(ΠΠΠ[ΛT ϕ̂,s ]ñnnm + m̃mm,ms )NJ+

m̃mmmNJ ,s +Js{m̃mmmΩ̃n − Ω̃nm̃mm
m}NJ

]


 (7.44a)

[KG2(e)]IJ =
[

0 −NI ,s ñnnNJ

0 NIϕ̃ϕϕ,s ñnnmNJ − ([NI ,s I−NIJsΩ̃n]m̃mmmNJ

]
(7.44b)

which, inserting Eqs. (7.45) and (7.44b) in (7.43) yields to

[KG(e)]IJ =
Nip∑

K

(




0 −NI ,s ñnnNJ

NIñnn
mΛT NJ ,s

NI

[
ΠΠΠ[ΛT ϕ̂,s ]ñnnm + m̃mm,ms +

JsΠΠΠ[m̃mmmΩ̂n] + ϕ̃ϕϕ,s ñnnm
]
NJ

NIm̃mm
mNJ ,s−[NI ,s I−NIJsΩ̃n]m̃mmmNJ




)

∣∣∣∣∣
K

WK (7.45)

which is not necessarily symmetric and it has been used the identity of Eq. (A.21b) of §A.
The FE discretization of the viscous component off the tangential stiffness is computed as

[KV (e)] =
Nd∑

IJ

∫

[0,L]
NT

I (B̄BBT ῩssV̄VV)NJdS =
Nd∑

IJ

[Km
V (e)]IJ . (7.46)
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Considering the results of Eqs. (4.55), (7.33) and (7.47) one obtains that the sub-matrix I–J of
the viscous component of the tangential stiffness matrix is given by

[KV (e)]IJ = J−1
s

Nip∑

K




NI ,s ῩΥΥss
nn(γtβI− ṽvvn)NJ ,s

NI ,s (ῩΥΥss
nn(

O
[ ˙̃γγγn]Λ + ϕ̃ϕϕ,S ΛHHH m

b )NJ+
ῩΥΥss

nmΛ(HHH m
b NJ ,s +[HHH m

b ,s +
˙̃Ωn + Ω̃nHHH m

b ]NJ))

−NIΛT ϕ̃ϕϕ,S ῩΥΥss
nn(γtβI

−ṽvvn)NJ ,s +[NI ,S I−
NIΩ̃n]ΛTῩΥΥss

mn(γtβI
−ṽvvn)NJ ,s

−NIΛT ϕ̃ϕϕ,S

[
ῩΥΥss

nn(
O

[ ˙̃γγγn]Λ+
ϕ̃ϕϕ,S ΛHHH m

b )NJ+
ῩΥΥss

nmΛ(HHH m
b NJ ,s +[HHH m

b ,s +
˙̃Ωn + Ω̃nHHH m

b ]NJ)
]
+

[NI ,S I−NIΩ̃n]ΛT
[
ῩΥΥss

mn(
O

[ ˙̃γγγn]Λ+
ϕ̃ϕϕ,S ΛHHH m

b )NJ+
ῩΥΥss

mmΛ(HHH m
b NJ ,s +[HHH m

b ,s +
˙̃Ωn + Ω̃nHHH m

b ]NJ)
]




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
K

WK .

(7.47)

7.6.2 Inertial contribution of the tangential stiffness

The FE discretization of the inertial contribution to the elemental tangent stiffness Km
ine(e), Eq.

(6.51) is obtained as

Km
ine(e) = η̂hmT

[ ∫ Le

0
NTMϕΘNdS

]
p̂hmT = η̂hmT [Km

ine(e)]p̂
hmT (7.48)

where the elemental inertial stiffness matrix [Kine(e)] is calculated as

[Km
ine(e)] =

Nd∑

IJ

∫ Le

0
NT

I MϕΘNJdS =
Nd∑

IJ

[Km
ine(e)]IJ (7.49)

where the explicit expression for [Km
ine(e)]IJ is the following:

[Kine(e)]IJ =
∫ L(e)

0
NT

I

[
ΞΞΞϕ 0
0 ΞΞΞθ

]
NJdS ∈ R6×6

=
Nip∑

K




1
(∆t)2β

Aρ0NINJ 0

0

[
1

(∆t)2β
Iρ0+

γ
∆tβ (ṼVV nIρ0 −ΠΠΠ[Iρ0 V̂n])

]
TT NINJ




∣∣∣∣∣∣∣∣
K

JsWK .(7.50)

As noted in Section 6.2.2.b, the tangent inertia matrix is nonsymmetric and configuration de-
pendent. This property concerns only the rotational degrees of freedom. The sub-matrix ΞΞΞϕ

corresponds to the translational degrees of freedom and is constant.
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7.6.3 External contribution of the tangential stiffness

By the linearization of the external load vector, (see Eq. (5.91)), one obtains

Km
P (e) = η̂mhT

[∫ Le

0
NT

[
(N̂d ⊗ ĈN )[ d

dS I] + ÑNN p

(M̂d ⊗ ĈM )[ d
dS I] +M̃MMp

]
NdS

]
p̂mh

= η̂mhT

[
Nd∑

IJ

∫ Le

0
NT

I

[
(N̂d ⊗ ĈN )[ d

dS I]
(M̂d ⊗ ĈM )[ d

dS I]

]
NJdS +

Nd∑

IJ

∫ Le

0
NT

I

[
ÑNN p

M̃MMp

]
NJdS

]
p̂mh

= η̂mhT
[ Nd∑

IJ

[Km
P1(e)]IJ +

Nd∑

IJ

[Km
P2(e)]IJ

]
p̂mh

= η̂mhT
[
[Km

P1(e)] + [Km
P2(e)]

]
p̂mh (7.51)

The two components of the tangent stiffness matrix due to external loading coupling the nodes
I and J are explicitly given by

[Km
P1(e)]IJ =

Nip∑

k

[
NINJ ,s N̂d ⊗ ĈN

NINJ ,s M̂d ⊗ ĈM

]∣∣∣∣∣
K

WK (7.52a)

[Km
P2(e)]IJ =

Nip∑

k=1

[
NINJÑNN p

NINJM̃MMp

]∣∣∣∣∣
K

JsWK . (7.52b)

Finally, the tangent stiffness matrix of Eq. (7.15), relating the nodes I and J , is given by

[Kmh
(e) ]IJ =

[
[Km

M(e)] + [Km
G(e)] + [Km

V (e)] + [Km
ine(e)] + [Km

P1(e)] + [Km
P2(e)]

]
IJ

. (7.53)

7.7 Iterative Newton–Raphson scheme

As it has been previously mentioned, an iterative form of the Newton–Raphson scheme, Eq.
(6.3), (see §6.1.2) is used for solving the discrete (in space and time) version of the linearized
form of the virtual work functional.
The standard procedures for the FEM holds, then, one has (for more details it is possible to
consult classical textbooks such as those of Refs. [42, 107, 108, 170]) that the global unbalanced
force vector, the global stiffness matrix and the incremental configuration field as

q̂ =
Ne ×Nd

AAA
e, I

q̂h
(e)I ; [K] =

Ne ×Nd

AAA
e, I, J

[Kh
(e)]IJ ; p̂ =

Ne ×Nd

AAA
e, I

p̂h
(e)I ; (7.54)

respectively; where AAA denotes the usual assembly procedure which runs over the number of
elements Ne and their corresponding nodal points Nd. Then, by means of using the FEM the
solution of the nonlinear system of differential equations of the rod is reduced to to solving the
following linear systems of equations for obtaining the iterative increments of the configuration
variables

η̂s ·
[
q̂s + [K]p̂s

](i)

n+1
≈ 0 → p̂

s(i)
n+1 = (−[K]−1q̂s)(i)n+1 (7.55)
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where the super and sub-scripts (i) and n+1 corresponds to the iteration and time, respectively;
as described in Chapter 6. If the material updating rule is preferred one simply obtains

p̂
m(i)
n+1 = (−[Km]−1q̂m)(i)n+1. (7.56)

Note that Eq. (7.55) is valid for both the static or dynamic cases. If the mechanical problem
consists of a sequence of imposed/displacement steps or inertial terms are considered it is nec-
essary to maintain fixed the value of the load amplification parameter λ of the external force
term. Normally, the parameter λ is considered as other variable when control techniques are
employed, e.g. arch–length methods. However, details are omitted here and it can be consulted
in [107, 108].
Having obtained an iterative field p̂

(i)
n+1, the results of Chapter 6 are used for updating the

configuration variables (ϕ̂,Λ) ∈ TCt , the related linear and angular velocity and acceleration,
the strain and strain rate fields existing on each integration point (see Fig. 7.1). The present
formulation makes use of uniformly reduced integration on the pure displacement and rotation
weak form to avoid shear locking [178, 363], however, the inertial terms are integrated in exact
manner. It remains to determine the stress field existing on each material point in the cross
sections associated to integration points, this is done by means of an appropriated cross sectional
analysis that will be explained in following.

7.7.1 Cross sectional analysis

The cross sectional analysis is carried out expanding each integration point on the beam axis in
a set of integration points located on each fiber on cross section. In order to perform this opera-
tion, the beam cross section is meshed into a grid of quadrilaterals, each of them corresponding
to a fiber oriented along the beam axis (see Fig. 7.2).
The estimation of the average stress level existing on each quadrilateral is carried out by inte-
grating the constitutive equations of the compounding materials of the composite associated to
the corresponding quadrilateral and applying the mixing rule as explained in §4.3. The geometry
of each quadrilateral is described by means of normalized bi-dimensional shapes functions and
several integration points can be specified in order to estimate more precisely the value of a
given function according to a selected integration rule. In the case of the average value of the
material form of the FPK stress vector acting on a quadrilateral we have

P̂m
1 =

1
Ac

∫

Ac

P̂m
1 dAc =

1
Ac

Np∑

p=1

Nq∑

q=1

P̂m
1 (yp, zq)JpqWpq (7.57)

where Ac is the area of the quadrilateral, Np and Nq are the number of integration points in the
two directions of the normalized geometry of the quadrilateral, P̂m

1 (yp, zq) is the value of the
FPK stress vector existing on a integration point with coordinates (yp, zq) with respect to the
reference beam axis, which is obtained from the corresponding material strain vector Ên using
the constitutive laws and the mixing rule, Jpq is the Jacobian of the transformation between
normalized coordinates and cross sectional coordinates and Wpq are the weighting factors.
The coefficients of the tangent constitutive tensors can be estimated in an analogous manner as
in Eq. (7.57) but replacing P̂m

1 (yp, zq) by C̄CCmt(yp, zq) i.e.

C̄CCmt =
1
Ac

∫

Ac

C̄CCmtdAc =
1
Ac

Np∑

p=1

Nq∑

q=1

C̄CCmt(yp, zq)JpqWpq. (7.58)
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Figure 7.1: Iterative Newton–Raphson scheme (spatial form).

Finally, having obtained the stress level on each quadrilateral, the cross sectional forces and
moments are obtained by means of the discrete form of Eqs. (3.94a) and (3.94b) as

n̂m =
Nfiber∑

k=1

(Ac)k(P̂m
1 )k (7.59a)

m̂m =
Nfiber∑

k=1

(Ac)k
ˆ̀
k × (P̂m

1 )k (7.59b)

were Nfiber is the number of quadrilaterals of the beam cross section, (Ac)k is the area of the
k quadrilateral, (P̂m

1 )k is the average value of the material form of the FPK stress vector and
ˆ̀
k = (0, yk, zk) are the coordinates of the gravity center of the kth quadrilateral with respect to

the local beam reference frame.
By applying the same procedure as in Eqs. (7.59a) and (7.59b), we have that the material form
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Figure 7.2: Discrete fiber like model of the beam element.

of the reduced tangential tensors of Eqs. (4.53a) and (4.53b) are numerically estimated as

C̄mt
nn =

Nfiber∑

k=1

(Ac)k(C̄CCmt)k (7.60a)

C̄mt
nm = −

Nfiber∑

k=1

(Ac)k(C̄CCmt)k(ykẼ2 + zkẼEE3) (7.60b)

C̄mt
mn =

Nfiber∑

k=1

(Ac)k
˜̀̀̀
k(C̄CCmt)k (7.60c)

C̄mt
mm = −

Nfiber∑

k=1

(Ac)k
˜̀̀̀
k(C̄CCmt)k(ykẼEE2 + zkẼEE3) (7.60d)

where ˜̀̀̀
k is the skew–symmetric tensor obtained from ˆ̀

k and (C̄CCmt)k is the material form of the
tangent constitutive tensor for the composite material of the kth quadrilateral.
Analogously, having obtained the values of the viscous tangent constitutive tensors η̄ηηss, at each
fiber, the reduced constitutive tensor [Ῡss] is obtained as [258]

Ῡss
nn =

Nfiber∑

k=1

(Ac)k(η̄ηηss)k (7.61a)

Ῡss
nm = −

Nfiber∑

k=1

(Ac)k(η̄ηηss)k(ykẼ2 + zkẼ3) (7.61b)

Ῡss
mn =

Nfiber∑

k=1

(Ac)k
˜̀

k(η̄ηηss)k (7.61c)

Ῡss
mm = −

Nfiber∑

k=1

(Ac)k
˜̀

k(η̄ηηss)k(ykẼ2 + zkẼ3) (7.61d)
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From the point of view of the numerical implementations, in a given loading step and iteration
of the global Newton–Raphson scheme, two additional integration loops are required for the
cross sectional analysis:

(i) The first one is a loop over the quadrilaterals (or equivalently fibers). In this loop, having
obtained the material form of the reduced strain measures Γ̂n and Ω̂n (or equivalently Ω̃n)

and their time derivatives ˙̂Γn and ˙̂Ωn, the strain measure Ên and the strain rate measure
Ŝn are calculated according to the updating procedure of §6.1.4 and they are imposed for
each simple material associated to the composite of a given fiber.

(ii) The second loop runs over each simple material associated to the composite of the quadri-
lateral. In this case, the FPK stress vector, P̂m

1 , and the tangent constitutive relations,
C̄CCmt and η̄ηηms, are calculated for each component according to their specific constitutive
equations; the behavior of the composite is recovered with the help of the mixing theory,
summarized in Eqs. (4.48) to (4.46b).

(iii) The integration procedure carried out over the fibers allows to obtain the cross sectional
forces and moments and the reduced tangential tensors.

Fig. 7.3 shows the flow chart of the cross sectional analysis procedure for a cross section with
Nfiber fibers and k simple components associated to each fiber. Finally, the discrete version of
the spatial form of the reduced forces and moments, n̂ = Λm̂m and m̂ = Λm̂m, and sectional
tangent stiffness tensors C̄st

ij = ΛC̄mt
ij ΛT and ῩΥΥst

ij = ΛῩΥΥmt
ij ΛT (i, j ∈ {n,m}) are calculated

[258, 260].

Γ̂n = ΛT (ϕ̂,S −t̂1),
˙̂
Γn

Ω̂n = axial[ΛT
nΛn,S ],

˙̂
Ωn

Strain
measures

Loop over
the fibers

Ên = Γ̂n + Ω̃n[ξ2Ê2 + ξ3Ê3]

Ŝn =
˙̂
Γn +

˙̃
Ωn[ξ2Ê2 + ξ3Ê3]

Loop over
the components

(Ên)(1), (Ŝn)(1)

...

(Ên)(k), (Ŝn)(k)

︸ ︷︷ ︸
(1. . . k) simple
components

Rate dependent
constitutive
equations

(P̂mt
1 , Cmv, ηsm)(1)

...

(P̂mt
1 , Cmv, ηsm)(k)

︸ ︷︷ ︸
(1. . . k) simple
components

P̂mt
1 =

∑
k

i=1 ki(P̂mt
1 )i

C̄CC
mt

=
∑

k

i=1 ki(CCC
mv)i

η̄
sm =

∑
k

i=1 ki(ηsm)i

Fiber behavior: mixing rule

Cross sectional properties

n̂m, m̂m, C̄sv, ῩΥΥ
ss

Figure 7.3: Flow chart of the cross sectional integration.

This method avoids the formulation of constitutive laws at cross sectional level. As it has been
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previously explained, the sectional behavior is obtained as the weighted sum of the contribution
of the fibers, conversely to other works which develop global sectional integration methods
[411, 431]. Material nonlinearity, such as degradation or plasticity, is captured by means of
the constitutive laws of the simple materials at each quadrilateral. The nonlinear relation
between the reduced strain measures and cross sectional forces and moments are obtained from
Eq. (7.59b). Each section is associated to the volume of a part of the beam and, therefore,
constitutive nonlinearity at beam element level is captured through the sectional analysis.
General shapes for cross sections can be analyzed by means of the proposed integration method.
However, two limitations have to be considered:

(i) Mechanical problems involving large deformations out of the cross sectional plane can
not be reproduced due to the planarity of the cross sections assumed in the kinematical
assumptions.

(ii) Mechanical equilibrium at element level does not implies mechanical equilibrium among
fibers in the inelastic range due to the fact that the present beam model solves the consti-
tutive equations for each fiber independently of the behavior of the contiguous ones.

If materials presenting softening are associated to the fibers, the strain localization phenomenon
can occur on specific integration points on the beam for certain loading levels [24, 26, 301, 303].
Softening behavior of fibers imply the induction of a softer response at cross sectional level
and, in this manner, the strain localization induced at material point level is translated to the
cross sectional force-displacement relationships. In general, the structural response becomes
dependent on the mesh size. In this work, the mesh independent response of the structure is
obtained regularizating the energy dissipated on each fiber and limiting this value to the specific
fracture energy of the material. Details about the regularization process can be consulted in
§4. However, other alternative procedures based on considering strong discontinuities on the
generalized displacement field of the beam can be consulted in [25, 24, 26].

7.7.1.a Shear correction factors

As it has been above highlighted, the kinematics assumptions limit the quality of the description
obtained for the cross sectional strain field mainly due to the fact that the shears strains are
estimated in an average sense. Other limitations derived from the kinematic assumptions are
related to the estimation of out of plane components of the strain field at material point level
i.e. En22, En33, En23 which are equal to zero [310]; Therefore, the their stress counterparts are
also equal to zero, even in the nonlinear range.
In this work some additional hypothesis are made to improve the strain field at cross sectional
level. Having obtained the mean shear strains at material point level Ēm

n12(S, ξβ) and Ēm
n13(S, ξβ),

where the over-head bar symbol is used to empathize that we are referring to the average shear
strains, then we proceed to correct them using the Jourawsky’s stress distribution [36] according
to

En12(S, ξβ) = Ēn12(S, ξβ)A∗2(
SA3(ξ2)
I33b(ξ2)

) (7.62a)

En13(S, ξβ) = Ēn13(S, ξβ)A∗3(
SA2(ξ3)
I22b(ξ3)

) (7.62b)

where A∗2 = χ2A00 and A∗3 = χ3A00 are the reduced cross sections of A, χ2 and χ3 are the shear
stress distribution factors [159], b(ξ2) and b(ξ3) are width and thickness of the cross section, I22
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and Iξ3 are the inertia moments and SA2(ξ3) and SA3(ξ2) are the statical moments with respect
to the neutral axis of the upper portion and left portion of the cross section, respectively.
The proposed procedure does not provide an exact solution for the shear components of the
strain tensor but assures an important improvement with respect to the mean values. It is
worth to note that Jourawsky correction works well fundamentally for the case of close solid
sections and in the linear elastic range, what is exactly the opposite case to what happen in
large nonlinear incursion of the material or in the case of thin walled sections.
Additional improvements can be done in determining a more exact shear strain distribution
at cross sectional level, e.g. in Refs. [370, 151, 149] coupled torsional warping functions have
been included in the large strain/displacement kinematics of the rods allowing to obtain the
complete large strain tensor but with the cost of adding degrees of freedom in the formulation
and a secondary finite element problem have to be solved to verify sectional equilibrium. Some
works have been dedicated to specific sectional shapes deducing warping functions and shear
correction factors, e.g. for thin walled sections see Ref. [284]. Other authors [411] have concen-
trated in developing efficient procedures for analyzing curved and twisted rods with general cross
sectional shapes based on the derivation of a general equations for three-dimensional solids with
appropriated boundary conditions for deducing enhanced warping functions and shear correction
factors.
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Local irregularities

The term local irregularity is used for referring to parts of framed structures where the basic
hypothesis of: (a) slenderness and/or (b) the presence of smooth variations of the geometric or
material properties along the rod axis; are not fulfilled. In those cases, conventional models for
the nonlinear analysis of rod–like structures can fail in predicting the mechanical response [96,
158]. A detailed presentation about local irregularities and the numerical approaches followed
to include them in reduced models can be reviewed in §2.3.1 and §2.3.2.
In this work, two types of local irregularities are considered:

(i) Energy dissipating devices. In this case, devices are strategically added to the structures
with the purpose of changing their dynamic characteristics, providing extra energy dis-
sipation, controlling lateral displacements, preventing second order effects among other
benefits. In abstract terms, these devices can be seen as a dissipative nucleus connecting
two degree of freedom of the structure.

(ii) Geometric irregularities. This case is referred to small parts of the structure which need
to be described with a full 3D geometric model because the typical hypothesis for rod
elements are not fulfilled. Typical geometric irregularities are precast connecting joints
or poorly detailed monolithic joints of RC structures. In a great number of occasions
the global mechanical response of the structure is determined by the inelastic incursions
suffered in the geometric irregularity (see §2.3.2).

The following two sections are devoted to the development of numerical methods for the consis-
tent inclusion and the numerical treatment of local irregularities in the developed full constitutive
and geometric nonlinear rod theory. Section 8.1 is devoted to the development of a special FE
for energy dissipating devices and §8.2 covers the development of a two–scale (global and local)
approach for the numerical treatment of geometric irregularities. In the second case, the result-
ing step-by-step iterative algorithm is implemented in a multiprocessor scheme taking advantage
of the different nature of the problems to be solved in each scale. In both cases, advantages and
limitations of the proposed approaches are discussed.

8.1 Energy dissipating devices

The finite deformation model for EDDs is obtained from the beam model releasing the rotational
degrees of freedom and supposing that all the mechanical behavior of the device is described in
terms of the evolution of a unique material point in the middle of the resulting bar.
The current position of a point in the EDD bar is obtained from Eq. (3.22) and considering that

183
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ξβ = 0 as x̂ = ϕ̂(S, t). Supposing that the current orientation of the EDD bar of initial length
L∗ is given by the tensor Λ∗(t), (Λ∗,S = 0, Λ̇∗ 6= 0), the spatial position of the dissipative point
in the EDD is obtained as ϕ̂(L∗/2, t) where L∗/2 is the arch–length coordinate of the middle
point in the bar element and the axial strain and strain rate in the dissipative point are obtained
from Eqs. (3.70) and (3.82) as

Ed1(t) =
{
(Λ∗T ϕ̂,S ) · Ê1

}∣∣∣
(L∗/2,t)

− 1 (8.1a)

Ėd1(t) =
{
(Λ∗T ( ˙̂ϕ,S −ṽnϕ̂,S )) · Ê1

}∣∣∣
(L∗/2,t)

≈ d
dt

Γ̂1(t)
∣∣∣
(L∗/2,t)

(8.1b)

Finally, the contribution of the EDD bar to the functional of Eq. (3.145), written in the material
description, is given by

GEDD =
∫

L∗
Pm

d δEd1dS +
{
(δϕ̂)T [M]d( ¨̂ϕ)

}∣∣∣
(L∗/2,t)

(8.2)

where it was assumed that IIIρ0 ≈ 0, i.e. the contribution of the EDDs to the rotational mass of
the system is negligible and [M]d is the EDD’s translational inertia matrix, i.e. the mass of the
control system is supposed to be concentrated on the middle point of the bar. The term δEd1 is
given by

δEd1 = (Λ∗T (δϕ̂,S −δθ̃θθϕ̂,S ))·Ê1 (8.3)

which corresponds to the linearized form (variation) of the material form of the axial strain in
the EDD.

8.1.1 Constitutive relations for EDDs

The constitutive law proposed for EDDs is based on a previous work of the authors [259] which
provides a versatile strain-stress relationship with the following general form:

Pm
d (Ed1 , Ėd1 , t) = Pm

d1
(Ed1 , t) + Pm

d2
(Ėd1 , t) (8.4)

where Pm
d is the average stress in the EDD, Ed1 the strain level, t the time, Ėd1 the strain rate,

Pm
d1

and Pm
d2

are the strain dependent and rate dependent parts of the stress, respectively. The
model uncouples the total stress in viscous and non–viscous components, which correspond to a
viscous dashpot device acting in parallel with a nonlinear hysteretic spring. The purely viscous
component does not requires to be a linear function of the strain rate. From the experimental
results carried out on a large variety of different types of devices (see §2.3.1.a), it is possible to
deduce that the function Pm

d1
should have the following characteristics:

(i) Axial hardening for strains over 150%.

(ii) Variable shear modulus for fitting the strain-stress curves obtained during the tests.

(iii) The initial slope of a loading or unloading branch is only a function of the point in the
strain-stress space where the velocity changes of sign, allowing to obtain complex hysteretic
cycles as in the case of elastomers (see [259]).

Therefore, hardening and variable elastic modulus can be reproduced as it will be explained in
following.
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8.1.1.a Rate dependent part.

The viscous component of the stress has the following general form:

Pm
d2

(Ėd1 , t) = cd(Ėd1)Ėd1 (8.5)

where cd is the (nonlinear) viscous coefficient of the device which is obtained fitting a polynomial
to the experimental data [259]. In following a method for the case of elastomers is proposed:
Let to suppose that it has been performed a set of Nt cyclic sinusoidal tests on a EDD device
at different maximum displacements uj (j = 1, . . . , Nt), each of them repeated at different
frequencies $i (i = 1, . . . ,Nf ), obtaining a total of Nt ×Nf tests.
Let ∆E be the dissipated energy increment1, corresponding to two cyclic tests carried out at
the same maximum displacement, u, but for different consecutive frequencies $i+1 and $i, (in
this case, i is the frequency index), which is given by

∆E = Atht(
∮

(Pm
d1

+ P
m(i+1)
d2

)dEd1 −
∮

(Pm
d1

+ P
m(i)
d2

)dEd1)

= Atht

∮
(Pm(i+1)

d2
− P

m(i)
d2

)dEd1 (8.6)

where At and ht are the average area and the average thickness of the test specimen and the term
(Pm

d1
+ Pm

d2
) is the average shear stress according to Eq. (8.5). P

m(i)
d2

) is the viscous component
of the average stress for the cycles applied with loading frequency $i. An additional working
hypothesis is the following expression for the viscous component of the force:

AtP
m
d2

= htcd($)Ėd1 = htcd(Ėd1)Ėd1 . (8.7)

To obtain a numerical estimation for the function Pm
d2

, it is possible to suppose that, for a test
carried out with a loading frequency wi and maximum displacement uj , dissipation is related to
velocity through the damping coefficient, cdij . Considering only symmetric tests, Eq. (8.6) can
be rewritten as

Ėd1(uj , $i) =
uj

ht
$i cos($it)

∆E = u2
j$

2
i+1

∫ Ti+1

0
cd(i+1)j cos($i+1t)dt− u2

j$
2
i

∫ Ti

0
cdij cos($it)dt. (8.8)

If the values of the two loading frequencies are close, we can suppose that the coefficients cdij

are approximately the same, i.e. cd(i+1)j = cdij , and calculate them as follows:

cdij =
∆E

u2
j

[
$2

i+1

∫ Ti+1

0 cos2($i+1t)dt−$2
i

∫ Ti

0 cos2($it)dt
] (8.9)

It is possible to fit a polynomial to the values of all the coefficient cdij obtained from sinusoidal
tests for two different consecutive frequencies and fixed displacement level. This polynomial is a
function of the frequency and describes the damping coefficient of Eq. (8.8). For example, for the
case of elastomers with high content of black fumes2, the bigger dispersion is obtained for values

1The dissipated energy is calculated as the area of the hysteretic cycles obtained from sinusoidal test as
explained by Mata et al. in [259].

2Black fumes are some chemical components with high content of carbon which are added to the rubber’s
mixture for increasing the damping capacity of the material [215].



186 Chapter 8. Local irregularities

of the damping coefficient in the range 0.0-0.5 Hz, because in this set of tests a non viscous part
of the dissipated energy is involved. For higher frequency values, this effect disappears according
to Eq. (8.6). If the values for the first range of the tests are omitted, it is possible to consider
that Eq. (8.5) is approximately equivalent to

Pm
d = Pm

d1
+

ht

At
cdĖd1 (8.10)

where cd is an experimental constant.

8.1.1.b Rate independent part

Strain hardening. The capacity of the model for simulating hardening for strain levels over 150%
is given by an appropriated nonlinear elastic backbone added to the non viscous hysteretic cycles,
as it can be seen in the scheme of Fig. 8.1. The proposed backbone is defined numerically by
means of a polynomial, whose coefficients are fitted to experimental data.

Figure 8.1: Nonlinear elastic backbone added to the rate independent part of the constitutive
relation.

The explicit expression for the nonlinear elastic spring representing the hardening backbone
depends on the specific device to be modeled; for example for the case of the high damping
elastomer of Ref. [259] the following formula is obtained:

Pmh
d1

= sgn[Ėd1 ]A0(〈|Ed1 | −A1〉)A2 ; (8.11)

where A0, A1 and A2 are scalar obtained from the experimental tests.

Hysteretic spring. The response of the nonlinear hysteretic spring is obtained solving the fol-
lowing system of nonlinear differential equations [259]:

Pm
d1

(Ed1 , t) = Ky(E[
d1

, Pm[
d )Ed1 + [Ke(E[

d1
, Pm[

d )−Ky(E[
d1

, Pm[
d )]e (8.12a)

if Ėd1e > 0 → ė =
[
1−

∣∣∣ e
dy(E[

d1
,Pm[

d )

∣∣∣
n(E[

d1
,Pm[

d )]
Ėd1

else → ė = Ėd1

(8.12b)

where Ky is the post yielding stiffness, Ke the elastic stiffness, dy is the yielding strain of the
material, and e represents an internal variable of plastic (hysteretic) strain, which takes a values
in the range [−dy, dy]. The parameter n in the associated flow rule of Eq. (8.12b) describes the
degree of smoothness exhibited by the transition zone between the pre and the post yielding
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branches of the hysteretic cycle. The model solves the system of equations taking into account
that Ke, Ky, dy, and n are function of the point in the strain-stress space where the last change
of sign of the strain rate has occurred, which is denoted as (E[

d1
, Pm[

d ) in Eqs. (8.12a) and (8.12b).
Therefore, the proposed algorithm updates the parameters of the model for each change of sign
of the strain rate. If there is no change in the sign of the strain rate the parameters of the
model are maintained constants. Axial hardening can be incorporated by means of adding the
nonlinear elastic backbone Pmh

d1
to Eq. (8.12a).

The parameters Ke, Ky, dy, n are nonlinear functions of (E[
d1

, Pm[
d ) i.e.

Ke = ℘1(E[
d1

, Pm[
d ); Ky = ℘2(E[

d1
, Pm[

d ); dy = ℘3(E[
d1

, Pm[
d ); n = ℘4(E[

d1
, Pm[

d ). (8.13)

Explicit expression for ℘k (k = 1, . . . , 4) (in function of (E[
d1

, Pm[
d )) are determined from ex-

perimental data. In any case with the present model it is possible to simulate the mechanical
behavior of a wide variety of devices e.g.

• cd = 0, ℘1 = ℘2 = constant, ℘3 ∼ ∞ and ℘4 = 1 an elastic spring is obtained. This case
corresponds to devices designed as re-centering3 elements in structures.

• cd = constant, ℘1 = ℘2 = 0, ℘3 ∼ ∞ and ℘4 = 1 a viscous dashpot is obtained. This case
can be found in devices applied to control the effects of wind loads.

• cd = constant, ℘1 = ℘2 = constant, ℘3 ∼ ∞ and ℘4 = 1 the Maxwell’s model is obtained.
This case corresponds to a typical viscous device with a re-centering mechanism included.

