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Abstract

In last decades, advanced composites have become a revolution in structural engineering.
Their high strength/weight and stiffness/weight ratios, together with the possibility to tailor
made the material for the specific loading environment in which it is used, make these new
materials optimal for many structural applications, specially in the aeronautical and nautical
fields. However, despite all existing information and actual knowledge about these materials,
their complex behavior, highly non-linear, anisotropic and with different failure causes not
found in traditional materials, requires a greater effort in their study in order to improve
their performance and take advantage of all possibilities offered by them.

Among all possible numerical procedures and formulation available to predict the mechanical
performance of fiber reinforced composites, this work uses the serial/parallel mixing theory.
This theory obtains the mechanical performance of the composite by coupling the constitutive
performance of its constituents, fiber and matrix. This is done taking into account the
directional behavior of fibers, which contribution to the strength and stiffness of the composite
is found, mainly, in their longitudinal direction.

However, although it is necessary to consider material non-linearities for a correct character-
ization of fiber reinforced composites, it is not sufficient. The most common failure modes
of advance composites, like delamination or fiber buckling, are produced by the interaction
between the composite components, and not as a result of a material failure. Therefore, an
accurate simulation of composites must take into account the micro-mechanical interaction
between its components, in order to be able to characterize their failure modes.

This work studies and proposes different formulations and numerical procedures to simulate
the micro-mechanical phenomenons that take place in composites, using the serial/parallel
mixing theory. Two different failure modes are discussed: delamination and compression
failure due to fiber buckling.

Delamination consists in the lost of adherence between the different layers of the composite,
which leads to a reduction of the section strength and stiffness, that can finish in a structural
failure. This failure mode is simulated straightforward with the serial/parallel mixing theory,
if the appropriate constitutive equations are chosen to predict the mechanical performance
of the composite constituents.

The compression strength of composite materials is defined by the fiber micro-buckling phe-
nomenon. This failure mode depends as much on fiber material (stiffness and initial mis-
alignments), as it depends on the confinement made by matrix over fibers. To predict this
failure mode a new methodology has been developed, consisting in the introduction of the
micro-structural interaction between fibers and matrix into the serial/parallel mixing theory.
This is done using an homogenization procedure, that modifies the constitutive performance
of fiber and matrix, taking into account their micro-mechanical interaction. The methodology
proposed not only solves the fiber buckling problem, but it can also be used to characterize
other micro-structural effects, such as the interaction between fibers in woven composites.

All formulations and procedures included in this work provide a new numerical approach
to characterize composite materials, capable of considering both, the material non-linearities
and the micro-mechanical phenomenons that take place in them. Simulations performed with
this new formulation can contribute to increase the actual knowledge of advanced composites,
improving their reliability and opening new application fields.
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1.1 Motivation and background

Composites can be defined as those materials composed by two or more components with
different properties and distinct boundaries between the components (Vasiliev and Morozov,
2001). A large number of materials are included under this definition, some of them naturally
occurring such as wood, made of cellulose fibers in a lignin matrix or the human bone, made
of fiberlike osteons embedded in an intersticial bone matrix (Barbero, 1999). Of all existing
materials that can be defined as composites, this work is focussed in the study of the fiber
reinforced composites (FRC) usually referred as advanced composites. These composites can
be defined as a man-made blend of two or more components, one of which is made up of stiff,
long fibers, and the other, a binder of matrix which holds the fibers in place (Peters, 1998).
In these composites, fiber reinforcements are long, with length to diameter ratios over 100;
and their strength is, at least, 25 to 50 times larger than the strength of matrix material
(Oller, 2003).

The use of man-made fiber reinforced composites (FRC) dates back to ancient times, as when
the addition of straw to reinforce clay bricks was used. In the nineteenth century, iron rods
were used to reinforce masonry; this same concept was used afterwards to reinforce concrete
with steel bars. However, although FRC already existed, it is not until the middle of the
twentieth century that advance composites make their apparition in structural engineering,
with the development of industrial processes capable to manufacture fibrous materials with
diameters in the order of micro-meters (commercial glass fibers were created in 1939 by
Owens-Corning; Peters 1998). This first development lead to the apparition of new materials
and applications in the following years. According to Daniel and Ishai (1994), the first fiber-
glass boat was made in 1942. At the same time, reinforced plastics were used in aeronautical
and electrical applications. Filament winding was invented in 1946 and applied to missiles
in the 1950s. The first boron and high strength carbon fibers were introduced in the early
1960s and applied to aircraft components. Kevlar was developed in 1973. And the list can
continue until nowadays, in which nano-technology has begun to create a new generation of
fiber materials, and the use of composite materials has been extended to the point in which
the new Airbus A380 contains more than 25% of its weight of composite materials and the
new Boeing 787 increases the amount of composites to 50% of its body weight.

With the development of new advance composites and the number of applications in which
they are used, has also increased the knowledge of these new materials. This is proved
by the number of books and publications that have appeared in recent years related to
composite applications, manufacturing processes, properties and mechanical characterization.
According to the list of books on composites presented by Herakovich in Mechanics of fibrous
composites, in 1995 there were 35 books published in this field (Vasiliev and Morozov, 2001).
Nowadays, Amazon’s web page references a total of 632 different books with the words
“composite materials” in their title, restricting the search to the technical engineering domain.
Also, more than 21 journals are specifically dedicated to composite materials.

However, despite all existing information and actual knowledge about these materials, their
complex behavior, highly non-linear, anisotropic and with different failure causes not found
in traditional materials, requires a greater effort in their study in order to improve their
performance and take advantage of all possibilities offered by this new generation of materials.
Up to this point, advance composites are used, and many times though of, as if they where
traditional materials. New ways of using and applying composites are required to get the
most of them. If this is achieved, composite materials can become one of the most relevant
improvements in the XXI century structural engineering field.
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Advanced composite materials

The classification of advanced fiber reinforced composites is made following two different cri-
terions: their constituent materials and the length and distribution of fibre reinforcements.
According to the definition used to characterize advance composites, these are obtained com-
bining several components, however advance composites are usually found as the combination
of only two components: a fiber reinforcement in an homogeneous substrate referred to as
matrix. Fibers are added to the matrix material following different patterns.

The number of composites that can be obtained by the addition of a fibrous material into a
matrix can extremely large. However, not all combinations provide a resultant material with
improved properties. Therefore, some fiber-matrix combinations are the most common, as
these combinations take the most of both component materials. Following this idea, Daniel
and Ishai (1994) provide the classification of composite materials displayed in table 1.1,
according to the type of matrix used in the composite.

Matrix type Fiber Matrix

Polymer

E-glass Epoxi
S-glass Polyimide
Carbon (graphite) Polyester
Aramid (Kevlar) Thermoplastics
Boron PEEK, polysulfone, etc.

Metal

Boron Aluminum
Borsic Magnesium
Carbon (graphite) Titanium
Silicon carbide Cooper

Ceramic
Silicon carbide Silicon carbide
Alumina Alumina
Silicon nitride Glass-ceramic

Carbon Carbon Carbon

Table 1.1: Types of composite materials (Daniel and Ishai, 1994)

Because this work is mainly focused in the simulation of fiber reinforced polymers (FRP), it
is worth to provide a more detailed description of the mechanical properties of the compo-
nents related to these composites. Table 1.2 provides a description of the main mechanical
properties of fiber materials and in table 1.3 are described the mechanical properties of the
most common matrix materials used in FRP. The parameters included in these two tables
have been obtained from Gay et al. (2003) and Barbero (1999). The table that describes
fiber characteristics also includesthe properties of steel for comparison.

Fiber
Diameter Density Young M. Poisson Tens. Strength

[µm] [kg/m3] [GPa] [MPa]

E-Glass 16 2600 74 0.25 2500
S-Glass 10 2500 86 0.20 3200
Carbon T300 7 1750 230 0.20 3530
Kevlar 49 12 1450 130 0.40 2900
Boron 100 2600 400 0.20 3400

Steel 7800 205 0.30 400–1600

Table 1.2: Mechanical properties of fiber materials

A more detailed characterization of the materials described in tables 1.2 and 1.3, as well as
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Matrix
Density Young M. Poisson Tens. Strength
[kg/m3] [GPa] [MPa]

Epoxy 1200 4.5 0.40 130
Polyimide 1400 4.0–19.0 0.35 70
Polyester 1200 4.0 0.40 80
PEEK 1320 3.2 0.40 100
Polysulfone 1350 3.0 85

Table 1.3: Mechanical properties of polymer matrix materials

a detailed description of other materials used in advanced composites can be found in Peters
(1998), Barbero (1999), Car (2000) and Oller (2003), among others.

The second criterion commonly used to classify composites is based on the reinforcement
topology inside the composite. This is, the fiber length and is distribution. Figure 1.1
provides a possible fiber reinforced composites classification according to fiber topology.

Figure 1.1: Classification of FRP composites according to their fibre distribution

This figure shows that the first distinction made is according to fiber length. The properties
of composites with short fibers are lower than those of continuous (or long) fiber composites
because the transmission of efforts, from matrix to fiber, is ineffective due to the fiber short
length. An study of this phenomenon, as well as a numerical formulation to characterize it
using the mixing theory, is described in Oller and Car (2002).

In case of having long fibers, these can be oriented or randomly distributed. Random fibers
have the advantage of providing a composite material with similar properties in all its direc-
tions, as fiber contribution to the composite strength and stiffness is the same in all composite
directions. However, the strength of this composite configuration is smaller than the strength
obtained in composites with aligned fibers. Therefore, the most commonly advance compos-
ites used in engineering applications are those with oriented fibers. Different layers are stacked
with different fiber orientations in order to obtain a material with different strength direc-
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tions. The material obtained from this assembly is known as a composite laminate. This
procedure provides tailored composite materials, in which their directions of strength and
stiffness can be defined to match that of the loading environment (Peters, 1998).

Composite laminates can be obtained using different layers of unidirectional fiber composites,
in which fibers with different orientations are independent, or can be obtained with woven
composites, in which fibers with different orientations are coupled together. Non-Crimp
Fabric (NCF) composites are those in which the different layers of the laminate are stitched
together, as it is shown in figure 1.1. This process improves the laminate performance for
different failure modes such as delamination.

Two of the main advantages provided by advance composites, when compared to traditional
materials, have been already shown when describing their classification criterions: the relation
stregth/weight and stiffness/weight and the possibility of tailor made the composite for the
specific application in which it is used. These two characteristics, among others, explain the
spectacular increase, observed in last decades, of the engineering structural applications in
which these new materials are used.

Table 1.2 shows that fibers double the strength of the strongest steel, having less than a third
of its weight. This weight is not increased by matrix material, which density is half of fibers
density. This improvement in the strength/weight ratio makes advance composites optimal
for nautical and aeronautical applications; in fact, these two engineering fields have been the
precursors in the use of these materials. The stregth/weigth ratio is also improved with the
possibility of reinforcing only the required directions, in the places where the reinforcement
is needed, avoiding the presence of redundant material in the structure.

There are other advantages of these new materials that makes them the most adequate for
certain applications, such as the improved corrosion properties. However, advance composites
have also some disadvantages, such as the difficulty to join different structural parts or matrix
environmental degradation. Table 1.4 summarizes the main advantages and disadvantages of
advanced composites defined by Peters (1998).

Advantages Disadvantages

Weight reduction Cost of raw materials and fabrication
High strength or stiffness to weight ratio

Tailorable properties Transverse properties may be weak
Strength and stiffness oriented in load
direction

Redundant load paths (fiber to fiber) Matrix is weak, low toughness

Long life (no corrosion) Reuse and disposal may be difficult

Lower manufacturing costs because less Difficult to attach
part count

Inherent damping Analysis is difficult

Increased (or decreased) thermal or Matrix subject to environmental
electrical conductivity degradation

Table 1.4: Advantages and disadvantages of advanced composites (Peters, 1998)



1. Introduction 7

Applications of composite materials

Besides the disadvantages shown in table 1.4, the use of fiber reinforced composites in struc-
tural applications has increased enormously in recent years. An example of this growth is
provided by the world prediction of the required production capacity of carbon fibers: in
2006 the production of PAN-based carbon fiber exceeded 27.000 tonnes, this production is
expected to increase at least 15% each year to reach 76.000 tonnes by 2010 (CompositesWorld,
2008).

The aeronautical field is the main responsible for this increase. The ratios strength/weight
and stiffness/weight of advance composites makes them ideal for aircraft applications. This is
proved with the amount of composite materials included in the two new airplanes developed
by Airbus and Boeing: the amount of composites included in the Airbus A380 represent the
25% of its weight and in the Boeing 787 Dreamliner this value reaches the 50%. Also in the
aeronautical field it is worth to mention the SpaceShip One, the first spacecraft that completed
a privately funded human spaceflight (June 21, 2004). This spacecraft is completely made
with composite materials by Scaled Composites.

But the responsible of the increase in the use of advanced composites is not only the aerospace
industry. Nowadays, these new materials are being used in nearly all engineering fields and
the number of applications in which they are used keeps increasing. In the following are
described the main structural applications of composite materials:

Aeronautical applications: As has been already said, advanced composites are widely
used in the aeronautical field. These are used in nearly all types of aircrafts, from
rockets to helicopters. The composites used in this field are mainly laminates made
with fiber reinforced polymers, although this industry also uses other composites such
as metal and ceramic reinforced composites. In example, in the airplane engines, the
regions with high temperatures use metal matrix reinforced composites and, when this
temperatures are extremely high, the materials used are ceramic matrix composites
(Car, 2000).

Nautical applications: Composites have also found numerous applications in the nautical
engineering field, as their relation stiffness/weight and strength/weight makes them
more attractive than conventional materials. However, there are more advantages that
make composites the most suitable material for nautical applications, like their resis-
tance to corrosion and their low magnetic conductivity. This last property has made
composites the best material to be used to construct anti-mine ships (Oller, 2003).
Composites are found in nautical applications as solid stiff materials (laminates or a
single thick layer with randomly oriented fibers) or as textile materials. The last is
the case of fabric materials, that are used to construct inflatable structures such as
hovercrafts, boats, liferafts, etc.

Automotive applications: The use of composite materials in the automotive industry can
be divided in two different sectors: commercial and high-performance automobiles.
Commercial vehicles have begun introducing composites in some of their components
such as bumpers, however their use has not been extended significantly yet. On the
other hand, in high-performance automobiles, such the ones developed for F1, compos-
ites are used to manufacture nearly all components, from the chassis to the gearbox
(Savage et al., 2004).

Civil engineering applications: The use of composites in civil engineering is still in its
first stages. These materials are used in some specific applications, such as cables (Car,
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2000) or for reinforcement and retrofitting of existing structures (Meier, 1995; Pulido
and Sobrino, 1998). In this last case, layers of fiber reinforced polymers are bonded
to the existing structure to increase its structural capacity in front of bending, shear
or compression forces. However, the use of composites in civil engineering has not
been widely extended yet, mainly because the difficulty to join the different structure
components. New applications for composites in civil engineering, nowadays under
study and with some examples already constructed, are the use of fiber reinforced
bars to reinforce concrete structures (Nanni, 2003) or the construction of bridges using
pultrusion beams (Pulido and Sobrino, 2002).

Energy applications: One of the main applications of advanced composites in the energy
field is in the construction of wind turbine blades. The loud demands for environmen-
tal protection have increased the wind energy sector, which is developing larger rotor
blades, reaching 60 m long, to fulfill energy requirements. The construction of these
blades will not be possible without the use of composites (Reichl, 2007).

Other applications: Besides the different applications described, composites are used in
many other fields, most of them described in (Gay et al., 2003). Some random appli-
cations in which fiber reinforced composites can be found are, among others, antennas,
tanks for corrosive products, tennis rackets or skis.

As has been shown, the list of applications in which advance composites are used is long and
its growth has been fast (the first boat made of glass fibers was manufactured just 50 years
ago). However, in order to keep increasing the number of applications is necessary to solve
some of the drawbacks of these new materials, among them the join of different composite
structural elements and the calculation techniques, which must take into account the specific
failure causes of these materials.

Structural analysis of composites

One of the main drawbacks found when using advance composites in structural applications
is the difficulty of obtaining a reliable design, as the structural analysis processes used to
simulate the mechanical behavior of composite structures are not yet developed enough to
take into account the specific performance of these materials (Oller, 2003).

According to the review made by Orifici et al. (2008), a complete and validated methodology
for predicting the behavior of composite structures including the effects of damage has not yet
been fully achieved. This is largely due to the complex nature of composites, which perfor-
mance and development of damage is dependent on a wide range of parameters including the
geometry, material, loading conditions, load history and failure modes. Therefore, tradition-
ally, numerical simulations of composites have been performed using orthotropic materials
with average properties from their constituents. With this approach, no model has been
found that is able to function beyond the elastic limit state of its constituents.

Since composite structures are commonly calculated considering the composite an elastic ma-
terial, in most cases the calculation of this structures is performed using strength of materials
formulations (Timoshenko, 1940). However, when the structural application requires taking
into account the complex mechanical performance of the composites, i.e. its high anisotropy,
the calculation must be performed using numerical techniques. Among them, the most rel-
evant is the finite element method (Zienkiewicz and Taylor, 1991; Oñate, 1995). In most
cases, the finite element method is coupled with the classical lamination theory (Jones, 1999;
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Reddy, 2003), as most composite structures are made with laminates and this theory provides
the mechanical performance of the composite taking into account its lamination configuration
(stacking sequence, fiber orientation, etc.)

Either if the structural performance is obtained using strength of materials or a finite element
formulation, the failure load of the the structure is obtained comparing the elastic stresses in
the composite with a limit value, obtained from experimental tests. In order to improve the
failure simulation of composites, numerous studies have been developed around the world to
define fracture criterions, most of them based in fracture mechanics or damage mechanics.
Proposed theories are mostly based in the characterization of a specific failure mode and are
applied to a ply (layer) level.

Among all theories and formulations proposed to characterize the composite performance
and their fracture criterions, two different theories outstand from the rest as they propose
to deal with composite materials following a completely different approach. Instead of try-
ing to characterize the composite performance, considering the composite a single material
with properties inherited from its constituents, these theories center their effort in modeling
the constituents performance and, more important, on how the results obtained from the
constituents can be used and extrapolated to predict the global behavior of the composite.
These two theories are: homogenization and the rule of mixtures (or mixing theory).

Homogenization theory: This method deals with the global composite structure problem
in a two-scale context. On the macroscopic scale the composite materials determine the
global response of the structure. Composites are considered to be homogeneous mate-
rials in this scale. The microscopic scale represents an elemental characteristic volume
in which the microscopic fields inside the composite are obtained. This scale deals with
the component materials of the composite, each one with its own constitutive equation.
Homogenization theory relates these two scales by assuming a periodic configuration of
the composite material (Sánchez-Palencia, 1987; Oller et al., 2005).

Mixing theory: The first formulation of the mixing theory was developed by Trusdell and
Toupin (1960) and it is based on two main hypotheses: 1. All composite constituents
are subject to same strains. 2. Each constituent contributes to the composite behavior
according to its volumetric participation. The main drawback of the mixing theory is
the iso-strain condition which enforces a parallel distribution of the constituents in the
composite. This problem has been solved by Rastellini (2006), with the development of
the serial/parallel mixing theory. This new formulation replaces the iso-strain hypoth-
esis for an iso-strain condition in fiber direction and an iso-stress condition in the rest
of the composite directions.

Of these two theories, the homogenization theory is the one capable to take into account with
more accuracy all micro-mechanical phenomenons that take place in the composite (from
material degradation to specific failure modes). However, this theory has a computational
cost unbearable by nowadays personal computers: each element in which the structure is
discretized requires a finite element simulation (that can contain hundreds or thousands of
elements) to obtain its mechanical performance.

On the other hand, the mixing theory and its improved version, the serial/parallel mixing
theory (Rastellni et al., 2007), is capable to obtain the constitutive performance of the com-
posite, from the mechanical behavior of its constituents, with an affordable computational
cost. However, one of the main disadvantages of this theory, compared to homogenization, is
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that the mechanical performance of the composite is obtained only using constitutive formula-
tions, disregarding failure causes produced by micro-structural phenomenons as, for example,
fiber buckling or delamination. In order to improve the accuracy of composite simulations,
using the serial/parallel mixing theory, the micro-structural failure causes should be included
in the formulation.

Micro-mechanics of composites

There is a wide variety of failure mechanisms in composites, dependent on the loads applied,
manufacturing process and type of composite, among them: fiber failure, matrix cracking,
buckling, fibre-matrix debounding and delamination. In most of these cases, the failure of the
composite is produced by the interaction between its components and not as the result of a
material failure, as occurs with traditional materials (such as metals or frictional materials).
Based on this failure mechanisms, it can be more appropriate to consider composites as a
structure rather than as a material (Orifici et al., 2008). Thus, it can be concluded that com-
posites are a new material which failure criterions have to be redefined and new formulations
must be proposed to characterize their failure modes.

Among all failure causes of composites, the most common failure mechanisms, consequence
of the micro-structural interaction between the composite components, are fiber buckling and
delamination. Both of them are hereafter described.

Delamination: Delamination is a failure mechanism found in laminated composites. The
lost of adherence between the different layers of the composite leads to a reduction of
the section strength and stiffness that can finish in a structural failure.