• cd = constant, ℘1 > ℘2 > 0, n ∈ [1, 100] and Ey > 0 a visco-plastic device can be
simulated (Assuming uncoupled Maxwell’s viscosity). Particularly, if cd = ℘2 = 0 and
n = 1 a bilinear perfectly-plastic model is obtained. This type of models are the most
used manner of simulating displacement dependent EDDs in buildings.

• cd = (Ėd1)
Kc (0 < Kc < 1), ℘1 = ℘2 = 0,℘3 ∼ ∞ and ℘4 = 1 a nonlinear viscous dashpot

is obtained. Some modern viscous devices employ complex valves’s systems which produce
a nonlinear grow (with a saturation level) in the curve force-velocity curve of the damper
(see e.g. [382] Ch. 6).

• In the case of high damping elastomers such as those considered in Ref. [259]) it is possible
to obtain: cd = 0.12 Ns/m, ℘1 = −0.14 + 0.95E[

d1
− 2.45(E[

d1
)2 + 3.19(E[

d1
)3 − 2.25(E[

d1
)4+

+0.89(E[
d1

)5 − 0.20(E[
d1

)6 + 0.04(E[
d1

)7, the post-yielding stiffness function is maintained
constant and equal to the value of the slope of the tangent to the enveloping curve of the
test carried out for a strain level of 200%, due to the fact that the tests show that all the
loading or unloading branches finally converges to the enveloping curve ℘2 = 3.3. The
yield strain function ℘3 is obtained intersecting the line with slope ℘2 and the enveloping
line with slope ℘2. The yield strain is measured from the point where changes of sign to
the intersecting point. The analytical expression for ℘3 is

℘3 =
|Pm[

d | − |Pm[
0 − Pm[

d |
℘2 − ℘1

3The re-centering forces are considered to be of importance in structures subjected to strong earthquakes which
possibly will suffer a great level of damage and permanent deformation due to inelastic incursions in the structural
elements. The presence of re-centering mechanism help to recover the original configuration of the structure after
the seismic action.
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where Pm[
0 is a parameter calculated evaluating the line with slope ℘2 at zero strain level.

The function ℘4 has to take values within the range [1,∞]. By means of appropriated
simulations and using a minimization procedure it is possible to see that can be taken
℘4 ≈ 1. Several visco elastic devices are based on high damping elastomers.

• If deformation over 150% are applied on the previously described model it is necessary to
include the corresponding axial hardening effect which can bee added with the formula for
Pmh

d1
in Eq. 8.11 considering A0 = 5.0, and A1 = A2 = 1.5 (for more details see [259]).

More complex material behaviors, such as those of other types of rubber or smart based devices,
can be simulated by means of appropriated expressions for the parameters of the model.

Tangent stiffness. The tangent relation for the EDDs is obtained numerically using the pertur-
bation method described in Ref. [91]. It consists in applying a small increment4 to the strain
Ed1 , denoted by δEd1 , after solving the system of Eq. (8.12b) for the total strain (Ed1 + δEd1),
the new stress level Pm

d1
is determined. Further, the hardening and viscous contributions have

to added to obtain the new total stress Pm
d (Ed1 + δEd1). The tangential stiffness of the device,

Kt, is then calculated as

Kt =
δPm

d

δEd1

=
Pm

d (Ed1 + δEd1)− Pm
d (Ed1)

δEd1

. (8.14)

It is important to note that the sign of the perturbation have to be the same as Ėd1 to obtain
a tangential stiffness consistent with the sign of the loading process in the device when cyclic
actions are considered.

8.1.2 Integration algorithm

The flow chart of the algorithm that integrates the system of Eqs. (8.12b) is shown in Fig. 8.2.
The algorithm starts by assigning initial values to the parameters of the model. For each strain
level E i

d1
the algorithm verifies if the strain rate, changes of sign. If this is the case, an updating

procedure for the parameters ℘k (k = 1, . . . , 4) is carried out. On the contrary, the parameters
are maintained. Then plastic strain and stress are then estimated. The same algorithm is used
for calculating the tangential stiffness as it was previously explained.

8.1.3 Linearization

The linearization of the contribution of the EDDs to the total virtual work is obtained working
on Eq. (8.2) as5

D[GEDD] · η̂s =
∫

L∗
δPm

d δEd1dS +
∫

L∗
Pm

d δ(δEd1)dS +
{
(δϕ̂)T [M]d(δ ¨̂ϕ)

}∣∣∣
(L∗/2,t)

=
∫

L∗
Kt(δEd1)

2dS +
∫

L∗
Pm

d δ(δEd1)dS +
{
(δϕ̂)T [M]d(δ ¨̂ϕ)

}∣∣∣
(L∗/2,t)

(8.15)

δEd1 = (Λ∗T (δϕ̂,S −δθ̃θθϕ̂,S ))·Ê1 (8.16)

4Here the notion of smallness corresponds to the precision of the machine used in the numerical simulations.
5By briefly only the case when spatial updating rule for rotation is used is given.
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Initial parameters of the model:
K1

e , K1
y , d1, n1

Given:Ei
d1

, Ėi
d1

Strain and strain rate

IF (sgn[Ėi
d1

] = sgn[Ė(i−1)
d1

])

Update the model’s parameters

→ Ki
e = ℘1(E(i−1)[

d1
, Pm(i−1)[

d )

→ Ki
y = ℘2(E(i−1)[

d1
, Pm(i−1)[

d )

→ di
y = ℘3(E(i−1)[

d1
, Pm(i−1)[

d )

→ ni
= ℘4(E(i−1)[

d1
, Pm(i−1)[
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Figure 8.2: Flowchart of the constitutive relation for EDDs.

8.2 Geometric irregularities

As it has been explained in §2.3.2, most of the refined nonlinear models for rod structures are
subjected to the following limitations:

(i) The structures present either fully monolithic connections among elements or some of their
degree of freedoms are released. Therefore, structural failures due to damage inside of the
nodes, often are not properly considered.

(ii) The shape and the mechanical properties of the cross sections are considered constants in
an element, therefore, the beam models show serious difficulties in reproducing structural
behaviors dominated by local changes in the geometry.

Additionally, in Chapter 2 several types of attempts carried out for modeling the effects of local
irregularities or local complex stress concentrations in framed structures have been described
and abundant references can be there reviewed. They cover from the so called plastic hinge
models with appropriated moment-curvature relations to specific solid-to-beam transition ele-
ments. Moreover, an alternative approach, combining precision, generality and computational
efficiency consists of coupling reduced 1D and full 3D numerical models for different parts of
the structure. In this case, most of the elements are prismatic rods and local irregularities or
zones corresponding to the connecting joints receive a more detailed geometric description. The
connection between models of different dimensions is done through interface–surfaces.
The present section is concerned to the development of a two–scale (global and local) approach
for the fully nonlinear (geometric and constitutive) analysis of framed structures with local geo-
metric irregularities. At global scale level, all the elements of the FE model are rods; however, if
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(locally) geometric irregularities appear, a zoom view of the corresponding element is performed,
consisting in a fully 3D model which constitutes the local scale level. The dimensional–coupling
between scales is performed through surface–interfaces imposing the kinematic hypothesis as-
sumed for the beam model. This method avoids the use of multi-points constraints or Lagrange
multipliers. Starting from the full 3D stress state existing in the local model, cross sectional
forces and moments, required at global level, are recovered by integrating at the surface–interface
in an analogous manner as for the cross sectional analysis of beams [258]. An iterative Newton–
Raphson scheme based on the displacement method, which considers the interaction between
scales is developed to obtain the response at the global level even in the nonlinear dynamic
range. Force and displacement equilibrium is checked at both, local and global levels, ensuring
that compatible configurations are reached for the whole problem. The tangential stiffness of the
local model is obtained numerically applying small perturbations on the current configuration
and obtaining the corresponding reaction forces reduced to the degree of freedom of the global
level.

8.2.1 Description of the proposed model

The whole body of the framed structure can be seen as divided in two different sets:

(i) By one hand, B corresponds to the part of the body6 which is susceptible to be described
by means of an assembly of reduced 1D models which are connected each to the others by
means of monolithic joints.

(ii) By the another hand, one can consider the set

Ωs := {
NΩ⋃⋃⋃

p = 1

Ωps} (8.17)

composed by p = 1 . . . NΩ parts of the structure which present geometric irregularities.

The set B constitutes the global scale of the problem, where the advantages of the dimensional–
reduction of the problem are taken into account, including geometric nonlinearities. Beam cross
sections can be meshed into a grid of fibers with appropriated constitutive laws if desired as
described in §3 and §4.
The geometry and the distribution of materials of each element of the set Ωs is described carefully
by means of a full 3D approach, therefore, elements of this set are treated at more reduced scale,
the local scale, (in terms of the degree of detailing considered).
The connection between B and one part Ωps ∈ Ωs is obtained through the set

∂Ωps := {
NpΩ⋃⋃⋃
k = 1

∂Ωkps} (8.18)

where k = 1 . . . NpΩ is an index running over the number of interface–surfaces, ∂Ωkps ∈ R2. Each
element of ∂Ωps has one-to-one correspondence with the end cross section of a beam element
connecting to Ωps. See Fig. 8.3.
Therefore, for example if one have a beam element, generically denoted by Bi, connected to the

6By simplicity, in this work a part of a body is identified with all the material points which occupy a region
on the 3D space and can be conveniently described using a coordinate system. For a more elaborate definition
see §A.3.
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geometric irregularity Ωps through the cross section Ai, then necessarily there exist a ∂Ωkps (for
some k ∈ [1 . . . NpΩ] such that

Ai ≡ ∂Ωkps (8.19)

and both abstract elements are subjected to the same motion.

Figure 8.3: Schematic representation of the two–scale model.

At global scale level, the so called dimensional-coupling [280, 292] is obtained enforcing at local
level, i.e. on each ∂Ωkps of a given Ωps, the fulfillment of the kinematic hypothesis assumed for
the 1D model.
In the present work, planarity of the cross section is assumed during the motion and, therefore,
the surface–interfaces of the local model displace and rotate as a rigid body and, in this sense,
warping or cross sectional distortion is not included. Reduced forces and moments from the local
models are obtained though integration of the reaction forces in the interfaces in an analogous
manner as for the cross sectional analysis of beams [258].
The local model constitutes a zoom view made on a part of the structure, Ωps, which is treated
at global level as an additional 1D element. Fig. 8.4 presents a illustrative example: a structure
consisting of a 1D model and a 2D model deforms due to the motion φ(t) (t time). It is possible
to see that the cross section of the end of the beam corresponds to the surface–interface of the
3D model, which moves as a 2D rigid body.
In other words, given a motion of the structure, the global scale only treats with reduced
quantities as usual in beam’s theories but the required quantities originating from elements of
the set Ωs are obtained solving a 3D problem subjected to the beam kinematics’s assumptions
as boundary conditions on the displacements of ∂Ωps. In the following sections, a presentation
of both, the local and the global models, as well as the step-by-step numerical algorithm for
solving the two–scale problem is presented.

REMARK 8.1. The proposed formulation can be seen as an ad-hoc numerical homogenization
by means of an appropriated micro description of the domain corresponding to the local scale
using the FEM. A similar approach has been used for the treatment of structures made of
composite materials [308] ¥
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Figure 8.4: Imposition of the kinematic hypothesis of the 1D model on the surface–interface
∂Ωp1.

8.3 Global scale: rod model

At global level, all the elements are rods, therefore, the Reissner–Simo formulation for beams
that can undergo large deformations in space, considering a free of stress curved reference con-
figuration and expanded for considering an inhomogeneous distribution of composite materials
on arbitrarily shaped cross sections is considered. A detailed presentation of the theory can be
reviewed in Chapters 3 and 4.

8.3.1 Kinematics and balance laws

As it has been explained in §3.1.3 the deformation moves ϕ̂0(S) to ϕ̂(S, t) at time t adding a
translational displacement. Simultaneously, Λ0(S) is rotated together with the cross section to
Λ(S, t) = ΛnΛ0 by means of the incremental rotation tensor Λn(S, t) for the spatial updating of
the new compound rotation. Then, the position vector of any material point with coordinates
(S, ξβ) on the reference beam configuration, x̂0, and on the current beam configuration, x̂, are
given by

x̂0 = ϕ̂0(S) + Λ0(S)ξβÊβ (8.20a)

x̂ = ϕ̂(S, t) + Λ(S, t)ξβÊβ (8.20b)

respectively. Therefore, the displacement field on each material point on a cross section A(S),
at time t, is obtained as

û(S, ξβ, t) = x̂− x̂0. (8.21)

The associated strain vectors in spatial, ε̂n, or material, Ên, forms acting on a material point
on the current beam cross section are given in Eqs. (3.68a), (3.68b) and (3.70). An objective
measure of the strain rate vector ŝn can be deduced by taking the material time derivative of
Ên and using the Lie derivative operator as given in Eqs. (3.78a), (3.78b) and (3.82).
The material form of the FPK stress vector P̂m

1 , referred to the curved reference beam is ener-
getically conjugated to Ên, as it can be confirmed from §3.4. Integrating over the cross section,
it is possible to obtain the spatial form of the stress resultant n̂m and the stress couple m̂m

according Eqs. (3.94a) and (3.94b). With the corresponding spatial forms obtained through the
push–forward operator (see §3.3.4).
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The spatial form of the reduced balance equations of the current beam, referred to the curved
reference beam, have been deduced in §3.5. Particularly, in Eqs. (3.121) and (3.133). Starting
from these equations it is possible to deduce the spatial description of the nonlinear functional
corresponding to the virtual work principle, Eqs. (3.142) to (3.145), which is recalled here in
compact form:

GG(ϕ̂,Λ, η̂s) = GGint(ϕ̂,Λ, η̂s) + GGine(ϕ̂,Λ, η̂s)−GGext(ϕ̂,Λ, η̂s)− η̂s · Φ̂
∣∣∣
L

0
= 0 (8.22)

where the subscript G has been added to the internal, inertial and external components of the
scalar G(•) for referring to the global scale. It also corresponds to the weak form of the balance
equations [178, 363].

8.3.2 Constitutive laws

Points on the cross sections are assumed to have associated a composite material as explained
in §4. The composite is formed by several simple constituents which can have associated any
of the following constitutive models: linear elasticity, rate independent plasticity and damage
or visco damage. All these models have been developed considering a suitable form compatible
with the kinematics described in Eqs. (8.20a) and (8.20a) and the details can be consulted in
§4.2.2 to §4.2.3. For the purpose of explaining the present two–scale formulation it is enough
to say that each compounding substance on a given material point has associated a constitutive
law in the following way:

P̂m
1 = f(Ên, ŝn, ᾱ) (8.23)

where P̂m
1 and Ên are the material form of the FPK stress and strain vectors, respectively,

f(•) is the function describing the constitutive relation depending on the set ᾱ = {ᾱ1, . . . , ᾱn}
composed by n internal variables. Additionally, a tangent consecutive relation between linearized
increments of strain and stress exist and it is expressed as

δP̂m
1 = CmtδÊn. (8.24)

The mixing rule for composites is used to obtain the resulting stress and tangential tensor
at material point level according to the explanations of §4.3 and §4.4. On another hand, a
mesh independent response of the structure is obtained regularizing the dissipated energy at
constitutive level as explained in §4.1.

8.4 Local model: 3D connecting joint

Once a local irregularity has been detected on a given rod, a zoom view, corresponding to the
local 3D scale, is opened. This section is devoted to explain the mechanical problem which has
to be solved at local level. Firstly, it is worth to recall that the dimensional–coupling between
scales is obtained throughout imposing the plane cross section assumption for beams on the
surface–interfaces in the 3D model (see Fig. 8.4).

8.4.1 Equilibrium equations and boundary conditions

Assuming a massless local model (ρ0 = 0), we obtain that points on the (plane) surface–interfaces
are subjected to the same motion as the corresponding cross sections of the beams connected to
them. At local level, the momentum balance equations of the body Ωps, with ∂Ωps =

⋃⋃⋃
k∂Ωpsk
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(k = 1, . . . , NpΩ) surface–interfaces, are described by

∇ · S = 0
S = ST

}
in Ωps ∈ R3 (8.25a)

x̂ = φk(ϕ̂k,Λk) in ∂Ωpsk ∈ R2 k = 1, . . . , NpΩ (8.25b)

where S is the second Piola–Kirchhoff (SPK) stress tensor, no external body forces are applied
i.e. b̂0 = 0 as well as prescribed traction on the boundaries (S · N̂ = 0). The functions φk of Eq.
(8.25b), defining the natural boundary conditions of the problem, are prescribed in accordance
with Eq. (8.20b) and they read7 as

x̂L = ϕ̂k − ϕ̂0k + (Λk −Λ0k)χ̂ = ûk; ∀x̂L ∈ ∂Ωpsk (8.26)

where ϕ̂k, ϕ̂0k, Λk, Λ0k are the current and reference displacement fields and rotation tensors
associated to the beam connecting to the kth surface–interface, ûk is the corresponding displace-
ment, χ̂ is the local position vector of the material point x̂L lying on the surface–interface ∂Ωpsk.
In an analogous manner as for the finite strain beam theory χ̂ is defined considering the movable
local axis t̂k(β) = ΛkÊβ i.e. χ̂ = ξβ t̂k(β) (see Fig. 8.5).

Figure 8.5: Time evolution of the material points lying on the surface–interfaces.

Following standard arguments in continuum mechanics [251] we have that the weak statement
of Eqs. (8.25a) and (8.25b) is given by

GL(x̂, δx̂) =
∫

Ωps(t=0)
S : δEdV = 0 (8.27)

where E is the Green–Lagrange (GL) strain tensor energetically conjugated to S and t the time.
It is worth to note that all strain-stress field developed in the body Ωps during the motion, is
derived from the imposition of the displacement field of Eq. (8.25b).

7The subscript L has been introduced to highlight that the respective quantity is referred to the local model.
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8.4.2 Constitutive equations

In an analogous manner, as explained in section 8.3.2 for the case of the beams, material points
on Ωps are assumed to have associated a composite material [90, 306]. The composite can be
formed by several simple constituents with their own constitutive models. In this case, the GL
deformation tensor E is complete in the sense that all the 9 components can be determined from
a given displacement field; in contrast with the case of beam where the kinematics hypothesis
limits the number of accessible components (see Eqs. 8.20b and 8.23) to those acting on the face
of the cross section. Therefore, rate dependent and independent constitutive models for plastic
and degrading materials can be formulated based on a solid thermodynamic basis. Additionally,
the mixing rule is used to treat the resulting composite [90]. In following, a brief review of the
main characteristics of the employed models is given; however, for a more detailed description
of the respective formulations or their numerical implementations, it is necessary to consult the
references to previous works of the authors [90, 238, 301, 305, 306].
Particularly, brittle materials such as concrete are treated by means of a isotropic damage
model, where the degrading behavior of a material point is conducted by the evolution of a
scalar parameter d which range over [0, 1] (0 for the undamaged elastic behavior and 1 for a
completely damaged point). The model is able to differentiate between tensile and compressive
properties of the material. The mesh independent response of structures presenting softening
behavior is obtained by means of regularizing the dissipated energy at integration point level
according to the specific fracture energy obtained in simple tension or compression tests. A
detailed description of this model can be found in [238, 301]. Alternatively, a more refined
coupled plastic damage model can be used to simulate the behavior of concrete [240]. This
model can develop plastic deformations simultaneously with the degradation of the mechanical
properties. Specific yield criteria and potential functions for concrete, such as Mohr–Coulomb,
can be included in this model [305].
Some structures present an intrinsic orthotropic behavior due to the presence and distribution of
steel reinforcements. By one hand, the longitudinal reinforcement can be seen as a material which
has elastic plastic behavior directed along the line of the reinforcing bars. By the other hand,
the transversal reinforcements, such as the usual stirrups, contribute to confine the concrete
and help to resist shear forces. A plastic model for orthotropic materials is used to simulate
the mechanical behavior of steel reinforcements [90]. Imposing the mechanical properties of the
concrete in the direction perpendicular to the axis of the reinforcing bar and orienting the plastic
flow in the direction of the reinforcement, it is possible to simulate the typical behavior of the
steel bars.

Figure 8.6: FE model of the local scale including directional reinforcements.
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From the point of view of the construction of a FE model of the local irregularity, one proceed
meshing the geometry as usual; then the material associated to elements located in places where
longitudinal reinforcements are present, is considered as a composite material according to the
mixing rule. The composite material is made of two phases:

(i) A phase described by means of a degrading material or a plastic damage model and

(ii) a phase corresponding to the content of reinforcements (longitudinal and/or transversal).
The mechanical properties of the reinforcing phase (anisotropic elastic constitutive tensor
and stress threshold) are defined in a manner such that the directionality of the reinforce-
ment is considered.

Fig. 8.6 shows the 3D joint of a typical RC structure with a rather complex distribution of steel
reinforcements. In the same figure, the view A–A shows a typical FE discretization of one of its
cross sections where three kinds of materials are used:

(i) a purely damaging model for the elements of the unconfined zone.

(ii) A coupled plastic damage model for the confined zone of the concrete.

(iii) A composite material with three phases for the zone where longitudinal and transver-
sal steel reinforcements appear altogether with the concrete. Each phase of the mixture
contributes according to its volumetric fraction [257].

The proposed approach for considering arbitrary distribution of materials in the local scale model
has the advantage of avoiding the usage of highly refined FE meshes which try to describe the
geometry of each reinforcing bar appearing in the model.

8.4.3 Cross sectional and boundary surface analysis

From the point of view of the numerical implementation, an arbitrarily shaped beam cross
section is meshed into a grid of quadrilaterals, each of them corresponding to a fiber oriented
along the beam axis. An appropriated cross sectional analysis for fiber beam models in finite
deformation has been presented in references [258, 260]. The estimation of the value of a given
function on a quadrilateral is carried out by performing the numerical integration of the values
calculated at specific points according to a selected integration rule and then dividing by the
quadrilateral’s area. In those works, an integration of the constitutive equation of each simple
material existing on each fiber level is followed by the application of the mixing rule and a
posterior integration on the cross sectional surface. The same procedure allows to determine the
cross sectional tangential stiffness.
In the case of the dimensional–coupling between scales, after a displacement field in the local
scale problem fulfilling Eqs. (8.25a) and (8.25b) has been determined, it remains opened the
question about how to determine the reduced forces and moments which should equilibrate the
system of Eqs. (3.121) and (3.133). The solution to the problem is provided by the fact that
numerically the restriction of Eq. (8.25b) is forced on a discrete set of points

Xpsk =
⋃⋃⋃
i

x̂i
psk (8.28)
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corresponding to nodes of a FE mesh, on each surface–interface ∂Ωpsk (k = 1, . . . , NpΩ). After
the numerical solution of the discrete problem has been carried out, a set of reaction forces

Rpsk =
⋃⋃⋃
i

r̂i
psk (8.29)

corresponding to the nodal reactions, appears on each of the ∂Ωpsk. The reduced forces and
moments acting on the kth surface–interface are then calculated as

N̂G =
∑

i

r̂i
psk (8.30a)

M̂G =
∑

i

l̃llir̂
i
psk (8.30b)

where N̂G, M̂G are the reduced force and moment vector obtained from the full 3D problem
of the local scale, l̃lli is the skew–symmetric tensor obtained from l̂i = (χ2, χ3)i, the vector of
coordinates of the ith restricted point on the kth surface–interface.

REMARK 8.2. It is worth to note that in order to get achieve equilibrium at global level, the
reduced forces and moments obtained from the global and local scales have to self-equilibrate.
Considering that the displacement and rotation field is the same for both scales due to the
kinematics assumption, one obtains that this condition enforces that the work done by both
models is the same at the surface–interfaces ¥

8.5 Numerical procedure

In this section a Newton type numerical solution procedure based on the linearized form of the
weak form of Eq. (8.22) is presented. A complete survey about the linearization can be reviewed
in §5. The interaction between scales is explained as well as the method used for the obtention
of the reduced tangential tensor of the local scale problem.

8.5.1 Global scale: consistent linearization for beams

At global scale level each element behaves as a rod, therefore, the numerical solution for most
of the elements is based on obtaining the linear part of the functional of Eq. (8.22) which can
be written as

L [GG∗(ϕ̂∗,Λ∗, η̂s)] = GG∗(η̂s) + DGG∗(η̂s) · p̂s (8.31)

where L [GG∗(η̂s)] is the linear part of the functional GG(ϕ̂,Λ, η̂s) at the configuration defined
by (ϕ̂∗,Λ∗) and p̂s ∈ ηs is an admissible variation considering the spatial updating rule for
rotations. The term GG∗(η̂s) supplies the unbalanced force and it is expressed as the sum of
three terms corresponding to the contribution of internal, external and inertial terms, GG∗int,
GG∗ext, GG∗ine, respectively. The part DGG∗(η̂s) · p̂s (linear in p̂s) gives the tangential stiffness,
as explained in §5.3.
Details about the linearization of the internal and external terms and its numerical implemen-
tation has been already presented in §5, §6 and §7, including the material updating rule for the
rotational field and an arbitrary distribution of inelastic materials. In any case, the linearization
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procedure finally yields to

L [GG∗] = GG∗ + [KM + KG + KV + KP + Kine]∗. (8.32)

The spatial and temporal discretization of the problem of Eq. (8.32) and the numerical im-
plementation in a FE code follows the procedures described in previous chapters for the case
of an appropriated version of the Newmark’s implicit time stepping algorithm and an iterative
procedure for updating the pertaining variables in the context of the Newton–Raphson scheme.

8.5.2 Local scale: FE model and reduced tangential stiffness

At global scale level a iterative step-by-step Newton–Raphson scheme is used to solve the dis-
crete version of the linearized form of the functional, GL, given in Eq. (8.27) considering the
boundary conditions of Eq. (8.25b). The usual FE procedure is applied as described for exam-
ple in [42], therefore, details are omitted here. After convergency is achieved the reduced forces
and moments corresponding to the surface–interfaces are estimated from the reaction forces as
explained in Section 8.4.3.

The another ingredient required in the global scale is the reduced tangential tensor i.e. the
tangential stiffness obtained from the 3D model but reduced to the beams degree of freedom con-
nected to the surface–interfaces. This tensor is obtained by means of applying the perturbation
method [90] as follows:

(i) Supposing a local scale model used to describe the solid Ωps, with ∂Ωps =
⋃⋃⋃

k∂Ωpsk

(k = 1, . . . , NpΩ) surface–interfaces, we have8 (6 × NpΩ) degrees of freedom (DOFs) cor-
responding to the beams connected to the solid. After a displacement field fulfilling Eqs.
(8.25a)–(8.25b) (in the nonlinear range) has been determined, a set of perturbations on
each one of the (6 × NpΩ) DOFs is performed. In this case a perturbation in the pth

DOF consist in imposing of a displacement field with a magnitude close to the numerical
precision of the computer machine on the nodes of the corresponding surface–interface9.
Let denote one of such perturbations by δUp

G.

(ii) For the new boundary condition corresponding to each δUp
G, the problem defined by Eqs.

(8.25a)–(8.25b) is solved and then the corresponding increments in the reaction forces of
the restricted nodes of the body are calculated.

(iii) By means of using the formulas of Eqs. (8.30a)–(8.30b) the increment of the reduced forces
and moments are calculated. Let denote them by δN̂pq

G and δM̂pq
G (q = 1, . . . , NpΩ), which

physically correspond to the stiffness in the qth DOF due to a infinitesimal displacement
(correspondingly rotation) in the pth DOF.

Therefore, the numerical estimation tangential stiffness of the local scale model reduced to the
global DOFs in the global scale is given by

[K ]tL =




δN̂11
G · · · δN̂1q

G
...

. . .
...

δM̂ q1
G · · · δN̂ qq

G


 . (8.33)

8They correspond to 3 displacements and 3 rotation on each surface–interface connected to the solid.
9Perturbations on translational DOFs impose translational displacement fields on the nodes of the surface–

interface and perturbations on rotational DOFs impose infinitesimal (additive) rigid body rotations.
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It is worth noting that initially the tangent stiffness of Eq. (8.33) corresponds to the elastic one,
[K ]0L, and in this case, the applied perturbation can have any magnitude.

8.5.3 Two–scale Newton–Raphson integration procedure

As it has been explained, the two scales are dimensionally–coupled through the reduced forces
and moments and the tangential tensors. From the numerical point of view, at global scale level
once a loading step is applied the corresponding displacement and rotation fields are obtained
on the nodal DOFs. After that, the following sequence of steps is carried out:

(i) If the element corresponds to a free of irregularity rod, the strain fields are calculated
on each fiber of the cross sections corresponding to an integration point and the reduced
forces, moments and tangential matrices are determined as described in [258, 260]. If the
element presents a geometric singularity, the full 3D problem at local scale level is solved
using an iterative Newton–Raphson scheme in the FEM and imposing the rod’s kinematics
assumptions on the surface interfaces. It is worth to note that, in the nonlinear range,
several iterations can be needed at local scale level to obtain the converged field which
provides the not necessarily convergent reduced forces and moments at global scale level.

(ii) After convergency is achieved at local scale level the obtained reduced forces, moments
and tangential tensor are sent to the global iterative scheme to the check convergency.
If this is the case, the algorithm proceed to apply a next load increment. If not, a new
iteration is performed at global level.

The flow chart of the two–scale Newton–Raphson iterative is shown in Fig. 8.7.

8.5.4 Computational aspects

From the point of view of the implementation in a numerical code, the problem is managed by
means of a master–slave approach, where the global scale problem acts as the master, sending
a trial displacement field to the local scale models (slaves) and then receives the correspond-
ing internal forces, moments and tangential tensors estimated by means of integration on the
surface interfaces. The iterative process is finished when the global convergence is achieved.
Computationally, the proposed approach is well suited to be implemented in a parallelized al-
gorithm, where the mater and slave problems are solved independently by different programs.
The communication between processes (and processors) is carried out by mean of an appropri-
ated library of communication. In this way, minimal intervention on existing codes (specific for
beams and solids), allow obtaining the response of the whole structure in the nonlinear static
and dynamic analysis. Finally, numerical examples are included showing the capabilities of the
proposed formulation.
The proposed two–scale formulation for beam structures with local irregularities is very well
suited to be computationally implemented using the advantages of the parallel computation.
The message passing interface (MPI) system [381] is used to pass information among different
process (or processors) which can correspond to programs of different nature that share informa-
tion during execution. In the present case, a master–slave approach is followed using the MPI
library coupled with two Fortran codes; one of them, the master, is specific for the structural
analysis of beams and the other one, corresponding to the slave, specific for structural analysis
of solids. See Fig. 8.8.
The following steps summarize the basic features of the computational implementation of the
Newton–Raphson iterative scheme described in §8.5.3:
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GLOBAL SCALE LOCAL SCALE

Read initial data: mesh, CB etc.
IF type element = conventional beam →

Calculate elastic stiffness [K]e
g

Impose BC, etc.
ELSE → Open a local scale model

Read initial data
Calculate the reduced

elastic stiffness:

Load step: k, Iter: j

•

Loop over 1D elements
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Figure 8.7: Flow chart of the two–scale Newton–Raphson iterative scheme.

(i) The program which solves the global scale problem acts as the master and initially send
the order for run in independent processes, as many slave programs as local irregularities
appears in the structure.

(ii) Each one of the slaves is an independent process corresponding to the execution of a specific
program for the analysis of solids, which is in charge of solving the local scale problem.
It is worth to note that each slave process can be executed on the same processor of
the computer machine as the master or in a different one if a multiprocessor machine is
being used. In the first case, the time required for the calculations increase linearly10 with
the number of slaves because the processor only can work on a program per time. In
the second case, the time required decreases because the structural response from several

10Here the word ’linearly’ is used to indicate that the time required for calculations is function of the number
of slaves, since it would not be possible to maintain a strict linearity in the consumption of time when inelasticity
has place in the models.
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Figure 8.8: Schematic representation of the master–slave approach.

slaves can be obtained simultaneously. In any case, the use of the MPI system helps to
perform a minimal intervention on existing codes specific for the analysis of 1D or 3D
structures. The main advantage of using the MPI standard lie in the fact that the changes
to be implemented in existing codes are limited to include the SEND and RECEIVE calls
corresponding to the synchronized message passing through the master and its slaves.

(iii) The message passing among processes corresponds to the sending from the master of the
rotation and displacement fields of the surface–interfaces of each slave and the receiving
from the slaves to the master of the reduced forces, moments and tangential tensors on each
iteration according to the flow chart of Fig. 8.7. Other information, typical of iterative
schemes, such as global convergency in a time step or warnings are also passed for the
opportune updating the data base in the slave processes.

8.5.5 Limitations of the present formulation

From the computational point of view, in spite of the mentioned advantages obtained from using
the MPI system some difficulties can be mentioned:

(i) It is rather difficult to debug the execution of the coupled problem using the standard
debugging tools of the modern developer environments which are in most cases developed
for the construction of individual programs.

(ii) For the moment, there is not control over the order in which the synchronized messages
are passed from different slaves to the master, which resemble complicated for studying
the execution of the programs by mean of witting texts to the user–screen.

From the point of view of the formulation and its numerical implementation, several limitations
where observed during the numerical simulation of the response of structures:

(i) At local level, if a great part of the 3D body suffer inelastic incursions the stress distri-
butions on the surface–interfaces can become very complex and enormous difficulties in
obtaining global convergency can be observed. The main reason for this behavior can be
related with the fact that in the nonlinear range, plane sections do not remain plane11,

11Mainly, when degrading materials are used.
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and therefore, the resulting reduced forces and moments have values that are far from the
one obtained on the cross sections of the connecting beams. A possible solution for this
problem consist into consider local models representing a larger part of the structure, in a
way such that the local inelastic effects are concentrated in a zone that remains far from
the surface interfaces, confining the inelasticity. By other hand, if the proposed remedy is
employed, the massless assumption for the local scale model can introduce larger errors in
dynamic analysis and a new formulation considering inertial forces appear as necessary.

(ii) The imposition of the restrictions given in Eqs. (8.25b) enforces to maintain the size
and shape of the ∂Ωpsk’s, therefore, reaction forces contained in the plane of the surface–
interfaces derived from the Poisson coefficient, ν, of the materials became in plane reduced
forces (shear forces and torsion moment) ’ν–dependent’. To overcome the difficulties en-
countered in the numerical simulations an additional assumption has been done, it corre-
sponds to assume ν = 0 for the materials of the FEs lying on the surface–interfaces. In
this way the plane and undeformed hypothesis assumed for beam elements is enforced in
the local scale.
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Numerical Examples

The previously described geometric and constitutive nonlinear formulation for beams has been
implemented in a FEM computer code. In this section several numerical examples illustrating
the capacities of the model and the versatility of the proposed damage index are presented.

9.1 Validation examples: elastic case

9.1.1 Unrolling and rerolling of a circular beam

This validation example considers the unrolling and rerolling of the elastic circular cantilever
beam shown in Fig. 9.1. This example has been reported by Kapania and Li in Ref. [207] where
four node initially curved FE elements are used. The case of an initially straight cantilever
beam has been also reproduced in [178]. The initially circular beam has a radio R = 5/π,
unitary square cross sectional area and the following properties for the material: elastic modulus
E =1200 and Poisson coefficient ν =0.0. The FE mesh consist of ten equally spaced, quadratic,
initially curved elements. An unitary bending moment M is applied at the free end. Four
loading steps are applied, each of them with a moment increment ∆M = 10π. The convergence
tolerance is 1 × 10−7. The deformed configurations of the beam are shown in Fig. 9.1. The
displacements of the free end for an applied moment of 10π are 6.365 in the vertical direction
and −0.001 in the horizontal direction. For an applied moment of 20π, the mentioned values are
0.003 and 9.998, respectively, and are very close to those given in [207]. The number of iterations
to reach the convergence in the first and second loading steps are 18 and 22, respectively.

9.1.2 Flexible beam in helicoidal motion

The example corresponds to the validation of the proposed formulation for the elastic case. For
comparative purposes, an example of Ref. [183] has been reproduced here. It corresponds to
the helicoidal motion of a straight beam constrained to slide and rotate along the vertical axil
Z of Figure 9.2. A constant vertical load and torque is applied during 2.5 s as indicated in the
same Figure. Due to the fact that it is a purely elastic example, no cross sectional integration is
required and the mechanical properties are taken from [183] as: EA= GA= 104, EI= GJJJ= 103,
Aρ = 1.0 and JJJρ = Diag[20, 10, 10], where E and G are the Young and shear elastic modulus
and A ,I ,JJJ ,Aρ and JJJρ are the cross sectional area, the second moment of inertia, the torsional
inertia, the beam mass and the inertial dyadic per unit of length, respectively. Ten linear beam
elements and a time–step size ∆t=0.5 s were used in the numerical simulations. The results

203
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Figure 9.1: Deformed configurations of the circular beam.

Figure 9.2: Flexible beam in helicoidal motion

of the numerical simulations are presented in Fig. 9.3 which are in good agreement with those
given in [183] for the three components of the displacement of the free end of the beam.

9.2 Nonlinear static examples

9.2.1 Mesh independent response of a composite cantilever beam

The RC cantilever beam shown in Fig. 9.16 is used to study if, regularizing the dissipated
energy at constitutive level, it is possible to obtain a mesh independent response when including
softening materials. Forty increments of imposed displacements were applied in the Y direction
to obtain the capacity curve of the beam. Four meshes of 10, 20 40 and 80 quadratic elements
with the Gauss integration rule where considered in the simulations. The beam cross section
was meshed into 20 equally spaced layers. The steel bars were included as a part of the com-
posite material with a volumetric fraction corresponding to their contributing area to the total
area of the layer where they are located. The mechanical properties of the concrete and steel
are summarized in Table 9.2, where E and ν are the elastic modulus and Poisson coefficient,
respectively; Gf is the fracture energy, fc is the ultimate compression limit and n is the ratio
of the compression to the tension yielding limits, according to Eq. (4.11c). Fig. 9.17 shows
the capacity curve relating the vertical reaction with the displacement of the free end. It is



9.2. Nonlinear static examples 205

0 20 40
−20

−15

−10

−5

0

5

Time

X
 d

is
pl

ac
em

en
t

0 20 40
−10

−5

0

5

10

15

Time

Y
 d

is
pl

ac
em

en
t

0 20 40
0

20

40

60

Time

Z
 d

is
pl

ac
em

en
t

Figure 9.3: Displacements time history response of the free end of the beam.

Figure 9.4: RC cantilever beam.

possible to see that the numerical responses converge to that corresponding to the model with
the greater number of elements. Further information can be obtained from the evolution of the
local damage index at cross sectional level, which is shown in Fig. 9.6 for the 4 meshes and the
loading steps 10, 25 and 40. In all the cases, strain localization occurs in the first element but,
in the case of the mesh with 10 elements, localization occurs before than in the other cases and
a worse redistribution of the damage is obtained, what can explain the differences observed in
Fig. 9.17. Finally, Fig. 9.18 shows the evolution of the global damage index which allows to
appreciate the mesh independent response of the structure.

9.2.2 Framed dome

The elastic and plastic mechanical behavior of framed domes has been studied in several works.
For example, in Ref. [118] domes formed by trusses are studied; in [318] initially straight beam
elements are used to study the elastic plastic behavior of domes including isotropic and kinematic
hardening; in [284] a co–rotational formulation for beam elements with lumped plasticity is pre-
sented; and in [396] a plastic hinge formulation assuming small strains and the Euler–Bernoulli
hypothesis is employed for studying the nonlinear behavior of domes including the mechanical
buckling and post critical loading paths.
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Table 9.1: Mechanical properties
E ν fc n Gf

Mpa Mpa Mpa Nmm−2

Concrete 21000 0.20 25 8 1
Steel 200000 0.15 500 1 500
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Figure 9.5: Vertical reaction versus tip displacement.

In this example, the nonlinear mechanical behavior of the framed dome shown in Fig. 9.8 is
studied with the objective of validating the proposed formulation in the inelastic range. The
linear elastic properties of the material are: elastic modulus 20700 MNm−2 and Poisson’s co-
efficient 0.17. Three constitutive relations are employed: (1) Linear elastic; (2) Perfect plas-
ticity (Gf = 1 × 1010 Nm−2) with associated Von Mises yield criterion and an elastic limit of
fc = 80 Nm−2; and (3) Damage model with equal tensile and compression limits, n = 1, a
fracture energy of Gf,c = 50 Nm−2 and the same elastic limit as in case (2). Three elements
with two Gauss integration points are used for each structural member. A vertical point load of
P0 = 123.8 N acting on the apex of the dome is applied and the displacement control technique
is used in the simulations. Fig. 9.9 shows the deflection of the vertical apex in function of the
loading factor λ = Pt/P0 (Pt is the current applied load) for the three constitutive relations. It
is possible to see in Figure 9.9 a good agreement with the results given by Park and Lee in Ref.
[318] for the stable branch of the elastic loading factor–displacement responses. When compar-
ing both results for the elastic plastic case, it is possible to see a good agreement for the elastic
limit of the structure; however, when deformation grows, the differences can reach 30% for the
predicted value of the load carrying capacity of the dome. Moreover, the curve corresponding
to the damage model has been added to Fig. 9.9. In both cases, when inelastic constitutive
relations are employed, the curve of the global structural response shows a snap–through which
couples constitutive and geometric effects.
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Figure 9.6: Evolution of the local cross sectional damage index: Strain localization. The symbols
D and l are the damage index and the length of the beam, respectively.
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Figure 9.7: Global damage index.
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Figure 9.8: Framed dome and detail of the cross sectional mesh.
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Figure 9.9: Loading factor-displacement curve of the vertical apex of the dome.
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9.2.3 Nonlinear response of a forty–five degree cantilever bend

This example performs the coupled geometrically and constitutive nonlinear analysis of a can-
tilever bend placed in the horizontal X-Y plane, with a vertical load F applied at the free end,
as shown in Fig. 9.10. The radius of the bend has 100 mm with unitary cross section. The
linear elastic case of this example involves large 3D rotations and an initially curved geome-
try; therefore, it has been considered in several works as a good validation test [178, 207, 363].
The mechanical properties for the elastic case are an elastic modulus of 1× 107 Nmm−2 and a
shear modulus of 5× 106 Nmm−2. Four quadratic initially curved elements are used in the FE

Figure 9.10: Initial geometry and some examples of the deformed configurations for the linear
elastic case of the 45o cantilever bend.

discretization with two Gauss integration points per element. Solutions are obtained by using
thirty equal load increments of 100 N. The history of the tip displacements is shown in Fig.
9.11. The tip displacements for an applied load of 600 N are: U1=13.56 mm. U2=-23.81 mm
and U3=53.51 mm (see Fig. 9.10) which are values close to those obtained by other authors
[207]. The coupled geometric and constitutive nonlinear response of the structure was obtained

0 500 1000 1500 2000 2500 3000
−60

−40

−20

0

20

40

60

80

Load

T
ip

 d
is

pl
ac

em
en

ts

u
1

u
2

u
3

Figure 9.11: Different components of the tip displacement (linear case).
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for three materials:

(i) Elastic plastic with Von Mises yield criterion, associated flow rule, a fracture energy of
Gf = 1× 1010 Nmm−2, and a tension to compression ratio n = 1.

(ii) Degrading material with n = 1 and Gf = 5× 104 Nmm−2.
(iii) A composite formed by equal parts of the materials (i) and (ii). In all the cases, the elastic

limit is taken fc = 7× 104 Nmm−2.
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Figure 9.12: Different components of the tip displacement (nonlinear case).

The beam cross section was meshed into a grid of 10 × 10 quadrilaterals with one integration
point per fiber. A set of 35 imposed displacements of 2 mm was applied. The convergence
tolerance was taken equal to 10−4 for residual forces and displacements. Fig. 9.12 shows the
results obtained from the numerical simulations for tip displacements superposed to the elastic
response. It is possible to observe in this figure that:

(1) The elastic plastic case converges to a fixed value of 274 N for the vertical reaction after the
redistribution of the damage has occurred along the beam length, which can be considered
the final stage in the formation of a plastic hinge in the structure.

(2) In the case of the degrading material, the analyze were stopped in the loading step 29 due
to lack of convergency with an evident loss in the load carrying capacity.

(3) The response of the composite materials show two phases: the first one corresponds to
the degradation of the damaging phase; during the second one the vertical reaction is
stabilized in a value equal to 112 N, which is due to the mechanical response of the plastic
phase.

In all the cases, a great amount of iterations were required to obtain convergence (>50 in the
softening phase). However, in the case of the material (ii) the analyze were finalized after 300
iterations due to the fact that the development of axial forces in the deformed configuration
literally cuts the beam for vertical displacements beyond 57 mm.
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9.2.4 Nonlinear analysis of a right angle frame

The right angle frame of Fig. 9.13 is subjected to a concentrated out of plane load P = 0.3 N
acting on the middle of the span of one of the two members of length L = 100 mm. Forty equally
sized loading steps have been used. Each member is modeled using four quadratic elements with
two Gauss integration points. The square beam cross sections with a side length a = 3 mm are
meshed into a grid of 4×4 quadrilaterals with four integration points per fiber. The convergence
tolerance is taken as 1× 10−4.

Figure 9.13: Right bent description.

The constitutive and geometric nonlinear response of the frame is computed for four different
materials with the same elastic modulus E = 720 Nmm−2, Poisson coefficient ν = 0.3 and
yielding threshold fc = 1 Nmm−2. The other characteristics of the materials are:

(i) Associated Von Mises plasticity with a compression to tension ratio n = 1 and fracture
energy Gf = 1× 105 Nmm−2.

(ii) Damage model with n = 2, Gf = 0.1 Nmm−2.
(iii) Composite with a 20% of (i) and 80% of (ii).
(iv) a composite with a 10% of (i) a 80% of (ii) and a 10% of a material having only linear

elastic properties.
Fig. 9.14 shows a comparison between the results obtained for the applied force versus the
vertical deflection of the point A (see Figure 9.13) for the material (i) and the results given in
Refs. [318, 357]. The results shown in Fig. 9.14 are normalized considering that I is the inertia
of the square cross section and M0 = a3fc/6. A good agreement with the results obtained in
the mentioned references is obtained.
Fig. 9.15a shows the load deflection curve of the point A for the four considered materials. It
is possible to appreciate that in the case of the material (iii), after the damaging phase of the
composite has been degraded, the response of the structure is purely plastic. In the case of
the material (iv), in the large displacements range of the response, the elastic phase dominates
the mechanical behavior. Fig. 9.15b shows the evolution of the global damage index for the
four materials. It is worth to note that the damage index corresponding to material (iii) grows
faster than the others, but, when the plastic phase dominates the the response (approx. loading
step 32), the highest damage index is associated to the material (ii). In the large displacements
range, the smallest values of global damage index corresponds to the material (iv) due to the
effect of the elastic component.
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9.3 Nonlinear dynamic examples

9.3.1 Visco elastic right angle cantilever beam

The right angle cantilever beam shown in Fig. 9.16a is dynamically loaded by an out of plane
concentrated force of 250 N at the elbow. The shape and duration of the applied load is show
in the same figure. The total duration of the analysis is 4.5 s, which includes the period of
time when the load is being applied and the following free vibration of the system. The time
step is 0.03 s. The mechanical properties are: an elastic modulus of 5.0×104 Nmm-2, a Poisson
coefficient of 0.2 and a mass density of 0.1 Kgmm-3. Three quadratic elements with two Gauss
integration points have been used for each structural member. The cross section is meshed
into a equally spaced 8×8 quadrilaterals equipped with one integration point. Several deformed
shapes of the system are show in Figure 9.16b for the undamped elastic case. It is interesting
to note that the motion of the system involves large torsion and bending and the magnitude of
the displacements is of the same order as the dimensions of the initial geometry. Three values

Figure 9.16: Right angle frame. (a): A concentrated out of plane load is applied on the elbow
node. (b): Deformed configurations for different time steps for the case of the undamped system.

for the viscosity η =0.01, 0.03 and 0.04 s are used in the numerical simulations, along with the
visco elastic constitutive law, in order to highlight the effects of the damping on the behavior
of the system. Figs. 9.17a and 9.17b show the time history of the displacement of the tip and
the elbow in Y direction for the undamped system and for the three values of the viscosity. It is
possible to see from these figures that increasing values of the viscosity contributes to decrease
the maximum displacements of the system during the nonlinear oscillations.
Viscosity also contributes to dissipate the high frequency content in the response, what can
be seen due to the fact that increasing values of the parameter η imply smoother time history
responses. Finally, a more significative appreciation of the effects of viscosity can be obtained
from Fig. 9.18, where the time history of the displacements of the tip in the Y − Z plane is
shown. It is possible to see in this figure, that the increment of the value of η diminishes the
amplitude of the motion of the mechanical system.
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Figure 9.17: Displacement time history responses in the Y direction. (a): Tip. (b): Elbow.
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9.3.2 Near resonance response of a composite cantilever beam

This example studies the cantilever beam subjected to a sinusoidal base acceleration shown in
Fig. 9.19. Different constitutive behaviors for the material are considered:

(i) Visco elastic with different viscosity values.
(ii) Visco damage model.
(iii) Composite material with two simple constituents: a visco damage phase and a rate inde-

pendent plastic phase, both of them with a volumetric fraction of 50%.
The elastic properties of the three materials are the same, excepting the fracture energy (see
Table 9.2). The beam has been modeled using 20 quadratic elements and a reduced integration
scheme is used in order to avoid shear locking [370]; the beam cross section has been meshed
into a grid of 8×8 quadrilaterals with four integration points in each of them. A linear modal
analysis of the beam model gives a fundamental period of 1.77 s and the second and third modes
have periods of 0.27 and 0.099 s, respectively. The dynamic nonlinear response of the beam is

Figure 9.19: Vertical cantilever beam subjected to a sinusoidal base acceleration.

Table 9.2: Mechanical properties.
E ν fc n Gf ρ0

Mpa Mpa Nmm−2 Kgmm−3

Rate dependent 2.5× 104 0.20 25 1 25 2.4× 10−9

Rate independent 2.5× 104 0.15 500 1 5000 2.4× 10−9

obtained for a sinusoidal excitation with a frequency of 1.75 s aimed to induce near–resonance
effects in the first elastic mode. The time step is 0.03 s. Three values for viscosity have been
considered: 0.0, 0.01, 0.025 s. Fig. 9.20 shows the displacement time history of the top node in
the horizontal and vertical directions. Important reductions in the amplitude of the oscillations
are obtained as the viscosity is increased. For the value of η = 0.025 s almost all the second order
effects are suppressed due to reductions of the dynamic amplification of the response. Vertical
displacements are reduced from 400 mm for the undamped case to 12 mm.
As it has been mentioned, due to the change of configuration of the structure near the resonance,
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the displacements in the vertical direction are amplified and, therefore, axial forces with high
frequency content appear in the response.
As stated in Ref. [182], the suppression of high frequency content becomes a desirable feature of
a nonlinear time stepping scheme. In the present formulation, the reduction of the contribution
of the higher modes to the response is obtained by adding viscous mechanisms to the constitutive
laws. In Figure 9.21, the beam structure is subjected to a sinusoidal base acceleration record
with a period of 0.1 s acting during 2.5 s followed by a free vibration of 2.5 s. The time step
is 0.005 s. The horizontal displacement response of the top node of the system is depicted in
Fig. 9.21a where it is possible to see that the a coupled response corresponding to the first
and third modes dominates the structural behavior. Amplification of the the third mode is
observed. It is also possible to appreciate in this figure that increments in the values of the
viscosity (η = 0.000, 0.001, 0.005 s) have the effect of reducing mainly the vibration associated
to the higher modes. This result is in good agreement with the solution proposed in [182] in
the sense that dissipative mechanisms, for time stepping schemes, based on the strain rate or
velocity contributes to eliminate the high frequency content in the response. Fig. 9.21b shows
the temporal evolution of the energy dissipation which is a scalar quantity calculated from Eq.
(4.29) at constitutive level and then integrating over the volume of the structure. It is possible to
see that higher values of η implies higher dissipation rates and the stabilization of the response
is achieved before. Finally, the cantilever beam is subjected to a sinusoidal base acceleration
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Figure 9.20: Horizontal and vertical displacement at the top.

with a period of 1.75 s and a duration of 35 s in order to induce near–resonance response. The
time step is 0.03 s. The dynamic response was obtained for three constitutive options: the
first one corresponds to the visco damage model with η = 0.001 s, the second one is the elastic
plastic model, where the energy dissipation is obtained by displacement dependent (no viscous)
mechanisms and the third one is a composite material with a 50 % of the first material and a 50%



9.3. Nonlinear dynamic examples 217

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−10

−5

0

5

10

Time, s.

D
is

pl
ac

em
en

t, 
m

m
.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

Time, s

D
is

si
pa

tio
n,

 N
m

m

η=0.001 s
η=0.005 s

η=0.000 s
η=0.001 s
η=0.005 s

a 

b 

Figure 9.21: (a): High frequency content suppression. (b): Energy dissipation.

of the second one. Fig. 9.22a compares the response for the viscous damage model with the
undamped elastic case. It is possible to see that the change of the mechanical properties of the
material due to the progressive damage induces stiffness degradation, changing the instantaneous
dynamical properties of the structure. In this case, the period of the structure is increased due
to the fact that the damage auto decouples the structural response from resonance. Dissipation
due to damage is added to the viscous one and, therefore, extra energy dissipation contributes
to reduce the dynamic response.
Fig. 9.22b shows comparative results for the time history of the three constitutive behaviors.
It is worth noting that, in the case of the composite material, when most of the material
corresponding to the visco damage model has been degraded in the softening zone [258], the
response of the structure is controlled by the plastic behavior. After a degrading phase between
the 3 and 13 s the response of the composite coincides with that corresponding to the purely
plastic model. Finally, Figs. 9.23a and 9.23b show the evolution of the global damage indices
and dissipated energy for the three different constitutive options.
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Figure 9.22: Coupled geometric and constitutive nonlinear dynamic responses. (a): Undamped
elastic response compared with a visco damage constitutive model. (b): Visco damage, plastic
and composite responses.
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9.3.3 Nonlinear vibration of a spatially curved structure

The 3D structure shown in Fig. 9.24 is an open ring located in the X–Y plane, which has a
fixed end and the another one is connected to a straight column lying on the X–Z plane. Two
loads are applied on the points A and B in the X and Z directions respectively. The shape and
duration of the loading is given in the same figure. The loading step is 0.01 s. The mechanical
properties of the materials are: E = 5 × 104 Nmm−2, ν = 0.0, Gf = 1000 Nmm−2, n = 1,
ρ0 = 1× 10−8 Kgmm−3 and fc = 8 Mpa. Three cases are studied:

(i) Elastic case.
(ii) Visco damage model with η=0.004 s.
(iii) Rate independent plasticity with Gf = 1× 107 Nmm−2.

The same threshold limit is used for the models (ii) and (iii). Twenty quadratic, initially

Figure 9.24: Three–dimensional curved beam structure.

curved elements are used for the ring and ten quadratic elements for the column considering two
Gauss integration points. The beam cross section is meshed into a 8×8 grid of equally spaced
quadrilaterals with one integration point per fiber. Due to the directions of the applied loads
and the development of inertial forces, each member of the structure is subjected to a complex
state of internal stresses including torsion, flexion extension and shearing. Figs. 9.25 and 9.26
show the nonlinear time history responses for the three components of the displacement of the
points A and B of Fig. 9.24. It is worth to note that the displacements of the systems with
inelastic behavior are greater than the elastic case due to the fact that the initial loading induces
degradation and plasticity and the structure needs to develop more displacement for finding a
configuration stable with the new loading state. In the plastic case the structure finally vibrates
about a configuration which includes permanent deformation as it can be evidenced from the Z
component of both figures.
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Figure 9.25: Displacement time history response of the node A.
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Figure 9.26: Displacement time history response of the node B.
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9.4 Reinforced concrete structures

9.4.1 Experimental–numerical comparative study of a scaled RC building
model

The first example corresponds to the comparison between the numerical simulation obtained by
means of the proposed formulation and the experimental data obtained by Lu and reported in
reference [235] for the seismic analysis of a scaled model (1:5.5) of a benchmark regular bare
frame (BFR). The structure was designed for a ductility class medium in accordance with the
Eurocode 8 [120] with a peak ground acceleration of 0.3g and a soil profile A. Details about
loads, geometry, material properties and distribution of steel reinforcements can be consulted
in the same publication. In the experimental program, the structure was subjected to several
scaled versions of the N–S component of the El Centro 1940 earthquake record.
Four quadratic elements with two Gauss integration points were used for each beam and col-
umn. Cross sections where meshed into a grid of 20 equally spaced layers. Longitudinal steel
reinforcements were included in the external layers as part of a composite material. The fracture
energy of the damage model used for concrete was modified to take into account the confining
effect of transversal stirrups [258]. A tension to compression ration of 10 was used for concrete
and 1 for steel. In the numerical simulations, the model is subjected to a push–over analysis.
Static forces derived from the inertial contribution of the masses are applied at the floor levels
considering an inverted triangular distribution.
A relationship between the measured base shear and the top lateral displacement is given in
Ref. [235] for each seismic record. This curve is compared in Fig. 9.27 with the capacity curve
obtained by using the numerical push–over analysis. It is possible to see that the push–over anal-
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Figure 9.27: Comparison between numerical and experimental push–over analyze: Capacity
curves.

ysis gives a good approximation for the global maximum response and, therefore, it constitutes
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a suitable numerical procedure for estimating the expected nonlinear properties of structures
subjected lo seismic actions. In the same figure, it is possible to appreciate that in both, the nu-
merical simulation and the experimental cases, the characteristic values of the structure; that is,
global ductility level, elastic limit and over–strength, are similar. Fig. 9.28 shows a comparison

Figure 9.28: Damage. (a): Experimental: Map of fissures. (b): Numerical: Cross sectional
damage index.

between the distribution of cross sectional damage predicted numerically and the map of fissures
obtained after the application of several shaking table tests. In this case, the proposed damage
index along with the geometric and constitutive formulation used for beams is able to reproduce
the general failure mechanism of the structure where dissipation is mainly concentrated in the
beam elements.

9.4.2 Study of a RC plane frame

The precise characterization of the nonlinear behavior of RC framed structures has important
applications in earthquake engineering. A great amount of effort has been focused on studying
the capacity of structures, frequently defined in terms of a set of applied horizontal forces and the
corresponding lateral displacements. These curves allow to estimate several global parameters
such as ductility, over-strength, yielding and collapse loads, inter story drifts and other derived
damage characteristics [123, 209]. A static characterization of the response in preferred due
to the fact that a nonlinear time history analysis is more expensive in computational time. In
spite that capacity curves are widely accepted as valid substitutes of time history analysis, the
question about if cyclic or increasing loads paths are more convenient to obtain the curves, stays
still opened [123].
In this work the capacity curve of the RC structure described in Fig. 9.29 is obtained for two
loading conditions: An increasing load and a cyclic load, both of them applied on the top floor.
The RC frame is typical for an urban building, with a first floor higher than the others. The
building was seismically designed according to the Eurocode 8, for firm soil, a base acceleration
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of 0.3g and a ductility reduction factor of 4 [120]. Both geometric and constitutive nonlinear

Figure 9.29: RC planar frame details.

behaviors are considered in the model, which is defined using 4 quadratic elements with two
Gauss integration points for each beam or column. The mechanical properties of the materials
are the same as those given in the Table 9.2 but the tensile fracture energy of the concrete takes
values between 1.5 and 3.0 N-mm, corresponding to different steel ratios of the stirrups.
The capacity curve is obtained by means of numerical simulations with load control on the
horizontal displacement of the right top node of the structure. This method allows to advance
beyond the conventional collapse point, on the softening branch of the capacity curve. The results
are shown in Fig. 9.30, where it is possible to see that the curve defined by the increasing load
test is the envelop of the maximum values of the results of the cyclic test.
The global damage indices for both simulations are shown in Fig. 9.31. It is possible from this
figure that, for the case of a cyclic action, the structure maintains low values of the damage index
during more time than in the case of an increasing load. This result is in a good agreement with
the well know result that pulse like actions are much more destructive than cyclic actions.
Finally, Fig. 9.32 shows the moment-curvature relationship for the elements converging to the
joint A OF Figure 9.29, for both increasing and cyclic loads. It is possible to see that most part
of the energy dissipates in the beams during the cyclic loading. This observation is in agreement
with the expected behavior of well designed frames, with weak beams and strong columns. The
results for the increasing and cyclic load simulations of Fig. 9.32 allow to see the formation of a
plastic hinge: the moment-curvature curve presents a highly nonlinear hysteretic behavior. The
large incursion in the nonlinear range for the case of the increasing load can help to explain why
the global damage index grows faster than for cyclic loads.
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Figure 9.30: Increasing loading versus cyclic loading.

The previously described geometric and constitutive nonlinear dynamic formulation for beams
has been implemented in a FEM computer code. In this section several numerical examples
illustrating the capacities of the model for predicting the dynamic behavior of beam structures
including rate dependent effects are presented.

9.4.3 Dynamic study of a RC beam structure

This example studies of the fully geometric and constitutive static and dynamic behavior of the
RC beam structure shown in Fig. 9.33. The structure was seismically designed according to
the Euro-code 8, for firm soil, a base acceleration of 0.4g and a ductility reduction factor of 6.
The distribution of steel reinforcements are given in the same figure and Table 9.3. The precise
analysis of the response allows to carry out a safer determination of the seismic design parame-
ters, such as: damage, ductility, overstrength, collapse load, inter story drifts, energy dissipation
capacity, etc. [123, 209]. The study of the time evolution of the local damage index throughout
the structural elements provides relevant information about the structural zones where ductility
demand and energy dissipation are concentrated. These results allow validating and improving
the engineering design of buildings located in high seismic areas.
The model is developed using four quadratic elements with two Gauss integration points in
each structural element. Most of the mechanical properties of the materials are given in Table
9.4. Each cross section is meshed into a grid of 8×8 quadrilaterals with one integration point
by fiber. The tensile fracture energy of the concrete takes values between 3 and 6.0 Nmm−2,
corresponding to different steel ratios of the stirrups. The mass density of the concrete of the
beams is modified in order to consider the mass contribution of the dead and live loads acting
at the corresponding floor level. A viscosity value of η = 0.001 s has been supposed for the
concrete. A linear modal analysis reveals that the periods of the first four modal shapes are:
1.20, 0.36, 0.19 and 0.12 s, respectively.
Firstly, a static pushover test using the inverted triangular loading path is performed in order
to obtain the characteristic capacity curve of the structure expressed in terms of the horizontal
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Figure 9.31: Global damage indices.