The importance of this phenomenon is demonstrated by the amount of authors that have
developed theories and formulations to deal with it. All authors that have studied the
problem agree that the delamination process is characterized by two main phenomenons,
the crack initiation and its propagation along the composite. Crack initiation can
be obtained by comparing the strain-stress state of the material, in the region where
delamination takes place, with a critical one (Jansson and Larsson, 2001; Camanho
and Dávila, 2002; Turon et al., 2006; Balzani and Wagner, 2007) or in terms of the
traction versus relative displacement (Borg et al., 2002, 2004; Pinho et al., 2006). And
the delamination propagation is usually treated opening the mesh to simulate the crack
effect where it takes place. To open the mesh different procedures are proposed. One
of them is the virtual crack closure technique (VCCT) Krueger (2004), based on the
assumption that when a crack is extended, the energy required to open the crack is
the same required to close it. Another procedure, each time more used, is the use of a
cohesive zone model (Camanho and Dávila, 2002). The cohesion elements are placed in
the interface of the layers that can suffer delamination and its propagation is obtained
with damage or plastic formulations applied to those elements.

All known formulations, developed to characterize the delamination phenomenon, have
two main drawbacks. The first one is that there are many formulations in which the
two surfaces found at each side of the fracture become completely independent, being
necessary to use remeshing techniques and contact formulations to obtain the delam-
ination propagation. The second drawback affects all known formulations, and is the
necessity to define a special element in which delamination occurs. This situation forces
to predefine the delamination path where place these special elements. And, if the exact
place where the delamination takes place is unknown, these elements must be included
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between all layers, which makes the calculation unbearable due to its computational
cost.

Fiber Buckling: One of the main failure causes of compressed fiber reinforced polymers
(FRP) is the fibre buckling phenomenon. Fibres are very slender elements and their
second order effects are avoided by the matrix elastic restrain. However, as damage in
matrix evolves, fiber restrain becomes weaker and fibre buckling occurs.

First studies about fibre buckling correspond to Rosen (1965), who defined two different
buckling modes: extensional and shear buckling. He also defined the compression stress
at which fiber buckling occurs. This stress value is defined by the matrix shear strength
and by the amount of fibres found in the composite. From this initial approximation,
different authors have developed new models in order to obtain a better prediction
of composite compression strength due to fibre buckling. Among different existing
studies, it is worth to mention the works by Barbero and Tomblin (1996), Balacó de
Morais and Torres Marques (1997) and Drapier et al. (1999). All these authors consider
composites as a single orthotropic material. Using energetic equilibriums, they develop
micro-mechanical models from which the final compression stress in the composite is
obtained.

The expressions found in all different models agree in the dependence of the critical
compression stress on three main parameters: (a) Matrix shear strength, (b) fibre initial
misalignment and (c) proportion between fibre and matrix in the composite. Hence,
the limit compression stress of these new formulations depends on the same parameters
pointed out by Rosen and on a new one: fibre initial misalignments. According to
Jochum and Grandidier (2004), fibre misalignments are produced in the composite
manufacturing process, during the matrix curing. These misalignments are regular
along the whole fibre and can be represented by a sinusoidal shape.

A problem found in most of the formulations existing in literature to simulate the
fiber buckling phenomenon is that these only provide a stress value for which fiber
buckling occurs. Only the formulation developed by Barbero and Tomblin provides
the post-critical strength of the composite, obtained after fiber buckling. Also, all
formulations treat the composite as a single material, with average properties from
its constituents. This scope forces to pre-define the constitutive performance of the
composite constituents, i.e. fibers are elastic, reducing the application range of the
formulation, which cannot be applied if the component properties are different to the
ones considered when developing the formulation.

These two failure modes, fiber buckling and delamination, illustrate the importance of micro-
mechanical effects in composite failure. And, despite the amount of formulations found in
literature that try to characterize them, a complete and validated formulation capable to
predict these failures has yet not been achieved. Also, all formulations known are based
in the characterization of a single failure mechanism, but they are not capable to relate all
of them, taking into account the complex micro-mechanical performance of fiber reinforced
composites.

Therefore, besides the amount of applications in which these materials are used, more research
is still needed in order to obtain reliable theories and formulations capable to obtain the
mechanical performance of advance composites, taking into account their complex micro-
structural configuration and their specific failure modes.
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1.2 Objectives of this work

Previous section has shown that advance composite materials have become, besides their
recent apparition in the middle of twentieth century, one of the most suitable materials to be
used in many structural applications. Their high strength/weigth and stiffness/weigth ratios,
together with the possibility to tailor made the material for the specific application in which
it is used, are the two main advantages responsible of the increase experienced in the use of
these new materials.

However, as composites can be considered more as a micro-structural system than as a ma-
terial, new formulations and theories are required to predict their mechanical performance
accurately. Most of the formulations used nowadays to simulate composites treat them as a
single material, with properties inherited from its constituents. This has proven to be inac-
curate, as most of the failure mechanisms of composites are because of the micro-structural
interaction between its components, interaction that cannot be simulated if the composite is
treated as a single material.

Two different formulations are known that do not treat the composite as a single material: the
homogenization theory and the mixing theory. These two theories obtain the composite me-
chanical performance from the constitutive behavior of their constituents. To simulate large
structures made with composite materials, the homogenization theory has to be disregarded,
as it requires a computational effort that cannot be provided by nowadays personal comput-
ers. Therefore, the formulation that remains left, to perform large simulations of composite
structures, taking into account the constitutive performance of the composite constituents,
is the serial/parallel mixing theory, developed by Rastellini (2006).

When describing the serial/parallel mixing theory (SP RoM) it has been said that this theory
does not take into account micro-structural effects. This work will show that this assumption
is not correct, as it proves that some micro-structural phenomenons, such as delamination,
can be captured by the SP RoM if the appropriate constitutive laws are used to charac-
terize the composite components. This work will also demonstrate, and this is probably
the most important result of this work, that the micro-structural interaction between the
composite components can be included in the mixing theory by modifying their constitutive
performance.

Therefore, the main objective of this work can be summarized as the improvement of the
serial/parallel mixing theory, by using the appropriate constitutive equations and by devel-
oping new numerical procedures, to take into account the micro-structural phenomenons that
lead to the composite failure.

To fulfill the main objective of this work, three different objectives have to be achieved. First
it is required to asses the capability of the SP RoM to perform large scale simulations of
composite structures. After proving this capability, new formulations and numerical proce-
dures will be developed to take into account the micro-mechanical performance and failure of
composites. The micro-mechanical failure modes that will be solved are: delamination and
fiber buckling. Figure 1.2 shows an schematic representation of the main objective of this
work and the three different objectives that have to be achieved to reach the final goal.

It is important to remark that the main goal of this work is to develop methodologies and
numerical procedures to include the micro-mechanical performance of the composite into
the serial/parallel mixing theory. Although this work is focused in the solution of the de-
lamination and the fiber buckling problem, the methodology developed can be extrapolated
afterwards to other failure mechanisms. If this objective is achieved, it will be proved that the
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Figure 1.2: Main objectives of this work

serial/parallel mixing theory is capable not only to obtain the composite performance from
its components materials, but also to include in its formulation the interaction between these
components. The resultant formulation will become a powerful tool to perform numerical
simulations of large structures made with composite materials.

In the following is included a detailed description of the objectives sought when solving each
one of the problems required to obtain the numerical tool sought.

Numerical simulation of composites using the SP RoM

1. Solve the problem of reinforcement and retrofitting of reinforced concrete structures
with FRP using the SP RoM. The solution of this problem will prove the capacity of
the SP RoM to perform large scale simulations of composite structures.

2. Verify the ability of FRP to improve the mechanical performance of reinforced concrete
structures. Compare the improvement obtained when the structure is reinforced or
retrofitted.

3. Improve the SP RoM formulation so it can perform simulations of structures with a
previous level of damage when the FRP reinforcement is applied.

4. Improve the SP RoM algorithm with a formulation capable to obtain the tangent consti-
tutive tensor for any possible yield law. To fulfill this objective, a numerical derivation
of the constitutive law is performed.

Simulation of delamination with the SP RoM

5. Asses the ability of the serial/parallel mixing theory to simulate accurately the delami-
nation phenomenon. This objective will be achieved using the appropriate constitutive
equations and yield laws to simulate the component materials.

6. Include the effect of friction in the delamination crack propagation and study how the
friction between the fractured layers affects the delamination process.
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7. Develop a numerical procedure to perform large scale numerical simulations of lami-
nated structures, using the classical lamination theory and the serial/parallel mixing
theory, and taking into account the delamination failure mode.

Simulation of fiber buckling with the SP RoM

8. Develop a new methodology to include the micro-structural performance of composite
materials in the serial/parallel mixing theory. This methodology is applied to charac-
terize the fiber micro-buckling phenomenon.

9. Develop a formulation and numerical procedure capable to obtain the compression
strength of composite materials, due to fiber buckling, in large scale simulations of
composites. The new formulation developed must be computationally efficient and
must be able to obtain the post-critical compression strength of the composite, as the
failure of one region of the structure does not imply the global failure of the structure,
and the code must be capable to continue the calculation process.

10. Prove the ability of the numerical procedure developed to obtain the compression
strength for different fiber reinforced composites.

The objective of this work is not only to develop formulations to simulate composite struc-
tures, taking into account their micro-mechanical failure modes, but to be able to use these
developments to perform numerical simulations of real structures. With this aim, most of
the formulations and numerical procedures developed have been implemented in PLCd code
(CIMNE, 2008), an implicit finite element code developed by several researchers, professors
and PhD candidates at CIMNE (International Center for Numerical Methods in Engineering)
and RMEE (Department of Structures and Strength of Materials, UPC). Also, in the frame
of the FEMCOM project (CIMNE-AIRBUS), the new procedure to simulate delamination,
in composite structures using the lamination theory, has been implemented in ComPack-Aero
(CIMNE and Quantech, 2008).

Besides the specific objectives previously enumerated, this work has also contributed to the
development of several research projects, for governmental administrations and for private
companies. It has been also sought the dissemination of the results, with the participation
in international congresses and with the publication of the results in scientific journals.

1.3 Outline

In the description, in previous section, of the main objective of this work, it has been
shown that its achievement requires to fulfill three different objectives: (1) Prove that the
serial/parallel mixing theory is capable to perform large scale simulations of composite struc-
tures, this is done using it to solve the problem of FRP reinforcement and retrofitting of rein-
forced concrete structures. (2) Prove that delamination can be simulated with the SP RoM
and develop a numerical procedure to take into account delamination failure in laminated
structures simulated with the classical lamination theory. And (3), develop a methodology to
take into account micro-structural effects in composites using the SP RoM. This methodology
is applied to the characterization of the compression strength of fiber reinforced composites
due to the fibre buckling phenomenon.
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Because each one of these three objectives has enough entity by itself, as proves the amount of
existing literature dealing with them, it has been thought convenient to divide this document
in three different chapters completely independent between them. Each chapter has been
written to be self-contained, providing enough information to define in detail the problem to
be solved, the solution proposed to solve the problem and, finally, the conclusions obtained
from the work performed. Therefore, those readers interested in just one of the topics con-
tained in this document will be capable to follow it without needing to read the complete
work.

However, this document can also be read as a whole. In this case, the reader will obtain a
global comprehension of the procedure that is proposed to perform numerical simulations of
composite structures, how the composite is treated and how its micro-mechanical effects can
be considered. All numerical procedures and formulations described in the three chapters in
which this work is divided are expected to become, together, the numerical tool sought. A
numerical tool capable to predict the mechanical performance of large composite structures,
taking into account their micro-mechanical effects and failure modes.

In the following are described the contents of each one of the chapters mentioned. This
document ends with the conclusions obtained from the work performed, and with the proposal
of further research lines.

Chapter 2: Numerical formulation of composite materials

This chapter describes, in section 2.2, the formulations and numerical procedures used nowa-
days to obtain the mechanical performance of composite materials. This section also includes
a description of the homogenization theory and of other existing numerical formulations that
can be used in the simulation of composite structures.

Once knowing the formulations that are more commonly used to simulate composite struc-
tures, in section 2.3 is described in detail the mixing theory and its improved version, the
serial/parallel mixing theory. This section also describes how the tangent constitutive tensor
can be obtained performing a numerical derivation. Finally, it is explained how the SP RoM
can be applied to laminated structures: either using solid elements or either coupling it with
the classical lamination theory.

At the end, in section 2.4, the potentiality of the serial/parallel mixing theory is proved using
it to solve the problem of reinforcement and retrofitting of reinforced concrete structures
using FRP. To solve this problem a new construction stages algorithm has been developed
that allows introducing the reinforcement in the structure when it has reached a certain
level of damage. The ability of the SP RoM to solve this problem is proved with three
different numerical examples. The first one is used to validate the formulation, comparing
numerical with experimental results, the second one compares the structural performance
obtained in case of reinforcement and retrofitting and, the third case, solves a large structure
with different FRP reinforcements to obtain the reinforcement configuration that provides a
better performance.

Some of the results included in this section have been already published in Mart́ınez et al.
(2006, 2007a,d, 2008b)
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Chapter 3: Delamination in composites

Once having described the formulation used to simulate composite materials, the serial/parallel
mixing theory, this chapter shows how this formulation can solve the micro-mechanical prob-
lem of delamination.

In section 3.2 it is described the delamination problem and the different formulations existing
in literature to solve it. Afterwards is shown how this failure cause can be solved using the
serial/parallel mixing theory. Because the solution of the delamination problem using the
SP RoM depends on the constitutive equations used to simulate the composite constituents,
section 3.3 describes in detail the damage formulation used to characterize them.

The ability of the procedure proposed is proved, in section 3.4, comparing the numerical with
the experimental results obtained for the End Notch Flexure test (ENF), which obtains the
delamination toughness of a composite laminate with a three point bending test.

Section 3.5 includes another delamination simulation, the Ply Drop-Off test. This simulation
consist in applying a tensile stress to a laminate with a thickness variation in its mid-span.
This numerical example is also used to present a new procedure to take into account the
delamination phenomenon in large scale structural simulations of laminated composites using
the classical lamination theory. The results obtained with this simulation prove the ability
of the developed procedure to take into account delamination failure when the composite
performance is obtained using the serial/parallel mixing theory and the classical lamination
theory.

Results shown in this section have been already published in Mart́ınez et al. (2007c, 2008a);
Oller et al. (2008)

Chapter 4: Compression strength of composite materials

The last micro-mechanical failure included in this work is the compression failure of compos-
ites due to fibre micro-buckling. This failure mode is used to describe the new methodology
proposed to take into account micro-mechanical effects in the serial/parallel mixing theory.

This chapter contains a first section (section 4.2) in which are described the different numerical
formulations proposed in literature to obtain the compression strength of long fiber reinforced
composites.

Afterwards, in section 4.3 is described the procedure proposed to include the fiber buckling
effect in the SP RoM. This procedure is based in an homogenization of the constitutive
equations used to characterize fiber and matrix materials, to take into account their micro-
structural interaction. The validation of the homogenization procedure proposed is described
in section 4.4, comparing the results obtained with the new formulation with the results
provided by a finite element micro-model.

Having validated the homogenization method used to consider the interaction between the
composite constituents in the SP RoM, this method is used to develop a numerical procedure
capable to obtain the compression strength of composite structures. The procedure proposed
is described in section 4.5. This procedure takes into account the different loading cases that
can be found in the composite as well as the level of fiber misalignment.

The validation of the compression strength formulation developed is described in section
4.6, comparing some experimental results obtained from literature with the numerical results
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provided by the developed formulation. This section also includes a numerical example
which provides a better comprehension of the numerical procedure proposed to obtain the
compression strength of fiber reinforced composites.

A first formulation of the theory described in this section, as well as some preliminary results
obtained with it, have been already published in Mart́ınez et al. (2007b)
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CIMNE (1991-2008). PLCd Manual. Non-linear thermomechanic finite element code oriented
to PhD student education. Finite element code developed at CIMNE.

CIMNE and Quantech (2008). ComPack-Aero. Innovative finite element methods for non
linear analysis of composite structures. Explicit finite element code developed by CIMNE
& Quantech ATZ. www.cimne.com; www.quantech.es/QuantechATZ/Stampack.html.

CompositesWorld (2008). Sourcebook 2008. Article: Fiber demand and supply.
www.compositesworld.com/sb.

Daniel, I. M. and Ishai, O. (1994). Engineering mechanics of composite materials. Oxford
Univeristy Press, New York, USA.

Drapier, S., Grandidier, J. C., and Potier-Ferry, M. (1999). Towards a numerical model of the
compressive strength for long fibre composites. European Journal of Mechanics A/Solids,
18(1):69–92.

Gay, D., Hoa, S. H., and Tsai, S. T. (2003). Composite materials. Design and applications.
CRC Press LLC, Boca Raton, Florida, USA.

Jansson, N. E. and Larsson, R. (2001). A damage model for simulation of mixed–mode
delamination growth. Composite Structures, 53(4):409–417.



20 References

Jochum, C. and Grandidier, J.-C. (2004). Microbuckling elastic modelling approach of a
single carbon fibre embedded in an epoxy matrix. Composites and Science Technology,
64(16):2441–2449.

Jones, R. M. (1999). Mechanics of composite materials. Taylor & Francis, Philadelphia, USA,
2nd edition.

Krueger, R. (2004). Virtual crack closure technique: history, approach and applications.
Applied Mechanics Reviews, 57(2):109–143.

Mart́ınez, X., Oller, S., and Barbat, A. (2006). Numerical tool to study structural reinforce-
ment of steel reinforced concrete (RC) structures under seismic loads using fibre reinforced
polymers (FRP). In ECEES – First European Conference on Earthquake Engineering and
Seismology, September, Geneva, Switzerland.

Mart́ınez, X., Oller, S., and Barbat, A. (2007a). Herramienta numérica para el estudio de
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Mart́ınez, X., Oller, S., Barbat, A., and Rastellini, F. (2007b). New procedure to calcu-
late compression stregth of FRP using the serial/parallel mixing theory. In FRPRCS-8
– 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete
Structures, July, Patras, Greece.

Mart́ınez, X., Oller, S., and Barbero, E. (2007c). Study of delamination in composites by
using the serial/parallel mixing theory and a damage formulation. In Composites 2007 –
ECCOMAS thematic conference on mechanical response of composites, September, Porto,
Portugal.

Mart́ınez, X., Oller, S., and Barbero, E. (2008a). Mechanical response of composites, chapter
Study of delamination in composites by using the Serial/Parallel mixing theory and a
damage formulation. Springer, ECCOMAS series edition.

Mart́ınez, X., Oller, S., Rastellini, F., and Barbat, A. (2007d). Numerical procedure for the
computation of RC strcutures reinforced with FRP using the serial/parallel mixing theory.
In 9th USNCCM – US National Congress on Computational Mechanics, July, Berkeley,
San Francisco, USA.

Mart́ınez, X., Oller, S., Rastellini, F., and Barbat, A. (2008b). A numerical procedure
simulating RC structures reinforced with FRP using the serial/parallel mixing theory.
Computers and Structures, doi:10.1016/j.compstruc.2008.01.007.

Meier, U. (1995). Strengthening of structures using carbon fibre/epoxi composites. Construc-
tion and Building Materials, 9(6):341–351.

Nanni, A. (2003). North american design guidelines for concrete reinforcement and strength-
ening using FRP: principles, applications and unresolved issues. Construction and Building
Materials, 17(6-7):439–446.
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2.1 Introduction

Composites materials can be defined as those materials formed by combining two or more
constituents with the intention of obtaining a new material with some improved properties,
compared to the ones provided by the constituents on their own. Usually, to consider that a
material is a composite, it is required to be able to differentiate its constituents (under this
scope, metallic alloys are not considered composites). This sort of materials have been used
since ancient times. Probably one of the oldest composite materials known, still being used, is
the adobe (figure 2.1a). This is a mixture of clay and straw which main application is found in
building constructions. The clay gives consistency to the resultant material, allowing to define
a “shape”, while the straw provides the strength. From this ancient composite, the technology
of composite materials has suffered enormous improvements, leading to a new generation of
composites which properties where unthinkable some years ago. These improvements have
appeared in all fields related to the composites, from their manufacturing process to the
properties and composition of their constituents. Figure 2.1b shows the structure of a single
walled carbon nano-tube, which can provide plastic elongations of 280% before its failure
(Huang et al., 2006).

(a) Adobe bricks (b) Single-walled carbon nanotube

Figure 2.1: Evolution of composite materials, from adobe to nano-technology

As composite materials have become more technological, improving their properties and
performance, the calculation tools have also improved. New theories and formulations have
appeared in recent decades with the objective of predict the mechanical performance of
composite materials. These formulations take into account the anisotropic properties of
composites, their structural configuration (pultruded elements, laminates, etc.) and their
failure modes. However, despite all improvements, the existing calculation methods are still
some steps behind the manufacturing technologies: composites performance increase without
having formulations capable to predict it. This makes the design of composite structures to
be based, in many occasions, in experimental simulations.

Most of the existing formulations, developed to obtain the mechanical performance of com-
posites, consider the composite a single material, which mechanical properties are inherited
from its constituents. This approach provides formulations that are valid for an specific com-
posite but that cannot be used if the constituent materials present a different mechanical
performance to the one considered when developing the formulation. In example, many of
these formulations treat long fiber reinforced composites assuming a linear elastic behavior of
fiber material, therefore, the formulation loses its applicability when fibers become non-linear.
Thus, it can be concluded that nowadays formulations and theories to calculate composite
structures, most of them based in analytical techniques, are unable to obtain an accurate
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prediction of the composite performance when non-linear effects must be considered (Oller,
2003).

To solve this drawback, two different theories are being developed in recent years which
deal with composite materials with a completely different approach. Instead of developing a
formulation that provides the performance of the composite, what these theories propose is
to obtain the composite performance from the result provided by a model that deals with the
composite constituents. These new approaches center their effort in modeling the constituents
performance and, more important, on how the results obtained from the constituents can be
used and extrapolated to predict the global behavior of the composite. These two theories
are: homogenization and the rule of mixtures.

The homogenization theory deals with composite structures using a two-scale approach. On
the macroscopic scale the composite materials determine the global response of the structure.
Composites are considered to be homogeneous materials in this scale. The microscopic scale
represents an elemental representative volume (RVE) in which the microscopic fields inside
the composite are obtained. This scale deals with the component materials of the composite,
each one with its own constitutive equation. Homogenization theory relates these two scales
by assuming a periodic configuration of the composite material (Sánchez-Palencia, 1987; Oller
et al., 2005).

The main problem of the homogenization method is its computational cost. It can be used
in small simulations but the simulation of a real structure with it becomes unaffordable with
nowadays computational means. Therefore, main studies on homogenization are focused on
the study of the structural performance of the RVE (Gónzalez and Llorca, 2007a) or on how
the information can be trespassed from the micro–scale to the macro–scale (Zalamea, 2001;
Car et al., 2002).

The other theory, in development, to obtain the performance of the composite from the
performance of its constituents is the rule of mixtures or mixing theory. The first formulation
of the mixing theory was developed by Trusdell and Toupin (1960) and it is based on two main
hypotheses: 1. All composite constituents are subject to same strains. 2. Each constituent
contributes to the composite behavior according to its volumetric participation. This first
theory has been coupled with the finite element method by Car (2000), whom transformed
it into a constitutive equation manager. Any amount of components can be included in the
composite, each one with its own constitutive equation, and the mixing theory will obtain the
constitutive performance of the composite by coupling the different constituents behaviors.
The work made by Car has been improved by Rastellini (2006) with his formulation of the
serial/parallel mixing theory. This new formulation replaces the iso-strain hypothesis by an
iso-strain hypothesis in fiber direction and a iso-stress hypothesis on the remaining directions.

The main advantage of the mixing theory over the homogenization theory is that it is a pro-
cedure that can be used with nowadays computational means to simulate structural elements.
Although it cannot reproduce as many micro-structural effects as an homogenization method,
it is a powerful numerical procedure that allows simulate composite structures taking into
account the non-linear constitutive performance of the composite components. Also, in this
work (chapters 3 and 4) it will be shown that some micro-structural phenomenons can be
included in the formulation improving the capabilities of the mixing theory.

This chapter contains a first section (section 2.2) that describes the most important theories
and formulations developed to obtain the mechanical performance of composite materials.
This description goes from the numerical procedures used to simulate composites to the
existing failure criterions of the composite. This section also includes a description of the
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homogenization theory and presents other formulations, related to the finite element method,
that can be used to obtain a better simulation of composites.

Once having reviewed the different available formulations to compute composite materials,
section 2.3 describes the mixing theory. The theory is described from its beginnings to the for-
mulation that is used in the present work, the serial/parallel mixing theory. This section also
proposes a perturbation method to obtain the tangent constitutive tensor of the composite
constituents, and describes how the mixing theory deals with laminated composites.

Finally, section 2.4 shows the potentiality of the serial/parallel mixing theory by solving the
problem of reinforced concrete structures reinforced and/or retrofitted with fiber reinforced
polymers (FRP). To solve this problem a new construction stages algorithm has been devel-
oped and implemented in order to simulate FRP retrofitting in already damaged structures.
After describing this new algorithm, a first numerical simulation is performed to validate
the code. Afterwards, two different numerical simulations are included to show how the se-
rial/parallel mixing theory deals with large scale problems, such the FRP reinforcement and
retrofitting of concrete structures.

2.2 Mechanical performance of composite materials. Numer-
ical procedures and formulations

2.2.1 Numerical procedures used to simulate composites

There are two main numerical procedures that are used to simulate composite materials:
Lamination theory and solid finite elements. While solid finite elements, two-dimensional
and three-dimensional, can be used to simulate any type of composite structures, lamination
theory is a procedure developed for the simulation of laminated composites (shell or membrane
elements in which the composite consist of different layers with a different fibers orientation).
These two procedures are described in the following.

Finite element method

The finite element method is a numerical approximation technique that provides solution
to the differential equations that define the behavior of a continuum domain by discretizing
the domain in small regions and providing a solution to the discrete system generated. In
structural mechanics, the finite element method is often based on an energy principle such
as the virtual work principle or the total potential energy principle. A full description of this
method and its numerical implementation can be found in Zienkiewicz and Taylor (1991),
Oñate (1995), Bathe (1996) and Belytschko et al. (2000).

The principle of virtual work states that the equilibrium of a body requires that for any
compatible small virtual displacement imposed on the body in its state of equilibrium, the
total internal virtual work is equal to the total external virtual work:

∫

V

δεT σ dV =

∫

V

δu b dV =

∫

A

δu t dA +
∑

δui qi (2.1)

where V and A are the volume and the area of the body where the body forces b, surface
forces t and concentrated forces q are applied; δu are the virtual displacements and δε the
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virtual strains.

The discretization of the body into small regions transforms the continuum displacement
field u into a discrete one. This discretization is made using the shape functions, N . This
functions relate the displacement of the nodes that define the discretization region of the
solid (see figure 2.2), with the displacement field of the points found inside the finite element:

u =







u
v
w






=

K∑

i=1

Niai (2.2)

Where K is the number of nodes contained in the finite element. In the case shown in figure
2.2, K = 4.

Figure 2.2: Discretization of a beam structure in tetrahedral elements

Using the classical elasticity theory the displacement field is related to the strain field and
the forces acting on the body are related to the stresses found in each node used to discretize
the structure. Applying these relations, the principle of virtual work is transformed into a
linear system of equations that will solve the structural problem. This system provides the
displacements of each node of the structure according to the forces applied to it:

KU = R (2.3)

In equation 2.3, K is the structure stiffness matrix, U the nodal displacement vector and R
the nodal force vector. The stiffness matrix is obtained using the deformation matrix, B,
that contains the derivatives of the shape functions, and the constitutive stiffness matrix of
the material. This matrix provides the mechanical performance of the material relating its
stress and strains fields:

σ = C : ε (2.4)

The finite element method can be used to solve any kind of structures, having different for-
mulations depending on the typology of the structure: two dimensional or three dimensional
solid elements, beam elements, shells, membranes, etc. However, unless providing the finite
element method with more tools to deal with composite materials, such as the lamination
theory, the homogenization theory or the mixing theory, only a single material can be de-
fined for each element in which the structure is discretized. Figure 2.3 shows two different
finite element simulations of composite materials. The simulation shown in figure 2.3a is
represented the plastic strains of a compressed fiber reinforced composite in which fibers and
matrix are discretized independently (Gónzalez and Llorca, 2007a). Figure 2.3b shows the
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(a) Plastic strains in a (b) Stresses in a 3D simulation of a
fiber reinforced composite reinforced concrete beam

Figure 2.3: 2D and 3D finite element simulations of composite structures

stresses obtained in a reinforced concrete beam; the elements with larger stresses correspond
to a composite made of concrete with steel reinforcement (Mart́ınez et al., 2008).

In the two finite element simulations shown in figure 2.3 each finite element contains the infor-
mation of a material, either a simple material or a composite material. Therefore, to perform
these numerical simulations is required the constitutive stiffness matrix of each material de-
fined in the model. In case of composites there are several theories and formulations that
provide the elastic parameters required to compute the stiffness matrix. These formulations
are described in following sections.

Lamination theory

Composite materials are usually used in structural engineering applications as plates or shells.
This structural typology is characterized for having one of its dimensions orders of magnitude
smaller than the other two. The composites used in this sort of structures are laminates, which
are obtained by stacking different layers made of fibers embedded in a matrix. Being the fibers
the material that provide stiffness and strength to each layer (in their longitudinal direction),
the layer orientation is characterized by fiber direction. Figure 2.4 shows a laminate made of
four layers with orientations +0/+45/–45/+0.

Figure 2.4: Laminated composite with layer orientation +0/+45/–45/+0

The success of laminates in structural applications is found because they offer the possibility
to be manufactured for the specific application in which they are used (Barbero, 1999). Layer
orientation is chosen to provide the adequate stiffness and strength in the direction of the
applied loads, being possible to have different strengths in different directions if loads are
different in those directions. Therefore, in order to simulate structures made with laminated
composites, it is necessary to have a formulation able to provide the composite stiffness
and strength, taking into account the layers orientations and their staking sequence. This
formulation is the classical lamination theory. A detailed description of the lamination theory
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can be found in many sources such as Ochoa and Reddy (1992), Jones (1999), Barbero (1999)
or Reddy (2003). Hereafter is exposed briefly how the composite plate stiffness is obtained
with this theory. The outline followed in this description is the one used by Barbero (1999).

Classical lamination theory is based in the hypothesis that a line originally straight and
perpendicular to the middle surface remains straight and perpendicular to the middle surface
after deformation and that there are no variations in the thickness of the laminate. With
these two assumptions, the displacement of each material point of the lamina can be obtained,
after deformation, as:

u(x, y, z) = u0(x, y) − zφx(x, y)

v(x, y, z) = v0(x, y) − zφy(x, y)

w(x, y, z) = w0(x, y)

(2.5)

Being u0, v0 and w0 the displacements before deformation, u, v and w the displacements
after deformation, φx and φy the curvature angles in x and y direction and z the position of
the point in the laminate thickness. The strain field of the lamina is obtained as a function of
the displacements. Using the displacement definition shown in equation 2.5, the strain field
can be written as,
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(2.6)

where κ is the curvature of the laminate.

The forces applied to the lamina can be obtained integrating, along the thickness, the stress
field of each layer, which provides the following set of equations (neglecting the transverse
shear deformations),
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(2.7)

being N the number of layers in the laminate and zk the coordinate of the top surface of the
kth layer.

At this point, the constitutive relation between strains, defined by the stiffness matrix of the
material, C, is used to replace the stress field of equation 2.7 by the strain field defined in
2.6. This leads to the laminate stiffness matrix that can be written as:
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with,
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12

)

(2.9)

In equation 2.9, t is the thickness of the layer and z̄k the z position of its medium plane.
Matrix A is called inplane stiffness matrix, as it relates the inplane strains with the inplane
forces. Matrix D is the bending stiffness matrix, which relates curvatures with bending
moments. And, matrix B relates inplane strains to bending moments and curvatures to
inplane forces. This matrix becomes zero in homogeneous plates or symmetric laminates.

Equation 2.9 shows the dependence of the laminate stiffness matrix in the composite consti-
tutive matrix, C. As has been shown when describing the finite element method, this matrix
must contain the information of the composite, taking into account the contribution of fibers
and matrix. In the following are exposed the most common formulations used to obtain this
tensor.

2.2.2 Stiffness of composite materials

As has been shown when defining the numerical procedures most commonly used to obtain
the mechanical performance of composite structures both, the lamination theory and the
finite element method, require the stiffness tensor of the composite. This tensor is usually
obtained from the elastic properties of the composite that are obtained combining the elastic
properties of the composite components. There are different models in literature that provide
expressions to obtain the elastic parameters of the composite from its constituents, some of
them are described in Jones (1999); Barbero (1999); Vasiliev and Morozov (2001).

The elastic parameters required to obtain the constitutive stiffness tensor of a composite
material are, in a two-dimensional case (chosen for the sake of simplicity), the in plane elastic
modulus or longitudinal modulus E1, the transversal modulus E2, the poisson’s ratio ν and
the shear modulus G12. With these parameters, the stiffness tensor is obtained as:

C2D =
1

1 − 2ν





E1 νE1 0
νE2 E2 0
0 0 (1 − 2ν)G12



 (2.10)

Probably one of the formulations most commonly used to obtain the elastic parameters of
the composite, because of its simplicity, is the rule of mixtures (RoM) and the inverse rule
of mixtures (inverse RoM) (Trusdell and Toupin, 1960). These formulations consider that
the contribution of the composite components to the composite stiffness is proportional to
their volumetric participation in the composite. The rule of mixtures considers an iso-strain
condition and is applied to the properties in the fiber direction:
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E1 = fkfE1 + mkmE1

ν = fkfν + mkmν
(2.11)

Being fk and mk the volumetric participation of fiber and matrix in the composite, respec-
tively. The rest of elastic parameters are calculated using the inverse RoM, which considers
an iso-stress condition to obtain the composite properties. Therefore,

1

E2
=

fk
fE2

+
mk

mE2

1

G12
=

fk
fG12

+
mk

mG12

(2.12)

From this first approximation, defined by equations 2.11 and 2.12, different authors have
tried to improve the formulation to predict the elastic parameters of the composite. Paul
(1960) bounded the values of the elastic parameters. The lower bound was obtained with the
principle of minimum complementary energy while the upper bound was obtained with the
principle of minimum of potential energy. These boundaries where attempted to be tighten
by Hasin, Hashin and Shtrikman, and Hashin and Rosen (Jones, 1999).

Another approach to improve the prediction of the elastic parameters of the composite is
found with the introduction of semi-empirical parameters in the formulation. Tsai (1964)
proposed a formulation in which a new variable C is included in equations 2.11 and 2.12.
C represents the degree of contiguity in the fibers, being C = 0 the case of isolated fibers
and C = 1 the case of having all fibers in contact. Tsai formulation provides improved
expressions for E2, ν and G12. Halpin and Tsai (1969) introduce an empirical parameter ξ
in the formulation. This parameter depends on the fiber geometry, packing geometry and
loading conditions. These authors include this parameter in the calculation of E2 and G12.
Actually, these equations seem to be a commonly accepted approach to obtain the elastic
parameters of the composite (Jones, 1999).

2.2.3 Failure criteria of composite materials

As well as with the stiffness prediction of composite materials, there are also different models
that propose expressions to obtain the maximum stresses that can be applied to the composite
before its failure. There are several reviews of the different methods available in literature,
among them it is worth to mention the ones by Sun et al. (1996), Barbero (1999) and Mayugo
(2003).

According to Sun et al. (1996), the most commonly used methods to predict the failure
of the composite are, from the most used to the less used, the maximum strain criterion,
the maximum stress criterion, the Tsai-Hill criterion and the Tsai-Wu criterion. The first
two criterions predicts the material failure when at least one of the strains or stresses (re-
spectively) of the composite reach the maximum allowed value. The maximum strain or
stress values are obtained for each direction independently, using experimental simulations
or micro-mechanical approaches.

The main problem of this approach is that it does not consider any interaction between the
different strain/stress components. In example, if σ1 and σ2 are very close to their limit stress
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value but does not reach it, the material does not fail. Experimental data has proven that
these two approaches are too conservative. The Tsai-Hill and Tsai-Wu criteria are developed
to address this shortcoming (Barbero, 1999).

These two methods relate the different stresses found in the composite, defining an equation
that provides the maximum combination of stresses that can be found in the composite before
its failure (a constitutive law). The Tsai-Hill criterion states that the composite fails when
the following equation is fulfilled:

(σ1)
2

(F1)2
− (σ1σ2)

(F1)2
+

(τ12)
2

(F12)2
= 1 (2.13)

Being σ1, σ2 and τ12 the stress components in the composite (considering a two dimensional
formulation) and F1, F2 and F12 the maximum stresses that can be applied to the composite
in each direction.

The Tsai-Wu criterion uses a complete quadratic expression and takes into account the differ-
ent strength values obtained in the composite for tensile and compressive states. According
to this criterion, failure in the composite will occur when:

f1(σ1) + f2(σ2) + f11(σ1)
2 + f22(σ2)

2 + 2f12(σ1σ2) + f3(τ12)
2 = 1 (2.14)

With,
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2F 2
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F 2
12

(2.15)

Besides the models described, exist other quadratic failure criterions such the ones defined by
Azzi-Tsai, Hoffman or Chamis, whose models vary the parameters Fi and Fij of the failure
mode proposed by Tsai-Wu (Rastellini, 2006). Another approach is the one proposed by
Hasin and Hasin-Rotem in which the failure of the composite is divided by failure modes:
fiber failure and matrix failure (Sun et al., 1996). Hasin model has been improved recently
by Dávila et al. (2005), with a phenomenological formulation that takes into account local
effects that can lead to the composite failure.

2.2.4 Homogenization theory

All formulations and numerical procedures described so far are based on a linear elastic be-
havior of the composite components. Composite failure is determined using experimental
data or micro-mechanical formulations that, again, consider a linear elastic performance of
the composite constituents. The validity of the results obtained, together with the simplicity
of the formulations, make this approach the most commonly used in industry to calculate
composite structures. Besides, when designing composite structures, usually the materials
are kept in their elastic range for safety purposes. However, these formulations cannot be used
to obtain failure modes of the composite or to perform simulations in which the composite
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components are loaded beyond its elastic range. With the aim of solving this drawback, two
different formulations can be considered, in the frame of numerical simulations of composite
materials, the homogenization theory and the mixing theory. In this section, the homoge-
nization theory is briefly described.

An homogenization method deals with the global problem of composite material in a two-scale
context. The first scale, named macroscopic or global scale, uses the composite materials to
obtain the global response of the structure; composites are treated as homogeneous materials.
The second scale, named microscopic or local scale, characterizes an elemental characteristic
volume in which the microscopic fields inside the composite are obtained; this scale deals
with the component materials.

An schematic representation of an homogenization method is shown in figure 2.5. This fig-
ure shows that the macro-scale solves the global structural problem dividing the structure
in different Representative Volume Elements (RVE). The mechanical performance of each
RVE is obtained with a micro-model of the composite. Once having the mechanical perfor-
mance of the micro-model, the results can be trespassed to the macro-scale to obtain the
global structural response to the loads applied. With this approach, complex finite element
models can be used to simulate the composite in its micro-scale, taking into account micro-
structural phenomenons such as fiber-matrix debounding, fiber buckling, fiber kink-band,
matrix degradation, thermal effects, performance of woven-type composites, etc.

Figure 2.5: Homogenization method applied to a composite beam

The main problem of homogenization theory is its computational cost. An example the
computational effort required to solve a composite structure with an homogenization method
is provided by Zalamea (2001) in his PhD dissertation. Zalamea solved the problem of a fiber
reinforced thick cylinder with an internal compression. The macro-model of the cylinder
was simulated with 60 finite elements while the representative volume element micro-model
contained 108 elements. The problem was solved using a parallel process with 4 processors.
The time required to solve the problem was 1 hour and 15 minutes. Figure 2.6 shows solutions
obtained for the macro and the micro-model.

Due to the difficulty of developing large scale simulations with complex micro-structures using
the homogenization method with nowadays computer capabilities, main efforts are focussed
in the development of reliable micro-models to simulate the RVE and on the development of
processes to trespass the information obtained from the micro-model to the macro-model.

Many authors have developed models, usually using the finite element method, to study the
mechanical behavior of composite RVE’s. Different models are proposed according to the
effect that wants to be studied. To name a few, Gónzalez and Llorca have developed models
to study the effect of transversal compression in unidirectional fiber reinforced composites
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Figure 2.6: Finite Element simulation of a thick composite cylinder with an internal com-
pression using an homogenization method (Zalamea, 2001)

(Gónzalez and Llorca, 2007a) and the effects of an initial notch in a unidirectional fiber re-
inforced composite under bending loads (Gónzalez and Llorca, 2007b). Bahei-El-Din et al.
(2004) propose a RVE model to study the micro-mechanical performance of woven compos-
ites. Oller et al. (2002) propose a model to simulate masonry structures; and Ravi Annapra-
gada et al. (2007) have developed a model to predict the thermo-mechanical properties of
particulate composites.

Regarding the methods to trespass the information obtained from the micro-model to the
macro-model, homogenization theory assumes a periodical configuration of the composite
material to relate these two scales. Assuming this periodicity, the effective value of stresses,
strains and internal variables in the macroscopic scale becomes associated to an average of
these fields in the microscopic scale. Several techniques have been developed to relate these
both scales, among them, four should be remarked:

Auto–consistent method: All phases of the material are included in an equivalent medium,
which properties are the ones to be determined. Once these properties are obtained, the
composite material will be computed with them. This method is based in the work of
Eshelby (1957), in which the inclusion of an ellipsoid in an elastic medium was studied.

Variational contours method: This method consist on defining an upper and a lower
limit values to the stiffness of the system. This first idea was proposed by Hill (1963)
defining the limits obtained imposing the iso–strain and iso–stress states. This method
has been improved, reducing the limit range, by several authors.

Average method: This method is based in the definition of a characteristic volume in
the composite used to obtain its average properties. This procedure was improved by
Suquet (1982) with its extension to periodical mediums.

Asymptotic homogenization method: This methodology proposes solving the problem
in two different scales: a macroscopic scale for the composite and a microscopic scale
for its constituents. The relation between these two scales is defined with a parame-
ter that takes into account the magnitude difference between them. The methodology
proposal and its major developement corresponds to Sánchez-Palencia (1987). An im-
provement of the theory, in the context of continuum mechanics, and formulated using
the Finite Element Method is proposed by Zalamea (2001). This last formulation has
been improved by Oller et al. (2005).
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2.2.5 Other numerical formulations for composite materials

In this work, the mechanical performance of composite materials is obtained using a finite
element formulation that deals with composite materials using the serial/parallel mixing
theory. The serial/parallel mixing theory is described in detailed in the following section
(section 2.3), from the first model developed by Trusdell and Toupin (1960) to the final
formulation proposed by Rastellini (2006). However, before moving to the mixing theory
formulation, it is worth to describe other numerical formulations and procedures that can be
used to perform finite element simulations of composite materials. Some of these formulations
are used in this work.