Table 9.3: Steel reinforcement details of the different zones of the building.
Zone 1 2 3 4 5 6
Section type C1 C1 C2 C2 C3 C3
Stirrup φ12@12 φ12@15 φ12@12 φ12@15 φ12@12 φ12@15
Zone 7 8 9 10 11 12
Section type C4 C4 C5 C5 C6 C6
Stirrup φ12@12 φ12@15 φ10@12 φ10@15 φ10@12 φ10@15
Zone 13 14 15 16 17 18
Section type B1 B1 B2 B2 B3 B3
Stirrup φ12@12 φ12@20 φ12@12 φ12@20 φ10@12 φ10@20

displacement of the left top corner node and the horizontal reaction on the supports. Even if
capacity curves are widely accepted as valid substitutes of time history analysis, the question
about if dynamic or increasing load paths are more convenient to obtain capacity curves, stays
still opened [123]. Secondly, the structure is subjected to an increasing sinusoidal base acceler-
ation of period 1.2 s for inducing a near to resonance response, with minimum and maximum
values of acceleration of 50 and 200 mms−2, respectively. The time step is 0.04 s.
The capacity curve obtained by means of the pushover analysis and the hysteretic cycles in the
dynamic case are superposed in Fig. 9.34, where it is possible to see that the capacity curve un-
derestimate the real response of the the structure for the low amplitude hysteretic cycles. After
an important degradation of the concrete has occurred, the hysteretic cycles are enclosed by the
capacity curve. This fact justifies the employment of push-over response curves for predicting
the seismic response of regular buildings, due to the fact that frequently, during a seismic action,
the first movements contribute to the initial cracking of the concrete and, when the strongest
vibrations have place, the response of the structure should be limited by the capacity curve case.
The global ductility value, estimated from the capacity curve is about 6, in good agreement with
the hypothesis of design.
The evolution of the local damage indices provides more precise information about the ductility
demand and energy dissipation demand for the principal structural members. Fig. 9.35a shows
the evolution of the local damage index for the static case. It is possible to see that the nonlinear
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Figure 9.32: Plastic hinge.

Table 9.4: Mechanical Properties of the materials.
E ν fc n Gf

Mpa Mpa Nmm−2

Concrete 21000 0.20 25 8 1
Steel 200000 0.15 500 1 500

behavior is concentrated mainly in the beam elements of the first three floors and in the base
columns. This result is in good agreement with the design guidelines included in most of the
modern seismic codes, that is, the building was designed with weak–beams and strong–columns
aiming to dissipate the energy without affecting the global stability of the structure. Moreover,
the concentration of damage at the base of the columns indicate that these members should be
provided with extra reinforcements in order to obtain large inelastic incursions without brittle
failures. The diagram of Fig. 9.35a shows the evolution of the damage index corresponding to
the static case while Fig. 9.35b shows the the corresponding to the dynamic case. It is possible
to see that the failure mechanisms are similar with energy dissipation concentrated in the beams
and in the base of the columns.
It is worth to note that even although the fiber model allows to predict complex nonlinear
structural responses in both, static and dynamic cases, the numerical cost of the cross sectional
analysis can be significants when compared with the lumped nonlinear models. In this case, a
typical cross section meshed into a grid of 8×8 quadrilaterals with 3 materials requires solving
3×8×8 constitutive equations. After that, a cross sectional integration procedure is required
in order to obtain the reduced forces and tangential tensors. In contrast, only one integration
procedure is carried out for lumped models.
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Figure 9.33: Structural model of the RC planar frame.
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Figure 9.34: Horizontal displacements versus base reaction for the static pushover and the
dynamic analysis.



228 Chapter 9. Numerical Examples

Figure 9.35: Evolution of the local damage indices. (a): Pushover analysis. (b): Dynamic case.
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9.5 Precast concrete structures

9.5.1 Seismic response of a precast RC building with EDDs

The nonlinear seismic response of a typical precast RC industrial building shown in Fig. 9.36
is studied. The building has a bay width of 24 m and 12 m of inter–axes length. The story
hight is 12 m. The concrete of the structure is H-35, (35 MPa, ultimate compression), with an
elastic modulus of 290.000 MPa. It has been assumed a Poisson coefficient of ν = 0.2, a ten-
sion/compression relation of 10 and a fracture energy of gf =1 N/mm−2. The ultimate tensile
stress for the steel is 510 MPa with ν = 0.15, gf = 500 N/mm−2 and elastic modulus of 200000
MPa. This figure also shows some details of the steel reinforcement of the cross sections. The
dimensions of the columns are 60x60 cm2. The beam has an initial high of 40 cm on the supports
and 140 cm in the middle of the span. The permanent loads considered are 1000 N/m2 and the
weight of upper half of the closing walls with 225.000 N. The input acceleration is the same as
in the example of §9.4.1.

Figure 9.36: Description of the structure.

The building is meshed using 8 quadratic elements with two Gauss integration points for the
resulting beam and column. The cross sectional grid of fibers is shown in Fig. 9.48. One in-
tegration point is used for each quadrilateral. The EDD was simulated by means of employing
the previously described model reproducing a purely plastic dissipative mechanism. The prop-
erties of the device were designed for yielding with an axial force of 200.000 N and for a relative
displacement between the two ending nodes of 1.2 mm. Hardening or viscous effects were not
considered. The length of the devices was of 3.1 m. First, a set of numerical static pushover
analysis are performed considering the following cases:

(i) The bare frame under small displacements assumption.
(ii) The bare frame in finite deformation.
(iii) The frame with EDDs and small deformation.
(iv) Idem as (iii) but with finite deformation.

The purpose is to establish clearly the importance of considering second order effect coupled
with inelasticity in the study of flexible structures.

Figure 9.49a shows the capacity curves obtained for the four mentioned cases. In this figure it
is possible to see that for both, the controlled and uncontrolled cases, the small strain assumption
overestimate the real load carrying capacity of the structure, due to the fact that the vertical
load derived from the weight comprise the columns contributing to control the cracking and
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Figure 9.37: Model of the precast industrial frame with energy dissipating devices and meshes
of the beam cross sections.
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Figure 9.38: (a): Capacity curves. (b): Evolution of the global damage index.

degradation due to the lateral loading. In the case of finite deformation, the so called P–∆
[403] (second order) effects are taken into account and an anticipated strength degradation is
observed for displacements over 60 mm which is a lateral displacement level expectable under
strong seismic excitations. Additionally, the incorporation of EDDs increases the stiffness and
the yielding point (at global level) of the structure without affecting the global ductility. Is
is worth to note that the softening behavior observed for the finite deformation model is not
captured in the cases (i) and (iii).
Figure 9.49b presents the evolution of the global damage index for the cases (i)–(iv). Here it
is possible to appreciate that the global damage index grows quickly for the cases when finite
deformation is considered and the benefits of adding EDDs are not visible due to the fact that
the pushover analysis does not takes into account energy dissipation criteria.
On another hand, the results of the numerical simulations in the dynamic range allow seeing that
the employment of plastic EDDs contributes to improve the seismic behavior of the structure for
the case of the employed acceleration record. Figure 9.50a shows the hysteretic cycles obtained
from the lateral displacement of the upper beam–column joint and the horizontal reaction (base
shear) in the columns for the structure with and without devices. It is possible to appreciate
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that the non–controlled structure (bare frame) presents greater lateral displacements and more
structural damage, (greater hysteretic area than for the controlled case). Figure 9.50b shows
the hysteretic cycles obtained in the EDD, evidencing that part of the dissipated energy is
concentrated in the controlling devices, as expected. Figure 9.6.3 shows the time history response
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Figure 9.39: (a): Base shear–displacement relationship. (b): Evolution of the global damage
index.

of the horizontal displacement, velocity and acceleration of the upper beam–column joint for
the uncontrolled and the controlled case. A reduction of approximately 65.5 % is obtained
for the maximum lateral displacement when compared with the bare frame. Acceleration and
velocity are controlled in the same way, but only 37.9 and 26.9 % of reduction is obtained. A
possible explanation for the limited effectiveness of the EDD is that the devices only contribute
to increase the ductility of the beam–column joint without alleviating the base shear demand
on the columns due to the dimensions of the device and its location in the structure. By other
hand, joints are critical points in precast structures and therefore, the employment of EDDs
combined with a careful design of the columns can help to improve their seismic behavior.
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9.5.2 Seismic response of a 3D urban building with EDDs

This example corresponds to the study of the seismic nonlinear response a 3-storey urban build-
ing designed according to the Eurocode 8 [120] for a ductility class medium, a soil profile A with
a peak ground acceleration of 0.2g, see Fig. 9.41a. The main purpose of this example consist
into show the ability of the proposed formulation for simulating the geometric and constitutive
nonlinear behavior of a 3D structure with and without EDDs, highlighting some complex phe-
nomenon such as the torsional response coupled with P–∆ effects for the case of a nonuniform
distribution of mass. The building is subjected to an scaled version of the N–S component of the
El Centro earthquake record to obtain a peak acceleration of 0.3g greater than the maximum
horizontal load allowed by design. The loading is applied according to the axis A–B og Fig.
9.41a. The mechanical properties for steel and concrete are the same as in example 9.5.1.

Figure 9.41: 3–storey urban building. (a): Bare frame. (b): Structure with EDDs incorporated.
(c): RC detailing.

Inertial forces are considered as those derived from the contribution of the mass corresponding
to a concrete floor of 130 mm thickness along with the sum of dead and live loads of 2500 N/mm2

(uniformly distributed on the floors). Structural torsion is induced adding two point masses on
the top corners of the right face of the building with values corresponding to the 10% of the
total floor’s mass. Therefore, even when the seismic record is applied in one direction, coupled
displacement will appear in the another one due to inhomogeneous distribution of masses.
Several practical aspects of the performance of a engineering structure can be considered: struc-
tural torsion, distribution of the damage, over-strength and ductility. This situation is partic-
ulary important for seismic loading due to the fact that modern design takes into account the
capacity of the structure to resist loads with an adequate combination of strength, ductility
and flexibility. In this case, realistic studies involve material nonlinearities as well as geometric
effects. Three cases are considered:

(i) Bare building (full nonlinear model).
(ii) Elastic bare equipped with viscous EDDs. The location of the viscous devices is shown

in Fig Fig. 9.41b and their mechanical properties are: (i) A linear viscous coefficient of
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cd = 10.000 Ns−1 with (ii) an exponent of n = 0.5 (see §8.1.1).
(iii) Full nonlinear model of the building equipped with viscous EDDs (idem mechanical prop-

erties as in (ii)).

The purpose of including the case (ii) is to investigate what is the influence on the structural
response of the widely used (a priori) assumption that considers the building’s structure remain-
ing elastic as consequence of the benefits obtained from EDDs.
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Figure 9.42: Displacement time history response in the direction of the applied record. (a):
Node B. (b): Node C.

The displacement time history responses of the nodes B and C of the building in the direction
of the applied record are shown in Fig. 9.42a and 9.42b, respectively. The difference observed in
these figures is due to the fact that the torsional effect due to the inhomogeneous distribution
of masses induces a rotational motion about the inertial center of the floors. Additionally, it
is possible to appreciate that the use of the proposed viscous dampers contributes to alleviate
the maximum global displacement demand decreasing the response about a 25%. However, an-
other important result is given by the fact that clearly the a priori consideration that the main
structure remains elastic underestimates the displacement demand and therefore, the ductility
demand on the structural elements.
By the other hand, Fig. 9.43a and 9.43b shows the displacement time history response of the
nodes C and D in the direction perpendicular to the application of the loading. Therefore, they
are produced due to the torsion. The main two aspect that have to be highlighted in this case
are: (i) Again the assumption of a linear bare structure is not able to capture appropriately
the torsional components of the motion and (ii) The inclusion of viscous EDDs can alleviate
significatively the torsional response in the nonlinear range. It has to be noted, however, that
the masses added in the present example are rather small compared with the total one.
It is worth noting that damage appears on column elements due to the poor seismic consider-
ations taken into account in the design (weak column-strong beams). Evolution of the global
damage index is presented for the full nonlinear controlled and uncontrolled cases in Fig. 9.44.
In the same manner as before, the benefits obtained from the application of EDDs are clearly
evidenced.
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Figure 9.43: Displacement time history response in the direction of the applied record. (a):
Node C. (b): Node D.
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Figure 9.44: Time history response of the global damage index.



236 Chapter 9. Numerical Examples

9.6 Two–scale model: Numerical simulations

9.6.1 Elastic example

The fist example corresponds to the 3D loading of the cantilever beam of Fig. 9.45. The beam
is simulated using 5 quadratic beam elements for each of the segments located on the right and
left sides of the central one. The central segment is simulated using a two–scale approach. Ten
linear hexahedra are used in the direction X and a mesh of 4 × 4 hexahedra are used for the
surface–interface, giving a total of 192 elements in the local model. One Gauss integration point
is used in each FE of the local model. The applied loadings as well as the material properties
are given in the same figure.

Figure 9.45: Elastic cantilever beam subjected to 3D loading.

Figure 9.46 shows a comparison between the displacement response in the Y and Z directions
obtained from the two–scale model and the ones obtained using a simple elastic FE beam model.
Its is possible to see a good agreement between both results.
Figure 9.47 shows the distribution of the reaction forces on the surface–interface of the local
model. It is worth noting that complex force distributions are well reproduced in the local model
due to its capacity for representing the full 3D geometry of the beam, in contrast with that
obtained in the beam model, due to the limitations of the kinematics assumptions. Moreover, as
it has been explained before, reduced forces and moments are then calculated using Eqs. (8.30a)
and (8.30b).
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Figure 9.46: Comparison between the displacement response obtained from the beam and the
two–scale models. (a, b): Displacements in Y and Z directions, respectively.

(a)

(b)

(c)

Figure 9.47: Reaction force distributions on the surface–interfaces. (a): Force in X direction.
(b): Force in Y direction. (c): Force in Z direction.
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9.6.2 Nonlinear static example

The seismic response of the precast RC industrial building of Fig. 9.36 has been studied by
the authors in reference [261] considering monolithic joints. The building has a bay width of
24 m and 12 m of inter–axes length. The story hight is 12 m. The concrete has a ultimate
compression of 35 MPa, with E = 290.000 MPa, ν = 0.2 and a tension/compression relation of
10. The ultimate tensile stress for the steel is 510 MPa with ν = 0.15, E = 200000 Mpa and
ν = 0.15. The dimensions of the columns are 60x60 cm2. The beam has an initial high of 40
cm on the supports and 140 cm in the middle of the span. The permanent loads are 1000 N/m2

and the weight of upper half part of the closing walls with 225.000 N.

(a)

(b)

Figure 9.48: FE model of the local scale problem. (a): Mesh. (b): Distribution of materials.
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The building is meshed using 8 quadratic beam elements with two Gauss integration points
for the resulting beams and column. Details about the steel reinforcement and the grid of
quadrilateral of the cross sections can be consulted in the same reference. Additionally, we con-
sider a local scale model corresponding to the precast connecting joint which is clearly a local
irregularity in the structure, see Fig. 9.36. The FE model used for the local scale is shown in
Fig. 9.48 and it corresponds to a segment of the column and beam of 60 cm measured along
their respective axis, which allows to cover completely the connecting zone where two steel bars
with 16 mm diameter are used to transmit forces and moments among vertical and horizontal
elements.
A total of 608 hexahedral FE are used with one Gauss integration point. Considering that the
mixing rule is used in the local 3D model, several zones (see Figure 9.48b) with different volu-
metric fractions of steel and concrete are defined, representing the longitudinal and transversal
reinforcements in the structure.
A static pushover analysis is performed considering: (i) the frame with monolithic joints in
finite deformation. (ii) The two–scale model in finite deformation. The purpose is to establish
clearly the importance of considering an appropriated description of the local irregularities in
the structures as well as the second order effect coupled with inelasticity in the study of flexible
structures. Figure 9.49a shows the capacity curves obtained for the two mentioned cases. It
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Figure 9.49: (a): Capacity curves. (b): Evolution of the global damage index.

is possible to see in this figure that the stiffness and ductility levels are overestimated in the
case when the monolithic joints are employed. The use of finite deformation allows to take into
account the so called effect P–∆ [261] and an anticipated strength degradation is observed for
displacements over 60 mm which is a lateral displacement level expectable under strong seismic
excitations. Softening behavior is observed for both models. Figure 9.49b shows the evolution
of the global damage index for both models. This index grows quickly for the two–scale model
due to the fact that the greater part of the degradation and energy dissipation take place inside
of the connecting joint.
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9.6.3 Nonlinear dynamic example

In this example, the nonlinear seismic response of the structure of Example 9.6.2 is simulated by
means of the two–scale model. The input acceleration is the N–S component of the El Centro
1940 earthquake record. The response obtained from the two–scale model is compared with
that obtained from the nonlinear dynamic response of a beam model. Figure 9.50 shows the
hysteretic cycles obtained from the lateral displacement of the upper beam–column joint and the
horizontal reaction (base shear) in the columns for both models. Again it is possible to appreciate
the influence of the local irregularity in the dynamic response: more energy dissipation and
lateral displacements are obtained in the two–scale model. Figure 9.6.3 shows the time history
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Figure 9.50: Base shear–displacement relationship.

response of the horizontal displacement and acceleration of the upper beam–column joint for
both models. Displacements and accelerations are greater (∼45% and ∼14%, respectively) when
the two–scale model is used in the numerical simulations, revealing that the nonlinear seismic
response of precast and of other RC structures with local irregularities can be dominated by the
mechanical behavior of the joints.
Finally, Figure 9.52 shows several stages of the nonlinear inclusions experienced by the local
model.
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(a)

(b)

Figure 9.52: Nonlinear response in the local model at times t = 2.0, 3.1, 4.2 s. (a): Stress in the
Y direction. (b): Damage concentration around the connecting bar in the joint.



Chapter 10

Conclusions and further research

In this chapter conclusions about the results obtained in the formulation and the numerical
implementation of a rod model able to consider the fully geometric and constitutive nonlinearity
as well as the local irregularities described in §8 are described and discussed in section §10.1;
section §10.2 is dedicated to the statement of new lines of research related to the different topics
covered in this thesis.

10.1 Conclusions

In this section a detailed response to the partial objectives declared in the list of §1.2 is given.
Particularly, is possible to see that in what regard to

(I) The theoretical objectives

(I.1) In §3 a deep study and a theoretical analysis of the continuum based theory of rods
capable of undergoing large displacements and rotations under the Reissner–Simo hy-
pothesis has been performed. In the present case, an initially curved and unstressed
rod is considered as the reference configuration. A detailed description of the kine-
matic assumptions is carried out in the framework of the configurational description
of the mechanics. The equations of the motion are deduced from the local form
of the linear and angular balance conditions and integrating over the rod’s volume.
An appropriated (weak) form for the numerical implementations is deduced for the
nonlinear functional corresponding to virtual work principle. A discussion about the
deduction of reduced constitutive relations considering hyperelastic materials. There-
fore, the objective (i.1) is widely covered in this chapter.

(I.2) After defining translational and rotational strain vectors and calculating the defor-
mation gradient tensor, in §3.2 explicit expressions for the material, spatial and co–
rotational versions strain measure and for the objective measure of the strain rate
acting on each material point of the cross section, in terms of the variables defining
the deformation map, its derivatives and the geometry of the beam cross section are
given. The conjugated stress measures existing at material point level are developed
and power balance condition is used to deduce the stress measure energetically con-
jugated to the cross sectional strain measures. In this case, the objective (i.2) is
fulfilled.

(I.3) The objective (i.3) of §1.2 is fulfilled in Chapter 4 which has been devoted to the
development of rate dependent and independent inelastic constitutive laws for simple

243
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material associated to points on the cross sections, in terms of the First Piola Kirchhoff
stress tensor and the corresponding energetically conjugated strain measure. Two
types of nonlinear constitutive models for simple materials are included: the damage
and plasticity models are considered in a manner consistent with the kinematics of
the rod model and the laws thermodynamics for adiabatic processes. Rate dependent
behavior and viscosity is included by means of a Maxwell model.

(I.4) In the same chapter, it has been highlighted the fact that material points on the
cross section are considered as formed by a composite material i.e. a homogeneous
mixture of different components, each of them with its own constitutive law. The
composite’s behavior is obtained by means of an appropriated version of mixing theory
which considers the kinematic assumptions of the present rod theory. The mechanical
response of the composite is obtained supposing a rheological model where all the
components work in parallel. Those results provide a response to the objectives
declared in (i.4).

(I.5) Additionally, in §4.4 a continuum version of the cross sectional analysis has been
developed including explicit expressions for the stress resultant and stress couples
assuming planarity of the cross sections. Warping variables or iterative procedures
for obtaining corrected strain fields are avoided in the present formulation. Consistent
cross sectional tangential constitutive tensors are deduced including rate dependent
inelasticity in composite materials which fulfills the objective (i.5).

(I.6) Objective (i.6) is covered in §4.5 where a continuum version of local and global damage
indices able to describe the evolution of the remaining load carrying capacity of
complex structures is developed. The proposed indices are based on the ratio existing
between the inelastic stresses and their elastic counterparts.

(I.7) The correct (in a manner consistent with the geometry of the configurational man-
ifold) linearization of the weak form of the nonlinear balance equations is carried
out in §5 including the effects of the rate dependent inelasticity existing at material
point level which leads to the consistent deduction of the mass and viscous tangent
stiffness. The fact that the rotational part of the displacement field can be updated
using two alternatively rules, the material and the spatial one, implies that two sets
of linearized kinetics and kinematics quantities can be obtained, according to the up-
dating rule chosen. By completeness, both set of linearized expressions are obtained
in the sections of that chapter. The corresponding rate dependent and independent
parts of the tangential stiffness were deduced and added to the loading and geometric
terms. Therefore, objective (i.7) of the list of section §1.2 is fulfilled.

(I.8) In (i.8) it has been declared the need of disposing of an specific rod element for EDDs.
The development of a specific rod element well suited for modeling the mechanical
behavior of energy dissipating devices to be incorporated to the present full geometric
and constitutive rod theory is described extensively in §8.1 of Chapter 8.

(I.9) The development of appropriated one–dimensional force-displacement and/or moment-
curvature relations for the description of the nonlinear hysteretic behavior of different
types of energy dissipators is covered in §8.1.1.

(I.10) The appropriated theoretical framework for the development of a two–scale model
of rod structures with local geometric irregularities is considered in §8.2. Sections
8.2.1 to 8.4 includes the formulation of the general problem in the both scales as
well as their interaction. Kinematical hypothesis as well as other simplifications are
explained in detail. In this manner, objective (i.10) (see §1.2) is fulfilled.

(II) Numerical objectives
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(II.1) Objective (ii.1) claims about the need of disposing of numerical algorithms for the
integration of the constitutive laws for simple materials developed in §4, as well as
for the obtention of the mechanical behavior of composites. In the same chapter,
sections 4.2.2, 4.2.3 and 4.3 it is possible to find the corresponding algorithms.

(II.2) In Chapter 6 the time discretization of the linearized version of the virtual work
principle is performed according to the Newmark’s method following the procedures
originally proposed in [365]. A time–stepping scheme consistent with the kinematic
assumptions made for the rod model i.e. able to manage variables belonging to SO(3)
and its tangent space is presented in §6.1.1. At each time step the linearized problem
is solved by means of an iterative scheme until convergency is achieved. In §6.1.2 to
§6.1.4 the corresponding (Eulerian) updating iterative procedure for the kinetics and
kinematics variables as well as for the strain and strain rate measures is developed.
The spatial and the material updating rule for the rotational part of the motion
are considered. Taking into account the previous results it is possible to see that
objective (ii.2) is fulfilled. It is worth to note that even though using small time
steps the numerical dissipation can be reduced, additional benefits in the numerical
performance could be obtained employing energy-momentum conserving schemes, at
least in the conservative limit of the problems.

(II.3) The purpose declared in (ii.3) is accomplished in §6.5 of §6. In that section some
theoretical development about the application of variational integrators for the time
discretization of the action integral of Hamiltonian system is discussed extensively.
The analysis includes a brief presentation of the Hamiltonian version of the rod’s
problem and a summary of the main aspects of energy-momentum conserving algo-
rithms.

(II.4) The development of an appropriated cross sectional analysis, consistent with the kine-
matical hypothesis and based on the fiber discretization of the cross section, is carried
out in §7.7.1 as declared in (ii.4). Each fiber should have associated a composite ma-
terial. The developed procedure performs the calculation of reduced cross sectional
forces and moments, the tangential stiffness tensors and the damage indices at ma-
terial point and cross sectional level. The proposed method, even when inexact from
the point of view of the elasticity theory, gives a computationally convenient way of
approximating the strain-stress distribution in the section. Two additional integra-
tion loops, running on the number of fibers and the number of simple components,
are required (see Fig. 7.3).

(II.5) Chapter 7 describes the spatial discretization used in the Galerkin finite element ap-
proximation of the time discretization presented in §6 for the linearized form of the
virtual work equations. The resulting FE approach yields to a system of nonlinear
algebraic equations well suited for the application of the Newton iterative method.
Again, the main difficulty arises in the fact that the spatial interpolation of the con-
figuration variables should be consistent with the nonlinear nature of Ct (see §3.1).
The developed elements are based on isoparametric interpolations of both the dis-
placement and the incremental rotation parameters. Considering that the material
or spatial updating rule for the rotations are equivalent, their corresponding interpo-
lated iterative incremental rotation vectors can be used to parameterize the rotational
variables. By completeness, both schemes are presented yielding to the correspond-
ing tangential matrices and unbalanced force vectors. In the practice, the numerical
procedures based on the spatial form of the iterative incremental rotation vector
are preferred because it makes the expressions for the internal, external and inertial
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vectors and the tangential matrices more concise and explicit. The obtained inertial
and viscous tangential matrices are consistent with the Newmark updating procedure
described in §6.

(II.6) Explicit expressions for the iterative Newton–Raphson scheme consistent with the
Newmark’s updating scheme for the dynamic variables described in §6.1 is developed
in §7.7 (see Fig. 7.1), therefore, objective (ii.6) is fulfilled.

(II.7) An integration algorithm for the constitutive relation assigned to the energy dissi-
pating devices is developed in §8.1.2 along with a method for obtaining the forces or
moment in the devices for a given strain field.

(II.8) The two–scale model developed and described in detail in §8.2 for studying the non-
linear response of framed structures with local geometric irregularities is numerically
implemented using a FE approach in §8.5. The numerical coupling between scales
is developed starting from the full 3D stress state existing in the local model, cross
sectional forces and moments, required at global level, are recovered by integrating
at the surface–interface in an analogous manner as for the cross sectional analysis of
beams as it is explained in §8.5.3. In this manner, objective (ii.8) is fulfilled.

(II.9) The iterative Newton–Raphson scheme based on the displacement method, which
considers the interaction between scales is developed in §8.5.3 (see Fig. 8.7). It
allows to obtain the response at the global level even in the nonlinear dynamic range.
Equilibrium is checked at both, local and global levels, ensuring that compatible
configurations are reached for the whole problem. The tangential stiffness of the
local model is obtained numerically applying the perturbation method on the current
configuration and obtaining the corresponding reaction forces reduced to the degree of
freedom of the rod model as explained in §8.4.3; in the same section the corresponding
reaction forces reduced to the degree of freedom of the global level are used for
estimating the reduced forces and moments in the local model.

(II.10) The numerical implementation of the two–scale model for framed structures with local
irregularities is implemented computationally in a parallelized version of the master–
slave approach for managing the multi–scale problems. The global scale problem acts
as the master, sending a trial displacement fields to the local scale models (slaves) and
then receives the corresponding internal forces and tangential tensors. The iterative
process is finished when the global convergence is achieved. The communication
between processes is carried out by mean of an appropriated library of communication
(MPI library; see [381]). The developed approach facilitates a minimal intervention
on existing codes specific for beams and solids. Those results contribute to fulfil
objective (ii.10).

(III) Practical objectives

(III.1) The numerical validation of the proposed formulation, in the static and dynamic cases,
is performed throughout a set of examples considering linear elastic constitutive laws
with initially straight and curved beams. See §9.1 were it is possible to appreciate a
good agreement with results of existing literature.

(III.2) Additionally, the proposed formulation is validated throughout an extensive set of
numerical examples (statics and dynamics) covering inelastic constitutive equations
in §9.2. The results are compared with those provided in existing literature when
possible (for the case of plasticity). In other cases new examples are presented,
mainly in what regard to the study of the response of degrading composite structures
in both the static and dynamic cases.
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(III.3) The verification of the obtention of a mesh independent response for structures pre-
senting softening materials is carried out in the example of §9.2.1. Mesh independency
is obtained by means of the regularization of the energy dissipated at constitutive level
considering the characteristic length of the volume associated to a specific integration
point and the fracture energy of the materials. The same example includes details
pertaining to the evolution of global and local damage indices. It is also possible
to see that the proposed damage indices allow to identify the global load carrying
capacity of the structure and the damage state of the different members. Considering
(III.1) to (III.3), it is clear that objectives (iii.1) to (iii.3) are fulfilled.

(III.4) The ability of the proposed model for predicting the ultimate load, ductility and
other relevant engineering parameters of real structures is verified in §9.4.1. In this
example the response predicted numerically is compared with experimental results of
experimental push–over analysis performed on a scaled model. It is possible to see
the good approximation for the global maximum response and for the characteristic
values of the structure; i.e. global ductility level, elastic limit and over–strength.
Also, the comparison between the distribution of cross sectional damage predicted
numerically and the map of fissures obtained after the application of several shaking
table tests gives reasonably good results.

(III.5) The ability of the proposed damage indices for predicting the load carrying capacity
of structures is verified from the conclusions given in (III.1) to (III.3), however, the
most convincing results can be obtained from §9.4.1 to §9.5.2.

(III.6) To study of the static and dynamic (even seismic) response of real two and three-
dimensional precast and cast in place reinforced concrete structures is presented in
the detailed examples of §9.4.2 to §9.5.2 comparing the results obtained when full
nonlinearity is not considered in the numerical simulations. The presented results
include the obtention of capacity curves (including the effects of cyclic static actions),
the evolution of local and global damage indices, time history response of relevant
degrees of freedom, the hysteretic cycles obtained from the action of dynamic loads,
the seismic responses and localization and characterization of nonlinearities in framed
elements (see Fig. 9.32).

(III.7) The study the possibility of improve the dynamic (seismic) response of real civil
engineering structures by means of using energy dissipating devices is extensively
considered in §9.4.3 to §9.5.2.

(III.8) To study of the nonlinear static and dynamic response of precast concrete structures
including EDDs is carried out extensively in §9.5.1 and §9.5.2. Controlled and un-
controlled cases, the small and large strain assumptions are compared showing that
the infinitesimal deformation hypothesis overestimate the real load carrying capacity
of the structure, due to the fact that self-weight loads comprise the columns con-
tributing to control the degradation due to the lateral loading. In the case of finite
deformation, the so called P–∆ effects are taken into account and an anticipated
strength degradation is observed due to lateral displacement levels expectable under
strong seismic motions. Additionally, the incorporation of EDDs increases the stiff-
ness and the yielding point (at global level) of the structure without affecting the
global ductility. Again, studies are focused on the evolution of the damage indices
confirming the mentioned effects. Moreover, the results of the numerical simulations
in the dynamic range allow seeing that the employment of plastic EDDs contributes
to improve the seismic behavior of the structures for the case of the employed accel-
eration record. It is possible to appreciate that the non–controlled structure presents
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greater lateral displacements and larger structural damage. Reductions are observed
for the displacement, velocity and acceleration time history responses when appro-
priated EDDs are included. More details can be reviewed in the mentioned sections.
Conclusion (III.5) to (III.9) fulfil the objectives declared in (iii.5) to (iii.9)

(III.9) Several numerical examples in §9.6 validates the proposed two–scale approach for the
study of the nonlinear static and dynamic response of structures (even precast ones
with non ductile connecting joints) with local geometric irregularities. The linear
elastic case is validated in §9.6.1. In the practical case of a precast concrete structure
the advantages of using the proposed approach is verified in the static and dynamic
cases of examples §9.6.2 and §9.6.3, respectively. Therefore, the objective (iii.9) is
fulfilled.