Anisotropy using a mapping space theory

This theory is based on the transport of all the constitutive parameters and the stress and
strain states of the structure, from a real anisotropic space, to a fictitious isotropic space.
Once all variables are in the fictitious isotropic space, an isotropic constitutive model can
be used to obtain the new structure configuration. This theory allows considering materials
with high anisotropy, such as composite materials, using all the techniques and procedures
already developed for isotropic materials.

All the anisotropy information is contained in two fourth order tensors. One of them, Aσ
ijkl,

relates the stresses in the fictitious isotropic space (σ̄ij) with the stresses in the real anisotropic
space (σij) and the other one, Aε

ijkl, does the same with the strains. The relation of both
spaces for the strains and the stresses is exposed in the following equation:

σ̄ij = Aσ
ijkl : σij

ε̄ij = Aε
ijkl : εij

(2.16)

A representation of these transformations is displayed in figure 2.7. A more detailed descrip-
tion of this methodology, the extension to large strains and its numerical implementation can
be obtained in (Car et al., 2000, 2001).

Fiber-matrix debounding

The apparition of matrix cracks in a composite material is usually followed by a relative
movement between the fibers and the matrix. This lost of adherence implies a stiffness
reduction in the composite material. This phenomenon is introduced in the elastic limit
of the material as a modification of its yield surface criterion. The new fibre elastic limit
becomes:

(FR)f = min
{
(FN )f ; (FN )m;

[
2(FN )fm/rf

]}
(2.17)

Where (FR)f is the new fiber strength, (FN )f is the nominal fiber strength, (FN )m is the
matrix nominal strength, (FN )f−m is the fiber-matrix interface nominal strength and rf is the
fiber diameter. Equation 2.17 shows that the debounding process takes place when one of the
composite constituents reaches its nominal strength (considering the fiber-matrix interface a
constituent). The nominal strength values are obtained from the material properties. The
numerical implementation of this phenomenon is described in Car (2000) and Oller (2002).
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Figure 2.7: Anisotropy using a mapping space theory. Space transformations. Real and
fictitious stress and strain spaces. (Car, 2000)

Constitutive equations and yield laws

The serial/parallel mixing theory obtains the performance of the composite material from
the constitutive performance of its components. This constitutive performance is obtained
using the constitutive equations and yield laws defined in continuum mechanics.

Among all constitutive theories existing in literature, this work uses mainly three of them:
elasticity (Timoshenko, 1940; Marsden and Huges, 1983), plasticity (Malvern, 1968; Lubliner,
1990; Simo and Huges, 1998) and damage (Kachanov, 1986). The damage formulation used
in this work is an improvement of Kachanov’s damage theory, proposed by Oliver et al.
(1990), which distinguish between tensile and compressive stresses and provides a different
damage evolution in each case. Regarding constitutive equations, it is also worth to mention
the plastic-damage formulation described by Oller (2001), as many epoxy resins used in
composite materials follow the strength evolution defined by this formulation.

Plastic and damage formulations consider that the material has an elastic behavior until it
reaches a stress state in which the elastic performance is lost, leading to a reduction or an
increment of the material strength. The maximum stress state obtained before the variation
of the mechanical performance of the material is defined by the yield law. Different yield laws
have been defined and proposed for different materials in order to characterize its particular
fracture mode, in example, steel is usually simulated with a Von-Mises criterion while concrete
performance is better represented by a Mohr-Coulomb law. Several of these constitutive laws
are described in Oller (2002).

2.3 Mixing theory

The classical rule of mixtures, or mixing theory, deals with composite materials using a macro-
scale approach based on the mechanics of continuous mediums. The composite mechanical
behavior is obtained from the constitutive performance of its component materials, being
possible to include the constituents material non-linearities into the composite mechanical
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performance. This approach represents a substantial improvement compared to other existing
formulations developed to deal with composite materials, as these only provide an accurate
prediction of the composite mechanical performance when its constituents are in their elastic
range. Another advantage of the mixing theory is that it can use all existing numerical
procedures and formulations already developed to simulate continuum materials to obtain
the performance of the composite constituents.

Although the mixing theory does not take into account the micro-structural interaction among
the composite components, as does the homogenization theory, it provides an accurate predic-
tion of the composite mechanical performance, taking into account material non-linearities,
with an affordable computational cost, which allows to perform large numerical simulations
of composite structures.

This section describes the mixing theory following its development process. It starts with
the first formulation proposed by Trusdell and Toupin (1960) and ends with the enhanced
serial/parallel mixing theory formulated by Rastellini (2006). At the end of the section it is
also described how the tangent stiffness tensor of the composite components can be obtained,
for any yield function, using a perturbation method and, finally, how the mixing theory can
be used to simulate laminated composites.

2.3.1 Classical mixing theory

The first formulation of the rule of mixtures corresponds to Trusdell and Toupin (1960). This
first work became the base of future studies developed by Ortiz and Popov (1957, 1982) and
Green and Naghdi (1965). The classical rule of mixtures define the way in which all substances
composing a material interact to provide the material performance. This interaction is defined
with the following hypothesis:

i. Each infinitesimal volume of the composite contains a finite number of material com-
ponents.

ii. Each component contribution to the global behavior of the composite is proportional
to its volumetric participation.

iii. All components suffer the same strains (closing equation), iso-strain assumption.

iv. The volume of each component is significantly smaller than the composite volume.

The closing equation, defined in condition (iii), defines an iso-strain field for all composite
components. This can be written as:

cε = 1ε = 2ε = . . . = nε (2.18)

Being cε the composite strain, sε the strain in the composite component s and n the total
number of components in the composite.

The stress field of the composite is obtained using the second hypothesis of the mixing theory:

cσ =

n∑

s=0

sk sσ (2.19)
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Where sk is the volumetric participation of component s in the composite, which is defined by
the relation between the volume of the component, Vs, and the total volume of the composite,
V :

sk =
Vs

V
with

n∑

s=1

sk = 1 (2.20)

The relation between the strain and the stress fields is defined with the material constitutive
tensor, C (equation 2.4). Thus, the stress in the composite can be obtained from its strain
field using equations 2.18 and 2.19:

cσ =
n∑

s=0

sk sσ =
n∑

s=1

sk (s
C : sε) =

n∑

s=1

sk (s
C : cε) =

(
n∑

s=1

sk s
C

)

: cε (2.21)

This last equation provides the expression of the composite constitutive tensor, which is
defined as:

c
C =

n∑

s=1

sk s
C (2.22)

The iso-strain hypothesis defined in the mixing theory implies a parallel distribution of the
components in the composite. Depending on the direction in which the loads are applied to
it, there are some situations in which the composite performance is better represented by
an iso-stress relation between its components. This case is solved with the inverse mixing
theory.

Inverse mixing theory

The inverse mixing theory replaces the iso-strain assumption by an iso-stress assumption,
therefore:

cσ = 1σ = 2σ = . . . = nσ (2.23)

And, the strains in the composite are obtained according to the volumetric participation of
each component material:

cε =
n∑

s=0

sk sε (2.24)

Making use of the relation between strains and stresses, provided by the stiffness tensor, it
can be obtained the relation between the stress and the strain field in the composite as:

cε =

n∑

s=1

sk
(
[sC]−1 : sσ

)
=

(
n∑

s=1

sk [sC]−1

)

: cσ (2.25)



40 2.3 Mixing theory

which leads to the expression of the composite stiffness tensor:

[cC]−1 =
n∑

s=1

sk [sC]−1 (2.26)

These both formulations, the mixing theory and the inverse mixing theory, are widely used
in the numerical simulation of composite materials; usually to obtain the elastic parameters
of the composite from its constituents. However, the hypothesis defined by the mixing theory
can be pushed forward, making the theory capable to provide the composite mechanical
performance beyond its constituents elastic limit. This is explained in the following section.

2.3.2 Mixing theory as a constitutive equation manager

Oller et al. (1996) and Car (2000) coupled the mixing theory hypothesis with a thermody-
namical description of the composite components. This provides a formulation for composite
materials that obtains the relation between components, even when they have reached their
elastic limit.

This new approach defines the Helmotz free energy of the composite, cΨ, as the sum of the
free energies of each composite component, proportional to their volumetric participation.
This is:

cΨ(cεe, θ, cαm) = cΨ(ε, θ, cεp, cαm

︸ ︷︷ ︸
cps

) =
n∑

s=1

sk sΨ(ε, θ, sps) (2.27)

Being ε, εe and εp the total, elastic and plastic strains (the total strain is the same for the
composite and its constituents, according to the mixing theory hypothesis), θ the temperature
and αm, ps sets of internal variables.

Once having defined the free energy of the composite in function of the free energies of its
constituents, the procedure described in Malvern (1968), Lubliner (1990) and Oller (2002) to
obtain the stress of single-phase materials from the free energy can be applied to both sides
of equation 2.27, obtaining:

cσ =
n∑

s=1

sk sσ (2.28)

It is worth to remark that although equations 2.28 and 2.19 are exactly the same, their
meaning is not. Equation 2.28 is obtained following a thermodynamic procedure, which means
that the stress values can be obtained using any constitutive law based on thermodynamic
principles, such as plasticity or damage. Therefore, the mixing theory has been transformed
in a constitutive equations manager, as it obtains the performance of the composite coupling
the constitutive performance of its constituents.

The implementation of the mixing theory, as a constitutive equation manager, into a finite
element code has been done by Oller et al. (1996) and afterwards improved by Car (2000)
in his PhD dissertation, including in it the large deformation theory. The implementation
algorithm developed by Car is shown in figure 2.8.
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Figure 2.8: Implementation of the mixing theory in a finite element code (Car, 2000)

The validity of the new procedure developed to obtain the mechanical performance of com-
posite materials, even when the composite constituents have reached its elastic yield stress,
is proved in the numerical simulations described in Car (2000), Car et al. (2000, 2001) and
Oller and Car (2002).

However, this new procedure has the problem already pointed out when describing the classi-
cal mixing theory developed by Trusdell and Toupin (1960), the closing equation assumes an
iso-strain performance of the composite and its constituents, which forces a parallel behavior
of the composite components (figure 2.9a). Although in most cases this assumption can be
valid, usually composites are designed to work in fiber direction, depending on the direction
of the loads applied other behaviors can be developed: a serial behavior (figure 2.9b) or, most
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Figure 2.9: Serial–Parallel distribution of the components in a composite material

commonly, a mixed mode behavior (figure 2.9c).

Oller et al. (1995), Neamtu et al. (1997) and Car (2000) made a first attempt to develop a
formulation of the mixing theory capable to take into account all possible behaviors of the
composite: parallel, serial and mixed. This formulation defines the composite strains as a
proportional sum of the serial and parallel strains found in it:

cεij = (1 − ℵ) cεpar
ij + ℵ cεser

ij (2.29)

Where εpar
ij and εser

ij stand for the parallel and serial strains, respectively, and ℵ is the propor-
tionality parameter, that depends on the fibre orientation. This parameter has to be obtained
from experimental data. The serial and parallel strains of the composite are obtained as a
function of the strains of the constituent materials as follows,

εpar
ij =

1

n

n∑

s=1

sεij and εser
ij =

n∑

s=1

sεij (2.30)

One of the main drawbacks of this formulation is its dependence on experimental data,
required to define the value of ℵ. Recently, Rastellini et al. (2003a,b) and Salomon et al.
(2005) have developed a more general formulation of the mixing theory capable to take into
account the serial and parallel performance of the composite automatically, without the need
of experimental or calibration parameters. This theory has been improved with the enriched
serial/parallel mixing theory (Rastellini, 2006; Rastellni et al., 2007). Both formulations are
described in the following sections.

2.3.3 Serial/parallel mixing theory

The serial/parallel rule of mixtures is an improvement of the classical mixing theory, in which
the iso-strain hypothesis is replaced by an iso-strain condition in the fiber direction and an
iso-stress condition in the transversal directions. This theory has been developed by Rastellini
(2006).

Definition of the serial and parallel components of the strain and stress tensors

The serial/parallel (SP) model considers that the constituent materials of the composite act
in parallel in a certain direction and in serial in the remaining directions. Consequently, it is
necessary to define and separate the serial and parallel components of the strain and stress
tensors.

Defining e1 as the director vector that determines the parallel behavior (fiber direction), the
parallel projector tensor NP can be defined as follows:
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NP = e1 ⊗ e1 (2.31)

From NP , the 4th-order parallel projector tensor, PP , is defined as:

PP = NP ⊗ NP (2.32)

The serial projector tensor PS is evaluated as its complement:

PS = I − NP (2.33)

Both tensors can be used to find the parallel part of the strain tensor εP and its serial part
εS :

εP = PP : ε and εS = PS : ε (2.34)

Hence, the strain state is separated into its parallel and serial part:

ε = εP + εS (2.35)

The stress state can be separated analogously, finding its parallel and serial parts using the
4th-order tensors PP and PS as:

σ = σP + σS (2.36)

where

σP = PP : σ and σS = PS : σ (2.37)

Numerical modeling hypotheses

The numerical model developed to obtain the strain-stress state in the composite is based on
the following hypotheses:

i. The constituent materials of the composite are subjected to the same strain in the
parallel (fiber) direction.

ii. The constituent materials are subjected to the same stress in the serial direction.

iii. The response of the composite material is directly related to the volume fractions of its
constituent materials.

iv. The phases in the composite are considered to be homogeneously distributed.

v. The constituent materials are considered to be perfectly bonded.
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Although these hypotheses, as well as the serial/parallel mixing theory, can be applied to
composites with any number of components, the developed formulation is restricted to only
two of them. Therefore, for the sake of consistency, only two composite components will be
included in the theory description: fiber and matrix.

Constitutive equations of compounding materials

When applying the serial/parallel mixing theory, it is possible to use any constitutive equa-
tion to describe the structural performance of the composite compounding materials. The
constitutive equations used can be different for each component (i.e. an elastic law to describe
the fiber behavior and a damage formulation to describe the matrix behavior). Considering
that additive plasticity is used to formulate the constitutive equations of the materials, the
stresses in the matrix and the fibre are obtained as:

mσ = mC : (mε − mεp)
fσ = fC :

(
fε − fε

p) (2.38)

where mεp and fε
p

are the matrix and fiber plastic-strain tensors, respectively, and mC and
fC are the matrix and fiber constitutive tensors.

These equations can be rewritten to consider the serial and parallel separation of the strain
and stress tensors (equations 2.35 and 2.36)

[
iσP
iσS

]

=

[
iCPP

iCPS
iCSP

iCSS

]

:

[
iεP − iεp

P
iεS − iεp

S

]

(2.39)

where







iCPP = PP : iC : PP
iCPS = PP : iC : PS
iCSP = PS : iC : PP
iCSS = PS : iC : PS

with i = m, f (2.40)

Equilibrium and compatibility equations

The equations that define the stress equilibrium and establish the strain compatibility be-
tween the individual components follow the hypotheses previously described.

Parallel behavior : cεP = mεP = fεP
cσP = mkmσP + fkfσP

(2.41)

Serial behavior : cεS = mkmεS + fkfεS
cσS = mσS = fσS

(2.42)

where the superscripts c, m and f stand for composite, matrix and fiber, respectively and ik
is the volume-fraction coefficient of each constituent in the composite.
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Serial/parallel rule of mixtures algorithm

The strain state of the composite material, cε, at time t + ∆t is the known variable entered
into the algorithm. Using this variable, the serial/parallel rule of mixtures algorithm has
to determine the strain and stress states of each component that fulfils the equilibrium, the
compatibility and the constitutive equations and the evolution of the internal variables.

The first step of the algorithm is to separate the strain tensor into its parallel and its serial
components in order to compute the strain state in the matrix and the fiber. According
to equation 2.41, the parallel strain component is the same for both materials and for the
composite. However, to determine the serial strains, it is necessary to predict the expected
strains in one of the composite compounding materials. If this prediction is made for the
matrix, the algorithm computes its serial strain increment as:

[m∆εS ]0 = A :
[
fCSS : c∆εS +

fk
(
fCSP − mCSP

)
: c∆εP

] (2.43)

where A =
(
mkfCSS + fkmCSS

)−1
and m∆εS = t+∆t [cεS ] − t [cεS ]

The initial prediction of matrix serial strains, according to the method proposed by Rastellni
et al. (2007) and shown in equation 2.43, is obtained considering that the parallel and serial
components of the total strain are distributed according to the composite stiffness obtained
in the previous time step. In the iteration step n, the predicted matrix serial strains are used
to compute the fiber serial strains by using equation 2.42. Their expression is:

t+∆t
[
f∆εS

]n

=
1

fk
t+∆t[cεS ] −

mk
fk

t+∆t[mεS ]n (2.44)

where t+∆t [mεS ]n = t [mεS ] + [m∆εS ]n

The next step is to recombine the serial and parallel components of the strain tensor (equation
2.35). The constitutive equations are then applied to the predicted strains to obtain the stress
tensor and the updated internal variables for both materials. The fiber and matrix materials
are modeled according to their own constitutive laws. In the case of an additive plasticity
law, equation 2.38 is used to obtain the stress tensor for each one of them. The stresses
obtained for fiber and matrix from their constitutive law must fulfill the following equation:

[∆σS ]n = t+∆t [mσS ]n − t+∆t
[
fσS

]n

≤ tolerance (2.45)

If the residual stress is smaller than the tolerance, the computed strains and stresses are
considered correct and the structural calculation can continue. However, if equation 2.45
is not fulfilled, the initial prediction of the matrix strain tensor has to be corrected. This
correction is performed using a Newton-Raphson scheme, which is updated using the Jacobian
of the residual forces. The Jacobian is obtained deriving the residue function with respect
to the unknown. According to Rastellini (2006), the expression for the Jacobian is given as
follows:

J =
∂∆σS

∂mεS

∣
∣
∣
∣
mεS=t+∆t[mεS ]n

= [mCSS ]n +
mk
fk

[
f
CSS

]n

(2.46)
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and, the expression for correcting the matrix serial strains becomes:

t+∆t [mεS ]n+1 = t+∆t [mεS ]n − J
−1 : [∆σS ]n (2.47)

The Jacobian must be obtained using the tangent constitutive tensor for the fibers and the
matrix in order to reach quadratic convergence in the serial/parallel mixing theory. However,
depending on the constitutive equation defined for each material, it is not always possible to
obtain an analytical expression for this tensor. In order to obtain a reliable algorithm, the
tangent constitutive tensor is computed with a numerical derivation, using a perturbation
method.

Implementation in a finite element code

The serial/parallel mixing theory is implemented in PLCd (CIMNE, 2008) finite element code.
This code works with two and three-dimensional solid geometries and with beam elements.
It can deal with kinematic and material nonlinearities. It uses various constitutive laws to
predict the material behavior (Elastic, visco-elastic, damage, damage-plasticity, etc. (Oller
et al., 1990)) and uses different yield surfaces to control their evolution (Von-Mises, Mohr-
Coulomb, improved Mohr-Coulomb, Drucker-Prager, etc. (Malvern, 1968; Lubliner et al.,
1989)). The Newmark method (Barbat et al., 1997) is used to perform dynamic analysis. A
more detailed description of the code can be obtained from Mata et al. (2007, 2008).

The serial/parallel mixing theory is implemented in PLCd code at the constitutive level,
adding the iterative procedure described previously. This implementation is described in the
flow chart shown in figure 2.10.

2.3.4 Enriched serial/parallel mixing theory

The validation of the serial/parallel mixing theory shows that the hypothesis of iso-stress in
the transversal direction of the composite provides a lower bound of the composite transversal
stiffness (Rastellni et al., 2007). In order to improve this performance, Rastellini has proposed
an enrichment of the serial/parallel mixing theory formulation.

This enrichment consist in increasing the transversal stiffness of the weakest component of
the composite, in the case considered the matrix material, with a parameter mγ that can
be obtained through experimental calibration or through analytical analysis. In order to
maintain the solution algorithm proposed by the serial/parallel mixing theory, Rastellini
proposes to use the mγ parameter to enrich the strains, stresses and the stiffness tensor
of matrix material, obtaining (mε)∗, (mσ)∗ and (mC)∗. This new tensors are used in the
serial/parallel rule of mixtures algorithm described in figure 2.10.

The new enriched values of the matrix strain, stress and stiffness tensor are obtained with
the following expressions:

(mε)∗ = [K]−1 : mε

(mσ)∗ = K : mσ

(m
C)∗ = K : m

C : K

(2.48)
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Figure 2.10: Flow chart of the serial/parallel rule of mixtures algorithm

with,

K = PP : I : PP + mγPS : I : PS (2.49)

And the expression of the mγ parameter, proposed by Rastellni et al. (2007) after performing
some analytical analysis, is:

mγ =

√

η + ω2(1 − η)

η + ω(1 − η)
with ω = 1 + (R − 1)

√
fk

η =

√
fk

1 + fk

R =
fE
mE

(2.50)
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The gain obtained with the new enriched formulation is shown in figure 2.11, in which the
relative transversal stiffness of a carbon/epoxi laminate is computed with different composite
formulations. This figure shows that the results obtained with the enriched model are as
good as the results obtained with the Halpin-Tsai formulation, with the advantage that the
enriched serial/parallel mixing theory can be used also when the composite components have
reached their yield stress.
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Figure 2.11: Relative transversal stiffness of a carbon/epoxy composite. Comparison of
different formulations with experimental results (Rastellini, 2006)

2.3.5 Tangent constitutive tensor

In a non-linear analysis, the tangent stiffness tensor takes over the role of the stiffness matrix
in a linear analysis, providing the relation between an increment of stresses and an incre-
ment of strains. The most accurate the determination of this tensor, the better will be the
convergence of the non-linear problem.

The tangent constitutive tensor depends on the yield surface used to model each material. A
general expression of this tensor is provided by Crisfield (1991). Crisfield’s expression depends
on the second derivative of the yield function, which makes very difficult, and in some cases
impossible, to obtain an analytical expression to compute it. Oller (2002) proposes some
analytical approximations of the tangent constitutive tensor for some yield laws. However,
due to the complexity to obtain an analytical solution for the tangent constitutive tensor
and in order to take advantage of the full potential of the serial/parallel mixing theory, it is
necessary to develop a numerical procedure to obtain the tangent constitutive tensor for any
yield function used to simulate the composite constituents.

With this aim, in the following is proposed a numerical procedure to obtain the tangent
constitutive tensor that can be used for any constitutive law. This procedure is based on
performing a numerical derivation using a perturbation method. A similar approach to the
one described has been already used by Car et al. (1997) with promising results.

Perturbation method to obtain the tangent constitutive tensor

A perturbation method is used to obtain the tangent constitutive tensor, Ct, numerically
for each constituent material of the composite. The tangent constitutive tensor is defined as
follows:
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σ̇ = C
t : ε̇ (2.51)

This tensor can be written for isotropic and orthotropic materials, by reducing the tensors
to their matrix description:
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 (2.52)

The stress vector rate of equation 2.52 can be obtained as the sum of n stress vectors (j σ̇),
which are the product of the j component of the strain vector rate and the j column of the
tangent stiffness tensor. This is:

σ̇ ≡
n∑

j=1

j σ̇ =
n∑

j=1

ct
j · ε̇j (2.53)

with

ct
j =

[
ct
1j ct

2j . . . ct
nj

]T
(2.54)

Equation 2.53 can be used to obtain the j column of the tangent stiffness tensor, which is
unknown:

ct
j =

˙jσ

ε̇j
≡ δ jσ

δεj
(2.55)

The perturbation method consists in defining n small variations, or perturbations, of the
strain vector δεj , to obtain n stress vectors δ jσ that will be used in equation 2.55 to obtain
the numerical expression of the tangent constitutive tensor.

Numerical implementation of the tangent constitutive tensor

In a finite element code the material constitutive law provides the stress tensor σ and the
internal variables q associated with a given strain tensor ε. With the strain and stress vectors
resulting from the constitutive equation, a small perturbation is applied to the j component of
the strain tensor to obtain its associated stress tensor. The obtained stresses and the defined
perturbation are then used to compute the j column of the tangent constitutive matrix as
shown in equation 2.55. Figure 2.12 shows the flow chart of the algorithm implemented in
PLCd code.

In the procedure proposed, the smaller the perturbation value the better the approxima-
tion of the tangent constitutive tensor. With this consideration in mind, the perturbation
value defined for each component of the strain tensor is obtained by applying the following
procedure:

if εj 6= 0 → δεj = εj · 10−5

if εj = 0 → δεj = min {εk} · 10−5 ∀k = 1, n
(2.56)
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Figure 2.12: Flow chart of the perturbation method algorithm for obtaining the tangent
constitutive tensor

Selecting the perturbation value by using this method, the strain increment will always be
small enough to ensure that the stress variation is close to the computed value. However,
this procedure can provide perturbation values close to zero (i.e. when one of the strain
values is almost zero). This case will lead to an indetermination in equation 2.55. To prevent
this problem from arising, the following condition is imposed to ensure that the perturbation
value is sufficiently high.

δεj > max {εk} · 10−10 ∀k = 1, n (2.57)

This procedure provides an accurate approximation of the tangent constitutive tensor for any
constitutive law used and any yield surface; and ensures that the numerical process converges
satisfactorily.

2.3.6 Laminates using the serial/parallel mixing theory

Because most of the composites employed in structural applications are laminates, it is worth
to provide a detailed description of some procedures that can be used to simulate laminate
composites with the serial/parallel mixing theory. In this work, all simulations are performed
using a finite element method and laminates are treated either with solid elements or with
the lamination theory. The procedures used to couple the serial/parallel mixing theory with
these two finite element formulations are described in the following.

Simulation of laminates using solid elements

Before describing how laminates can be simulated using solid elements and the serial/parallel
mixing theory, it has to be said that the best way to simulate laminate composites, besides
performing a micro-model in which all layers are simulated with solid elements, is using a
lamination theory. This theory collapses all layers in a single gauss point taking into account
the fiber orientation and the layers staking sequence. However, there are some simulations
in which a lamination theory cannot be used, such the ones that will be shown in section
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2.4 and are also described in Mart́ınez et al. (2006, 2008). In these examples a reinforced
concrete structure is strengthened with different layers of carbon fiber reinforced polymers. It
will be shown that, although the composite reinforcement could be better simulated using a
lamination theory, the reinforced concrete structure must be simulated with three dimensional
solid elements to obtain a good representation of the mechanical phenomenons that take place.
Another reason for simulating laminates with solid elements is that, with solid elements, all
components of the strain and stress tensors are included in the formulation, which allows to
take into account effects like the composite failure due to interlaminar shear stresses (these
stresses are not always represented with the lamination theory).

Having explained the necessity to develop a procedure to simulate laminate structures with
solid elements, to develop this procedure the strains that are found in a three dimensional
solid element are analyzed. Figure 2.13 shows the strains found in a 3-D finite element with
three layers oriented at +0/+90/+0.

Figure 2.13: Strains in a 3D finite element representing a laminate

Because a solid finite element does not contain bending efforts, in-plane strains (ε1 and ε2)
must be equal for all layers contained in laminate depicted in figure 2.13; these layers present
a parallel behavior and the mixing theory can be applied to them. On the other hand, in
the out-of-plane direction (ε3), layers present a serial distribution and the performance of
the composite should be obtained using an inverse mixing theory. However, in a laminate
structure, out-of-plane strains are very small compared with the in-plane strains (in fact,
lamination theory considers them zero). With this assumption it can be concluded that the
error obtained in the simulation, if all layers are defined with the same strain value in ε3

direction, will be negligible.

Once defined an iso-strain behavior for all layers existing in the finite element, and assuming
that the error obtained with this approximation is negligible, the mixing theory can be applied
to the finite element to obtain its stresses, considering each layer a constituent material. The
stresses in each layer are computed using the serial/parallel mixing theory in order to take
into account the unidirectional behavior of fiber material in the layer.

The procedure proposed is summarized in the following algorithm:

1. For a given strain of the composite, the strain of each composite layer is obtained
applying the mixing theory.

cε = L1ε = L2ε = . . . = Lnε

2. The stress field in each layer is obtained using, either the serial/parallel mixing theory,
in case of layers with oriented fibres, either the classical mixing theory, in case of having
a layer with an homogeneous material. The classical mixing theory can be also applied
to layers with randomly oriented fibers, in which the stiffness provided by fibers is the
same in all directions.
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Lkε → Lkσ using C RoM or SP RoM

3. The stresses of the composite are obtained composing the stresses obtained in each
composite layer, according to the mixing theory:

cσ =
n∑

j=1

LjkLjσ

With the procedure described, it has to be noticed that to consider the bending effects
in laminate composites, it is necessary to simulate the laminate with more than one finite
element in its thickness. However, this problem is found always that a laminate structure is
simulated with solid elements, either if the material is a laminated composite or if it is a single
homogeneous material. The advantage of the formulation proposed is that laminates with
large number of layers, like the ones used in aeronautical applications, can be simulated with
solid elements grouping layers in stacks, which can reduce significantly the computational
time required to perform the simulation.

Coupling of a laminate formulation and the serial/parallel mixing theory

Because many of the structures made of composite materials are laminates, one of the most
used formulations to solve those is the classical lamination theory (Barbero, 1999; Reddy,
2003). This formulation defines the mechanical properties of each layer averaging the stiffness
of its constituents (fiber and matrix) and obtains the composite response integrating each
layer performance through the laminate thickness, taking into account the fiber orientation
and the stacking sequence of the layers in the laminate. On the other hand, when the
material non-linear response wants to be taken into account, the bests results are obtained
using formulations that obtains the composite performance from its constituent materials.
Among them, the serial/parallel mixing theory must be remarked. Therefore, a procedure
that couples both formulations will be able to take into account the laminate structural
configuration and also the material non-linear performance. In this section this procedure is
described.

The lamination theory obtains the deformation of each layer from the deformation of the
laminate middle surface and its curvature. This can be written as,

Li [εx εy γxy]
T = 0 [εx εy γxy]

T + Li z̄ 0 [κx κy κxy]
T (2.58)

with Li z̄ the position in the laminate of the middle surface of layer Li and 0[·] the values of
strains and curvatures of the middle surface.

Once knowing the strains in each layer, the lamination theory uses the constitutive equation
defined for the material to obtain the stresses in the layer. As the serial/parallel mixing theory
is implemented as a constitutive equation (that calls the constitutive equations of the com-
ponent materials to obtain the composite performance), no modifications are required to the
code except the implementation of the serial/parallel mixing theory as another constitutive
equation available. Therefore, the stresses in the layer are obtained using the serial/parallel
mixing theory:
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Li [εx εy τxy]
T → Serial/parallel mixing theory → Li [σx σy τxy]

T (2.59)

The stresses obtained for each layer are integrated along the thickness of the laminate to
obtain the laminate efforts. The serial/parallel mixing theory not only provides the stresses
for each layer of the laminate but also provides their constitutive tangent tensors. These
tensors are used to compute the laminae stiffness matrix, defined by matrices A, B and D;
which, according to Barbero (1999), can be obtained as,

A =
N∑

k=1

LiC
T
k tk B =

1

2

N∑

k=1

LiC
T
k tkz̄k D =

1

3

N∑

k=1

LiC
T
k

(

tkz̄
2
k +

t3k
12

)

(2.60)

being LiCT the tangent stiffness tensor of layer Li.

With this procedure, the composite laminate can be modeled taking advantage of both for-
mulations. The serial/parallel mixing theory provides the laminate non-linear performance
from the stress-strain relation of its constituents, while the classic lamination theory provides
the composite response taking into account the laminate structural configuration.

The coupling of the serial/parallel mixing theory with the classical lamination theory has
been already performed in the finite element code ComPack-Aero (CIMNE and Quantech,
2008), in the frame of the FEMCOM project (Oñate et al., 2007). This implementation
has been made together with Fernando Rastellini and Fernando Flores. An example of a
numerical simulation performed with the developed procedure is included in this work, in
section 3.5.

2.4 Application of the formulation proposed:
Reinforcement and retrofitting of RC structures with FRP

2.4.1 Introduction

In this chapter have been presented the most significant numerical procedures used nowadays
to perform numerical simulations of composite structures. Among them, the one used in this
work is the serial/parallel mixing theory. This formulation can take into account the compos-
ite non-linearities, produced by the material non-linear behavior of its components, without
increasing substantially the computational cost required to perform the simulation. These
two features converts the serial/parallel mixing theory into the most appropriate formulation
to perform large simulations of composite structures.

In order to show the potentiality and performance of the serial/parallel mixing theory, this
section contains three different finite element simulations of composite structures in which
the composite mechanical behavior is obtained with the serial/parallel mixing theory. The
simulations included are found in the civil engineering field and they solve the problem of
reinforcement and/or retrofitting of reinforced concrete (RC) structures using fiber reinforced
polymers (FRP). The results of the simulations have been already presented in the First
European Conference on Earthquake Engineering and Seismology (Mart́ınez et al., 2006) and
are also described in Mart́ınez et al. (2008). The problem has been solved in the framework
of the research projects: CEE-FP6 (LESSLOSSS Project, Ref. FP6-50544 (GOCE)) and
“Metodoloǵıa para la simulación numérica del comportamiento de estructuras de hormigón
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armado reparadas y/o reforzadas con materiales compuestos” (Ministerio de Fomento 2003-
2005).

Description of the problem solved

The reinforcement of reinforced concrete structures using fiber reinforced polymers consist
in attaching one or several layers of fiber reinforced polymers (usually carbon fibers) to the
structure to be reinforced. The reinforcement increases the strength of the structure in the
fiber direction of the region where it is attached. Figure 2.14 shows (a) the attachment of
the FRP and (b) the final FRP disposition, in the reinforcement of a bridge to increase its
bending strength.

a) Attachment of FRP to the structure b) Final disposition of the FRP

Figure 2.14: Bending FRP reinforcement of the Pont del Dragó (Pedelta, 1996)

First known application of fibre reinforced polymers to retrofit a reinforced concrete structure
corresponds to Meier (1995) in the retrofit of the Ibach bridge, in 1991, Lucern, Switzerland.
In Spain, this technology was first used in 1996, in the retrofit of the Pont del Dragó bridge,
Barcelona, by Pulido and Sobrino (1998). FRP where used, in both cases, because the
structural retrofitting had to be fast and could not stop the traffic underneath the damaged
bridge. The good results provided by the first applications of this new technology have lead
to an exponential increase of the reinforcements and retrofitting made with FRP, as well as an
increase in the number of applications in which FRP are used, such as columns reinforcements
or shear reinforcements.

The main advantages of using fibre reinforced polymers to retrofit RC structures instead of
traditional materials, such as steel, are:

1. FRP are lighter and their apply is easier than with traditional materials. These two
aspects simplifies the retrofitting process reducing its cost.

2. As the reinforcement does not require large machinery, it can be done without affecting
significantly the structure serviceability.

3. The reinforcement does not affect the structure capacity, as the FRP lightness does not
overload the existing structure.

4. FRP does not have the corrosion and damage problems usually found in steel material,
having improved mechanical characteristics.

5. FRP have better fatigue behavior compared to traditional materials.

6. This sort of reinforcements are more adaptable to different shapes, being able to apply
them to, for example, circular columns.
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The calculation of FRP reinforcements is based in considering the composite a single or-
thotropic material, which mechanical characteristics are obtained experimentally. With this
assumption, its calculation is done using simple formulations based on the elasticity theory.
These formulations can be found in the manufacturers manuals (Sika, 2008; Bettor, 2008).

All existing knowledge about structural reinforcement and/or retrofitting of RC structures
with FRP is based in experimental simulations. These simulations deal with different sort
of reinforcement applications as can be bending reinforcement (Spadea et al., 1998), shear
reinforcement (Khalifa and Nanni, 2002; Li et al., 2001), columns wrapping (Li et al., 2006),
anchorage of the reinforcement to the existing structure (Khalifa et al., 1999), etc.

Under this scope, a special mention must be done about the EMPA (Swiss Federal Labora-
tories for Materials Testing and Research), where most of the initial experimental work was
performed (Oller, 2005). It also has to be mentioned the work developed at the Universitat
Politècnica de Catalunya (UPC), Departament d’Enginyeria de la Construcció, where three
different PhD thesis have been written dealing with the structural reinforcement of concrete
structures using CFRP: Avilés (2000), Alarcón (2002) and Oller (2005). These three works
deal with the problem, also, using an experimental point of view.

In despite of all existing research made about FRP reinforcements, few of it is found in
which the problem is treated using a non-experimental approach. And, the non-experimental
studies found, are based on analytical formulations focused in an specific problem of FRP
reinforcements. This is the case of the paper by Rabinovitch (2004), in which an analyti-
cal formulation, solved using numerical techniques, is developed to obtain the compression
strength of the reinforcement. Thus, in the scope of numerical simulation of FRP reinforce-
ments, no information is found in literature.

Therefore, the simulations included in this section not only will show the potentiality of the
serial/parallel mixing theory to perform numerical simulations of large structural composite
problems; but they also will provide a new approach to solve the problem of reinforcement
and retrofitting of RC structures with FRP. Once having proved the validity of this approach,
it can be used to perform numerical simulations of different FRP reinforcement configurations
to obtain the better retrofitting solution for a concrete case under study.

Contents of this section

Before describing the simulations performed, in next section is described a new algorithm that
has been developed to perform numerical simulations of structural retrofitting. In structural
retrofitting, the FRP is applied to the structure when this last one has reached a certain level
of damage. Afterwards it will be shown the simulation of a RC beam reinforced with FRP
to increase its bending strength. This simulation has been used to validate the formulation
proposed. The same beam used to validate the formulation is used to show the performance
of the construction stages algorithm developed to perform retrofitting simulations. Finally,
the full potentiality of the formulation is shown with the simulation of a framed structure
in which different FRP reinforcements are applied to the beam, column and beam-column
connecting joint.

2.4.2 Retrofitted structures. Construction stages algorithm

There are many situations in which an existing structure can be damaged and can require
to be retrofitted. The damage in the structure can be caused by several reasons, such as a
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collision (Pulido and Sobrino, 1998) or after an earthquake (Gómez Soberón et al., 2002).
Therefore, structural retrofitting is probably one of the main applications of CFRP in civil
engineering structures.

In order to simulate a structural retrofitting, it is necessary to add the CFRP reinforcement
once the structure is already damaged. With this aim, a construction-stages algorithm is
implemented in the PLCd code (CIMNE, 2008), so that it is possible to add or remove
structural elements during the calculation process.

This algorithm enables the code to run the numerical simulation for the desired load cases,
with only some structural elements active in the structure. Being possible to add new elements
at a given load case, without interrupting the calculation process. These elements must be
free from strains and stresses when they are activated.

Figure 2.15 shows how this solution scheme is used when simulating a retrofit process. The
example shown corresponds to a beam to which a bending moment is applied. The beam is
reinforced with CFRP when the first tensile cracks appear on the bottom edge.

Figure 2.15: Retrofit process of a beam with a bending moment

The finite element method is based on the numerical integration of the virtual work equation;
this integration implies to solve the problem:

K X = R (2.61)

where K is the global stiffness matrix, X is the vector of nodal displacements and R is the
vector of external forces applied to the structure. Once the nodal displacements have been
found, the strains in each element, εe, are computed using the following equation:

εe = Be Xe (2.62)

where Be is the element deformation matrix.

Finally, once the element strains have been obtained, the following equation is used to com-
pute the stresses in each element:

σe = C
e εe (2.63)

where Ce is the element constitutive matrix.

The stress tensor in equation 2.63 corresponds to the elastic stresses. This expression is
modified in a material non-linear analysis. However, for the sake of simplicity, the explanation
of the procedure is limited to the linear case.
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Considering that there are n load cases in the calculation process, equations 2.62 and 2.63
can be re-written as:

εe = εe
1 + εe

2 + . . . + εe
n = Be Xe

σe = σe
1 + σe

1 + . . . + σe
n = Ce εe

(2.64)

If new elements are introduced into the structural mesh during finite element analysis (i.e.
in the second load case), they will take values of εe

1 = 0 and σe
1 = 0; and the strains in the

element will correspond only to the second load case:

εe = εe
2 = Be Xe (2.65)

However, the element displacement introduced in equation 2.65 corresponds to the total
displacement of the structure. This means that the strains in the new element correspond
to the displacements of the structure during the first and the second construction stages.
The same applies to the stress tensor. Consequently, the new elements try to adapt to the
global deformation of the structure by adopting strains that are greater than the ones that
correspond to the new load increase.

By considering all of the structural elements during all construction stages, it is possible to
prevent this situation. Then, it is necessary to separate the strain tensor into two components,
one active (εA) and one non-active (εNA), that is:

εe = εe
A + εe

NA (2.66)

When the element is not present in the structure, all strains are included in the non-active
tensor:

εe = εe
NA = Be Xe and εe

A = 0 (2.67)

and, if the element is active, equation 2.66 is used to calculate the active strain tensor:

εe
A = εe − εe

NA = Be Xe − εe
NA (2.68)

With this procedure, only the strains that correspond to the construction stage in which the
element is active are considered; as these are obtained removing the strains of the previous
construction stage (non active strains) from the total strains.

Element stresses are computed by considering only the active strains:

σe = C
e εe

A (2.69)

Thus, no stresses are obtained if the element is non-active.

The algorithm must take into account that the elemental stiffness matrices (Ke) of any non-
active elements present in the structure are included in the global stiffness matrix K. As
a result, these elements contribute to the global stiffness of the structure. The elemental
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stiffness matrices of the non-active elements should therefore be nullified at the beginning of
the construction stage to prevent this contribution from affecting the results.

Figure 2.16 shows a flow chart of the construction-stages algorithm implemented in the PLCd
code.

Active element
e

K

Non-Active element 0e
K

Assemble K
Solve equation system: RKX

For each element: 
eee

UB

Active element:
e

NA

ee

A
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NA

e

A ;0

e

A

ee
C

Figure 2.16: Flow chart of the construction stages algorithm

This procedure has been implemented in the PLCd code and it provides correct results, as
will be shown in the retrofitting beam simulation included in this section.

2.4.3 Validation of the formulation: Beam reinforcement

To validate the ability of the proposed formulation to perform large simulations of composite
materials, a numerical model of a RC beam reinforced with FRP has been developed. The
beam considered is the same as the one defined by Spadea et al. (1998). The numerical
results obtained with PLCd are compared with the experimental results given in Spadea
et al. (1998).

Beam and model description

The structure used to validate the formulation is a simply supported beam with two equidis-
tant vertical loads that produce a constant bending moment between them. Figure 2.17
shows the beam geometry and the reinforcement added to it.

Figure 2.17: Geometric definition of the studied beam
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The experimental simulations reported in Spadea et al. (1998) consist in using a displacement-
control mechanism to apply a load until the beam fails. Different CFRP reinforcement
configurations are applied to the beam to obtain the force-displacement response for each
one. Two of these results are used to validate the proposed numerical model: the first is
for the non-reinforced beam and the second is for the beam with the CFRP reinforcement
displayed in figure 2.17. The reinforcement applied is 1.2 mm thick and composed of 66% of
carbon fibers, oriented along the longitudinal axis of the beam, and 34% of polymeric matrix.
The experimental results are compared with the numerical results for the developed models.
These are:

Sp3D-R0: Beam without CFRP reinforcement

Sp3D-R1: Beam with bending CFRP reinforcement

The constitutive performance of each composite material used to simulate the beam is de-
termined by combining the constitutive behaviors of their constituent materials. Table 2.1
shows the simple materials considered in the models and their mechanical characteristics. In
this table, E stands for the Young modulus, ν for the Poisson modulus, σC and σT for the
yielding compression and tension stresses, respectively, and GC and CT for the energy release
rates per unit area in compression and tension.