10.1.1 Summary of conclusions

In summary, after reviewing the content of the chapters of this work, it is possible to con-
firm that it has been developed a formulation for rod structures able to consider in a coupled
manner geometric and constitutive sources of nonlinearity in both the static and the dynamic
ranges. Additionally, the same formulation has bee extended for allowing the inclusion of pas-
sive energy dissipating elements as an special case of rods and geometric irregularities as a full
three-dimensional body connected to the framed structure by means of a two–scale model.
The proposed formulation is based on the geometrically exact 3D formulation for rods due
to Reissner and Simo considering an initially curved reference configuration, which has been
extended to include arbitrary distribution of composite materials in the cross sections. Each
material point of the cross section is assumed to be composed of several simple materials with
their own constitutive laws. Constitutive laws for the simple materials are based on thermo-
dynamically consistent formulations allowing to obtain more realistic estimations of the energy
dissipation in the nonlinear range. The simple mixing rule for composites is used for modeling
complex material behaviors at material point level. Viscosity is included at the constitutive
level by means of a thermodynamically consistent visco damage model developed in terms of
the material description of the material form of the FPK stress vector.
A detailed cross sectional analysis, consistent with the kinematic hypothesis is also presented.
From the numerical point of view, the cross sections are meshed into a grid of quadrilaterals, each
of them corresponding to fibers directed along the axis of the beam. An additional integration
loop, running on the number of fibers, is required to obtain the iterative cross sectional forces,
moments and the tangential stiffness tensors. The proposed method, even when inexact from
the point of view of the elasticity theory, gives a computationally convenient way of approxi-
mating the strain-stress distribution in the section. Warping variables or iterative procedures
for obtaining corrected strain fields are avoided in the present formulation. The resulting for-
mulation is well suited for studying the constitutive and geometric nonlinear behavior of framed
structures in the static and dynamic cases.
A mesh independent response is obtained by means of the regularization of the energy dissipated
at constitutive level considering the characteristic length of the volume associated to a specific
integration point and the fracture energy of the materials. Local and global damage indices
have been developed based on the ratio between the visco elastic and nonlinear stresses. The
proposed damage indices allow estimating the evolution of the global load carrying capacity of
the structure and the damage state of the different members during dynamic actions.
The linearization of the virtual work functional (the weak form of the momentum balance equa-
tions) is performed in a manner consistent with the kinematical hypothesis of the rod theory and
rate dependent inelasticity. An explicit expression for the objective measure of the strain rate
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acting on each material point is deduced along with its linearized form. The procedure leads to
the consistent deduction of the mass and viscous tangent components of the stiffness which are
added to the material, geometric and loading dependent terms. Both, the material and spatial
updating rule for rotations are considered. Due to the fact that the deformation map and their
related dynamical variables belong to R3⊗SO(3), an appropriated version of Newmark’s scheme
is used and details about the numerical implementation of the iterative updating procedure of
the involved variables are also addressed. The time discretization of the linearized equations is
carried out consistently with the iterative Newmark’s scheme.
The space discretization of the linearized problem is performed using the standard Galerkin FE
approach. The resulting model is implemented in a displacement based FE code. A Newton–
Raphson type of iterative scheme is used for the step-by-step solution of the discrete problem.
It is worth to note that even though using small time steps the numerical dissipation can be
reduced, additional benefits in the numerical performance could be obtained employing energy-
momentum conserving or variational based schemes, at least in the conservative limit of the
problems.
An specific element for EDDs is developed, based on the rod model but releasing the rotational
degrees of freedom. Appropriated constitutive relations are given for a wide variety of possible
dissipative mechanisms including the corresponding integration algorithms.
If local geometric irregularities appear in a framed structure a two–scale, global and local, ap-
proach has been developed for studying its nonlinear response. At global scale level, all the
elements of the model are 1D i.e. prismatic rods which consider the present extension to include
an arbitrary distribution of inelastic composite materials in the cross sections of the geometri-
cally exact formulation due to Reissner and Simo. For the geometric irregularity, an amplified
view of the corresponding element is carried out, constructing a fully 3D model which constitutes
the local scale level. The dimensional–coupling between scales is performed through surface–
interfaces imposing the kinematic hypothesis assumed for the beam model. Starting from the
full 3D stress state existing in the local model, cross sectional forces and moments, required at
global level, are recovered by integrating at the surface–interface.
An iterative Newton–Raphson scheme based on the displacement method, which considers the
interaction between scales is developed to obtain the response at the global level even in the
nonlinear dynamic range. Equilibrium is checked at both, local and global levels, ensuring
that compatible configurations are reached for the whole problem. The tangential stiffness of
the local model is obtained numerically applying the perturbation method on the current con-
figuration and obtaining the corresponding reaction forces reduced to the degree of freedom
of the rod model. The computational implementation manages the problem by means of the
master–slave approach. The global scale problem acts as the master, sending the iterative dis-
placement/rotation fields to the local scale models which are the (slaves) and then receives the
corresponding internal forces, moments and tangential tensors obtained by integration on the
surface–interfaces. A parallelized computational implementation ensures a minimal intervention
on specific codes for beams and solids is required.
Several numerical examples have been included for the validation of the proposed formulation.
The examples include elastic and inelastic finite deformation response of framed structures with
initially straight and curved beams. Viscous mechanisms of dissipation are included at consti-
tutive level. The verification of the obtention of a mesh independent response for structures
presenting softening behavior is carried out. Comparisons with existing literature is performed
for the case of plasticity and new results are presented for degrading and composite materials.
The geometric and constitutive nonlinear dynamic response of several 2D and 3D structures
was computed for different constitutive models including composites. Those examples show how
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the present formulation is able to capture different complex mechanical phenomena such as the
uncoupling of the dynamic response from resonance due to inelastic incursions. Moreover, the
present formulation which includes viscosity at material point level, suppress the high frequency
content in the dynamic response which is a desirable characteristic of time stepping schemes.
The study of realistic flexible reinforced concrete framed structures subjected to static and dy-
namic actions is also carried out. The fully coupled constitutive and geometric behavior of the
frames is compared for both cases. Detailed studies regarding to the evolution of local damage
indices, energy dissipation and ductility demands were presented. Comparisons with experimen-
tal data are also provided. Those examples show how the present formulation is able to capture
different complex mechanical phenomena such as the uncoupling of the dynamic response from
resonance due to inelastic incursions. Other practical studies include the detailed study of seis-
mic response of precast and cast in place concrete structures with energy dissipating devices.
Advantages of the use of passive control are verified.
Finally, numerical examples are included showing the capabilities of the developed two–scale
approach in predicting the elastic and inelastic dynamic responses of structures with local irreg-
ularities. The present formulation appears as a convenient approach for studying the dynamic
nonlinear behavior or realistic RC structures where the response of the structure is dominated
by local irregularities such as is the case of precast structures.

10.2 Further lines of research

Several lines of research can be opened from the results of the present work. A possible grouping
of them is the following:

(i) The extension of the Reissner–Simo theory for coupled thermic-mechanics
problems.
In the present formulation the adiabatic and isothermal case of the constitutive equations
at material point level have been considered (see §4). Therefore, thermally loaded prob-
lems are not covered and coupled geometric-thermic-mechanic effects are not allowed. At
the author knowledge, only a few works have been considered this case (see e.g. Simmonds
[360] for an approximated version of the theory), and they are limited to theoretical de-
velopments in elastic range. In this manner, a possible contribution in further works can
be given by the extension of the present formulation for including the full thermodynam-
ical laws in the constitutive part of theory and the corresponding treatment in numerical
simulations.

(ii) Finite deformation models with enhanced kinematical assumptions.
Several works have been devoted to the development of richer kinematics assumptions1

incorporated in geometrically exact rod models; see e.g. [370, 323] for the inclusion of
warping in elastic materials, [324] for anisotropic materials, [361, 151, 149] for the the case
of plasticity with warping, among others. In any case, the reviewed works present one or
more of the following limitations: (a) The out of plane component of the cross sectional
displacement field is limited to the consideration of warping functions depending on the
arch–length parameter. (b) Inelasticity is limited to plasticity. (c) A full 3D displacement
field is added to the one derived from the plane assumption but the corresponding strain

1In the sense of improving the cross sectional displacement field obtained with the plane cross section assump-
tion.
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measures are simplified considering certain small strain assumptions. (d) General distri-
bution of inelastic composite materials have not been considered.
Additional refinement in the displacement field can be obtained adding a general distorting
3D field û = uit̂i on the plane assumption as

x̂(S, ξβ, t) = ϕ̂(S, t) + ξβ t̂β(S, t) + ui(S, ξβ)t̂i(S, t), (10.1)

in stead of Eq. (3.22). The distorting field û should be determined, even in the inelastic
range, in a way such that the global equilibrium equations are fulfilled. In this case
the deformation gradient Ff is the sum of the one obtained from plane case and the
corresponding derived from the distorting field as

Ff = ∇Xi(ϕ̂ + T̂ )⊗ Êi +∇Xi(û)⊗ Êi = Fp + Fd. (10.2)

Most of the theory for the plane case has been covered in the present work, therefore it
remains opened to develop the same for the Fd yielding to additional equilibrium equations
at the reduced level, an enhanced virtual work principle and so on. The rest of the usual
procedures for proposing a numerical method for solving the new problem (constructing
the distorting parts of the strain and strain rate field, linearization, space an time dis-
cretization, etc.) should be also be provided.
The main advantage of using the hypothesis of Eq. (10.1) is that a full strain field can
be obtained on each material point on the cross section and, therefore, a larger set of
constitutive equations can be employed.
Inspired in the work of Bairan and Mari [31, 32], which is limited to small strain assump-
tion, it is possible to guess that the field û should be obtained by means of an appropriated
cross sectional analysis enforcing the inter–fiber equilibrium through an iterative proce-
dure. However, no attempts have been done in this line at the present.

(iii) The use of variational integrators that preserve the geometric structure of the
configuration manifold.
As stated by West ([402], Ch. 1):
The variational method for deriving integrators means that the resulting algorithms auto-
matically have a number of properties. In particular, they are symplectic methods, they
exactly preserve momenta associated to symmetries of the system, and they have excellent
longtime energy stability.
Therefore, the above mentioned properties make the variational methods a very useful
tool for simulating flexible mechanisms made of rods which are either conservative or near-
conservative. Moreover, the variational methodology allows to easily and cleanly derive
good integrators even in highly complex geometries, such as the asynchronous space-time
meshes. Variational methods preserve the geometry of the geometric structure of the con-
tinuum system. In any case, the method applies even when the system is not conservative.
Additionally, this methodology provides an unifying framework from which to consider the
Lagrangian side of symplectic integration theory.
In §6.3 and §6.5 a summary of the Hamiltonian formulation of the present rod theory as
well as the firsts steps needed in developing a variational integrator (probably the simplest
one) starting from the time discrete form of the Lagrangian were given. Only conservative
systems were considered.
In any case, additional steps such as the linearization of the resulting (discrete) implicit
equations and numerical verifications remain still uncompleted. Moreover, other integra-
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tors of higher accurate order can be developed following analogous procedures. Moreover,
the methodology could be extended to dissipative and forced systems.

(iv) The extension of the present result to shell elements.
Another type of structural element widely applied in several areas of engineering is the
shell element. Geometrically exact models for shells (see [11, 188, 366, 367, 368] for the
general theory; [76, 77, 369] for the case of variable thickness; the inclusion of inelasticity
can be reviewed in [374]; a shell’s formulation using drilling degrees of freedom can be
consulted in [176, 177, 375]; the development of time–stepping schemes in [78, 80, 79, 373],
among a really large list of works) share with the present rod model the fact that both
formulations produce a nonlinear configuration manifold involving the rotation manifold
(or the two-sphere in the case of shells). Particularly, the so called shell formulation with
drilling rotations has the same number of degrees of freedom as the rod model and, there-
fore, are well suited to be combined in a computer code able to simulate the behavior
of one and two dimensional structural elements. Typical examples of such structures are
inflatable structures shear wall buildings, aircrafts with stiffener among many others.
An interesting possibility is given by the fact of extending the present formulation for com-
posite materials to shell elements and combine them with rods for studying the previously
described problems.

(v) Effectiveness of using EDDs for seismic applications.
The employment of EDDs in civil engineering structures has been verified through a set of
numerical examples in the present work (see §9), however the benefits obtained depends of
a large set of factors [382]: (i) The characteristics of the seismic action (duration, intensity,
frequency content, etc.) (ii) The characteristics of the location of the building (solid type,
possibility of liquefaction, etc.) (iii) The characteristic of the structure (eigenfrequencies
of the modal shape which contributes to the response, local and global ductility, damage
distribution, energy dissipation capacity, presence of second order effects or structural tor-
sion, etc.); (iv) the possible (nonlinear) interaction between (i), (ii) and (iii); among others.
Several methodologies has been proposed for the inclusion of passive EDDs in buildings
(and other structures) (see e.g. [8, 129, 130]). However, none of them provides exhaustive
design rules valid for the general case. It should be interesting to study the possibility
of developing design criteria for buildings with EDDs based on energetic considerations
based on the fracture energy of the materials such as those used in §4 and the correlation
with the damage indices.

(vi) Development of a two–scale shell–3D solid model.
The two–scale model proposed in this work can be extended for considering shell–3D solid
interaction. This extension can be useful for introducing the effects of local failures in the
global mechanical response of composite structures (layered or not); the most important
types of local failures are delamination and local fiber buckling. Due to the fact that
usually real engineering structures require a large number of FE for a correct geometric
description, it can be an interesting application in the study of the mechanical behavior
of aircraft and aerospace structures made of composites.



Appendix A

Introduction to finite rotations

The main aim of the present appendix is to pave the way for the work in the next chapters con-
cerning to the development of a geometrically exact theory 3D rods involving finite deformation,
where rotations are coupled with translations. The results here presented naturally impacts on
the description of the general motion, and several fields in theoretical and applied mechanics,
such as analytical mechanics, structural dynamics, multi-body dynamics, flight mechanics, and
so on, have profited from the results provided by the mathematicians or have contributed to
develop theories for the accurate description of rotational motion [222].
First, we review some basic concepts associated with large rotations that will be required in
the formulation of the kinematic hypothesis of a finite deformation theory for rods. The term
large or finite rotation is normally employed in continuous mechanics as opposite to small or
infinitesimal rotation, which are a set of rotations that can be described as elements of a vector
space. Finite rotations, or more precisely the elements of the noncommutative transformation
group, are an extensive and complex topic of mathematics, therefore, only the concepts and
formalisms which are strictly necessaries for this work will be reviewed. However, more ex-
tensive and detailed works about the mathematical theory of finite rotations can be found in
Refs. [15, 16, 28, 48] and on the application to beam, shell and flexible mechanism theories in
[181, 179].
The outline of this appendix is as follows: firstly, the vector representation of a rotation is used
to explain the noncommutative nature of general large rotations, which are classified as abstract
elements of a noncommutative group isomorphic1 to the orthogonal group of rotation tensors.
Then a more formal definition of the rotation group in terms of differential manifolds is exposed,
revealing a rich mathematical structure which corresponds to these of a Lie group under the
usual matrix multiplication. Following, the so called spatial and material updating procedures
for compound rotations is explained. A rigorous definition for the tangent space to the rota-
tional manifold is presented in terms of the Lie algebra associated to the group of rotations. A
rather detailed discussion about possible parameterizations of the rotational manifold is then
described, addressing the practical advantages and limitations of using the vectorial ones. Fi-
nally, a configurational approach for describing large rotations in space is given along with the
presentation of a set of operators relevant to the present theory.

1A rigorous definition of isomorphisms is the context of topology can be consulted in [285].
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A.1 Large non-commutative rotations

In Fig. A.1 it is possible to see that the result of applying a set of large rotations on a body
depends on the order in which they are applied. In this example three rotations of magnitude
π/2 are arranged as the components of the rotation vector φ̂ = [φxx, φyy, φzz] and then they are
applied to a rigid box in two different orders, the final configuration of the box in general, will
be different for each one of the options. Therefore, the three components of φ̂ do not represent
uniquely to a given spatial rotation. Hence, rotations can not be treated as vectors due to they
component do not commute, as it has been seen in the previous example or alternatively in Refs.
[199, 363].
The non–commutativity of the components of the rotation vector implies that finite rotations
are not elements of a vectorial space. From an algebraic point of view, a rotation βββ is a linear
map or operator from E3, the 3D Euclidean vector space, to itself; that is to say, when a rotation
is applied on a vector, the result always is a new vector, conserving the original length [48].

Figure A.1: Non-commutativity of the components of the rotation vector φ̂ = [φxx, φyy, φzz].

Given the set R = {β : E3 → E3 | β is a rotation operator}, composed by all the finite rotations,
it is possible to define an inner composition ⊗̃ called sum of rotations in the following way

(βββa⊗̃βββb)(x̂) ∈ E3 = βββa(βββb(x̂)) ∀ βββa,βββb ∈ R, x̂ ∈ E3 (A.1)

where βββa, βββb ∈ R, are two consecutive rotations applied on the vector x̂ ∈ E3, and βββa(βββb(•))
∈ R is the equivalent or compound rotation applied on x̂. The set R doted with the composition
law ⊗̃ posses the algebraic structure of non-commutative group (non–Abelian), which is formally
defined [48] as

Definition A.1. Non-commutative group of rotations

The set R equipped with the internal operation ⊗̃ is a non-commutative group if it is such that:

1. The internal operation is associative, i.e. βββa⊗̃(βββb⊗̃βββc) = (βββa⊗̃βββb)⊗̃βββc, ∀βββa,βββb,βββc ∈ R.

2. There is a unique element I ∈ R called identity such that βββa⊗̃I = I⊗̃βββa = βββa, ∀βββa ∈ R.

3. For each βββa ∈ R there exist a unique element of R called the inverse of βββa and denoted
by βββ−1

a , such that βββ−1
a ⊗̃βββa = βββa⊗̃βββ−1

a = I.

4. The internal operation is non commutative i.e. (βββa⊗̃βββb)(x̂) 6= (βββb⊗̃βββa)(x̂).
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For a detailed discussion about transformation groups see Refs. [246, 245, 285] ¥

The group R is isomorphic to the set composed by all the real and orthogonal matrices
of order 3, with determinant equal to 1. The demonstration of this last result can be found,
for example, in Ref. [321]. This isomorphism allow to identify each finite rotation with the
corresponding orthogonal rotation tensor belonging to the special orthogonal group SO(3) defined
as

L(E3) ⊃ SO(3) = {Λ ∈ M3(3) | ΛTΛ = ΛΛT = I; |Λ| = 1} (A.2)

where L(E3) is the space of linear transformations (or tensors) of E3, I is the identity matrix2,
M3(3) is the set composed by all the 3× 3 matrices with real coefficients, Λ is a rotation tensor
and |•| = Det[•] is the determinant operator. Therefore, SO(3) is the set of all 3 × 3 real
orthogonal matrices with unit determinant. It is not difficult to see that SO(3) also have the
structure of smooth differentiable manifold [119, 251], which is formally defined as

Definition A.2. Smooth n-manifolds

A smooth n–manifold or manifold modeled in Rn is a set M such that:

1. For each element P ∈M there is a subset U ofM containing P and an one-to-one mapping
called a chart or coordinate system, {xα}, from U onto an open set V ∈ Rn; xα denote the
components of this mapping (α = 1, 2, . . . , n).

2. If xα and xα are two of such mappings, the change of coordinate functions xα(x1, . . . , xn)
are C∞ (i.e. it is continuously differentiable as many times as required) ¥

The definition of smooth manifold requires explicit expressions for the charts {xα}; in the
case of the rotational manifold SO(3) this aspect will be addressed in a next section devoted to
its parametrization. A more extensive treatment about differential manifolds can be consulted
in Refs. [255, 251]. It is also possible to show that the differential manifold SO(3) under the
usual matrix multiplication has the structure of a Lie group, which is defined as

Definition A.3. Lie groups

A Lie group is a smooth n–dimensional manifold Mn endowed with the following two smooth
mappings:

Fα : Mn ×Mn → Mn

(xxx1,xxx2) 7→ Fα(xxx1,xxx2) = xxx1 ¯ xxx2 Multiplication.

where xxx1, xxx2 ∈ Mn, the symbol × is used to denote pairing between elements and the symbol
¯ is used to indicate an abstract operation (multiplication) between elements of the manifold
Mn. The second smooth mapping is:

Fν : Mn → Mn

xxx1 7→ Fν(xxx1) = (xxx1)−1 Construction of the inverse element.

And having marked point eee ∈Mn which satisfies together with Fα and Fν the relations:

1. xxx1 ¯ (xxx2 ¯ xxx3) = (xxx1 ¯ xxx2)¯ xxx3.

2Through the text the symbols I, III and iii are used to denote the identity element on a given set or metric
space.
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2. eee¯ xxx1 = xxx1 ¯ eee = xxx

3. xxx¯ xxx−1 = xxx−1 ¯ xxx = eee ¥

Identifying xxxi (i = 1, 2, 3) with rotation operators as defined in Eq. (A.2), the operator
Fα = ¯ with the usual matrix multiplication and the inverse matrix operator with Fν = (•)−1,
it is straightforward to see that SO(3) posses the structure of a Lie group [319, 394]. It is
also worth to note the parallelism between the definition of Lie group and the non-commutative
group of rotations as presented above. For a more rigorous study of Lie groups it is recommend-
able to consult Refs. [119, 251, 285].
Let us recall that all the elements of SO(3) entails the fundamental properties Λ−1 = ΛT

and |Λ| = 1. In the same manner, it is possible to identify the rotations βββa,βββb, (βββa⊗̃βββb) and
(βββb⊗̃βββa) ∈ R with the corresponding operators: Λa,Λb,Λab,Λba ∈ SO(3).
As it has been explained, rotations can be defined by means of rotation operators; the compo-
nents of a given rotation operator depend on the reference frame adopted. On one hand, if two
consecutive rotations βββa and βββb, are composed to obtain βββa⊗̃βββb, two situations can happen:

• In the first case, the components of the rotation tensors representing the rotation βββa

and βββb, Λa and Λb ∈ SO(3), respectively, can be directly expressed in terms of a fixed
[15], usually called spatial, reference frame and, therefore, the description employed for
rotations is called spatial description3.
In this case, the vector v̂c ∈ E3 obtained by the application of a sequence of N rotations
on a vector v̂ ∈ E3 can be seen as the result of the application of a compound rotation
Λc ∈ SO(3) obtained by the consecutive application of the rotation tensors Λi ∈ SO(3)
(i = 1 . . . N) on the previous rotated vector, i.e.

v̂c = ΛN (· · · (Λi(· · · (Λ1(v̂)) · · · )) · · · ) = ΛN · · ·Λi · · ·Λ1︸ ︷︷ ︸
Λc

(v̂) ∈ E3. (A.3)

Therefore, the inverse multiplicative rule for rotation tensors is valid for the composition
of rotations [321]. This is the typical case found in mechanics when a body attached frame
is involved in describing the kinematics of material points [107] even when the components
of the rotation tensors are given in a spatially fixed reference frame.

• In the second case, the rotation tensor Λa, moves the reference frame and, therefore, the
components of the rotation tensor Λb representing the second rotation βββb are expressed in
the new rotated, or updated, reference frame. If several rotations are applied, the reference
frame is transformed in a rotating reference frame.
In this case, the direct multiplicative rule is valid for the composition of rotations, i.e.

v̂c = Λ1(· · · (Λi(· · · (ΛN (v̂)) · · · )) · · · ) = Λ1 · · ·Λi · · ·ΛN︸ ︷︷ ︸
Λc

(v̂) ∈ E3. (A.4)

Note that in Eq. (A.4) the components of each rotation tensor are referred to the corre-
sponding updated reference frame. This kind of description of rotations is usually called
material description and it is completely equivalent to the spatial one.

Identical results as those above explained can be reached by means of simple geometrical con-
siderations; Fig. A.2 presents the result of applying two consecutive rotations θθθ and φφφ about

3Some authors [110, 199, 198, 200, 201] prefer to use the language of rigid-body dynamic employing the terms
spatial and body attached coordinates in stead of material and spatial descriptions, respectively.
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the axis Z and X respectively. In Figure A.2a the axis of rotation are fixed and the sequence
of rotations is defined as: θθθ → φφφ, first a rotation a rotation about Z is applied, followed by a
rotation about X. On the contrary, in Fig. A.2b rotations are carried out in the inverse order,
i.e. φφφ → θθθ. In this case the second rotation θθθ is carried out about the updated axis Z ′ obtained
after applying the rotation φφφ about X.

Figure A.2: Composition of rotations in the space. (a): Fixed base: θθθ → φφφ. (b): Movable base:
φφφ → θθθ.

In both cases the resulting configuration is the same. Therefore, the composition of two or more
rotations defined in terms of a spatially fixed reference frame is the same as these obtained ap-
plying the same sequence of rotations referred to a rotating frame but inverting the order of the
composition. A more detailed introduction to the material and spatial descriptions of rotations
and the related mathematical objects will be given in Section A.4.

A.2 Parametrization of the rotational manifold

Strictly, rotational motion can be regarded as the motion of particle within the nonlinear man-
ifold SO(3), therefore, it can not be described trivially by using standard coordinates as those
commonly employed for motions in a linear space. As it has been previously described, rotations
have to be parameterized using suitable charts [285, 394], some time called quasi–coordinates,
which are inherently not global and/or non-singular [321]. Over the years, numerous tech-
niques has been developed to cope with the description of rotational motion, following dif-
ferent approaches e.g. [321, 363, 394]. Among those we found the Cayley, or Gibbs, or Ro-
drigues parametrization [49]; the Milenkovic, or modified Rodrigues, or conformal rotation vector
parametrization [283]; the Euler–Rodrigues, or unit quaternion parametrization [389], the Eu-
lerian angles parametrization [148], (Euler angles are only one of several possible choices within
this class, Cardan and Bryant angles being other choices); the Cayley–Klein parametrization
[103]; the direction cosine parametrization [194]; and so on.
All these techniques show certain balance between advantages and drawbacks when compared
each to other. Usually, both theoretical and computational issues can play a meaningful role in
the choice, which is also influenced by the possible specific requirements of its application. Ac-
cording to Trainelli [394], within this somewhat unexpectedly large set, however, it is possible to
draw a separation of the various techniques in two brad classes: the vectorial parameterizations,
and the non-vectorial parameterizations.
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The vectorial parameterizations feature a set of three or more parameters that define the carte-
sian components of a vector. This do not apply when dealing with non-vectorial techniques (e.g.
Euler angles are three scalars that can not be understood as components of a geometric vector).
Note that vector parameterizations can be minimal, i.e. are based on a smallest possible set of
parameters, since the dimension of the SO(3) is three. Non-minimal parameterizations include
the Euler-Rodrigues and the Cayley-klein parameterizations (four scalar parameters related by
and algebraic constrain) and the director cosine parametrization (nine scalar parameters related
by six algebraic constrains).
In following we briefly describe the several choices for the parametrization of the rotational
manifold, although in this work a part of the kinematics of rod elements is described using rota-
tion tensors described by a minimal vectorial parametrization. Firstly, an intuitive geometrical
deduction of an explicit expression for the rotation tensor in terms of the cartesian components
of a rotation vector throughout the well known Euler’s theorem [394] is presented and then its
properties as well as other possible parameterizations are discussed.

A.2.1 The Euler´s theorem

The most used minimal vectorial parametrization of the rotation tensor is based by the funda-
mental theorem of Euler [394], which say: The general displacement of a rigid body or vector,
with one point fixed is a rotation about some axis which pases through that point. A schematic
representation of the theorem is shown in Fig. A.3 where ê ∈ R3 is the unit vector of the axis
of rotation and θ = (θ̂ · θ̂)1/2 ∈ [0, 2π] is the magnitude of the rotation angle with respect to a
reference configuration4. By this way, the notion of a rotation vector θ̂ = θiêi = θê, introduced
in Section A.1 for describing rotations5, is recovered.

Figure A.3: Rotation vector.

Whenever θ = 0 the axis ê is not uniquely defined. Note that, since 2 scalar parameters are
needed to represent a constat magnitude vector, such as ê, a generic rotation can be described at
least with 3 scalar parameters, i.e. the dimension of the manifold SO(3). Identical conclusions
can be reached considering that the rotation tensor have nine independent components, which
are reduced to three imposing the restriction associated to the manifold SO(3), i.e. ΛΛT = I

4The two quantities (ê, θ) are sometimes labeled as the principal axis of rotation and the principal angle of
rotation, respectively [394].

5The vector θ̂ is some times called pseudo–vector.
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and Det[Λ] = 1. By means of the Euler´s theorem, the two quantities (ê, θ) completely de-
fine the rotational displacement represented by the rotation tensor Λ. Following geometrical
reasonings from Fig. A.3 it is possible to see that

∆r̂ = ∆â + ∆b̂ (A.5)

where ∆b̂ is orthogonal to ∆â. The length of ∆b̂ is given by ∆b = Rsin(θ), so that

∆b̂ =
∆b

‖r̂o × ê‖(ê× r̂o) =
R sin(θ)
‖r̂o × ê‖(ê× r̂o). (A.6)

But, ‖r̂o × ê‖ = ‖r̂o‖ sinα = R, as it can be seen from Fig. A.3, so that Eq. (A.6) can be
expressed as

∆b̂ = sin(θ)(ê× r̂o) =
sin(θ)

θ
(θ̂ × r̂o). (A.7)

The vector ∆â is orthogonal to both ê and ∆b̂. Hence:

∆â =
∆a

‖ê× r̂o‖ = (ê× (ê× r̂o)) =
∆â

R
= (ê× (ê× r̂o))

∆a = R(1− cos θ)

∆â = R(1− cos θ)(ê× (ê× r̂o)) =
1− cos θ

θ2
(θ̂ × (θ̂ × r̂o)). (A.8)

Hence, from Eqs. (A.5), (A.7) and (A.8) we have

r̂n = r̂o + ∆r̂ = r̂o +
sin(θ)

θ
(θ̂ × r̂o) +

(1− cos θ)
θ2

(θ̂ × (θ̂ × r̂o)). (A.9)

Considering that θ̂× r̂o = θ̃θθr̂o, where θ̃θθ the skew–symmetric tensor obtained from θ̂, i.e. θ̂× v̂ =
ΠΠΠ[θ̂]v̂ = θ̃θθv̂, ∀v̂ ∈ R3, it is possible to recast Eq. (A.9) as

r̂n = Λ(θ̂)r̂o (A.10)

where the rotation matrix Λ(θ̂) is expressed according to the well known Rodrigues’s formula
[321, 394, 108]), which relates the rotation vector θ̂ with the associated rotation tensor Λ in the
following form:

Λ = I +
sin θ

θ
θ̃θθ +

(1− cos θ)
θ2

θ̃θθθ̃θθ = I + sin θẽee + (1− cos θ)ẽeeẽee. (A.11)

An alternative expression for Eq. (A.11) is

Λ = cos θI + sin θẽ + (1− cos θ)(ê⊗ ê) (A.12)

since (•̃)2 = • ⊗ • − | • |2I, ∀ • ∈ R3.
Note that the rotation corresponding to (−θ, ê) is equivalent to that corresponding to (θ,−ê),
hence it is represented by the tensor ΛT = Λ−1. It follows that the rotation tensor Λ rotates ê
on to itself, consequently,

Λ(ê, θ)ê− ê = Λ(θ̂)θ̂ − θ̂ = 0 (A.13)

so that ê is an eigenvector of Λ with positive unit eigenvalue. The other two eigenvectors and
eigenvalues are easily determined using the orthogonality of Λ and considering that it is a real
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operator with determinant equal to the 1. All the roots of the characteristic polynomial have
a modulus equal to the unity. The other two roots are imaginary and conjugated, and it is
possible to write their values as, λ1 = 1, λ2 = eiθ and λ3 = e−iθ. Having determined the roots,
the general expression for the characteristic polynomial, ℘, of Λ is

℘(Λ) = Λ3 − α℘Λ2 + α℘Λ− I = 0 (A.14)

where α℘ is the trace of Λ and it is equal to (1−cos θ) [321, 108]. Additionally, when two rotations
Λa, Λb are composed to obtain Λ = ΛbΛa, the quantities (θ, ê) that are found applying Euler’s
theorem for the composed rotation Λ are related to (θa, êa), (θb, êb), i.e. the corresponding to
Λa and Λb by [394]

cos
θ

2
= cos

θa

2
cos

θb

2
− sin

θa

2
sin

θb

2
(êa · êb)

sin
θ

2
ê = cos

θa

2
sin

θb

2
(êb) + cos

θb

2
sin

θa

2
(êa) + sin

θa

2
sin

θb

2
(êb × êa) (A.15)

A.2.2 Obtention the rotation pseudo–vector from rotation tensor

According to Eq. (A.11) and considering the symmetric part of the rotation tensor Λ [108]

Λsym =
1
2
(Λ−ΛT ) = sin θẽ =

sin θ

θ
θ̃ (A.16)

from which, knowing the skew–symmetric form of θ̃θθ, the terms ê or θ can be obtained via:

sin θê =
sin θ

θ

1
2




Λ32 − Λ23

Λ13 − Λ31

Λ21 − Λ12


 . (A.17)

This equation can be used provided 0 < ‖θ̂‖ < π, but for outside of this range unicity is
not ensured. A more accurate procedure for obtaining the pseudo-vector of rotation from the
rotation tensor requires to employ a non minimal parametrization [108, 340, 341, 363] of the
rotation as it will be discussed in the next sections.

A.2.3 Tangent space to the rotational manifold

Taking into account the orthogonality of Λ, i.e. ΛΛT = ΛTΛ = I and considering a variation6

of Λ, δΛ, we have

δ(ΛΛT ) = δΛΛT + ΛδΛT = φ̃ + φ̃T = 0
δ(ΛTΛ) = δΛTΛ + ΛT δΛ = Φ̃T + Φ̃ = 0. (A.18)

From Eq. (A.18) it is possible to deduce that the products δΛΛT and ΛT δΛ are skew–symmetric

operators that will be denoted by φ̃, (φ̃
T
), and Φ̃, (Φ̃T ), respectively. It is also possible to see

that the variation of the rotation tensor is the product of one of this skew–symmetric tensors

6Observe that we have no defined explicit methods for calculating the linearized increments or the variations,
however, for the purpose of introducing the the main ideas about tangent spaces to SO(3) it is sufficient to suppose
that we can calculate δΛ. A detailed exposition about the calculus of variations on the rotational manifold is
presented in next sections.
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by the proper rotation tensor, according to

δΛ = φ̃Λ = ΛΦ̃. (A.19)

By other hand, if we take a point Λa ∈ SO(3) and let Λ(t) be any differentiable curve on SO(3)
parameterized in terms of a real parameter t ∈ R, that passes through Λa at t = 0; that is
Λ(0) = Λa, then the derivative with respect to t, (d/dt[Λ])|t=0, is said to be a tangent vector to
SO(3) at Λa. The set of all tangent vectors at Λa, denoted by TΛaSO(3), forms a vector space
called tangent space to SO(3) at Λa; formally we have the following definitions:

Definition A.4. Tangent space

Let M⊂ Rn be an open set (manifold) and let P ∈M. The tangent space to M at P is simply
the vector space Rn regarded as vectors emanating from P ; this tangent space is denoted TPM
[251] (see Fig. A.4) ¥

In the case of the rotational manifold, the tangent space at the identity Λa = I is given
a special name, the Lie algebra of SO(3) and is denoted by so(3). It has several important
properties and in following we present a more rigorous definition:

Definition A.5. Lie algebra

A Lie algebra ` of the Lie group L (see §A.1) is a tangent vector space at the identity, TIL,
equipped with a bilinear, skew–symmetric brackets operator [[[·, ·]]] satisfying Jacobi’s identity
[119, 285]. That is:

1. [[[xxxa, [[[xxxb,xxxc]]]]]] + [[[xxxb, [[[xxxc,xxxa]]]]]] + [[[xxxc, [[[xxxa,xxxb]]]]]] = 0 ∀xxxa,xxxb,xxxc ∈ `.

2. The skew–symmetry means that [[[xxxa,xxxb]]] = −[[[xxxb,xxxa]]] ∀xxxa,xxxb ∈ `.

Where the Lie brackets [[[·, ·]]] can be obtained by differentiating the Lie algebra adjoint transfor-
mation AdG:

AdG : ` → `
xxxb 7→ AdG[xxxb] := GxxxbG

−1

where ` is a Lie algebra, xxxb ∈ ` and G ∈ L a Lie group. The differentiation is carried out
with respect to G(ν) ∈ L at the identity in the direction xxxa ∈ ` such that G(ν = 0) = I and
dG/dν|ν=0 = xxxa where ν ∈ R is a parameter, giving:

[[[xxxa,xxxb]]] , d
dν

[GxxxbG
−1]

∣∣∣
ν=0

=
[
(

d
dν

G)xxxbG
−1 + Gxxxb

d
dν

(G−1)
]∣∣∣

ν=0
= xxxaxxxb − xxxbxxxa ¥

Taking into account the above definition it is possible to show that so(3) consist of the
3× 3 skew–symmetric tensors. Differentiating both sides of ΛT (t)Λ(t) = I and considering that
Λ|(t=0) = I it follows that (d/dt[ΛT ]Λ)|t=0 + (ΛT d/dt[Λ])|t=0 = 0, so that the tensor elements
of so(3) have the form

θ̃θθ ,




0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0


 . (A.20)

Note that an element θ̃θθ ∈ so(3) can be represented by a vector θ̂ ∈ R3 by means of the isomor-
phism established by the operator ΠΠΠ : R3 → so(3) such that R3 3 θ̂ 7→ ΠΠΠ[θ̂] = θ̃θθ ∈ TISO(3).
Thus, the skew–symmetric θ̃θθ belongs to the tangent space of the rotation manifold SO(3), de-
noted by TISO(3) = so(3) where the identity I ∈ SO(3) represent a base point on the rotational
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Figure A.4: Tangent vector Ẋ ∈ TXM to the manifold M.

manifold. The following important relationships between the skew–symmetric tensor θ̃θθ ∈ so(3)
associated to the rotation vector θ̂i ∈ R3 are frequently found in the development of geometrically
exact formulations for rods [285, 319, 394]

θ̃1θ̃2 = θ̂1 × θ̂2 (A.21a)
θ̃1θ̃2 = θ̂2 ⊗ θ̂1 − θ̂1 · θ̂2I (A.21b)
θ̃1θ̂2 = −θ̃2θ̂1 (A.21c)
θ̂T
1 θ̃2 = −θ̂T

2 θ̃1 (A.21d)
θ̃θ̂ = θ̂T θ̃ (A.21e)

θ̃
n+2

= −(θ̂T θ̂)θ̃
n

(for n > 1) (A.21f)
Π(θ̃1θ̂2) = θ̃1θ̃2 − θ̃2θ̃1 = θ̂2 ⊗ θ̂1 − θ̂1 ⊗ θ̂2 (A.21g)

REMARK A.1. Taking into account the fact that TISO(3) ≈ so(3) posses the formal structure
of the Lie algebra of the Lie group SO(3) it is possible to identify the corresponding adjoint map
as follows: if Λ and θ̃θθ are arbitrary elements of SO(3) and so(3), respectively; then Λθ̂Λ−1 is
the corresponding adjoint map [246] which is another element of so(3) and the following identity
can be established: Λθ̃θθΛT = ΠΠΠ[Λθ̂] ¥

REMARK A.2. In view of the above results, considering appropriate smoothness assumptions
[285] and taking into account Eqs. (A.19) and (A.21g), the derivative of Λ(s) with respect to
s ∈ R may be put in the well know form7 Λ,s = ω̃ωωsΛ, where ω̃ωωs := Λ,s ΛT ∈ so(3), which is
termed the rotational vorticity or spin. Combining this with the Rodrigues’s formula of Eq.
(A.11) and noting that ˙̂e · ê = 0 since ê is a constant magnitude vector, the following expression
is obtained

ω̂s = θ,s ê + [sin θI + (1− cos θ)ẽee]ê,s (A.22)

where ω̂ is expressed in terms of (θ, ê) and their derivatives ¥

A.2.4 The exponential form of the rotation tensor

The exponential form of the rotation tensor is based on the specialization of the exponential
map [48, 108, 394] defined by the tensorial power series

exp[•] :=
∞∑

k=0

(•)k

k!
(A.23)

7Here (•),s (’comma’s) is used to denote partial differentiation of (•) with respect to s ∈ R.
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to the case of rotation,

exp[•] : so(3) ≈ TISO(3) → SO(3)

θ̃ 7→ Λ(θ̃θθ) ≡ exp[θ̃]. (A.24)

That is to say that for any rotation vector θ̂ ∈ R3, and hence any skew–symmetric tensor
θ̃θθ ∈ so(3), we get the rotation tensor Λ(θ̂) = exp[ ] ◦ ΠΠΠ ◦ θ̂. For these reasons, the exponen-
tial parametrization of rotation and the associated rotation vector, appears as the most direct
representation among all possible vectorial parameterizations which are discussed in following
sections, and it is also addressed as the natural or canonical parametrization for SO(3). The Ro-
drigues’s formula is recovered from Eq. (A.23) taking into consideration the recursive property
of the cross product:

θ̃
2m−a

= (−1)m−1θ2(m−1)θ̃
a

(A.25)

for any m ∈ N and a ∈ {1, 2}. Using the previous result we get

exp[θ̃] = I +
∞∑

m=1

(−1)m−1θ2(m−1)

(2m− 1)!
θ̃ +

∞∑

m=1

(−1)m−1θ2(m−1)

2m!
θ̃

2
(A.26)

and, therefore, Eq. (A.11) is recovered after recognition of the power expansions in terms of
those for sin(θ) and cos(θ). Given a rotation tensor Λ, the corresponding rotation vector θ̂ can
be recovered by means of using the inverse formula

θ̂ := axial[Log(Λ)] (A.27)

where the logarithmic function is defined by the tensorial power series

Log[•] : SO(3) → TISO(3) ≈ R3

Λ(θ̂) 7→ Log[Λ] = θ̃θθ ≈ θ̂ ∈ R3 (A.28)

Log[•] := −
∞∑

k=0

1
k!

(I− •)k. (A.29)

Note that, when applied to rotations, the exp[•] and Log[•] maps are not one-to-one, therefore
a restriction over all possible (∞) determinations of θ̂ for a given Λ must be imposed. This is
accomplished selecting the principal value of θ̂, i.e. the single vector within all possible solutions
of Eq. (A.25) that has a magnitude in [0, 2π).

A.2.5 Differential map associated to exp[•]
The exponential map has associated the following differential map defined by tensorial power
series [394],

dexp[•] :=
∞∑

k=0

•k

(k + 1)!
. (A.30)

The exponential map and its associated differential map enjoy remarkable properties, valid
beyond the particular application to rotations presented here. Among those we recall:

exp[•] = dexp[•]dexp[−•]−1 = dexp[−•]−1dexp[•]
dexp[•] = I + •dexp[•] = I + dexp[•]• (A.31)
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the second property of Eq. (A.31) expresses the symbolical definition of the associated differential
map as the derivative of the exponential map in the neighborhood of the identity, i.e.

dexp[•] sym
=

exp[•]− I
• . (A.32)

The differential tensor associated to Λ(θ̂) is denoted DΛ = dexp[θ̃θθ]. A finite form formula similar
to Eq. (A.11) for Λ holds for the differential tensor

DΛ = I + α1θ̃ + α2θ̃
2

(A.33)

where the scalar coefficients α1 and α2, depending evenly on θ, are given by

α1 :=
(1− cos θ)

θ2
=

1
2

sin(θ/2)
(θ/2)2

(A.34a)

α2 :=
(θ − sin θ)

θ3
. (A.34b)

It is worth noting that Det(DΛ) = 2α1 = sin2(θ/2)/(θ/2)2, so that DΛ is singular at θ = π,
while for θ = 0 we get DΛ = Λ(θ̂) = I. The associated differential map relates the derivatives of
the rotation vector with respect to a given scalar parameter s ∈ R, θ̂,s, with the corresponding
skew–symmetric tensor ω̃ωωs depending on ω̂s is given by

ω̂s = DΛθ̂,s = dexp(−θ̃θθ)θ̂,s ∈ R3 (A.35)

as can easily verified from Eq. (A.22). The inverse of the associated differential map can be
expressed as the tensorial power series

D−1
Λ = I +

1
2
θ̃ +

1
θ2

(
1− 1

2
sin θ/θ

(1− cos θ)/θ2

)
θ̃

2
= I− 1

2
θ̃ +

1
θ2

(
1− θ/2

tan(θ/2)

)
θ̃

2
. (A.36)

For a detailed deduction of Eqs. (A.33), (A.34a) and (A.34b) see [394].

A.2.6 General minimal vectorial parametrization

The previously presented Rodrigues’s formula provides a vectorial parametrization of the rotation
tensor that is minimal in the sense that it is characterized by a minimal set of three parameters,
which can be arranged as the pair (θ, ê). In a more general case, this kind of vectorial minimal
parametrization consists of the pair (p, ê) [394], where p = p(θ) is the generating function of the
parametrization. The generating function must be an odd function of the rotation angle θ = |θ̂|
and must to present the limit behavior: limθ→0 p(θ)/θ = k, where k ∈ R is a constant called
normalization factor of the parametrization. The parameters are used to construct the rotation
parameter vector p̂ = pê ∈ R. We denote the vectorial parametrization map of rotation as

rot[•] : R3 → SO(3)
ΠΠΠ[p̂] = p̃pp 7→ rot[p̃pp] = Λ(p̂). (A.37)

Thus, given a rotation parameter vector p̂ ∈ R3 and its associated skew–symmetric tensor
p̃pp ∈ so(3), we get a rotation tensor by Λ = rot[p̃pp]. The explicit expression of the vectorial
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parametrization map is easily obtained from the Euler-Rodrigues formula, Eq. (A.11), as

Λ = I + P1p̃pp + P2p̃pp
2 (A.38)

where the scalar coefficients P1 and P2, depending evenly on θ, read P1(θ) := sin θ
p(θ) and P2(θ) :=

1−cos θ
p(θ)2

(p = |p̂|). We remark8 that Eq. (A.38) holds also for the case p̂ = 0, yielding Λ = I. The
eigenvalues λ1,2(Λ) are written in terms of P1 and P2 as

λ1,2(Λ) = (1− p2P2)± ipP1 (A.39)

and Det[Λ] = |Λ| = (1− p2P2)2 + (pP1)2 = 1.
As seen with the exponential parametrization, it is possible to associate a differential map
drot : so(3) 7→ L(R3) to the minimal vectorial parametrization map such that, symbolically,

drot[•] sym
=

rot[•]− I
• (A.40)

and the following properties are satisfied:

rot[•] = drot[•]drot[−•]−1 = drot[−•]−1drot[•]
rot[•] = I + (•)drot[•] = I + drot[•](•) (A.41)

in complete analogy with the exponential map. The explicit expression for the associated dif-
ferential map is

H = µI + H1p̃pp + H2p̃pp
2 (A.42)

The coefficients µ, H1 and H2, depending evenly on θ, are defined as µ(θ) = 1
p′(θ) , H1(θ) = 1−cos θ

p(θ)2

and H2(θ) = µ(θ)p(θ)−sin θ
p(θ)3

. With p′ := dp/dθ. Note that H1 = P2 and that H2 = (µ− P1)/p2.
The associated differential map relates the derivative p̂,s (s ∈ R) of the rotation parameter
vector with the spin ω̂s as ω̂s = drot(p̂)p̂,s. The inverse of the associated differential tensor may
be expressed as

H−1 =
1
µ
I− 1

2
p̃pp +

1
p2

(
1
µ
− 1

2
P1

P2
)p̃pp2 (A.43)

Table A.1 show a summarization of the more commonly used minimal vectorial parameteriza-
tions.

Table A.1: Minimal parametrization of rotations employing pseudo–vectors.

Parametrization p(θ) Λ(p̂) (p̂ = p(θ)ê) H(p̂)
Natural θ
Linear sin(θ)
Cayley/Gibbs/Rodrigues 2k tan( θ

2) I + sin(θ)
p(θ) p̃pp 1

p′(θ)I + 1−cos θ
p(θ)2

p̃pp

Wiener/Milenkovic 4k tan( θ
4) + (1−cos(θ))

p(θ)2
p̃pp2 +µ(θ)p(θ)−sin θ

p(θ)3
p̃pp2

Reduced Euler-Rodrigues 2k sin( θ
2)

8An alternative expression of the vectorial parametrization map [394] is: Λ = I + [γI + 1
2
νp̃pp]νp̃pp, where the

scalar coefficients γ and ν, depending evenly on θ, are defined as: γ(θ) := cos(θ�2), ν(θ) := 2 sin θ�2
p(θ)

. Clearly,

γ = P1�
√

2P2, ν =
√

2P2 and Det[Λ] = (1− (νp)2�2) + γ2(νp)2 = 1.
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A.2.7 Non–minimal vectorial parameterizations: quaternions

The minimal parameterizations show some limitations that stem from the use of pseudo–vectors,
for example all those associated with the sine generating function has certain advantages but it is
non-unique for angles greater than π, other of them became the rotation tensor or its differential
map rank deficient for certain values of θ [321, 365, 108]. The problem can be overcame if
four parameters, commonly called normalized quaternion or Euler parameters, are employed for
parameterizing the rotation. With such a process in mind, it is possible to re-express Eq. (A.11)
using half-angles so that:

Λ = (cos2(θ/2)− sin2(θ/2))I + 2 cos(θ/2) sin(θ/2)θ̃θθ + 2 sin2(θ/2)ê⊗ ê. (A.44)

In deriving Eq. (A.44) it has been made use of the half-angle formulae, but also the relationship
ẽeeẽee = ẽee2 = ê⊗ ê− I.
A unit quaternion is now defined using four Euler parameters, q0– q3, so that:

q̂q = cos(θ/2) + sin(θ/2)ê =
[

q̂
q0

]
=

[
sin( θ

2)ê
cos( θ

2)

]
=

[
ψ̂
2

cos( θ
2)

]
(A.45)

where ψ̂ is the reduced Euler Rodrigues pseudo–vector, see Table A.1, with k = 1/2. From Eq.
(A.45), the length of q̂ is clearly unity with q̂q · q̂q = q2

0 + q2
1 + q2

2q
2
3 = 1.

Substituting from Eq. (A.45) into (A.44) leads to the relationship:

Λ(q̂q) = (q2
0 − q̂ · q̂)I + 2q̂⊗ q̂ + 2q̂0q̃qq = 2




q2
0 + q2

1 − 1/2 q1q2 − q3q0 q1q3 + q2q0

q2q1 + q3q0 q2
0 + q2

2 − 1
2 q2q3 − q1q0

q3q1 − q2q0 q3q2 + q1q0 q2
0 + q2

3 − 1
2


 (A.46)

REMARK A.3. The quaternion compound rotation is given by q̂ab = q̂bq̂a, where q̂bq̂a involves
the quaternion product whereby:

b̂â = a0b0 − â · b̂ + a0b̂ + b0â− â× b̂

which is non-commutative because the inverse product is

âb̂ = a0b0 − â · b̂ + a0b̂ + b0â + â× b̂

, ∀ quaternion â and b̂ ∈ R4. Analogous expressions can be obtained for Λ in terms of quaternion
and other pseudo–vectors [108] ¥

A.2.7.a Normalized quaternion from the rotation tensor

A general procedure for obtaining the rotation vector from the rotation tensor involves the
computation of the Euler parameters, q0–q3. This can achieved via algebraic manipulations on
the component of Λ as expressed in Eq. (A.46). The Spurrier ’s algorithm [108, 365], which can
be simply checked by working with the components for Eq. (A.46), involves:

a = max
[
Tr[Λ], Λ11,Λ22, Λ33

]
(A.47a)
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where Tr[•] =
∑

i(•)ii is the trace operator9 and

if a = Tr(Λ) →
{

q0 = 1
2(1 + a)

1
2

qi = (Λkj − Λjk)/4q0; i = 1, 3

else if a = Λii →





qi = (1
2a + 1

4

[
1− Tr[Λ]

]
)

q0 = 1
4(Λkj − Λjk)/qi

ql = 1
4(Λli + Λil)/qi; l = j, k

(A.47b)

with i, j, k as the cyclic combination of 1, 2, 3.
Allowing for the definition of q0–q3 in Eq. (A.45), Eq. (A.47b) coincide with the earlier rela-
tionship for ê (or θ̂) in Eq. (A.17). Having obtained q0–q3 for rotations of magnitude less than
π, the tangent scaled pseudo vector can be obtained from: 2 tan(θ

2)ê = 2
q0

q̂ (see Table A.1).

A.2.8 Non–vectorial parameterizations

This kind of parametrization can be minimal, i.e. 3 parameters or non-minimal, (> 3 parame-
ters). Usually all them are based on the decomposition of a rotation in a set of simpler rotations
about a specific reference frame which moves rigidly with the body [321]. Any rotation α is
obtained composing sequentially the three elemental rotations, and its operator Λα is obtained
calculating the ordered product of the operators corresponding the elemental rotations. In
following we describe briefly the more known of them10.

A.2.8.a Euler angles

This set of angles (φ, θ, ψ) - precession, nutation and proper rotation - are corresponding to
three successive and independent rotations about the axis OZ ′, OX ′ and OZ ′ of a movable triad
rigidly attached to the solid. Fig. A.5 show the definition of the angles. If the rotation are
small it is difficult to identify the angles φ and ψ due to almost there is not variation of the axis
OZ with θ. In this cases the a coordinate system involving rotations about the three axis of the
reference frame is preferable. This is the case of the Cardan’s systems and it is described in the
following section. The rotation operator ΛE is obtained as

Figure A.5: Euler decomposition of angles.

9A more elaborated definition for the trace operator will be presented in the next sections.
10A more detailed discussion about non–vectorial parameterizations of rotations can be found in [321].
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ΛE = ΛZ(φ)ΛX(θ)ΛZ(ψ) − π < φ, ψ ≤ π; 0 ≤ θ ≤ π (A.48a)

with,

ΛZ(φ) =




cosφ − sinφ 0
sinφ cosφ 0

0 0 0


ΛX(θ) =




1 0 0
0 cos θ − sin θ
0 sin θ cos θ


ΛZ(ψ) =




cosψ − sinψ 0
sinψ cosψ 0

0 0 0




A.2.8.b Cardan angles

This system is defined by means of three angles (θ, ϕ, φ) around the axis OX ′, OY ′ and OZ ′

as it is shown11 in Fig. A.6 In this case the rotation operator associated to the rotation αααC is

Figure A.6: Cardan decomposition of angles.

obtained as
ΛC = ΛX(θ)ΛY (ϕ)ΛZ(φ) − π < θ, φ ≤ π; −π

2
≤ θ ≤ π

2
(A.49a)

with Λθ and Λφ as in Eq. (A.48a) and ΛY (ϕ) as

ΛY (ϕ) =




cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cos ϕ


 .

In the case of both Euler and Cardan systems it is necessary to employ a predefined sequence
for the order in which the rotations are applied about the axis. This last characteristic involves
additional problems for theoretical developments and numerical implementations [321].

A.3 Configurational description of motion

In this section a brief introduction to the configurational approach for the description of the
motion of bodies is presented. The minimal amount of concepts is introduced to show a general
framework of the theory. In the next sections the concepts here presented will be expanded for the
case of motions involving large rotations. Some previous knowledge in differential geometry and
continuous mechanics is required and, therefore, only a few preliminary concepts about tensors
on manifolds will be addressed. Details about the configurational approach to the dynamics of
bodies in the context of differential manifolds can be reviewed in Refs. [246, 251].

11Another common choice is OZ′, OY ′ and OX ′.
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A.3.1 Preliminaries

In this section some preliminaries for an appropriated description of motion in terms of differen-
tiable manifolds is given. Let to consider the set {xj} denoting a curvilinear coordinate system
defined on an open subset of R3, {zi} and {Îi} denoting the (canonical) Cartesian coordinate
systems of R3 and the corresponding unit basis vectors, respectively; it is possible to see the zi

as function of xj and vice–versa. Then, the following entities can be defined:

Definition A.6. Curvilinear basis vector

The curvilinear coordinate basis vector ĝj corresponding to xi are defined by:

ĝj =
∂zi

∂xj
Îi, (i = 1, . . . , 3)

and are tangent to the coordinate curves obtained from xj . The dual basis ĝ∗j is defined by
ĝ∗j · ĝk = δjk. These two basis are said to be the dual each of the other ¥

Definition A.7. Metric tensor

The metric tensor ggg is defined as

gjk =
∂zi

∂xj

∂zp

∂xk
δip

and let ggg∗ = ggg−1 denote the inverse tensor of ggg then ĝ∗j = gggĝj ¥

Commonly, the vector ĝj are called co-variant vectors and ĝ∗j contra–variant vectors or simply
vectors. For more details about metric spaces consult [119, 251, 255, 285]. Let suppose that
all the vector spaces considered in the study are equipped with a metric tensor. Therefore,
all the involved spaces are metric vector spaces and all the finite–dimensional manifolds are
Riemannian manifolds that are embedded in the Euclidean space. Additionally, we may identify
a dual vector space by its primary vector space.

Definition A.8. Co–vector space

The co–vector space V∗ of the vector space V is defined by the space of linear maps V → R, i.e.
V∗ := L(V,R). These linear maps are represented by the dot product defined as

(• · •) : V∗ × V → R
(f̂∗, â) 7→ f̂∗ · â ∈ R (A.50)

which is bilinear and well defined, i.e. if f̂∗ ∈ V∗ is fixed and f̂∗ · â = 0 ∀ â ∈ V, then â = 0.
Conversely, if â ∈ V is fixed and f̂∗ · â = 0 ∀ f̂∗ ∈ V∗, then f̂ = 0. Note that the co–vector space
is also a vector space satisfying the vector space properties. A vector and its co–vector spaces
are canonically isomorphic i.e. V ≈ V∗ ¥

Definition A.9. Adjoint operator

Let F ∈ L(V,W) be a linear operator between the vector spaces V → W. The adjoint operator
F∗ ≡ Ad[F] ∈ L(V∗,W∗) is defined with the aid of the dot product as

(F∗ŵ∗) · â = ŵ∗ · (Fâ) ∈ R, ∀ â ∈ V, ŵ∗ ∈ W∗ (A.51)

where the first dot product is on the vector space V and the second one on the vector space W,
see Fig. A.7. The adjoint operator is also called a dual operator ¥
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Figure A.7: Domains and ranges for the operator F and its adjoint operator F∗.

Definition A.10. Inverse operator

If the operator F is a linear bijection, F ∈ L(V,W), the inverse operator F−1 ∈ L(W,V) exist
and is unique. The inverse operator is defined by means of the formulas I = F−1F and i = FF−1,
where I ∈ L(V,V) is the identity on V, and iii ∈ L(W,W) is the identity on W. The inverse of
the adjoint operator F∗ ∈ L(V∗,W∗) is defined similarly as i∗ = F−∗F∗ and I∗ = F∗F−∗, where
i∗ ∈ L(W∗,W∗) is the identity on W∗, and I∗ ∈ L(V∗,V∗) is the identity on V∗. Note that an
inverse adjoint operator is an operator F−∗ ∈ L(V∗,W∗) ¥

Let the pairs (V,GGG) and (W, ggg) indicate metric vector spaces equipped with the metric
tensor GGG ∈ L(V,V∗) and ggg ∈ L(W,W∗). Metric tensor are used for measuring distances and
deformation, which, in general, is not possible without introducing a metric. Since manifolds are
embedded in the Euclidean space we could choose metric tensor as the identity elements. This
can be achieved by identifying the metric tensor spaces (V,GGG) and (W, ggg) with the Euclidean
vector space.

Definition A.11. Inner product

The inner product for a metric vector space (V,GGG) is defined by
〈·, ·〉

GGG
: V × V → R

(â, b̂) 7→ 〈â, b̂〉GGG := GGGâ · b̂ = â∗ · b̂ (A.52)

where for simplicity the co–vector GGGâ = Gija
j is often denoted by â∗ ¥

Definition A.12. Transpose operator

The transpose operator of the tensor operator F ∈ L
(
(V,GGG), (W, ggg)

)
, denoted FT is formally

defined via the inner product as
〈
FT ŵ, v̂

〉
GGG

=
〈
ŵ,Fv̂

〉
ggg

∀ ŵ ∈ W, v̂ ∈ V. (A.53)

Hence, the transpose operator is a mapping FT ∈ L(W,V) ¥

After the definition of he inner product, we found a relation between the transpose FT and
the adjoint operator F∗, yielding FT = GGG−1F∗ggg. Note that the transpose operator depends on
metric tensors on contrary to the adjoint operator and that in the case when GGG = III and ggg = iii
both operators are the same.
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Definition A.13. Tensor product

The tensor product between the vector â ∈ V and the co–vector f̂∗ ∈ W∗ is defined employing
the dot product by

(â⊗ f̂∗) · ŵ = (f̂∗ · ŵ)â ∈ V ∀ ŵ ∈ W (A.54)

where the tensor â ⊗ f̂∗ belongs to the tensor space produced by V and W∗, i.e. â ⊗ f̂∗ ∈
V ⊗W∗ = L(W,V) ¥

The tensor product is a linear mapping for each member separately and, therefore, a bilinear
operator. The tensor is called a two–point tensor if it is defined on two different vector spaces.

Definition A.14. General two–point tensor space

The general two–point tensor space F can be denoted by

F := V ⊗ · · · ⊗ V︸ ︷︷ ︸
r

⊗V∗ ⊗ · · · ⊗ V∗︸ ︷︷ ︸
s

⊗W ⊗ · · · ⊗W︸ ︷︷ ︸
t

⊗W∗ ⊗ · · · ⊗W∗
︸ ︷︷ ︸

u

that is a space of r-fold on the vector space V, s-fold on the vector space V∗, t-fold on the vector
space W and u-fold on the vector space W∗. This can be shortly denoted by the tensor space
F(r, s, t, u) ¥

Permutation of vector spaces is allowed12. The tensor space is a vector space itself by
satisfying all vector space properties [285]. The vectors can be considered as first order tensors
and both of them can be characterized by studying if they are elements of corresponding vector
or tensor spaces, respectively. A general tensor is defined as an element of a tensor space, thus
the two–point tensor T of the tensor space F(r, s, t, u) is the following multi–linear mapping:

T :
(V∗ × · · · × V∗ × V × · · · × V ×W∗ × · · · ×W∗ ×W × · · · ×W) → R.

The two–point tensor T is an element of the two–point tensor space such that it assigns a tensor
for its two–point domain.

Definition A.15. Trace operator

The trace of the tensor, Tr ∈ L(V∗ × V∗,R) of the one point tensor f̂∗ ⊗ â ∈ V∗ × V is a
scalar–valued linear operator defined via the dot product

Tr(f̂∗ ⊗ â) = f̂∗ · â ∈ R (A.55)

Also the trace operation for the tensor on V × V∗ can be applied noting V = V∗∗, but it is not
defined for two–point tensors ¥

An useful property of the trace operator is

Tr
[
TT

1 T2

]
= Tr

[
T1TT

2

]
(A.56)

for any pair of second order Cartesian tensors T1 and T2.

Definition A.16. Double–dot product

The double–dot product of the tensors f̂∗ ⊗ t̂∗ ∈ V∗ ⊗W∗ and v̂ ⊗ ŵ ∈ V ⊗W is defined via the

12The notation F(1, 0, 0, 1) could mean the tensor spaces V ⊗W∗ or W∗ ⊗ V.
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ordinary dot product as

(f̂∗ ⊗ t̂∗) : (v̂ ⊗ ŵ) := (f̂∗ · v̂)V · (t̂∗ · ŵ)W ∈ R (A.57)

where the subscripts indicate the vector space of the corresponding dot product. Therefore, the
double–dot product is mapping L(V∗ ×W∗ × V ×W,R) that is a four order operator ¥

Finally, a general tensor not necessarily can be represented by the by the tensor product of
vectors, e.g. f̂ ⊗ â, frequently tensors are given as a set of components defined on certain basis
vector of the tensor space. Let {Ĝi} be an ordered basis for the vector space V and let {ĝi}
be an ordered basis for the vector space W, then we may present a general two-order two-point
tensor T ∈ V ⊗W by the linear combination of the basis vector, namely

T = TijĜi ⊗ ĝj (A.58)

where Ĝi ⊗ ĝj ∈ V ⊗W corresponds to the basis vector of the tensor with coefficients Tij ∈ R.
The coefficient matrix [Tij ] ∈ R3×3 is called the component matrix of the tensor T with respect
to the bases {Ĝi} and {ĝi}. Higher order tensors are represented in a similar way [285, 251]. In
order to represent tensors in co–vector spaces it is necessary to define their bases.