Material
Yielding E ν σC σT GC GT

criterion [MPa] [MPa] [MPa] [kJ/m2] [kJ/m2]

Concrete
Mohr-

2.5 · 104 0.2 30.0 3.0 5.0 0.5
Coulomb

Steel
Von-

1.0 · 105 0.0 270 270 2000 2000
Mises

Polymeric Mohr-
1.2 · 104 0.2 87.5 25.0 10.5 3.0

matrix Coulomb

Carbon Von-
1.5 · 105 0.0 2300 2300 2000 2000

fibers Mises

Table 2.1: Mechanical characteristics of the constituent materials defined in the beam models

Concrete and matrix are simulated by a damage formulation. Steel and carbon fibers are
simulated by a plastic law. Young modulus of steel has been reduced to take into account
the effect of fiber debounding (Car et al., 2002). Steel plastic evolution is defined by an
initial hardening law until it reaches a peak of 435 MPa, at which point the hardening law
is replaced by a softening law. Figure 2.18 shows the one-dimensional strain-stress evolution
of each material considered in the simulation in the case of tensile stresses.

The numerical models developed are based on hexahedral elements. Six different composite
materials are defined by a combination of six different constituents: concrete, matrix, fibers
and three steel materials. Different steel materials are defined according to their orienta-
tion because the direction of the fibrous material is required as a material property in the
serial/parallel mixing theory. Transversal and vertical steel refer to the steel stirrups and
longitudinal steel refers to the bending steel reinforcement.

Table 2.2 contains the definitions of each composite material according to the volumetric
participation of their constituents. Figure 2.19 shows the distribution of these materials in
the beam model and the mesh defined for the simulation. Only half of the beam has been
modeled because of the symmetry at midspan.



60 2.4 Reinforcement and retrofitting of RC structures with FRP

Concrete Steel

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.02  0.04  0.06  0.08

T
en

si
le

 S
tr

es
s 

[M
P

a]

Strain

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  0.2  0.4  0.6  0.8  1  1.2

T
en

si
le

 S
tr

es
s 

[M
P

a]

Strain

Matrix Fiber

 0

 5

 10

 15

 20

 25

 0  0.1  0.2  0.3  0.4  0.5

T
en

si
le

 S
tr

es
s 

[M
P

a]

Strain

 0

 500

 1000

 1500

 2000

 2500

 0  0.1  0.2  0.3  0.4  0.5

T
en

si
le

 S
tr

es
s 

[M
P

a]
Strain

Figure 2.18: Strain-stress evolution of each constituent material considered in the analysis

Constituent Composite materials
materials Mat-01 Mat-02 Mat-03 Mat-04 Mat-05 Mat-06

Concrete 1.00 0.57 0.99 0.98 0.99

Longitudinal steel 0.42

Transversal steel 0.01 0.01

Vertical steel 0.01 0.01 0.01

Polymeric matrix 0.34

Long. carbon fibers 0.66

Table 2.2: Definition of composite materials. Volumetric participation of each constituent
material in the composite

MAT-01

MAT-03

MAT-02

MAT-04

MAT-05

MAT-06

Figure 2.19: Definition of the mesh and composite materials of the simulated beam. The
model assumes symmetry at mid-span

Figure 2.19 also shows the potentiality of the serial/parallel mixing theory, together with a
finite element formulation, to simulate composite structures: Complex material distributions
in the cross-section of the beam are taken into account without having to model each single
element independently, reducing the computational cost of the simulation without losing its
accuracy.
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Comparison between the numerical and experimental results

The force-displacement curves (capacity curves) obtained in each case (figure 2.20) are used
to compare the numerical and experimental models. The displacement corresponds to the
point at which the load is applied. The agreement between the results is good enough to
indicate that the formulation is capable to deal with this sort of composite simulations.
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Figure 2.20: Comparison between numerical and experimental capacity curves

The agreement between the experimental and numerical results can be observed not only in
the structural response of the beam but also in its failure mode. The failure modes reported
by Spadea et al. are:

No reinforced beam: Tension steel yielding and concrete crushing.

Reinforced beam: Sudden and total loss of load capacity; explosive debonding of CFRP
plate.

The failure mode in the non-reinforced beam model (Sp3D-R0) is the same as the one obtained
in the experimental test. This can be seen in figures 2.21 and 2.22, which show the damage to
the concrete and the plastic damage to the steel reinforcement for the final calculation step
and for the most severely damaged beam section. These figures show that the steel has started
to yield and that the compressed concrete has also reached its limit stress (onset of concrete
crushing). Under these conditions the transversal section cannot develop more stresses and
the code cannot determine a valid solution for the current load step. This situation can be
interpreted as beam failure.

The failure mode of the CFRP reinforced beam model (Sp3D-R1) is similar to that of the
non-reinforced beam model (Sp3D-R0). In the most severely damaged section the entire
concrete reaches its elastic limit stress and the steel yields (figure 2.23). The developed
model assumes a perfect bond between the concrete and the reinforcement. Under this
assumption, it is impossible to simulate the explosive debonding of the CFRP plate observed
in the experimental test. However, if debonding occurred, the beam would suddenly lose load
capacity and the results would be identical to the experimental ones.

CFRP reinforcement increases the tensile strength of the beam and reduces the crack opening,
which increases the load capacity of the beam. Crack opening increases exponentially in the
most severely damaged section of the non-reinforced beam model (Sp3D-R0) when steel
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Figure 2.21: Damage to the concrete at beam failure and detail of the most severely damaged
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Figure 2.22: Plastic damage to the steel at beam failure and detail of the most severely
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Figure 2.23: Damage at the cross-section supporting heavier loads at beam failure. Sp3D-R1
model

yielding begins. This increase is not observed when the beam is reinforced with CFRP. This
can be seen in figure 2.24 which shows the relative displacement between the nodes found on
either side of the most severely damaged section in both models. The strength is increased
and crack opening is reduced because the carbon fibers are still under elastic conditions; in
fact, they are at less than 30% of their elastic capacity, although damage has already started
to appear in the polymeric matrix (figure 2.25).
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Figure 2.24: Crack opening in the most severely damaged section
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Figure 2.25: Stress state in CFRP reinforcement. Sp3D-R1 model

S/P mixing theory performance

The models developed for validating the code are also used study the performance of the
serial/paralel mixing theory. Fibrous materials work in their longitudinal direction, conse-
quently the stresses should be greater in this direction. The serial/parallel mixing theory
should simulate this behavior. To verify this, the performance of steel stirrups is studied
herein. Beam strains in transversal direction tend to increase in the upper bound of the
cross-section and to decrease in its lower bound due to Poisson effects. Concrete confinement
reduces this effect by means of steel stirrups. Figure 2.26 shows the transverse stresses in
the stirrups, which correspond to stresses in the longitudinal direction of the stirrups. This
demonstrates that the model is capable of simulating the confinement of the concrete.

The serial/parallel rule of mixtures is providing correct results if the global longitudinal
stresses in the stirrups (transversal stresses according to their orientation) are the same as
in the concrete. This situation is achieved, as shown in figure 2.27. Moreover, steel stresses
in the longitudinal direction of the beam are lower than the stresses found in the transverse
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Figure 2.26: Transverse stresses in transverse steel stirrups. Sp3D-R0 model

direction (which corresponds to the orientation of the studied stirrups).

Longitudinal stresses in stirrups

Longitudinal stresses in concrete

Figure 2.27: Longitudinal stresses in concrete and in steel stirrups. Sp3D-R0 model

2.4.4 Beam Retrofitting

Two different numerical models have been developed to study the effect of retrofitting a struc-
ture, depending on the existing level of damage in the beam when the CFRP reinforcement
is applied. The beam retrofitted is the same that has been used in previous section. The
models developed are:

Sp3D-Rt2: The CFRP reinforcement is applied when the damage appears in the concrete
material.

Sp3D-Rt3: CFRP reinforcement is applied when the steel starts to yield

Results obtained with these two models are compared with those obtained when the beam is
not reinforced (Sp3D-R0 model) and when the beam is reinforced from the beginning of the
loading process (Sp3D-R1 model). Figure 2.28 shows the capacity curves for each model.
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Figure 2.28: Comparison of CFRP reinforcements and retrofitting using capacity curves

These results show that the structural stiffness does not depend on the point at which the
reinforcement is applied to the structure. The structural stiffness obtained when the CFRP
reinforcement is applied after the steel has begun to yield (Sp3D-Rt3) does not differ sig-
nificantly form the structural stiffness obtained after steel yielding in the reinforced model
(Sp3D-R1). However, figure 2.28 also shows that retrofitted structures suffer greater defor-
mation and damage than structures that are reinforced during the original construction. The
resulting damage reduces the load capacity of the beam and the deformation can lead to a loss
of serviceability (i.e. when a load of 25 kN is applied to the structure, the beam deformations
are 45% greater in the retrofit model Sp3D-Rt3, than in the reinforced model Sp3D-R1).

This simulation shows how important is to reinforce the structure when a low level of damage
is observed. Even if the structure stiffness does not vary if FRP is applied for reinforcement
or retrofitting, the structural deformations and the stresses are greater if FRP is applied when
the structure is already damaged. The simulation has also proved the good performance of
the construction stages algorithm, developed to take into account pre-existing damage in the
RC structure before applying the FRP reinforcement.

2.4.5 FRP Reinforcement of a RC framed structure

The main aim of this simulation is to apply the formulation developed to verify the ability of
CFRP reinforcements to increase the strength of concrete frame structures. The connecting
joints between the beams and columns can be often subject to greater stress than other zones
of concrete frame structures and in most cases these joints are the cause of structural weak-
ness. The frame joint is reinforced in the models developed for this study with two different
CFRP configurations to analyze the strength mechanisms developed by the reinforcement
to increase the frame strength and to determine which type of reinforcement configuration
yields better results.

Model description

The concrete frame to be studied is designed to reflect the most common geometry and steel
reinforcements used in this type of construction. Figure 2.29 shows the geometry considered
and figure 2.30 shows the steel reinforcement and the CFRP reinforcement that will be
applied to the frame joint. The dimensions of the corss-section of the beam and the steel



66 2.4 Reinforcement and retrofitting of RC structures with FRP

Figure 2.29: Geometric definition of the frame

Figure 2.30: Reinforcements of the concrete frame

reinforcement are intended to ensure structural failure close to the joint. The height of the
beam is smaller than the width and less steel reinforcement is used for the beam than for
the column. This will increase the effect of the CFRP on in the frame joint. The structure
is loaded by a horizontal force P applied in the middle of the frame joint (see Figure 2.29).

Two dimensional and three dimensional models have been developed for the concrete frame.
The 2D models have been used to calibrate the mesh, as they require less computational
effort than the 3D models. Results obtained with the 2D models are compared with those
of the 3D models to asses the accuracy of each type of simulation. Three different structure
models have been developed to study the effect of CFRP reinforcements on the frame joint:

2DF-noR and 3DF-noR models: Two and three dimensional models of the concrete frame
without CFRP reinforcement

2DF-R and 3DF-R models: Two and three dimensional models of the concrete frame
with upper and lower CFRP reinforcements

2DF-LR and 3DF-LR models: Two and three dimensional models of the concrete frame
with upper, lower and lateral CFRP reinforcements.

The constituent materials of the different composites in each model are the same as those
defined for the beam simulation (table 2.1). The CFRP reinforcement is 1.2mm thick and is
composed of 66% of carbon fibers and 34% of polymeric matrix. The fibers in the upper and
lower reinforcements are aligned with the longitudinal axis of the structure. Two layers are
applied to the frame to provide lateral reinforcement, in which the fibres are oriented at +0◦

and +90◦ with respect to the horizontal.
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2D results

The capacity curves obtained for each model (figure 2.31) are used to analyze the structural
behavior of the frame joint with the different types of reinforcement. The x axis shows the
horizontal displacement of the point to which the load is applied and the y axis shows the
load applied. The displacement depends on the column, the beam and the joint stiffness.
Any increase in the structure stiffness shown by the force-displacement graph will reflect an
increase of the joint stiffness as a result of the CFRP reinforcement because the column and
the beam are not modified in the different models.
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Figure 2.31: Capacity curves obtained with the 2D models

Figure 2.31 shows that the upper and lower CFRP reinforcements (2DF-R model) do not
significantly improve the frame behavior. A substantially improvement is only found when
the lateral reinforcement is applied to the concrete frame. All three curves contain a region
in which the load is reduced, after which it begins to increase again. These points reflect
the point at which a plastic hinge develops in the structure. The structure adopts a new
strength mechanism at this load step, which increases its load capacity. If the load applied
to the structure when the plastic hinge is developed is considered, results show that the
lateral reinforcement (2DF-LR model) increases the structural load capacity by 25%, when
compared with the non-reinforced model (2DF-noR). This increase is reduced to 4% if the
structure is only reinforced with upper and lower CFRP.

The effects of each type of reinforcement can be better understood by studying the points
at which the plastic hinges are formed. Figure 2.32 shows the longitudinal strains for each
model at the last computed step. The cross-sections in which the plastic hinges are formed
are subjected to the greatest strain.

Figure 2.32 shows the plastic hinge moves from the beam to the inner part of the joint, where
no reinforcement is applied if only the upper and lower CFRP reinforcements are included
into the structure. Therefore, the upper and lower CFRP reinforcement does not change
the beam behavior substantially; once the hinge has been formed, both structures behave
similarly (figure 2.31). On the other hand, when the lateral reinforcement is applied to the
structure, it limits damage in the frame joint and causes the plastic hinge to move to the
cross-section at which no CFRP reinforcement is applied. This increases the load capacity
and the stiffness of the structure.
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Figure 2.32: Plastic hinges in the concrete frame. 2D models

3D results

The capacity curves are also used to analyze the results obtained with the 3D models (figure
2.33). The main difference between the 3D and the 2D results is that the 3D models are
stiffer and can support greater maximum loads than the 2D models. This is due to the fact
that the concrete confinement is reproduced more accurately by the 3D models because the
steel stirrups are modeled taking into account their 3D distribution rather than only one
of their dimensions. This confinement enables the concrete to support greater longitudinal
stresses and slows the spread of damage. Both of these improvements increase the strength
and stiffness of the structure.
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Figure 2.33: Capacity curves obtained with the 3D models

Figure 2.33 shows that the plastic hinges appear at the same load and displacement in the 3D
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non-reinforced model (3DF-noR) and in the upper and lower reinforced model (3DF-R) as
in the 2D lateral reinforced model (2DF-LR), due to the increased strength of the concrete.
However the plastic hinges appear earlier in the reinforced model than in the non-reinforced
one in the three dimensional simulation. This effect is illustrated by figure 2.34, which shows
the maximum strains in the non-reinforced beam model (3DF-noR) before and after the
formation of the plastic hinge, and figure 2.35, which shows the same results for the upper
and lower reinforced model (3DF-R).
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Figure 2.34: Crack evolution in the 3DF-noR model
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Figure 2.35: Crack evolution in the 3DF-R model

These figures show that the plastic hinge develops in almost the same cross-section in both
models. However, since this cross-section is closer to the initial point of damage in the upper
and lower reinforced model than in the non-reinforced model, the code finds faster the crack
path in the reinforced case. Therefore, although CFRP reinforcement increases the joint
stiffness, in this case the load that causes the plastic hinge to appear is lower when the joint
is reinforced than when no reinforcement is applied.

More differences are found when the three dimensional model is compared with the two
dimensional model for the case in which lateral CFRP reinforcement is applied to the frame
joint (3DF-LR model). The first difference is that the capacity curve does not show the
formation of a plastic hinge. This is because no section is completely damaged when the code
no longer converges.

However, the main difference can be observed in the most severely damaged section. The
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strains in the lateral sections of the frame joint (figure 2.36a) are similar to the ones seen in
the 2D case: they are greater in the cross-section where the CFRP reinforcement ends than in
the frame joint. But, when the strains in a longitudinal section of the structure are analyzed
(figure 2.36b), it can be seen that the plastic hinge is developed in the frame joint. Two
dimensional models assume that the CFRP reinforcement is applied through the entire cross-
section whereas it is only applied to the lateral surfaces. Consequently, the reinforcement can
prevent structural cracks from appearing on the surface of the frame joint but cannot protect
the inside of the joint. This effect can be seen more clearly in figure 2.37, which shows a top
view of the strains in the column section just below the frame joint.

0.026

0.023

0.019

0.016

0.012

0.009

0.005

0.002

-0.002

-0.005

STRAINS

Figure 2.36: Plastic hinge in 3DF-LR model. Lateral view
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Figure 2.37: Elements with larger deformations in 3DF-LR moldel. Top view

These last two figures show that same structural failure occurs regardless of the CFRP rein-
forcement configuration applied. Therefore, it can be concluded that lateral CFRP reinforce-
ment does not prevent the appearance of cracks in the joint and the subsequent formation of
a plastic hinge, but it can delay the load step during which the first cracks appear and reduce
the speed with which they propagate. These both effects increase the load of the frame by
20% when the horizontal displacement is 3.0 cm, which makes this type of reinforcement the
optimum for strengthening the column-beam joint of concrete frame structures.

2.5 Conclusions

This chapter has shown the most common numerical procedures used to simulate composite
structures. Most of them obtain the mechanical properties of the composite material from the
elastic characteristics of its constituents, usually fiber and matrix. The composite failure can
be determined by different discontinuity thresholds such as Tsai-Hill or Tsai-Wo. Although
these procedures provide accurate results in the elastic range, they fail when the composite
constituents reach their elastic limit strength. To solve this problem, two different meth-
ods have been presented, the homogenization theory and the mixing theory (and its most
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recent version, the serial/parallel mixing theory). These two theories obtain the composite
mechanical performance from the mechanical performance of its constituent materials, being
possible to obtain the material non-linear performance of the composite once its components
have reached their yield stress.

Due to the high computational effort demanded by the homogenization theory, in order
to perform large simulations of composite structures, it has been concluded that the best
method available, capable to take into account the composite material non-linearities, is the
serial/parallel mixing theory. It has been shown that this theory, that can be understood as a
constitutive equation manager, can be implemented in a finite element code and can be also
coupled with the classical lamination theory. Both implementations have been performed in
PLCd and ComPack-Aero codes, respectively.

The serial/parallel mixing theory is an improved formulation, based on the first mixing theory
developed by Trusdell and Toupin, in which the unidirectional performance of fiber material
is taken into account defining an iso-strain condition in fiber direction (parallel direction)
and an iso-stress condition in the remaining directions (serial directions). It has also been
described an enrichment of this theory that improves the performance of the composite in
its serial directions. The serial/parallel mixing theory has been also improved with the
implementation of a perturbation method to perform a numerical derivation to obtain the
tangent constitutive tensor of the composite constituents. This method provides a good
approximation to the tangent constitutive tensor, independently of the constitutive law used
to simulate the composite constituents.

Finally, three different numerical simulations have been performed to prove the potentiality
of the numerical procedure proposed to solve composite structures, taking into account their
material non-linearities. This is, the use of the serial/parallel mixing theory together with the
finite element method. The simulations have been used to solve the problem of reinforcement
and retrofitting of reinforced concrete (RC) structures using fibre reinforced polymers (FRP).
Hereafter are described some conclusions obtained from the solution of this problem.

• The results of the simulations developed show that the numerical procedure proposed
to simulate FRP reinforcements of RC structures performs well. The results are in good
agreement with existing experimental results. The code used (PLCd) is prepared to
compute real structures that are reinforced or retrofitted with CFRP. Last simulation
presented has shown that different numerical simulations with different FRP reinforce-
ments can be performed with PLCd in order to obtain the most suitable reinforcement
configuration for the problem under study.

• It has been developed a construction stages algorithm in order to be able to simulate
the effect of the FRP reinforcement in already damaged RC structures. This algorithm
has shown how important is to reinforce the structure when a low level of damage is
observed. Even if the structure stiffness does not vary if FRP is applied for reinforce-
ment or retrofitting, the structural deformations and the stresses are greater if FRP is
applied when the structure is already damaged.

• The frame simulations have shown that it is necessary to use three dimensional elements
to correctly simulate the behavior of the structure. Using two dimensional elements
implies assuming that the materials are evenly distributed through the cross-section.
However, this assumption can cause overestimation of the structural performance if the
structural components are not evenly distributed, as is the case with the lateral rein-
forcements in the 2D frame structure simulation. Nevertheless, if the condition of an



72 2.5 Conclusions

evenly distribution of the elements through the cross-section can be assumed, 2D simu-
lations provide almost the same results as 3D simulations and reduce the computational
cost substantially.

• Finally, all of the simulations have demonstrated that the performance of the structure
improves when it is reinforced or retrofitted with fiber reinforced polymers. The degree
of improvement depends on the type and configuration of the reinforcement used and
on the existing level of damage in the structure when it is applied. In the particular
case of the RC frame structure, the best CFRP joint reinforcement configuration is to
wrap the entire joint by applying the upper, lower and lateral CFRP reinforcements.
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Zalamea, F. (2001). Tratamiento numérico de materiales compuestos mediante la teoŕıa de
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l’Enginyeria (RMEE) – UPC. Directors: Juan Miquel Canet and Sergio Oller.