Definition A.17. Dual bases

The dual bases {Ĝ∗
i } and {ĝ∗i } on the co–vector spaces V∗ and W∗ are defined by the formulas

Ĝ∗
i · Ĝj = δij , ĝ∗i · ĝj = δij (A.59)

then the tensor T ∈ V ⊗W∗ may be represented by T = TijĜi ⊗ ĝ∗j ¥

A.3.2 Current and initial reference placements

Let χt : B → R3 be a smooth time–dependent embedding of the material body B into Euclidean
space R3. For each fixed time t ∈ R+, the mapping χ(t, ·) is defined as the current placement of
the body B along with the current place vector x̂ of a body-point, namely

Bt ⊂ R3 := χ(X̂, t), x̂ := χ(X̂, t), ∀X̂ ∈ B. (A.60)

The initial reference placement B0 is defined as the special case of the current placement Bt by
setting t = 0, giving

B0 := χ(B, t = 0), X̂ := χ(X̂,t = 0) ∀X̂ ∈ B (A.61)

where X̂ is an initial reference place vector. Since the initial reference placement B0 is unaffected
by observation transformation (see e.g. Ogden [300]), it is possible to call vectors and tensors
defined on the initial reference placement B0 as material quantities. For example, the reference
place X̂ is called material place vector, and B0 the material placement of the body. Sometimes
the material description is named a referential or Lagrangian description, and occasionally, some
distinction has been accomplished between the phrases. Contrary to the material placement B0,
the current placement Bt and vectors and tensors defined on it are concerned in the observation
transformation. Vectors and tensors defined on the current placement Bt are called spatial
quantities, e.g. a current place vector x̂ is also named as a spatial place vector, and Bt as a
spatial placement. A spatial description is sometimes called a Eulerian description.
In this work the terms material and spatial will be applied for placements, vectors, tensors,
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Figure A.8: Configurational description of the motion.

fields, spaces and descriptions. A geometric interpretation of the material body B, the material
placement B0, and the spatial placement Bt, as well as for material/spatial vectors is given in
Fig. A.813.
Fig. A.8 shows that a body–point X̂ ∈ B, which is represented by a vector-valued mapping
X̂ := χ(X̂), assigns a material vector Â on the material placement B0. The material vector
belongs to the tangent space of the material placement B0, namely TX̂B0, where X̂ corresponds
to the base point14 of manifold. Correspondingly, the body–point X̂ ∈ B, which is represented
by the mapping x̂ = χ(X̂), assigns the spatial vector â on the spatial placement Bt. The spatial
vector belongs to the tangent space of the spatial placement Bt, i.e. â ∈ Tx̂Bt, where x̂ represents
a base point of on the manifold Bt.
Defining V := TX̂B0 and W := Tx̂Bt it is possible to construct multi–linear two–point operators,
(or tensors), T at the body point X̂ ∈ B, with mappings X̂ = χ0(X̂) and x̂ = χ(X̂) as:

T : T ∗
X̂
B0 × . . .× TX̂B0 × . . .× T ∗x̂Bt × . . .× . . .× Tx̂Bt → R

(X̂∗1, . . . , X̂∗n, X̂1, . . . , X̂n, . . . , x̂∗1, . . . , x̂∗n, . . . , x̂1, . . . , x̂n) 7→ T(X̂∗1, . . . , x̂1) ∈ R

where T ∗
X̂
B0 and T ∗x̂Bt are the co–vector tangent spaces15 for the (vector) tangent spaces TX̂B0

and Tx̂Bt, respectively. The multi-linear operator T is an element of multi-linear operators de-
noted as T ∈ L(T ∗

X̂
B0 × . . . TX̂B0 × . . . T ∗x̂Bt × . . . Tx̂Bt,R) (An extensive revision for tensorial

calculus on manifolds can be found in [256]). Usually, the coefficients of tensor operators are
described in the bases (see Eq. A.59) associated to the vector and co–vector spaces over they
act. In the configurational description of continuous mechanics frequently appear this kind of
mathematical objects.
It is possible to associate a symmetric positive-definite metric tensor to each vector or co–vector
space, constructed from the corresponding vector bases. Let pairs (V,G) and (W,g) indicate

13Note that placements, likewise place vectors, should be regarded as mappings, not the image of these maps,
according to [246].

14A base point is a point of the manifold where a tangent space is induced.
15The co–vector space V∗ of the vector space V, is bilinear and positive definite. The elements of co–vector

space is said to be perpendicular to elements of the vector space [246, 256, 285].
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metric vector spaces in the material and spatial configurations, with material metric tensor,
(seen as bi-linear operator), G ∈ L(V,V∗) and the spatial metric tensor g ∈ (W,W∗). Metric
tensors are used to measure distances and strains. A canonical representation for the metric
tensor in material and spatial configurations is given by the identity I ∈ R3, this metric tensor
result of describing the points by means of Euclidean 3D coordinates.
Considering the previous content, in following formal definitions for the linear form correspond-
ing to the virtual work principle is given in the context of differential calculus on finite and
infinite–dimensional manifolds.

Definition A.18. Virtual work on finite–dimensional manifolds

The virtual work on the tangent point bundle TB0 at fixed time t = t0 and at the place vector
x̂0 := x̂(t0) ∈ B0 is defined as a linear form by

GV (x̂0, δx̂) := f̂∗ · δx̂ (A.62)

where δx̂ ∈ Tx̂B0 is the virtual displacement and the force vector f̂∗(t0, x̂0) ∈ T ∗x̂B0 belongs to
the co–tangent point–space ¥

In the case that the considered manifold is subjected to holonomic constraints, i.e. a con-
strained manifold, δx̂ ∈ Tx̂B0 occupies the subspace of Rn which is the tangent space at the base
point x̂0 with dimension d < n [245] (see Fig. A.9).
By the other hand, forces can be classified, according to the Newtonian mechanics, into external
and inertial forces when it has the general form −m¨̂x, where m is a constant called mass. Inertial
force may be regarded as an effective force, indeed, if an external force is acting on a particle,
which is otherwise free, then the inertial force may be regarded as the reaction force, hence the
force equilibrium in the dynamical sense is achieved in this mechanical system16.

Definition A.19. Virtual work on infinite–dimensional manifold

The virtual work on the tangent field bundle Tx̂C0 at the fixed time t = t0 and the place field
x̂0 := x̂(t0) ∈ C0 is defined as an integral over the domain of the body B

GV (x̂0, δx̂) :=
∫

B
f̂∗ · δx̂dV (A.63)

where the virtual displacement field δx̂ ∈ Tx̂C0 and the force field f̂∗ = f̂(t0, x̂0) ∈ T ∗x̂C0 which
belongs to the co–tangent field space. The tangent field space Tx̂C0 is defined in Eq. (A.86).
Similarly as in the finite–dimensional case, the same classification of forces can be done ¥

A.4 Configurational description of compound rotations

As it has been introduced in §A.1 a compound rotation can be defined by two different way,
nevertheless, equivalent ways: the material description, and the spatial description17. In view
of that, in this section we perform a more formal description of compound rotations in terms of
the configurational description of the rotational motion [247, 246].

16Another way to classify forces is used in Lagrangian mechanics where forces are separated into constraint and
applied forces. Constraint forces can be verified with the aid of the virtual work since they are workless. Then
we may note that constraint forces occupy f̂ con ∈ T ∗x̂B⊥0 that is orthogonal to Tx̂B0 via duality pairing. Hence,
we may neglect the constraint forces in the virtual work forms [245].

17A extensive introduction to the configurational approach of continuous mechanics can be reviewed in [256, 388].
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Figure A.9: Geometric representation of the virtual work principle on the manifold M with
tangent space Tx̂M at the base point x̂; (x̂0: place vector, f̂ : force co–vector, δx̂: virtual
displacement, δW : virtual work).

To this end, let {Êi} and {êi} be two spatially fixed (inertial) reference coordinate systems
identified with the material and spatial coordinate system, respectively. Given two rotation
vectors described these reference systems, i.e. Ψ̂ = ΨiÊi for material frame and ψ̂ = ψiêi for
spatial frame, it is possible to obtain Λ ∈ SO(3) by means of applying the exponential mapping
as

Λ = exp[Ψ̃] = exp[ψ̃ψψ] (A.64)

with Ψ̃ and ψ̃ψψ being the skew–symmetric tensors obtained from Ψ̂ and ψ̂, respectively. In this
manner, the rotation tensor Λ is parameterized in the material or spatial description, although
when the rotation tensor itself can be regarded as a two point operator [245].
If following, if a rotation increment is applied it is possible to obtain the new compound rotation
according to Eq. (A.3), and employing Eq. (A.26) it is possible to define the material and spatial
descriptions of the compound rotation as described below

A.4.1 Material description of the compound rotation

Given a material incremental rotation vector, Θ̂ = ΘiÊi, the new compound rotation tensor,
Λc, is defined by means of the left translation mapping defined as an operator with base point
in Λ ∈ SO(3) and described by

leftΛ(•) : SO(3) → SO(3)
exp[Θ̃] 7→ Λc = Λexp[Θ̃] = ΛΛmat

n (A.65)

where Θ̃ ∈ so(3) is the skew–symmetric tensor obtained from Θ̂ and Λmat
n = exp[Θ̃] is the

material form of the incremental rotation operator. It is worth to note that the left translation
map is defined as acting on an element of so(3) but the final updating procedure requires the
specification of a point Λ on the rotational manifold SO(3). This description is called material
since the incremental rotation operator acts on a material vector space.

REMARK A.4. Note that the updating rule of Eq. (A.65) can be identified with the material
updating rule of §A.1 ¥
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A.4.2 Spatial description of the compound rotation

Given a spatial incremental rotation vector, θ̂ = θiêi, the description of the new compound
rotation tensor, Λc, can be defined by means of the right translation mapping, with base point
in Λ ∈ SO(3), defined as

rightΛ(•) : SO(3) → SO(3)
exp[θ̃] 7→ Λc = exp[θ̃]Λ = Λspa

n Λ (A.66)

where θ̃ ∈ so(3) is the skew–symmetric tensor obtained from θ̂ and Λspa
n = exp[θ̃] is the spatial

form of the incremental rotation operator. The right translation map is also defined as acting on
an element of so(3) but the final updating procedure requires the specification of a point Λ on
the rotational manifold SO(3). This description is called spatial since the incremental rotation
operator acts on a spatial vector space.

REMARK A.5. Note that the updating rule of Eq. (A.66) can be identified with the spatial
updating rule of §A.1 ¥

The material and spatial descriptions of the incremental rotation tensor, generically designed
as Λn omitting the super-scripts mat and spa, and the incremental rotation vectors and skew–
symmetric tensors are related by [245, 363]

θ̂ = ΛΘ̂ (A.67a)
θ̃ = ΛΘ̃ΛT (A.67b)

Λspa
n = ΛΛmat

n ΛT (A.67c)

where the first relation, Eq. (A.67a), is called a Lie algebra adjoint transformation18 on the
Euclidean space with the vectors cross product as the Lie algebra (R3, · × ·), the second relation
of Eq. (A.67b) is the Lie Algebra adjoint transformation on so(3), AdΛ(Θ̃) = ΛΘ̃ΛT ; and
the last relation, Eq. (A.67c), is an inner automorphism that is an isomorphism onto itself,
[246, 244].

REMARK A.6. At it has be shown in §A.2.3 exp[Θ̃] ∈ SO(3), with Θ̃ being the skew–
symmetric tensor obtained from Θ̂ ∈ R3 that belongs to the tangential space of SO(3) at the
identity on SO(3); i.e. Θ̃ ∈ so(3) ≈ TISO(3) ¥

A.4.3 Material tangent space to SO(3)

Taking the directional (Fréchet) derivative of the compound rotation, i.e. differentiating the
perturbed configuration of the material form of the compound rotation Λexp[νΘ̃)] with respect
to the scalar parameter ν and setting ν = 0, yields to the material tangent space to SO(3) at
the base point Λ, which is formally defined as [246]

Tmat
Λ SO(3) := {Θ̃Λ := (Λ, Θ̃)

∣∣ Λ ∈ SO(3), Θ̃ ∈ so(3)} (A.68)

where an element of the material tangent space Θ̃Λ ∈ Tmat
Λ SO(3) is a skew–symmetric tensor,

i.e. Θ̃ ∈ so(3). The notation (Λ, Θ̃) is used for indicating the pair formed by the rotation
tensor Λ and the skew–symmetric tensor Θ̃, representing the material tangent tensor, at the
base point Λ ∈ SO(3) [246]. See Fig. A.10. For simplicity it is possible to omit the base point
Λ by denoting Θ̃Λ ∈ Tmat

Λ SO(3) if there is no danger of confusion.
18This concept has been defined in Remark A.1 (pp. 262) of the §A.2.3.
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A.4.3.a Spatial tangent space to SO(3)

Respectively, the spatial tangent space on the rotation manifold SO(3), at any base point Λ,
can be defined as

T spa
Λ SO(3) := {θ̃θθΛ := (Λ, θ̃θθ)

∣∣ Λ ∈ SO(3), θ̃θθ ∈ so(3)} (A.69)

By analogy with the material case, an element of the spatial tangent space θ̃θθΛ ∈ T spa
Λ SO(3) is

a skew–symmetric tensor belonging to so(3). Again, omitting the base point Λ, it is possible to
write θ̃θθΛ ∈ T spa

Λ SO(3).

REMARK A.7. The elements of the Lie group SO(3) can be alternatively defined as linear
operators Λ ∈ L(R3,R3) providing another interpretation for a rotation, i.e. it is an adjoint
transformation between the material and spatial tangent spaces, see Eqs. (A.67a) to (A.67c).
Additionally, a rotational motion induces a rotation operator, since the rotation operator maps
the material place vector X̂ ∈ B0 to the spatial place vector x̂ ∈ Bt by means of the transformation
x̂(t) = Λ(t)X̂, i.e. Λ ∈ L(B0,Bt). More generally, rotation operators transform material vectors
into spatial vectors, that is Λ ∈ L(TX̂B0, Tx̂Bt) ¥

Figure A.10: Geometric representation of the tangent spaces on the rotational manifold SO(3).
(a): Material. (b): Spatial.

A.4.4 Incremental additive rotation vectors

Consider a rotation tensor Λ0 ∈ SO(3) which can be indistinctly parameterized (minimally)
by using the spatial or material vectors ψ̂ = ψiêi and Ψ̂ = ΨiÊi, respectively; i.e. we have
Λ0 = exp[ψ̃ψψ] = exp[Ψ̃].

A.4.4.a Spatial description

Consider a spatial incremental rotation of magnitude δθ which is applied on Λ0. The incre-
ment of rotation is described by the (spatial) incremental rotation vector δθ̂ = δθiêi and the
corresponding incremental rotation tensor can be determined using Eqs. (A.11), (A.12) or its
equivalent exponential form Λθ = exp[δθ̃θθ]. Then we obtain the compound or updated rotation
Λ = ΛθΛ0 ∈ SO(3), which is the result of two consecutive rotations parameterized by ψ̂ and



278 Appendix A. Introduction to finite rotations

δθ̂, respectively [228].
Consider now the new compound rotation vector ψ̂ + δψ̂ which parameterizes Λ, with δψ̂ the
additive increment of the rotation vector ψ̂; in general we have

exp[ψ̃ψψ + δθ̃θθ] 6= exp[ψ̃ψψ + δψ̃ψψ] = exp[θ̃θθ]exp[ψ̃ψψ]. (A.70)

It is possible to see that δψ̃ψψ is the linear additive increment of ψ̃ψψ because they belong to the same
tangent space T spa

I SO(3), in contrast with δθ̃θθ ∈ T spa

exp[ψ̃ψψ]
SO(3). One can observe that, because of

δθ̃θθ being skew–symmetric, the spatial form of the linearized increment or admissible variation
of the rotation tensor, δΛ, is no longer orthogonal. In fact, δθ̃θθ belongs to the tangential space
of the rotation tensor Λ ∈ SO(3).
The linearized relation between δψ̂ and δθ̂ is obtained as follows: construct a perturbed config-
uration of Λ depending on a scalar parameter ε ∈ R3 as

Λε = Λεθ(εδθ̃θθ)Λ0(ψ̃ψψ) = exp[εδθ̃θθ]Λ0 = exp[ψ̃ψψ + εδψ̃ψψ] (A.71)

considering the fact that exp[ψ̃ψψ]−1 = exp[−ψ̃ψψ] one obtains

exp[εδθ̃θθ] = exp[ψ̃ψψ + εδψ̃ψψ]exp[−ψ̃ψψ]. (A.72)

Taking the derivative of Eq. (A.72) with respect to ε and setting ε = 0, it is possible, using the
Rodrigues’s formula, obtain the linearized relation between the incremental rotation vector δθ̂
and the increment of the rotation vector, δψ̂, [178, 182, 365] as

δθ̂ = DΛεθ · δψ̂ =
d
dε

[
exp[εδθ̃θθ]

]∣∣∣
ε=0

(A.73a)

=
d
dε

[
exp[ψ̃ψψ + εδψ̃ψψ]exp[−ψ̃ψψ]

]∣∣∣
ε=0

= Tθψδψ̂ (A.73b)

where the spatial tangential transformation tensor Tθψ is given by

Tθψ = Tθψ(ψ̂) =
sinψ

ψ
I +

1− cosψ

ψ2
ψ̃ψψ +

ψ − sinψ

ψ3
ψ̂ ⊗ ψ̂ (A.74)

with determinant19 Det[Tθψ] = 2(1 − cosψ)/ψ2. Therefore, δψ̂ 6= δθ̂ for general 3D rotations
unless δθ̂ and δψ̂ are coaxial. Besides, when ψ = 2kπ for k ∈ N, Tθψ becomes rank deficient,
which may imply problems in the numerical implementations.
Also it is possible to define the inverse transformation [228, 178, 365]

δψ̂ = Tψθδθ̂ (A.75)

where

Tψθ = Tψθ(ψ̂) = T−1
θψ (ψ̂) =

ψ/2
tan(ψ/2)

I− 1
2
ψ̃ψψ +

1
ψ2

[
1− ψ/2

tan(ψ/2)

]
ψ̂ ⊗ ψ̂. (A.76)

19For a detailed deduction of the tensors Tθψ and Tψθ see Refs. [104, 105, 178, 182, 365].
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To avoid the singularity due to the use of the rotation vector to parameterize the rotation tensor,
a re-scaling remedy is available [182, 181] as follows: when θ > π is identified:

ψ∗ = ψ − 2nπiψ (A.77)

where n = int[(ψ + π)/2π], the number of full–cycle rotations. This remedy makes sure ψ∗ ∈
[−π, π] and therefore overcome the singularity.

REMARK A.8. Note that the transformation Tθψ has an effect on the base points, changing
the base point from I to exp(ψ̃). The tangential transformation Tθψ(ψ̂), Λ(ψ̂) and the skew–
symmetric tensor ψ̃ have the same eigenvectors. Hence, Tθψ(ψ̂), Λ(ψ̂) and ψ̃ are commutative
[178] ¥

A.4.4.b Material description

Analogously as for the case of spatial description, if we start from the material description of
the compound rotation tensor Λ = exp[Ψ̃ + δΨ̃] = exp[Ψ̃]exp(δΘ̃), it is possible to see that
Ψ̃ and its linear increment δΨ̃ belong to the same tangent space of rotation, i.e. Tmat

I SO(3).
However20, the skew–symmetric tensor δΘ̃ belongs Tmat

exp[Ψ̃]
SO(3) and therefore, in general we

have
exp[Ψ̃]exp[δΘ̃] = exp[Ψ̃ + δΨ̃] 6= exp[Ψ̃ + δΘ̃]

due to that both tangent tensors belong to different linear spaces. It is worth to note that
Ψ̂ = ΨiÊi, δΨ̂ = δΨiÊi and δΘ̂ = δΘiÊi are the material axial vectors obtained from Ψ̃, δΨ̃
and δΘ̃, respectively.
Therefore, in an analogous manner as for the spatial case, constructing a perturbed configuration
on Λ0, the following result is obtained

exp[εδΘ̃] = exp[−Ψ̃]exp[Ψ̃ + εδΨ̃]. (A.78)

Taking the derivative of Eq. (A.78) with respect to ε and setting ε = 0, it is possible, using the
Rodrigues’s formula, obtain the linearized relation between the incremental rotation vector δΘ̂
and the linearized increment of the rotation vector, δΨ̂, [178, 182, 365] as

δΘ̂ = DΛεΘ · δΨ̂ =
d
dε

[
exp[εδΘ̃ΘΘ]

]∣∣∣
ε=0

(A.79a)

=
d
dε

[
exp[−Ψ̃ΨΨ]exp[Ψ̃ΨΨ + εδΨ̃ΨΨ]

]∣∣∣
ε=0

= TΘΨδΨ̂ (A.79b)

where TΘΨ(Ψ̂) defines the material tangential transformation tensor and the following identity
holds

δΘ̂ = TΘΨδΨ̂ = TT
θψδΨ̂. (A.80)

Then, TΘΨ(Ψ̂) is a linear mapping between the material tangent spaces Tmat
I 7→ Tmat

exp(Ψ̃)
. On

other hand, it is also valid that

δΨ̂ = TΨΘδΘ̂ = T−1
ΘΨδΘ̂ = T−T

θψ δΘ̂. (A.81)

20Here the symbol δ is used to denote a rather small or linearized increment.
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Additionally, considering δΨ̂ = Iδψ̂ and δθ̂ = ΛδΘ̂ one obtains that

TΘΨ = ΛTTθψ and TΨΘ = T−1
θψΛ = TψθΛ.

REMARK A.9. Note that the transformation TΘΨ has an effect on the base points, changing
the base point from I to exp(Ψ̃). It is worth also noting that the tangential transformation
TΘΨ(Ψ̂), the corresponding rotation tensor Λ(Ψ̂) and the skew–symmetric tensor Ψ̃ have the
same eigenvectors. Hence, TΘΨ(Ψ̂), Λ(Ψ̂) and Ψ̃ are commutative [178] ¥

A.4.5 Vector spaces on the rotational manifold

A.4.5.a Material vector space

According to the previous results, it is possible to define the material vector space on the rotation
manifold at the base point Λ as

Tmat
Λ := {Θ̂Λ := (Ψ̂, Θ̂)

∣∣Λ = exp[Ψ̃] ∈ SO(3), Θ̂ ∈ R3} (A.82)

where an element of the material vector space is Θ̂Λ ∈ Tmat
Λ , which is an affine space with the

rotation vector Ψ̂ as a base point and the incremental rotation vector Θ̂ as a tangent vector.
Hence, the tangential transformation TΘΨ is a mapping TΘΨ : Tmat

I 7→ Tmat
Λ . The elements

of this material vector space can be added by the parallelogram law only if they occupy the
same affine space, i.e. if their associated skew–symmetric tensors belongs to the same tangent
space of the rotation manifold, [246]. The definition of Eq. (A.82) gives a practical notation for
sorting rotation vectors in different tangent spaces.

A.4.5.b Spatial vector space

By analogy with the material case, the spatial vector space on the rotation manifold at any point
Λ is defined as

T spa
Λ := {θ̂Λ := (ψ̂, θ̂)

∣∣Λ = exp(ψ̃) ∈ SO(3), θ̂ ∈ R3} (A.83)

An element of the spatial vector space is θ̂Λ ∈ T spa
Λ and the tangential operator Tψθ : T spa

I 7→
T spa
Λ is the transposed as in the material form, Eq. (A.80).

The spatial and material vector spaces are related by the rotation tensor as given in Eq. (A.67a),
from which follows that with the base point I ∈ SO(3), (Ψ̂ ∈ Tmat

I )

ψ̂I = IΨ̂I → ψ̂I = Ψ̂I (A.84)

where ’=’ denotes the canonical isomorphism between the spatial and material vector spaces.
The identity I maps between the vector fields Tmat

I → T spa
I . Now the relation between spatial

and material vectors can be given as (ψ̂, θ̂) = (IΨ̂,ΛΘ̂), where ψ̂ and Ψ̂ represent the base point
in the spatial and material vector spaces, respectively.
This notation can be written more compactly as θ̂Λ = ΛΘ̂Λ, called the push–forward21 of Θ̂Λ by
Λ, where the rotation tensor should be considered as a mapping between the material and spatial
vector spaces of rotation, Λ : Tmat

Λ → T spa
Λ , see Fig. A.11. A push–forward operator maps a

material vector space into a spatial vector space. It makes sense since rotation operator is a
two-point tensor. Note that the push–forward operator Λ has no influence on the base point of

21Detailed formalism about pullback and push–forward operator will be given in the next sections.
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the rotation manifold, another push–forward for rotation tensors is θ̃θθΛ = ΛΘ̃ΛΛT is a mapping
between the material and spatial tangent spaces of rotation Λ(•)ΛT : Tmat

Λ SO(3) → T spa
Λ SO(3).

Fig. (A.11) shows a scheme of the connections between spatial and material configurations.

δΘ̂Λ

Λ
,,

ll
ΛT

δθ̂Λ Tmat
Λ

Λ
,,

ll
ΛT

T spa
Λ

δΨ̂I
oo I //

TT

OO

δψ̂I

T

OO

Tmat
I

oo I //

TT

OO

T spa
I

T

OO

a b

Figure A.11: Commutative diagrams. (a): Configurational description of vectors. (b): Corre-
sponding vector spaces.

A.5 Variation, Lie derivative and Lie variation

In previous sections definitions for manifolds and tangent spaces have been given for the finite–
dimensional case i.e. any element of the tangent space can de constructed by means of a
combination of a finite number of elements called basis. By contrast, the placement field of
continuous mechanics takes values in a Hilbert space which is formally defined as

Definition A.20. Hilbert space

A Hilbert space is a complete inner-product space, and here specially a complete infinite-
dimensional inner-product vector-valued function space. For a detailed presentation of functional
analysis in continuous mechanics see [251, 255] ¥

In a Hilbert space chart parametrization maps vector-values functions into vector–valued
functions. The placement field needs an infinite number of basis functions in order to present
an arbitrary placement field on continuum, yielding infinite–dimensional manifolds.
In this section a definition for variation, Lie derivative and Lie variation in the context of the
configurational approach of continuous mechanics will be given, i.e. for manifolds modeled in
infinite-dimensional Hilbert spaces, called field manifolds. The concepts of pullback and push–
forward operators are essential for the understanding of Lie derivative and variation [251, 255,
245]. Some previous definitions are required:

Definition A.21. Fréchet derivative and differential

The Fréchet derivative of the vector f̂ : H ⊂ H1 → H2 at fixed x̂ ∈ H, with H,H1 and H2 being
Hilbert spaces, is defined as the following continuous linear operator:

Df̂(x̂) : H1 → H2 such that f̂(x̂ + û)− f̂(x̂) = Df̂(x̂) · û + r(x̂, û)

where the remainder obeys the condition limû7→0
‖r(x̂,û)‖H∈
‖û‖H∞ = 0. Df̂(x̂) is called Fréchet differ-

ential. A vector is called Fréchet differentiable if its Fréchet derivative exists. The derivative is
also a linearized form ¥

Definition A.22. Gâteaux differential

The Gâteaux differential of the vector f̂ : H ⊂ H1 → H2 at fixed x̂ ∈ H (β ∈ R) is defined as
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the limit:

Df̂(x̂) · û := lim
β 7→0

f̂(x̂ + βû)− f̂(x̂)
β

=
df̂(x̂ + βû)

dβ

∣∣
β=0

where the limit is to be interpreted in the norm of H2 ¥

The formula of the present definition is a practical and simple way to compute the directional
derivative that is the term Df̂(x̂) · û where û ∈ H1 indicates the direction.

Definition A.23. Field manifold

A infinite–dimensional field manifold is a set C of a Hilbert space H1, (C ⊂ H1), is defined as a
infinite–dimensional manifold in analogous way that for the finite–dimensional case, excepting
that the points x ∈ C are vector valued fields and it can depend also on time t ∈ R+. A manifold
at a fixed time t = t0 is denoted by C0 ¥

Definition A.24. Tangent field bundle

A tangent field bundle is a virtual displacement field δx̂ at any place field x̂ ∈ C0 and for a fixed
time t = t0 is defined as

TCt0 := {(x̂, δx̂) ∈ H1 ×H1

∣∣ x̂ ∈ Ct0 , Dx̂h(t0, x̂) · δx̂ = 0, Dx̂h is surjection} (A.85)

where Dx̂h is the Fréchet partial derivative of any kind of holonomic constrain with respect to
x̂ at t = t0 ¥

Definition A.25. Tangent field space

For a fixed time t = t0, a tangent field space at the base point x̂0 ∈ C0 is defined as

Tx̂0C := {δx̂ ∈ H1 | (x̂0, δx̂) ∈ TCt0} (A.86)

where TCt0 is the tangent field bundle ¥

Definition A.26. Velocity field space

A velocity field space is closely related with the tangent field space and is defined by formula

Tx̂C := { ˙̂x ∈ H1

∣∣ (x̂, ˙̂x) ∈ TC} (A.87)

where now time is free, not fixed, like in the virtual displacement. The velocity field that is an
element of the velocity field–space is also denoted by v̂ := ˙̂x ∈ Tx̂C ¥

A.5.1 Variation operator

The variation operator δ is defined as the special case of Fréchet differential at fixed t = t0 by

δh(t0, x̂, v̂) := Dx̂h(t0, x̂, v̂) · δx̂ + Dv̂h(t0, x̂, v̂) · δv̂ (A.88)

where x̂ ∈ Ct0 is a place field, δx̂ ∈ Tx̂0C is a virtual displacement field, v̂ ∈ Tx̂C is a velocity
field, and δv̂ := δ ˙̂x ∈ Tx̂0C is a virtual velocity filed. Moreover, Dx̂, Dv̂ are the Fréchet partial
derivative with respect to place and velocity, respectively.
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A.5.2 Pullback operator

Let the operator R : TX̂B0 7→ Tx̂B be an invertible linear mapping between the tangent spaces of
material and spatial manifolds. The material manifold is denoted by B0 and the spatial manifold
by B. Moreover, let {ĝi} and {Ĝi} be the bases for the spatial and material tangent spaces TX̂B0

and Tx̂B, respectively, and let {ĝ∗i } and {Ĝ∗
i } be the corresponding dual bases for the spatial

and material cotangent spaces T ∗
X̂
B0 and T ∗x̂B.

The pullback operator by R ∈ L(TX̂B0, Tx̂B) for the spatial vector â = aiĝi ∈ Tx̂B is defined by

←
R (â) := ai(R−1ĝi) ∈ TX̂B0 (A.89)

where R−1 ∈ L(Tx̂B, TX̂B0) is the inverse of the operator R.
The pullback operator by R ∈ L(TX̂B0, Tx̂B) for the spatial co–vector f̂∗ = f∗i ĝ∗i ∈ T ∗x̂B is
defined by

←
R (f̂∗) := f∗i (R∗ĝ∗i ) ∈ T ∗

X̂
B0 (A.90)

where R∗ ∈ L(T ∗x̂B, T ∗
X̂
B0) is the adjoint operator of R (see Def. A.9 in pp. 269). The definition

for pullback operator for vectors or co–vectors is different. A pullback operator maps spatial
vector into material vectors, and spatial co–vectors into material co–vectors, therefore, it is
possible to see the pullback operator as a materializer operator.