Zienkiewicz, O. C. and Taylor, L. R. (1991). The finite element method. McGraw–Hill Book
Company, London, UK.





Chapter 3

Delamination in composites





3. Delamination in composites 81

3.1 Introduction

The use of new materials in structural applications implies dealing with new failure processes,
not existing in traditional materials. One of these is the delamination phenomenon found in
laminated composites. The lost of adherence between the different layers of the composite
leads to a reduction of the section strength and stiffness that can finish in a structural failure.
Figure 3.1 shows the delamination found in a carbon/epoxy composite under compression
efforts.

Figure 3.1: Delamination due to compression in a carbon/epoxy composite (Paiva et al.,
2005)

The importance of the delamination phenomenon is demonstrated by the amount of authors
that have developed theories and formulations to deal with it. All authors that have studied
the problem agree in characterizing the delamination process by two main phenomenons, the
crack initiation and its propagation along the composite. Crack initiation can be obtained
by comparing the strain–stress state of the material, in the region where delamination takes
place, with a critical one (Jansson and Larsson, 2001; Camanho and Dávila, 2002; Turon
et al., 2006; Balzani and Wagner, 2007) or in terms of the traction versus relative displacement
(Borg et al., 2002, 2004; Pinho et al., 2006). And the delamination propagation is usually
treated opening the mesh to simulate the crack effect where it takes place. To open the mesh
different procedures are proposed. One of them is the virtual crack closure technique (VCCT)
(Krueger, 2004), based on the assumption that when a crack is extended, the energy required
to open the crack is the same required to close it. Another procedure, each time more used,
is the use of a cohesive zone model (Camanho and Dávila, 2002). The cohesion elements
are placed in the interface of the layers that can suffer delamination and its propagation is
obtained using a damage mechanics formulation.

Besides the differences among the existing formulations found in literature to simulate the
delamination phenomenon, all of them agree in defining a special formulation where the
delamination takes place, with interface elements (Balzani and Wagner, 2007), cohesive zones
(Camanho and Dávila, 2002) or coincident nodes (Borg et al., 2002). This approach predefines
the path that will follow the delamination fracture or, if this path is unknown, forces to place
these elements between all laminate layers, which becomes computationally very expensive.

In contrast to the scope used in known literature to solve the delamination problem, this
work uses the continuum mechanics to simulate the delamination initiation and propagation,
without making any distinction of the elements in which delamination takes place. The
serial/parallel mixing theory (SP RoM) developed by Rastellni et al. (2007) is used to obtain
the composite performance and to simulate the delamination process. This theory is based
on the definition of some compatibility equations between the strain–stress states of the
composite constituent materials. In the case of a composite made of fibre and matrix, what
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the serial/parallel mixing theory does is to impose an iso–strain condition on the parallel
direction, usually the fibre direction, and a iso–stress condition on the serial direction, usually
the remaining directions of the stress and strain tensors. With this scope, if the matrix
structural capacity is lost, the SP RoM reduces the structural capacity of fibre material in the
serial directions due to the iso–stress condition. Thus, it is not possible for the composite layer
to develop shear or transversal stresses, less to transmit them to the surroundings elements.
The structural performance of a material in which serial stresses are zero corresponds to the
performance of a delaminated material.

To obtain this structural behavior, the matrix material has to loose its strength for a certain
stress state. This lost of strength must be permanent in order to simulate the real crack
produced by delamination in the material. This is achieved with a damage formulation
controlled by the fracture energy of the material.

With the proposed procedure, delamination is simulated straightforward, without needing to
develop special elements neither to define where the delamination will take place. Although
this methodology provides its best when it is applied to finite element simulations that use
solid elements, a new procedure is described capable to characterize the delamination onset
in simulations that use a lamination theory. This is an important achievement because
most of the composites that fail due to delamination are laminates and the most efficient
procedure to simulate them is with a lamination theory, specially if large structural problems
are solved. The procedure proposed is capable to localize delamination failures in these sort
of simulations, without increasing substantially the computational cost required.

This chapter contains a first section (section 3.2) that describes the delamination problem
and the different experimental and numerical procedures used nowadays to characterize it. In
this same section is also included a detailed description of the procedure proposed to solve the
delamination problem, using the serial/parallel mixing theory developed by Rastellni et al.
(2007). Afterwards, in section 3.3, is described the damage formulation used to characterize
the delamination onset and propagation. This formulation has been improved with the ad-
dition of a friction parameter that takes into account the residual strength provided by the
friction between the surfaces found at each side of the delamination fracture.

Finally, the validity of the approach proposed is proved with two different numerical simula-
tions. The first simulation compares the results obtained from the experimental test made to
obtain the mode II fracture energy of a composite with the results obtained from a numerical
simulation of the same model. The experimental test is the End Notch Flexure (ENF) test.
The results of this simulation have been already presented by Mart́ınez et al. (2007) in the
ECCOMAS thematic conference on mechanical response of composites (Composites 2007).

The second simulation corresponds to a ply drop-off test. This simulation is also used to
present the new methodology proposed to take into account the delamination failure in large
scale simulations of composite laminated structures using the lamination theory. The new
procedure presented has been developed for the FEMCOM project (An innovative finite
element method for non linear analysis of composite structures – CIMNE–AIRBUS) and is
included in the technical report Martinez et al. (2007).

3.2 Delamination in composite materials

According to Bolotin (1996), the first study of the delamination phenomenon was made
by Obreimoff (1930) who asses the surface energy in splitting mica (an anisotropic natural
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laminate similar to modern composites). From this first study several authors treated with
the problem but it was not until late 1960s that serious studies of delamination phenomena
in composites began (Pagano and Schoeppner, 2000). Since then, a large amount of research
has been made on the delamination problem, experimental and numerical, dealing with the
delamination characterization, initiation and stability. A detailed survey of the historical
treatment of the delamination problem and of the procedures used nowadays to deal with it
can be found in Pagano and Schoeppner (2000), Blanco (2004) and Turon (2006).

This section provides a brief description of the delamination problem and of the experimental
and numerical methods existing nowadays to treat it. The purpose sought is to give some
hints about the actual knowledge without describing deeply any procedure, as these can be
found in the fonts previously cited. Afterwards is described the new approach proposed in
this work to characterize and simulate delamination. It will be shown that, although this
new approach uses some of the formulation considered by other authors to simulate the de-
lamination phenomenon, such as a continuum mechanics damage formulation, the procedure
proposed is completely different. The delamination phenomenon is simulated straightforward
with the developed formulation to characterize composite materials, the serial/parallel mix-
ing theory, without the need of developing special elements or adding numerical procedures
to the simulation, such as contact or remeshing techniques.

3.2.1 Description of the delamination problem

Delamination is a critical failure mode in composites, not because it causes the structure to
break, but because it divides the composite in different layers not connected between them,
which modifies the structural performance of the composite leading to its failure because
of other mechanical phenomenons such as buckling, excessive vibration or loss of fatigue
life (Pagano and Schoeppner, 2000). With this scope, Bolotin (1996) defines two kinds of
delaminations: internal and near the surface. While the first ones affect the whole composite
performance, the second ones only affect the external layers of the composite and lead, usually,
to a local buckling.

The delamination phenomenon is characterized by two different processes: delamination on-
set and crack propagation. Delamination onset is defined by the damage resistance of the
composite, the capability of the material to resist the initial occurrence of damage. The
second process is delamination propagation, which is driven by the damage tolerance of the
material. This damage tolerance can be defined as the capability of a damaged material
to sustain a load, maintaining its structural performance. All formulations developed to
simulate the delamination phenomenon focus their effort in characterize these two processes.

Delamination can be initiated by several factors, however there are some that are more
common. In the manufacture stage delamination can occur due to the shrinkage of the matrix
during curing (Blanco, 2004). Once the composite is in use, a common source of delamination
is low velocity impacts, transversal to the laminate (Iannucci and Willows, 2006, 2007). There
are also some design configurations that can lead to a potential delamination failure such as
curved sections or tapers and transitions (Kedward, 2002). All these factors lead to the
apparition of interlaminar normal stresses larger than the ones that can be taken by the
composite, which produce the crack between layers or delamination.

Once delamination has occurred, the phenomenon is controlled by the toughness of the ma-
terial to restrain its propagation along the composite. Three different delamination modes
can be defined, according to the growth propagation of the interlaminar crack: mode I or
opening mode, mode II or shearing mode and mode III or tearing mode. These modes are
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displayed in figure 3.2. In practice, the most common fracture modes of delamination are
mode I, mode II or a mixed mode I/II.

Figure 3.2: Crack modes defining the delamination growth

The composite toughness is usually characterized by the fracture energy, G, that can be
defined as the energy released by the system due to the crack propagation (Oller, 2001). The
fracture energy is associated to the fracture area. Therefore it can be obtained as the total
work required to fracture an area A:

G =
W 0

A
+

WP

A
(3.1)

Being W 0 the kinetic work required to fracture the material and WP the plastic work.
This last work is zero in case of brittle materials, in which plastic deformations are zero.
Three different fracture energies are usually defined, each one corresponding to a fracture
mode: GI , GII and GIII . The fracture energy is commonly obtained for different materials
experimentally, using equation 3.1. Most of the existing formulations developed to simulate
delamination in composites use the fracture energy to characterize delamination onset and
crack propagation.

Before describing some of the most common experimental tests used to characterize the
delamination performance of composites, its worth to mention the relation between delam-
ination and fatigue. Most of the in service failures of composites are produced by fatigue.
On the other hand, delamination is considered the most important damage mechanism in
composite laminates. Hence, the combination of both factors is critical for the composite
integrity, being one of the most common failure causes of composite laminates. The impor-
tance of this relation is proven by the large number of studies on the subject, among them
two PhD dissertations: Blanco (2004), who studies the problem using a numerical and an
experimental approach; and Turon (2006), who extends the formulation of his zero thickness
decohesion element to take into account fatigue loading conditions.

3.2.2 Experimental simulation of delamination

The experimental simulation of delamination in composites not only is used to improve the
knowledge of the mechanical phenomenons that lead to the onset and propagation of delami-
nation but also is used to obtain the fracture energy of the composite, parameter required by
most of the formulations existing in literature to deal with the problem. The fracture energy
of the composite is obtained with equation 3.1, using the delaminated area in the composite
as the fracture area and calculating the work done using analytical formulations.

Most of the experimental tests are made on beam type composite specimens like the one
shown in figure 3.3. The composite has an initial delamination in its mid-plane which is
created adding a thin non-stick film between its layers when it is manufactured. In order to
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add this film in the composite, the laminate is made with an even number of layers. Most
of the tests are performed in unidirectional laminate composites. The results obtained from
the tests are usually the force applied to the composite and its relative displacement. These
values are used to obtain the work required to propagate the initial crack.

Figure 3.3: Most common tests used to obtain the delamination toughness of composites

As well as there is different crack modes and fracture energies related to these crack modes,
also exist different tests that are developed to obtain the fracture energy for each particular
crack mode. A survey of some of these tests can be found in Davies et al. (1998) and Brunner
et al. (2007). Due to the relevance of the delamination failure in composite structures and
also due to the necessity to have a reliable procedure to obtain the fracture energy of the
composite, some of these tests have been standardized. All standards provide a detailed
description of the sample to be used to perform the test, the loading procedure, the results
that have to be obtained and the formulation to be used to calculate the fracture energy from
the values obtained from the test.

The most common delamination modes in laminated composites are mode I, mode II and
the mixed mode I/II. Each one of these fracture modes have a standardized test, which is
described in the following. The tests configurations are displayed in figure 3.4.

Figure 3.4: Most common tests used to obtain the delamination toughness of composites

DCB Test: Double Cantilever Beam Test. This test obtains the delamination toughness in
fracture mode I. The initial delamination is forced to grow by applying a force in each
side of the initial crack, of opposite direction and transversal to the crack surface. A
detailed description of this test can be found in the standards ASTM D-5528 and JIS
K-7086.

ENF Test: End Notched Flexure Test. This test obtains the delamination toughness in
fracture mode II. This test applies a three point flexure load to the composite sample to
increase the delamination in mode II. The main problem of this test is the propagation
instability of the delamination (Davies et al., 1998). To solve this drawback, a four
point flexure test (4ENF) is under study. A detailed description of the ENF test can
be found in JIS K-7086.

MMB Test: Mixed Mode Bending Test. This test obtains the delamination toughness in
mixed mode fracture I/II. This test is considered nowadays the best method for evaluat-
ing the fracture toughness as it loads the specimen with more realistic loads (Balacó de
Morais and Pereira, 2006a). Figure 3.4 shows that this test is a combination of the
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DCB and the ENF tests. The MMB test is described in standard ASTM D-6671. An
analysis of the test, with proposals to reduce the non-linearities associated to it can be
found in Reeder and Crews (1991)

3.2.3 Numerical procedures to simulate delamination

Most of the numerical procedures and formulations developed to characterize the delamina-
tion phenomenon are closely related to continuum mechanics, as they use fracture or damage
mechanics to predict the delamination onset and propagation. With this relation in mind,
Turon (2006) classifies the existing procedures for numerical simulation of delamination in
two groups, one contains all formulations that apply fracture mechanics and the other the
formulations that use damage mechanics. This criterion is also used in this work.

Continuum mechanics is used to obtain the delamination onset and propagation in the sim-
ulation. The formulation is applied to special elements or “delamination elements” that are
developed to simulate the delamination process. Different authors propose different elements
where to apply the continuum mechanics formulation, such as zero thickness decohesion el-
ements (Jansson and Larsson, 2001; Camanho and Dávila, 2002), coincident nodes (Borg
et al., 2001, 2002) or coincident surfaces (Pinho et al., 2006).

Therefore, delamination is simulated applying a continuum mechanics formulation to some
special elements or “delamination elements”. When delamination occurs in these elements,
the mesh is divided. Coincident nodes and coincident surfaces are already divided, having
their nodes attached before delamination and released when delamination has occurred. Zero
thickness decohesion elements can be opened to allow free displacement between the sur-
faces found at each side of the crack (Turon et al., 2006). These procedures have two main
drawbacks, one technological because in some cases it is necessary to develop a contact for-
mulation to avoid the interpenetration of one surface over the other if the loads applied to
the composite are modified, and the other, probably more important, is that it is required to
add these elements in all regions in which delamination is supposed to take place.

The mechanical properties required to characterize the “delamination elements” are those
required by the continuum mechanics formulation used to simulate the delamination. These
properties are usually assigned to matrix material although they can be also related to the
adhesive used to attach the laminate layers or can be properties of a generic material which
parameters are obtained from a delamination experimental test. In the following are described
the most common continuum mechanics formulations used to characterize these elements.

Fracture mechanics

Delamination can be treated using linear elastic fracture mechanics. This theory provides
the way in which delamination propagates and is usually complemented by a stress analysis
that predicts the delamination onset (Turon, 2006). There are several fracture mechanics
formulations that are used in the delamination problem, among them: the virtual crack
closure technique (VCCT) (Krueger, 2004), the J-integral method (Rice, 1968; Oller, 2001),
the virtual crack extension and the stiffness derivative. Among all these methods, probably
the most widely used to solve the delamination problem is the virtual crack closure technique.

Virtual crack closure technique (VCCT)

The virtual crack closure technique is a two step method based on the assumption that the
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energy ∆E released when the crack is extended a small amount is the same as the work
required to close the crack. With this assumption, the fracture energy required to open the
crack can be obtained as a function of the forces at the crack tip and the nodal displacements
(Krueger, 2004). In a two dimensional case,

GI =
1

2∆a
Z∆w

GII =
1

2∆a
X∆u

(3.2)

Being ∆a the crack length, X, Z the horizontal and vertical forces in the crack tip, respec-
tively, and ∆u, ∆w the horizontal and vertical displacements.

The fracture energies calculated in equation 3.2 are added to obtain the total energy release
rate:

GT = GI + GII (3.3)

The VCCT states that the crack propagates when the total energy release rate is equal to
the fracture toughness of the material, Gc (Turon, 2006):

GT = Gc (3.4)

This method has been used to predict the delamination performance of composites by Krueger
(2002) and Balacó de Morais and Pereira (2006a,b), among others.

Damage mechanics

A damage mechanics formulation is based on the analysis of the strain-stress state of the
material, which provides the total energy that is released by the material per unit area (Oller,
2001). In figure 3.5 is displayed a possible strain-stress relation. The fracture energy per unit
area corresponds to the area below the σ− ε curve. The use of this formulation has the main
advantage, compared to fracture mechanics, that the fracture onset and its propagation are
unified in the formulation Turon (2006). When the energy used by the system is equal to the
fracture toughness, stresses in the material become zero and the crack surfaces are formed.

Figure 3.5: Fracture energy of the material

The use of damage mechanics to simulate delamination is used by many authors with different
strategies. In example, Borg et al. (2001, 2002, 2004) apply it to define a penalty interface
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in which coincident nodes are tied with three orthogonal springs, each one representing a
different fracture mode. The mechanical behavior of these springs is defined using a damage
mechanics formulation. However, the most common procedure used to simulate delamination
is with the definition of an interface element in which its mechanical performance is defined
by damage mechanics. Some examples of interface elements are the ones defined by Allix
and Ladevéze (1995), de Moura et al. (2000), Camanho et al. (2003), Turon et al. (2006) and
Balzani and Wagner (2007).

Of all these elements, the zero thickness decohesion element defined by Turon (2006) in his
PhD dissertation is described in this section, in order to provide an example of how the dam-
age mechanics formulation is included in interface elements. This model is an improvement
of the interface element defined in Camanho et al. (2003) and its detailed description can be
found in Turon et al. (2004), Turon (2006) and Turon et al. (2006). Recently improvements
of the model, in which the computational cost of the simulation is reduced, are described in
Turon et al. (2007).

Zero thickness decohesion element

The zero thickness decohesion element proposed by Turon uses a cohesive zone model for-
mulation. This formulation assumes that a cohesive zone develops near the crack tip. With
this assumption, surface traction is related to displacement jumps at the interface where the
crack may occur. The displacement jump is written as:

‖u‖ = u+ − u− (3.5)

Where u+
i corresponds to the displacement of the surface above the decohesion element and

u−
i corresponds to the surface under the element (see figure 3.6). The displacement jump is

transformed to the local coordinate system using a rotation tensor Θ:

∆ = Θ‖u‖ (3.6)

Figure 3.6: Displacements in the zero thickness decohesion element (Turon, 2006).

Once having defined the element displacements, these are related to the cohesion traction of
the element (τ) using a constitutive law. This law is obtained following the thermodynamical
principles defined in continuum mechanics (Oller, 2003) and using a damage mechanics model.
The constitutive law proposed by Turon (2006) can be written as:
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τ = τ(∆) = (1 − d)K∆ − dK (δ3j 〈−∆3〉) (3.7)

Being d the damage parameter, K a scalar value that represents the penalty stiffness of
the element, δ the Kronecker delta and < · > the MacAuley function, which is defined as:
< x >= 1

2(x + ‖x‖). The use of the MacAuley function provides a different mechanical
performance for tensile and compressive displacements. Only the tensile displacements are
taken into account to predict delamination.

Delamination onset takes place when the interlaminar traction exceeds the maximum inter-
facial strength. In order to take into account the different fracture modes in the element, a
quadratic criterion is chosen:

(
τ1

τ0
1

)2

+

(
τ2

τ0
2

)2

+

(〈τ3〉
τ0
3

)2

= 1 (3.8)

with, τ = (τ1, τ2, τ3) the interlaminar traction in the element and τ0 = (τ0
1 , τ0

2 , τ0
3 ) the maxi-

mum interfacial strength. When delamination onset occurs, the damage parameter becomes
different of zero and the interface degradation starts. The evolution of the damage parameter
is defined by the fracture energy of the element (delamination toughness), reaching a value
of 1 when the system has released all its energy. At this point, the traction forces in the
interface become zero and the two surfaces previously attached can move freely.

The calculation of the total energy released by the system, Gc, is made with the expression
proposed by Benzeggagh and Kenane (1996), which also takes into account the three different
fracture modes. Its expression is:

Gc = GIc + (GIIc − GIc)

(
Gshear

GT

)η

(3.9)

The quotient Gshear

GT
is defined as the mixed mode ratio, being GT the total energy of the

system and Gshear = GII + GIII .

An example of the results that are obtained with this formulation is shown in figure 3.7. This
figure, obtained from Turon (2006), shows the debonding of a skin-stiffener resulting from
applying a tensile load to the base laminate.

Flange/skin separation

Figure 3.7: Simulation of a Skin-stiffener debonding (Turon, 2006).
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3.2.4 Delamination using the serial/parallel mixing theory

Up to this point it has been shown that most of the procedures found in literature to simulate
the delamination phenomenon in laminated composites are based on the definition of an
interface element which is characterized by the interface toughness. When the criterion
used to simulate the interlaminar strength is accomplished, either if it is based in fracture
mechanics or if it is based in damage mechanics, the interface element loses its capacity to
maintain attached the composite layers at each side of the fractured surface and delamination
occurs.

As has been already stated, these procedures have two main drawbacks. The first one is
that there are many formulations in which the two surfaces found at each side of the fracture
become completely independent, being necessary to use remeshing techniques and contact
formulations to obtain the delamination propagation. The second drawback affects all known
formulations, and is the necessity to define an special element in which delamination will
occur. This situation predefines the delamination path to the region where these elements
are placed. And, if the exact place where the delamination takes place is unknown, these
elements must be included between all layers, which makes the calculation unbearable due
to its computational cost.