A.5.3 Push forward operator

The push forward operator by R ∈ L(TX̂B0, Tx̂B) for the material vector Â = AiĜi ∈ TX̂B0 is
defined by

R→
(Â) := Ai(RĜi) ∈ Tx̂B. (A.91)

The push forward operator by the isomorphism R ∈ L(TX̂B0, Tx̂B) for the material co–vector
F̂ ∗ = F ∗

i Ĝ∗
i ∈ T ∗

X̂
B0 is defined by

R→
(F̂ ∗) := F ∗

i (R−∗Ĝ∗
i ) ∈ T ∗x̂B (A.92)

where R−∗ ∈ L(T ∗
X̂
B0, T

∗
x̂B) is the inverse of R∗.

If the operator R is invertible between the material and spatial tangent spaces, R ∈
L(TX̂B0, Tx̂B), then its adjoint, its inverse and the inverse of the adjoint operators are R∗ ∈
L(T ∗x̂B, T ∗

X̂
B0), R−1 ∈ L(Tx̂B, TX̂B0) and R−∗ ∈ L(T ∗

X̂
B0, T

∗
x̂B), respectively.

Clearly the push forward operator is different for the case of vectors or co-vectors. The push
forward operator maps the material (co)vectors into the spatial (co)vectors. The pullback or
push forward operators for higher order tensor are defined such as the pullback or push forward
operator for each basis vector separately.
For example, the push forward of the second order tensor G ∈ L(T ∗

X̂
B0, T

∗
X̂
B0), the material form

of the metric tensor, by the isomorphism F ∈ L(TX̂B0, Tx̂B), the deformation gradient [251], is

F→
(G) = F→

(GijĜ
∗
i ⊗ Ĝ∗

j )

= Gij(F−∗Ĝ∗
i )⊗ (F−∗Ĝ∗

j ) = F−∗GF−1 ∈ L(TX̂B0, T
∗
x̂B) (A.93)
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where the identity â⊗Fb̂ = (â⊗ b̂F∗), ∀ b̂ ∈ TX̂B0, has been used. The resulting spatial tensor
F−∗GF−1 corresponds to the Cauchy deformation tensor often denoted by c22.

A.5.4 Lie derivative

The Lie derivative LR(c) of the general tensor c(η) ∈ C with respect to the isomorphic mapping
R(η) ∈ L(TX̂B0, Tx̂B) and the parameter η ∈ R is defined by

LR(c) := R→
(

d
dη

[ ←
R (c(η))

]
) (A.94)

The pullback operator
←
R materializes the spatial components of the general tensor c. It is well

known that the derivative of an objective material tensor is an objective tensor [300], therefore,
if the pulled back tensor is objective, its derivative in the material configuration will be as well.
The push–forward operator R→

is considered as the inverse of the pullback operation where the

resulting Lie derivative tensor LR(c) belongs to the same tensor space C as the original c.

A.5.5 Lie variation

The Lie variation δR(c) of a general tensor c ∈ C with respect to the isomorphic mapping
R ∈ L(TX̂B0, Tx̂B) is defined by

δR(c) := R→
(δ[

←
R (c(η))]) (A.95)

where the variation operator correspond to these given in Eq. (A.88), which is accomplished
at the fixed time t = t0. As for the case of the Lie derivative, the Lie variation is an objective
quantity if the original tensor is objective. The definition of Lie variation is connected with a
virtual displacement [245]. This last affirmation can be seen by writing the Lie variation with
the aid of the Gâteaux differential at the point (x̂, v̂) at fixed time t = t0

δR(c) = R→

[d(
←
R (c))
dη

]∣∣∣
η=0

(A.96)

where the tensor c(t0, x̂+ ηδx̂, v̂ + ηδv̂) and the operator R(t0, x̂+ ηδx̂, v̂ + ηδv̂) depends on the
virtual displacement δx̂ and the virtual velocity δv̂23.
An important result in rod theory is the calculation of the Lie variation of the deformation
gradient, (two–point tensor), F = Fij ĝi ⊗ Ĝ∗

j ∈ Tx̂B × T ∗
X̂
B0, by the rotation operator Λ ∈

TX̂B0 × Tx̂B, which reads

δΛF = Λ→
[
δ(
←
Λ F)

]
= Λ(δ(ΛTF)) = Λ(δΛTF + ΛT δF) = δF + ΛδΛTF. (A.97)

22If the tensor are expressed in the Euclidean space then the metric G = I, and the adjoint operator is identified
with the transpose of the gradient tensor, i.e. F−∗ = F−T , yielding to ccc = F−T F−1.

23Note that the virtual displacement belongs to the tangent point-space Tx̂0M in the finite–dimensional case
and to the tangent field–space Tx̂0C in the infinite–dimensional case.
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The variation of the rotation operator using both, the material and spatial updating rules are

δΛ =
d
dη

Λexp[ηδΘ̃]
∣∣∣
η=0

= ΛδΘ̃ (A.98a)

δΛ =
d
dη

exp[ηδθ̃]Λ
∣∣∣
η=0

= δθ̃Λ, (A.98b)

respectively; hence the term ΛδΛT in Eq. (A.97) is equal to −δθ̃ in both descriptions because
δθ̃ = ΛδΘ̃ΛT . Finally, the Lie variation of the deformation tensor F with respect to the rotation
operator Λ is written as

δΛF = δF− δθ̃F ∈ (Tx̂B ⊗ T ∗
X̂
B0) (A.99)

which is a co–rotational operator, (see Refs. [362, 228] for a physical interpretation of co–rotated
magnitudes). Although the spatial virtual rotation tensor δθ̃Λ ∈ T spa

Λ SO(3), i.e. it occupies a
spatial tangent space, it is also an element of the tensor–space (Tx̂B ⊗ T ∗

X̂
B0).

A.5.6 Co–rotated derivatives

In this section an important result related to the derivatives of spatial vectors described in a
moving frame induced by rotational motion will be presented. The co–rotated derivative of a
vector described in the moving reference frame will be deduced. This kind of derivative will be
latter employed in formulation of a geometrically exact theory for rods.
Let suppose two spatially fixed axes {Êi} employed to describe the material configuration of a
body, B0, and {êi} to describe the spatial configuration at time t of the body during motion
Bt. Additionally, let suppose a spatial moving axis {t̂i} obtained by means of the operation of
a two–point rotation tensor Λ = [Λij ]êi⊗Êj

acting on the material reference frame, according

to: t̂i = ΛijÊj . Note that the induced moving frame correspond to the push–forward by the
rotation tensor of the material reference frame to the spatial placement.
Any spatial vector v̂ belonging to the tangent space of Bt at x̂(X̂, t) can be described in any of
the two spatial reference frames, {êi} or {t̂i}, according to v̂ = v̄it̂i = v̄iΛÊi = ΛV̂ and v̂ = viêi.
It is interesting to note that the components of the spatial vector v̂ expressed in the moving
frame {t̂i} are identical to the components of the material vector, V̂ obtained by its pullback to
the (material) reference configuration {Êi},

V̂ = ΛT v̂ = v̄iΛÊi = v̄iÊi. (A.100)

Let suppose that the spatial vector and the rotation tensor are implicitly parameterized in terms
of S ∈ R, i.e. v̂ = v̂(S) and Λ = Λ(S). Taking the derivative of v̂ with respect S we have
[251, 228]

v̂,S = Λ,S ˆ̄v + Λˆ̄v,S = (Λ,S ΛT )(Λˆ̄v) + Λ(ΛT v̂),S
= ω̃Λv̂ + Λ(ΛT v̂),S (A.101)

It is worth to note that in the deduction of Eq. (A.101) the pullback by Λ of the spatial
vector v̂ has been performed and the definition of angular velocity ω̃Λ (see §A.5.7) has been
used considering the derivative with respect to the scalar parameter S. From Eq. (A.101) it is
possible to define the following derivative:

Definition A.27. Co–rotated derivative

The co–rotated derivative of the spatial vector v̂(S) (S ∈ R) with respect to the scalar parameter
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S as the following operator:

O
(•),S : Tx̂Bt → Tx̂Bt

v̂ 7→
O
v̂,S ≡ ΛV̂ ,S ≡ v̂,S −ω̃Λv̂ ≡ v̂,S −ω̂Λ × v̂ (A.102)

The definition of the co–rotated derivative implies that it is a particular case of the Lie derivative
applied to a spatial vector described in a rotating frame and the corresponding pullback/push
forward operations are performed by the same rotation tensor as these that define the moving
frame {t̂i} ¥

Additionally, Eq. (A.102) gives a new explicit expression for this particular Lie derivative:

O
v,S ≡ LΛ(v̂) = v̂,S −ω̂Λ × v̂ (A.103)

The physical meaning of co–rotated derivative is that the derivative of a spatial object is taken
by an observer fixed in the moving frame, only on the components referred to the corresponding
moving frame. An observed who stays still in the fixed spatial frame needs to pullback the
object to the material form ˆ̄v = ΛT v̂ to perform the usual derivative operation and then push
forward to the spatial form Λˆ̄v,S . Equivalently, the observer needs to subtract the spin effect
ω̂Λ × v̂ from the usual derivative v̂,S to have the same objective observation as by the observer
fixed in the moving frame, [362, 228].
On other hand, for any spatial second order tensor T = T̄ij t̂

′′
i ⊗ t̂′j that defines a transformation,

v̂′′ = Tv̂′ between vectors v̂′ = ˆ̄v′t̂′j ∈ TxBt′ at any time t′ and v̂′′ = ˆ̄v′′i t̂i ∈ TxBt′′ at any time
t′′ associated with the rotation tensors Λ′ = t̂′i ⊗ Êi ∈ SO(3) and Λ′′ = t̂′′i ⊗ Êi ∈ SO(3) of the
same material point and the corresponding material objects ˆ̄v′, ˆ̄v′′ and T̄, one may define the
corresponding co–rotated derivative as

O
(•),S : (TxBt′′ × T ∗xBt′) → (TxBt′′ × T ∗xBt′)

T̄(t̂′′i ⊗t̂′j)
7→ O

T,S

where

O
T,S ≡ T̄ij ,S t̂′′i ⊗ t̂′j ≡ Λ′′[(Λ′′)′TΛ′],S (Λ′)T ≡ Λ′′T̄,S (Λ′)T ≡ T,S −(ω̃′′ΛT−Tω̃′Λ) (A.104)

In analogous manner as in the case of vectors the co–rotated derivative of a second order tensor
can be rewritten as O

T,S ≡ LΛ′′(T) = T,S −(ω̃′′ΛT−Tω̃′Λ) (A.105)

And the chain rule holds for the co-rotated derivative operation [228]:

O
v̂,′′S =

O
T,S v̂′ + T

O
v ′,S . (A.106)

A.5.7 Configurational description of variations and derivatives

Supposing that the orientation tensor Λ ∈ SO(3) is given in term of one independent variable
x ∈ R, and following analogous procedures as those described in Eqs. (A.73a) and (A.79a), we
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can consider the linearized increments δxΛ24 which allow to obtain

δx(ΛΛT ) = δxΛΛT + ΛδxΛT = δw̃wwx + δw̃wwT
x = δxI = 0 (A.107a)

δx(ΛTΛ) = δxΛTΛ + ΛT δxΛ = δW̃WW x + δW̃WW
T

x = δxI = 0 (A.107b)

where the skew–symmetric tensors δw̃wwx ∈ T spa
Λ SO(3) and δW̃WW x ∈ Tmat

Λ SO(3) are some times
called the spin tensors [363, 228]. The following relationships are also valid

w̃δx ≡ ΛW̃δxΛT , W̃δx ≡ ΛT w̃δxΛ. (A.108)

The associated material and spatial axial vectors are: δŴx ∈ Tmat
Λ and δŵx ∈ T spa

Λ respectively.

A.5.7.a Derivatives

If instead of the linearized form the derivative form is calculated, it is possible to obtain

Ω̃x ≡ΛTΛ,x ∈ Tmat
Λ SO(3) (A.109a)

ω̃ωωx ≡Λ,x ΛT = ΛΩ̃xΛT ∈ T spa
Λ SO(3) (A.109b)

which are also called spin tensors as x varies [362, 182], associated with the following material
and spatial axial vectors

ω̂x =ωxj t̂j ∈ T spa
Λ (A.110a)

Ω̂x =Ωxj t̂j ∈ Tmat
Λ . (A.110b)

By other hand, considering the spatial updating of the compound rotation defined in Eq. (A.66)
Λ = ΛnΛ0 and using the chain rule of partial derivatives, we have

Λ,x = Λn,x Λ0 + ΛnΛ0,x (A.111)

Therefore, the spatial form of the spin tensor as x varies is described by

ω̃ωωx = Λ,x ΛT = Λn,x Λ0ΛT + ΛnΛ0,x ΛT

= Λn,x ΛT
n + ΛnΛ0,n ΛT

0 ΛT
n (A.112)

= ω̃nx + Λnω̃0xΛT
n ∈ so(3) (A.113)

where the skew–symmetric tensor ω̃ωωnx = Λn,x ΛT
n ∈ T spa

Λ SO(3) is spatial description of the
incremental spin tensor. The corresponding material description of the incremental spin tensor
is obtained by means of applying the pullback operator by the rotation tensor Λ to the spatial
description of the incremental spin tensor according to

Ω̃nx =
←
Λ [ω̃ωωnx] = ΛT ω̃ωωnxΛ = ΛT [ω̃ωωx −Λnω̃ωω0xΛT

n ]Λ (A.114a)
= ΛTΛ,x−ΛT

0 Λ0,x (A.114b)
= Ω̃x − Ω̃0x = ΛT

0 ω̃T
x Λ0 ∈ Tmat

Λn
SO(3) (A.114c)

The associated axial vectors are ω̂nx ∈ T spa
Λn

∼= R3 for the spatial description and Ω̂nx ∈ Tmat
Λn

∼=
R3 for the material description. Additionally, the following spatial and material forms are

24The subscript x is used to highlight that the linearized increment in Λ is due to a linear increment in x ∈ R.
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obtained

ω̃0x = Λ0,x ΛT
0 ∈ T spa

Λ0
SO(3) (A.115a)

Ω̃0x =ΛT
0 ω̃0xΛ0 = ΛT

0 Λ0,x ∈ Tmat
Λ0

SO(3) (A.115b)

Eq. (A.113) implies that the spatial spin tensors cannot be obtained by a simple addition of
an incremental spin relative to the previous configuration; It is necessary to align the spin of
the previous configuration to the current one by applying the corresponding relative rigid–body
rotation. A similar effect has to be accounted for constructing an additive rule for the axial
vector associated to Eq. (A.113) i.e.

ω̂x = ω̂nx + Λnω̂0x ∈ T spa
Λ

∼= R3. (A.116)

It is straightforward to confirm that a simple addition for spin tensors and the corresponding
axial vectors can be performed in the material form according to:

Ω̃x = Ω̃nx + Ω̃0x ∈ Tmat
Λ SO(3) (A.117)

Ω̂x = Ω̂nx + Ω̂0x ∈ Tmat
Λ

∼= R3 (A.118)

If the material description is preferred, i.e. Λ = Λ0Λm
n , we obtain the following results:

ω̃ωωx = Λ,x ΛT = [Λ0,x Λm
n + Λ0Λm

n ,x ]ΛmT
n ΛT

0

= Λ0,x ΛT
0 + Λ0Λm

n ,x ΛmT
n ΛT

0

= ω̃ωω0x + Λ0ω̃ωω
m
nxΛ

T
0 ∈ T spa

Λ SO(3) (A.119a)

Ω̃x =
←
Λ [ω̃ωωx] = ΛT ω̃ωωxΛ

= ΛmT
n ΛT

0 [Λ0,x ΛT
0 + Λ0Λm

n ,x ΛmT
n ΛT

0 ]Λ0Λm
n

= ΛmT
n Ω̃0xΛm

n + Ω̃m
nx ∈ Tmat

Λ SO(3) (A.119b)

where Ω̃0x = ΛT
0 Λ0,x ∈ Tmat

Λ0
SO(3), ω̃ωω0x = Λ0,x ΛT

0 ∈ T spa
Λ0

SO(3), Ω̃m
nx = ΛmT

n Λm
n ,x ∈

Tmat
Λn

SO(3), ω̃ωωm
nx = Λm

n ,x ΛmT
n ∈ T spa

Λn
SO(3) with their corresponding axial vectors: Ω̂x ∈ Tmat

Λ ,
ω̂x ∈ T spa

Λ , Ω̂0x ∈ Tmat
Λ0

, ω̂0x ∈ T spa
Λ0

, Ω̂m
nx ∈ Tmat

Λn
, ω̂m

nx ∈ T spa
Λn

, which are related by

ω̂x = ω̂0x + Λ0ω̂
m
nx (A.119c)

Ω̂x = ΛmT
n Ω̂0x + Ω̂m

nx ∈ Tmat
Λ SO(3) (A.119d)

REMARK A.10. Results obtained in Eqs. (A.119a), (A.119b), (A.119c) and (A.119d) are
completely equivalent to those obtained in Eqs. (A.109a)–(A.118) replacing Λm

n = ΛTΛnΛ ¥

Corresponding material and spatial angular vectors are given in terms of total rotation vector

Ω̂Λ =T(Ψ̂) ˙̂Ψ, Ω̂ ∈ Tmat
Λ ,

˙̂Ψ, Ψ̂ ∈ Tmat
I (A.120a)

ω̂Λ = T(ψ̂) ˙̂
ψ, ω̂ ∈ T spa

Λ ,
˙̂
ψ, ψ̂ ∈ T spa

I (A.120b)

The time derivative of the material/spatial angular velocity tensor or vector is known as mate-
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rial/spatial angular acceleration tensor or vector respectively, and is given by

ÃΛ := ˙̃ΩΛ, ÃΛ ∈ Tmat
Λ SO(3)

ÂΛ := ˙̂ΩΛ, ÂΛ ∈ Tmat
Λ

α̃Λ := ˙̃ωΛ, α̃Λ ∈ T spa
Λ SO(3)

α̂Λ := ˙̂ωΛ, α̂Λ ∈ T spa
Λ (A.121)

where ÂΛ and α̂Λ are the material and spatial angular acceleration vector at the base point
Λ ∈ SO(3).
It is worth to note that the material incremental rotation vector Θ̂Λ, the angular velocity vector
Ω̂Λ and the material angular acceleration vector ÂΛ belong to the same vector space on the
rotation manifold, i.e. Θ̂Λ, Ω̂Λ, ÂΛ ∈ Tmat

Λ with the base point Λ = exp(Ψ̃).
As the time, t, changes, these vectors occupy different tangent spaces because the rotation opera-
tor depends on time, namely Λ = Λ(t), therefore, the base point is moving permanently. Vector
quantities of this type are known in mechanics as spin vectors. Spin vectors are rather tricky in
numerical sense as they occupy a distinct vector space on the manifold. Correspondingly, the
spatial spin vectors are θ̂Λ, ω̂Λ, α̂Λ ∈ T spa

Λ .
Angular velocity and acceleration vectors and time derivatives of total rotation vector are related
by

ÂΛ = T · ¨̂Ψ + Ṫ · ˙̂Ψ, ÂΛ ∈ Tmat
Λ ; Ψ̂,

˙̂Ψ ¨̂Ψ ∈ Tmat
I

α̂Λ = TT · ¨̂
ψ + ṪT · ˙̂

ψ, α̂Λ ∈ T spa
Λ ; ψ̂,

˙̂
ψ

¨̂
ψ ∈ T spa

I (A.122)

where the tangential transformation depends on the total rotation vector and the rotation op-
erator is Λ = exp(Ψ̃) = exp(ψ̃). The deduction of the time derivative of the tangential trans-
formation, T(•), involves a large and tedious algebraic work and it can be found in [246, 338]
and references therein, its final expression is

Ṫ( ˙̂Ψ, Ψ̂) = c1(Ψ̂ · ˙̂Ψ)I− c2(Ψ̂ · ˙̂Ψ)Ψ̃ + c3(Ψ̂ · ˙̂Ψ)Ψ̂⊗ Ψ̂

+ c4(
˙̂Ψ · Ψ̂) ˙̂Ψ + c5(

˙̂Ψ⊗ Ψ̂ + Ψ̂⊗ ˙̂Ψ) (A.123)

where the coefficients ci, (Ψ = |Ψ̂|), are

c1 :=
Ψ cosΨ− sinΨ

Ψ3
; c2 :=

Ψ sin Ψ + 2 cosΨ− 2
Ψ4

;

c3 :=
3 sin Ψ− 2Ψ−Ψ cosΨ

Ψ5
; c4 :=

cos Ψ− 1
Ψ2

; c5 :=
Ψ− sin Ψ

Ψ3





Appendix B

Additional results

In this appendix some additional rather extensive results that were excluded from the main
body of the text for facilitating the reading are given.

B.1 Reduced linear–elastic constitutive relations

In this appendix the explicit expressions for the coefficients of the reduced linear-elastic con-
stitutive relations for rod cross sections composed of not necessarily homogeneous nor isotropic
hyperelastic materials are provided.
Considering that n̂m = Cme

nn Ên + Cme
nmΩ̂n and m̂m = Cme

mnÊn + Cme
mmΩ̂n in the material form and

Eq. (3.162) we have [228]:

Cme
nnij = Cme0

ij Ā∗ (B.1a)

Cme
nmi1 = Cme0

i3 S̄∗3 − Cme0
i2 S̄∗2 (B.1b)

Cme
mn1j = Cme0

3j S̄∗3 − Cme0
2j S̄∗2 (B.1c)

Cme
nmi2 = Cme0

i1 S̄∗2 (B.1d)
Cme

mn2j = Cme0
1j S̄∗2 (B.1e)

Cme
nmi3 = −Cme0

i1 S̄∗3 (B.1f)
Cme

nm3j = −Cme0
1j S̄∗3 (B.1g)

Cme
mm11 = Cme0

22 Ī∗22 + Cme0
33 Ī∗33 − (Cme0

23 Ī∗23 + Cme0
32 Ī∗32) (B.1h)

Cme
mm22 = Cme0

11 Ī∗22 (B.1i)
Cme

mm33 = Cme0
11 Ī∗33 (B.1j)

Cme
mm12 = Cme0

31 Ī∗32 − Cme0
21 Ī∗22 (B.1k)

Cme
mm21 = Cme0

13 Ī∗32 − Cme0
12 Ī∗22 (B.1l)

Cme
mm13 = Cme0

21 Ī∗23 − Cme0
31 Ī∗33 (B.1m)

Cme
mm31 = Cme0

12 Ī∗23 − Cme0
13 Ī∗33 (B.1n)

Cme
mm23 = −Cme0

11 Ī∗23 (B.1o)
Cme

mm32 = −Cme0
11 Ī∗32 (B.1p)
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with,

Ā∗ =
∫

A
g−1
0 ᾱdξ2dξ3 (B.2a)

S̄∗2 =
∫

A
g−1
0 ᾱξ3dξ2dξ3 (B.2b)

S̄∗3 =
∫

A
g−1
0 ᾱξ2dξ2dξ3 (B.2c)

Ī∗22 =
∫

A
g−1
0 ᾱ(ξ3)2dξ2dξ3 (B.2d)

Ī∗33 =
∫

A
g−1
0 ᾱ(ξ2)2dξ2dξ3 (B.2e)

Ī∗23 = Ī∗32 =
∫

A
g−1
0 ᾱξ2ξ3dξ2dξ3. (B.2f)

Note that the reduced elasticity constants have an overall symmetry for any hyperelastic material
due to the fact that Cme0

ij = Cme0
ji . For other materials the symmetry may not hold because of

non-existence of the strain energy functional of Eq. (3.149). In general, the coupling exist, such
as stretch-bending coupling, stretch-torsion coupling and torsion-bending coupling, etc.
On other hand, we may align the rod reference curve so that S̄∗2 = S̄∗3 = 0. This means that the
cross section elasticity centroid line does not coincide with the mass centroid line for a general
curved rod even though the rod material is homogeneous because the initial curvature correction
term g0 appears as the numerator in the integrals of the inertia constants while it appears as
the denominator for the elasticity constants.
The coefficients in the case of the spatial form of the constitutive tensors are the same as given
in Eqs. (B.1a) to (B.2f) due to the fact that material tensors have the same components in the
material frame as their co–rotated counterparts in {t̂i ⊗ t̂j}.

B.2 Additive Increment of the Rotational Strain

In this section the method proposed by Simo and Vu-Quoc [363], for calculating an explicit
expression for the term (d(exp[Θ̃])/dS)exp[−Θ̃], where the skew–symmetric tensor Θ̃(S) and its
associated axial vector θ̂(S) in spatial form are related by Θ̃ · v̂ = θ̂× v̂, ∀ v̂ ∈ R3, is summarized.
Alternatively, the material description can be employed considering that ψ̂ = ΛT θ̂ or Ψ̃ = ΛT Θ̃Λ.
Therefore, given a rotation vector θ̂(S) which parameterize the rotation tensor exp[Θ̃(S)] follow
the steps:

¤ Compute axial vectors

ê = θ̂/‖θ̂‖
θ̄ = tan(

1
2
‖θ̂‖)ê

θ̄′ =
1
2

tan(1
2‖θ̂‖)

1
2‖θ̂‖

[
θ̂′ − (

1− ‖θ̂‖
sin(‖θ‖)

)
(ê · θ̂′)ê

]

where ˜̄Θ 4
= d ˜̄Θ/dS and θ̄ is the axial vector of ˜̄Θ.
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¤ Compute exponential and derivative

exp[Θ̃] = I +
2

1 + ‖θ̄‖2
( ˜̄Θ + ˜̄Θ2

)

d
dS

exp[Θ̃(S)] =
2

1 + ‖θ̄‖2

[˜̄Θ′
+ ˜̄Θ′ ˜̄Θ + ˜̄Θ ˜̄Θ′ − 2θ̄ · θ̄′( ˜̄Θ + ˜̄Θ2

)
1 + ‖θ̄‖2

]
.

Upon noting the identity

˜̄Θ3
= −‖θ̄‖2 ˜̄Θ

A lengthy but straightforward manipulation yields the result

(d(exp[Θ̃])
dS

)
exp[−Θ̃] =

2
1 + ‖θ̄‖2

( ˜̄Θ′
+ ˜̄Θ′ ˜̄Θ− ˜̄Θ ˜̄Θ′

+ A)

where A is given by

A ≡ −θ̄ · θ̄′( ˜̄Θ− ˜̄Θ2
)− ˜̄Θ ˜̄Θ′ ˜̄Θ + ˜̄Θ ˜̄Θ′ ˜̄Θ2

.

It remains to show that indeed A ≡ 0. This follows at once from the identities

˜̄Θ ˜̄Θ′ ˜̄Θ ≡ −(θ̄ · θ̄′) ˜̄Θ, ˜̄Θ ˜̄Θ′ ˜̄Θ2 ≡ −(θ̄ · θ̄′) ˜̄Θ2

which finally gives

(d(exp[Θ̃])
dS

)
exp[−Θ̃] =

2
1 + ‖θ̄‖2

( ˜̄Θ′
+ ˜̄Θ′ ˜̄Θ− ˜̄Θ ˜̄Θ′

) Spatial Form

exp[−Ψ̃]
(d(exp[Ψ̃])

dS

)
=

2
1 + ‖ψ̄‖2

( ˜̄Ψ′
+ ˜̄Ψ′ ˜̄Ψ− ˜̄Ψ ˜̄Ψ′

) Material Form

¤ Compute the axial vector.
In addition, it is also noted that the axial vector β̂ of (d(exp[Θ̃])/dS)exp[−Θ̃] is given by
the expression

β̂ =
2

1 + ‖ψ̄‖2

[
θ̄′ + (θ̄ × θ̄′)

]

or equivalently,

β̂ =
sin ‖θ̂‖
‖θ̂‖ θ̂′ +

(
1− sin ‖θ̂‖

‖θ̂‖
)( θ̂ · θ̂′
‖θ̂‖

) θ̂

‖θ̂‖ +
1
2

(sin 1
2‖θ‖

1
2‖θ̂‖

)2
θ̂ × θ̂′

we observe that β̂ ≈ θ̂′ for ‖θ̂‖ small, i.e., θ̂′ is the first approximation of β̂.
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Editorial Reverté, SA. (2003).
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[253] Marsden JE, Pekarsky S, Shkoller S, West M. Variational methods, multisymplectic geometry and
continuum mechanics, Journal of Geometry and Physics. 38 (2001) 253–284.

[254] Marsden JE, West M. Discrete mechanics and variational integrators, Acta Numerica. (2001) 357–
514.

[255] Marsden JE, Ratiu TS. Introduction to mechanics and symmetry, Springer-Velarg, 17 (2002).



306 BIBLIOGRAPHY

[256] Mart́ınez Franklin CE. A theoretical and numerical evaluation of nonlinear beam elements, MSc
Thesis, Massachusetts Institute of Technology, (1997).

[257] Martinez X, Oller S, Rastellini F, Barbat AH, Numerical procedure for the computation of RC
structures reinforced with FRP using the serial/parallel mixing theory, Computers and Structures.
(2008) (In Press).

[258] Mata P, Oller S, Barbat AH. Static analysis of beam structures under nonlinear geometric and
constitutive behavior, Computer Methods in Applied Mechanics and Engineering. 196 (2007) 4458–
4478.

[259] Mata P, Boroschek R, Barbat AH, Oller S. High damping rubber model for energy dissipating
devices, Journal of Earthquake Engineering. 11 (2) (2007) 231–256.

[260] Mata P, Oller S, Barbat AH. Dynamic analysis of beam structures considering geometric and
constitutive nonlinearity, Computer Methods in Applied Mechanics and Engineering. 197 (2008)
857–878.

[261] Mata P, Barbat AH, Oller S, Boroschek R. Nonlinear seismic analysis of RC structures with
energy dissipating devices, International Journal for Numerical Methods in Engineering. (2008)
(Submitted).

[262] Mata P, Barbat AH, Oller S, Boroschek R. Computational models for the seismic response of
reinforced concrete buildings with energy dissipating devices, Archives of Computational Methods
in Engineering. (2008) (Submitted).

[263] Mata P, Barbat AH, Oller S. Two–scale approach for the nonlinear dynamic analysis of RC struc-
tures with localized irregularities, Engineering Computations. (2008) (Submitted).

[264] Mata P, Barbat AH, Oller S. Multiscale modelling of the seismic response of precast buildings,
USNCCM, IX 9th US National Congress on Computational Mechanics, (Technical presentation)
San Francisco, California. July 23–26, (2007).

[265] Mata A. P, Boroschek K, R. Caracterización mecánica de una goma de alto amortiguamiento para
el desarrollo de disipadores de enerǵıa, 2do Congreso Ibero americano de Ingenieŕıa Antiśısmica,
Madrid, España, 16–19 de Octubre, (2001).

[266] Mata P, Barbat AH, Oller S. Mejoras en el Comportamiento śısmico de estructuras prefabricadas
por medio de disipadores de enerǵıa, Congresso de Métodos Computacionais em Engenharia, Por-
tugal, Lisboa, 31 de Maio–2 de Junio, (2004).

[267] Mata P, Boroschek R, Barbat AH. Analytical model for high damping elastomers applied to energy
dissipating devices. Numerical study and experimental validation, 3CSC Third European conference
on Structural Control, Vienna, July 12–15, (2004).

[268] Mata P, Barbat AH, Oller S. Improvement of the seismic behavior of precast concrete structures
by means of energy dissipating devices, 3CSC Third European conference on Structural Control,
Vienna, July 12–15, (2004).

[269] Mata P, Barbat AH, Oller S. Seismic analysis of structures incorporating energy dissipating devices
by means of numerical methods, Computational Civil Engineering, International Symposium, Iasi,
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