The procedure proposed here to simulate delamination solves these two drawbacks. It will
be shown that using the serial/parallel mixing theory developed by Rastellini (2006) and
described in chapter 2, section 2.3, the delamination phenomenon can be simulated straight-
forward, without the need of any additional element or formulation.

Delamination consist in the lost of adherence between the different layers existing in a lam-
inate. This lost of adherence makes impossible the transmission of stresses between the
different layers, reducing the composite strength and stiffness. The stress transmission be-
tween the layers of a composite is made by the stresses normal to the fractured area (mode I)
or by shear stresses (modes II and III). If the problem is solved using a continuum mechanics
formulation, the delamination effect can be represented by the impossibility of a layer to
develop normal or shear stresses. This layer will represent a delaminated layer and it will not
allow the transmission of stresses between the layers allocated above and below it.

Following this interpretation of the delamination phenomenon, the serial/parallel mixing
theory can deal with the delamination problem. This theory is based on the definition of
some compatibility equations between the strain-stress states of the composite constituent
materials. In the case of a composite made of fibre and matrix, what the serial/parallel mixing
theory does is to impose an iso-strain condition on the parallel direction (fibre direction) and
a iso-stress condition on the serial directions (normal and shear directions).

The form in which the serial/parallel mixing theory solves the delamination process is shown
with the help of figure 3.8, in which the stresses found in fiber and matrix material are
depicted in a two dimensional delamination simulation.

If matrix material is completely damaged, its ability to sustain stresses is lost and, therefore,
its stress tensor becomes zero:

mσ = [mσ1
mσ2

mσ12] = [0.0 0.0 0.0] (3.10)

According to the serial/parallel mixing theory, the serial stresses in the composite are the
same than the serial stresses of its components:
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Figure 3.8: Stress state of composite constituents with the serial/parallel mixing theory

cσS = mσS = fσS (3.11)

Hence,

fσS = 0.0 → fσ2 = 0.0 ; fσ12 = 0.0 (3.12)

And the final stress in the composite becomes:

cσ = mkmσ + fkfσ =
[
fkfσ1 0.0 0.0

]

(3.13)

So, with this scope, if matrix structural capacity is lost, it becomes impossible for the compos-
ite layer to develop any serial stress, neither to transmit them to the surroundings elements.
This effect, can be understood as delamination. It is important to remark that the compos-
ite is unable to develop stresses only in its serial directions. Even if matrix is completely
damaged, an iso-strain condition defines the performance of fiber and matrix in fiber direc-
tion, which provides a nearly undamaged mechanical performance of the composite in this
direction.

With this approach, now the delamination phenomenon lays in the simulation of matrix
material, that can be modeled with any constitutive law (Rastellni et al., 2007). Thus,
it is possible to use any of the damage mechanics formulations referred by the different
authors that have studied the delamination phenomenon to simulate the matrix performance
and, consequently, the delamination onset and propagation. The formulation used in this
chapter to obtain the mechanical performance of matrix material and, at the same time,
the delamination phenomenon is the damage formulation developed by Oliver et al. (1990).
This formulation is an evolution of the isotropic damage law originally defined by Kachanov
(1986), and is explained in detail in next section.

The validity of the methodology proposed to solve delamination problems has been proved
with the simulation of the ENF test (Mart́ınez et al., 2007, 2008) and with the simulation
of a ply drop-off test (Martinez et al., 2007). This last case also shows how the procedure
proposed can be implemented in a lamination formulation. Both examples are included in
this chapter, in sections 3.4 and 3.5, respectively.
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As a final remark to the procedure proposed, it has to be said that the simulation of the
delamination phenomenon lays in matrix material because the implementation made of the
serial/parallel mixing theory limits the number of component materials of a laminate layer to
two: fiber and matrix. However, the serial/parallel mixing theory can be extended to more
than two components. In doing so, a third material with the mechanical characteristics of
the layer interface can be defined. Delamination will take place when the interface material
reaches its threshold strength. Although this procedure is less expensive than introducing
new elements in the simulation, its computational cost is considered to be larger than the
benefits obtained, as matrix material is capable to assume the delamination role providing
accurate results.

3.3 Damage formulation

3.3.1 Damage constitutive law

The material degradation in a continuum solid, due to a fracture process, can be simulated
with a damage formulation. This formulation takes into account the reduction of the effective
area of the material by a reduction of its stiffness properties. The procedure proposed to
simulate the delamination process uses a damage constitutive law to predict the matrix
mechanical performance. This formulation is exposed in this section. The damage model
considered is the isotropic continuum damage formulation developed by Oliver et al. (1990)
and described in Oller (2001). This formulation is based on the theory of continuum damage
developed by Kachanov (1986).

Isotropic damage model

A damage process can be simulated, in the context of continuum mechanics, by the introduc-
tion of a internal variable, M , that represents the degree of damage existing in the material.
This variable transforms the real stress tensor, σ, found in the damaged space into an effective
stress tensor σ0, found in an equivalent undamaged space. This is:

σ = M : σ0 (3.14)

In the case of an isotropic damage, all directions of the stress tensor have the same degrada-
tion. Therefore, the damage internal variable can be transformed into an scalar parameter,
and the relation between the real and the effective stresses can be written as:

σ = [(1 − d)I] : σ0 = (1 − d)σ0 (3.15)

Being d the damage scalar internal variable. The value of this variable is ranged between 0
and 1. When the material is not damaged, the value of the damage variable is 0. In this
case the real stresses in the material are equal to the effective stresses. When the material is
completely damaged, d = 1. In this case the real stresses in the material become zero.

The relation between the real and the effective stresses is represented in figure 3.9. This figure
shows that the deformation associated to a damaged state is equivalent to the deformation
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associated to an equivalent undamaged state, which stress is the effective stress σ0 (Oller,
2001). This situation corresponds to the strain equivalence assumption, that is when the
strain is the same in the damaged and effective configurations. A different set of equations
would be obtained if one assumes energy equivalence between both configurations.

Figure 3.9: Real damaged space and equivalent space (Oller, 2001)

With the strain equivalence assumption, the effective stress can be obtained from the strains
in the material using the effective stiffness tensor of the material, that corresponds to the
elastic undamaged tensor:

σ0 = C0 : ε (3.16)

The real stress tensor is obtained coupling equations (3.15) and (3.16):

σ = (1 − d)σ0 = (1 − d)C0
︸ ︷︷ ︸

C

: ε (3.17)

The model defined by equation 3.15 is fully determined if the value of the damage parameter,
d, can be evaluated at every time of the deformation process. Therefore, it is required to
define a damage threshold, or damage criterion, that will determine the stress state for which
the damage parameter (d) becomes different of zero; and a law providing the evolution of
this parameter along the loading process.

Damage constitutive law

The damage constitutive law defines the evolution of the stress tensor in the material. This
law has to be able to describe when the damage process begins to take place in the material.
This is, the stress state in which the material elastic behavior is lost and degradation starts.
And it has to be able to define which is the stress evolution once the stress threshold has
been reached. The damage constitutive law is defined with the stress tensor and the damage
internal variable. Its expression is:

F(σ0, q) = f(σ0) − c(d) ≤ 0 with q ≡ {d} (3.18)

Where c(d) is a function defining the damage threshold and f(σ0) is a scalar function, depen-
dent on the stress tensor, that provides the equivalent stress value. This function is used to
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compare different stress states. Damage in the material starts the first time that the equiva-
lent stress f(σ0) exceeds the initial value of the damage threshold, c(d) = cmax, defined as a
material property (Oliver et al., 1990).

Usually, instead of working with equation (3.18), the damage criterion is converted to an
equivalent one by using a scalar function G which is positive and with its derivative positive,
monotonously increasing and invertible:

F
∗(σ0, d) = G [f(σ0)] − G [c(d)] ≤ 0 (3.19)

In order to have fully determined the damage constitutive law, it is necessary to know the
evolution of the damage threshold c(d) and the damage internal variable d. This is described
in the following.

Evolution of the damage variable. Softening behaviour

The mechanical problems that are dependent of internal variables require the definition of the
evolution law of these variables. In the damage problem, the law that defines the evolution
of the damage variable is (Oller, 2001):

ḋ = µ̇
∂F∗(σ0, d)

f(σ0)
≡ µ̇

∂G [f(σ0)]

f(σ0)
(3.20)

being µ a non-negative scalar called damage consistency parameter. This parameter is used
to define the load, unload and reload Kuhn–Tucker conditions:

µ̇ ≥ 0 ; F
∗(σ0, d) ≤ 0 ; µ̇ · F∗(σ0, d) = 0 (3.21)

The Kuhn–Tucker condition states that if the damage criterion is lower than zero, then
µ̇ = 0 and the damage parameter remains constant, this situation is found when the damage
threshold has not been reached or in unloading conditions. On the other hand, when the stress
tensor has reached the damage threshold, F∗ = 0, and then µ̇ ≥ 0. In the case of having
µ̇ = 0, stresses and damage in the material must be constant and when µ̇ > 0, according
to equation 3.20, the damage parameter increases, which means that the material is under
loading conditions. These situations are represented in figure 3.10, in which is represented
the stress-strain evolution of a material defined with a damage model.

From the definition of the variation of the damage parameter (equation 3.20) and making use
of the Kuhn-Tucker relations, it can be proved (Oller, 2001, 2002) that the evolution of the
internal variables may be explicitly integrated to obtain:

c(d) = max {cmax, max {f(σ0)}}
d = G [f(σ0)]

(3.22)

Therefore, the evolution of the damage parameter depends on de definition of the function
G. Oller (2001) propose two different softening models, defined by to different G functions.
Both of them are described in the following:
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Figure 3.10: Uniaxial stress-strain curve for a damage model (Oliver et al., 1990)

Linear softening: The evolution of the damage parameter, in case of considering a linear
softening, is defined by the following expression of the G function:

d = G [f(σ0)] =
1 − cmax

f(σ0)

1 + A
(3.23)

Exponential softening: This function was first proposed by Oliver et al. (1990), to obtain
an exponential softening in the material. The expression of the damage parameter is:

d = G [f(σ0)] = 1 − cmax

f(σ0)
e
A



1−
f(σ0)

cmax





(3.24)

The softening functions defined in equations 3.23 and 3.24 depend on the parameter A.
Parameter A is obtained in function of the fracture energy of the material. The evolution
of the material stresses obtained with the linear and exponential softening laws is shown in
figure 3.11. Figure 3.11a shows the stress-strain relation obtained for a material with a linear
softening; and figure 3.11b shows the evolution of the same material when an exponential
softening is applied to it.
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Figure 3.11: Stress–strain graph obtained with the damage formulation. (a) Linear softening
(b) Exponential softening
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Figure 3.11 shows a different value of the maximum stress that can be reached by the material
if the stresses are found in the tension or compression sections of the plot. Damage starts for
a compression stress of 30 MPa and it starts for a tensile stress of 15 MPa. This difference is
achieved with the function used to obtain the equivalent stress value, f(σ0). This function
is defined in the following.

Equivalent stress

The equivalent stress is provided by a function that transforms the stress tensor of the
material into a scalar value that is compared with the damage threshold, c(d). The damage
constitutive law described in equation 3.18 is equivalent to those used in plasticity (Malvern,
1968; Kachanov, 1971; Lubliner, 1990; Oller, 2002). Therefore, any criterion already defined
for plasticity can be used in the damage formulation described. Some of the most know
damage yield criterions defined in literature are: Rankine, Tresca, Von-Mises, Mohr-Coulomb
and Drucker-Prager. All these criterions are fully described in the previously cited references.

Each one of these criterions combine the different components of the stress tensor to obtain
the equivalent stress, which is compared with a threshold value. The election of one yield
criterion or another depends on the material that is simulated, as each criterion provides
failure for a different combination of the stresses found in each direction of the material. In
example, Von-Mises criterion is commonly used for metallic materials. This compares the
maximum octahedral shear stress with a threshold value:

F(σ, τmax
oct ) =

√

J2 − τmax
oct (3.25)

Being J2 the second invariant of the stress tensor. If this criterion wants to be used in the
damage formulation described,

f(σ0) =
√

J2(σ0)

cmax = τmax
oct

(3.26)

The same procedure used to adapt the Von-Mises yield law can be used with any other of
the mentioned criterions. However, the criterion that is used in the present work is the
one defined by Oliver et al. (1990) which is based in the norm of the principal stresses and
provides a different degradation path for tension and compression cases (as has been shown
in figure 3.11). This model defines the equivalent stress value with the following function:

f(σ0) = ̺ · ‖σI‖ (3.27)

being σI the principal stress tensor and ̺ a function that weighs the amount of tension and
compression efforts found in the stress tensor. This function is defined as:

̺ = r0N + (1 − r0) (3.28)

Where
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N = cmax
c /cmax

t (3.29)

is the material ratio between the compression and tension threshold values. This parameter
is a material property. And r0 is a scalar function that defines the relation between the
compression and the tension state of the stress tensor. This last function is defined with the
following expression,

r0 =

∑3
I=1 < σI >
∑3

I=1 |σI |
(3.30)

with < x >= 0.5 [x + |x|] the McAully function.

The compression-tension weight function has been defined to obtain a damage surface to be
compared with a compression stress. Hence, when using this damage criterion, the value
of c(d) must be referred to compression stresses. Also, the value cmax that appears in the
softening functions 3.23 and 3.24, must be the maximum compression that can be achieved
in the material.

This yield criterion provides a different failure strength for tensile and compression forces.
The relation between both strengths is defined by parameter N . The material performance
obtained with this criterion has been already shown in figure 3.11. This figure shows the
stress-strain relation obtained for a material in which N = 2.

Parameter A

The parameter A that appears in equations (3.23) and (3.24), is obtained from the dissipation
equation of the material, considering an uniaxial process under a monotonous increasing load.
The total energy that can be dissipated by the system, by unit volume, is:

gc =

∫ ∞

0
Ξ dt =

∫ ∞

0
Ψ0ḋ dt (3.31)

Being Ψ0 the Helmotz free energy of the system, which expression is (Oller, 2002),

Ψ0 =
1

2
ε C0 ε =

1

2

(cmax)2

C0
(3.32)

with C0 the uniaxial stiffness of the material.

The integral defined in equation 3.31 is evaluated for the two damage laws that will be used
in present work. The solution of this integral provides the expression of parameter A, which
depends on the total energy that can be dissipated by the material by unit volume. In case of
using an linear softening law, the integral defined in equation 3.31 has to be evaluated using
the expression of the Helmotz free energy defined by equation 3.32 and the linear damage
law defined by equation 3.23. On the other hand, the expression of A for an exponential
softening is obtained with the damage law defined by equation 3.24. The evaluation of the
integral defined in 3.31 for this two cases provides the following expressions for parameter A:
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Linear softening : A = −1
2

(cmax)2

gcC0

Exponential softening : A = + 1
gcC0

(cmax)2
− 1

2

(3.33)

where C0 is the uniaxial stiffness of the material and gc corresponds to the maximum energy
per unit volume that can dissipate the material, in a compression case.

Classical fracture mechanics defines the fracture energy of a material as the energy that has
to be dissipated to open a fracture in an unitary area of the material. This energy is defined
as:

Gf =
Wf

Af

(3.34)

where Wf is the energy dissipated by the fracture at the end of the process and Af is the area
of the surface fractured. When coupling the fracture mechanics theory with the continuum
mechanics, the relation defined to relate Wf with gf is:

Wf = Gf · Af ≡
∫

Vf

gf dV (3.35)

And the relation between the fracture energy defined as a material property, Gf , and the
maximum energy per unit volume required by the damage formulation, gf , becomes:

gf =
Wf

Vf
=

Wf

Af lf
=

Gf

lf
(3.36)

Thus, the fracture energy per unit volume is obtained as the fracture energy of the material
divided by the fracture length. This fracture length corresponds to the length, perpendicular
to the fracture area. This length tends to be infinitesimal.

When damage mechanics is applied to a finite element code, in which a continuum formulation
is transformed into a discrete formulation, the fracture length has to be transformed also from
a continuum to a discrete space. This means that the fracture length cannot be infinitesimal
but has to have a finite number. In a finite element code, the value defined to this length
corresponds to the smallest value in which the structure is discretized: the length represented
by a gauss point. Figure 3.12 shows a representation of this fracture length.

The use of a fracture length dependent on mesh size provides a different value of parameter
A for each mesh and, therefore, a different stress evolution depending on the mesh size.
Although the first impression can be that the problem becomes mesh dependent, this is not
the case. There is a different stress evolution because larger elements have a lower fracture
energy per unit volume, as their fracture length is larger. However, the global performance
of the structure provided by the simulation is the same, independently of the mesh size used.



3. Delamination in composites 99

Figure 3.12: Fracture in a real body and in its finite element discretization. Fracture length
description

This is shown in figure 3.13, in which the stress-strain performance (fig. 3.13b) is plotted for
a tensile simulation made with two different mesh sizes (fig. 3.13c). Figure 3.13a shows that,
although the stress path obtained with each mesh is different, the global performance of the
structure is the same for both meshes. The global performance of the structure is represented
with a capacity curve (force-displacement graph).
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Figure 3.13: Damage simulation performed with two different mesh sizes: (a) Force-
displacement plot, (b) stress-strain plot and (c) mesh discretization.

3.3.2 Friction damage constitutive law

As has been described, the damage parameter d provides the grade of deterioration of the
material. When d = 1 the material is considered to be fully deteriorated, being unable to
provide any strength to the structure. Stresses in the material are null. In a finite element
simulation, this situation implies that the elements found around the damaged element can
move freely, without any structural restriction. This mechanical performance is correct if the
fractured surface is perpendicular to the forces applied to the structure, which corresponds
to a fracture mode I (figure 3.14a). However, if the fracture is in mode II or mode III (figure
3.14b), this statement is not fully correct, as the fracture surface can still develop some
strength through effects such as friction.

Despite all existing research dealing with the delamination problem, few of this research assess
the effects of friction in the delamination phenomenon. A first approach to this problem is
performed by Stringfellow and Freund (1993) in which the effect of friction is evaluated in the
delamination of a thin from a substrate. In their approach, the authors develop an analytical
model that is based on the dislocations found crystal materials, which are represented by the
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Figure 3.14: Structures that can be modeled with a damage constitutive law and which
behavior when they are completely damaged is different

Burger’s vector (Dieter, 1988). The model is implemented in a finite element code and is
used to prove that friction is one of the main responsible effects determining the toughness
strength of mode II fractures.

Regarding the effect of friction in delamination of composite laminates, Davidson and Sun
(2005) and Sun and Davidson (2006) have studied the role of friction, among other parameters
such as geometry and fixture compliance, in the delamination toughness obtained in mode II
delamination tests. These authors add a new term to the energy balance used to obtain the
energy release rate predicted by the mode II delamination tests,

G =
1

B

[
∂(We − U)

∂a
− ∂Wf

∂a

]

(3.37)

with We the work done by the external forces, U the strain energy, Wf the work of the
frictional forces, B the sample width and a the length propagation of the fracture. The
variation of the work done by frictional forces is obtained as the product of the tangential
force by the tangential displacement. The authors include the effect of friction, among others,
in the finite element simulation of three- and four-node bending tests in order to determine
the reliability of the results obtained with each one of these tests.

A similar study has been performed by Fan et al. (2007), also with the objective to characterize
the role of friction in mode II delamination tests. In this case, a non-dimensional parameter
is defined to characterize friction:

e =
G0 − Gf

G0
=

F 2
C0 − F 2

C

F 2
C0

(3.38)

with G0 and FC0 the energy release rate and the force at the crack tip, respectively, obtained
in absence of frictional effects and Gf and FC are the energy release rate and the force at
the crack tip when frictional effects are considered. The force containing frictional effects is
obtained as:

FC = FC0 −
∫

µp(x) dA (3.39)

being µ the friction coefficient and p(x) the normal force to the fracture surface. The authors
propose different analytical expressions for obtaining FC0 and FC for the different mode II
delamination tests.
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The objective of all the studies presented above is to assess the effects of friction in delamina-
tion toughness. However, no study has been found in which frictional effects are considered
to take into account the residual strength provided by the fractured surface in mode II delam-
ination. Hereafter is proposed a first approach to take into account this phenomenon, based
on the addition of an empirical parameter to the damage formulation previously presented.

Addition of friction to the damage formulation

In order to take into account the residual strength provided by the fractured surface in mode
II delamination, a friction damage parameter, dfric, has been introduced into the damage
formulation. This parameter defines the residual stress that remains in the material due to
friction effects. The definition of this residual stress is equivalent to define a maximum value
that can be reached by the damage parameter d. Therefore, the relation between the real
damaged stress tensor σ and the effective stress tensor σ0 becomes:

σ = (1 − d∗)σ0 with d∗ = min {d, dfric} (3.40)

The frictional damage parameter dfric is obtained from the value of the residual stress that
will be found in the material:

dfric = 1 − σRS

f(σ0)
(3.41)

The residual stress σRS is defined as a percentage of the the stress threshold σ0. This
percentage is a material property that has to be defined from empirical analysis.

Figure 3.15 shows an example of the material behavior that is obtained, in an unidirec-
tional case, when a residual stress is defined for the material. The material considered has a
threshold stress of 250 MPa and a residual stress of a 10% of the threshold stress (25 MPa).
This figure shows the stress-strain graphs obtained for the same material when the friction
parameter is applied to it and when it is not applied.
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Figure 3.15: Comparison of the material performance when the the friction parameter is
applied to it and when it is not
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It is important to notice that with the definition made of the friction parameter the consti-
tutive damage equation continues being isotropic. Consequently, the same level of damage
is applied in all stress directions. This implies that in structural simulations like the one de-
picted in figure 3.14b, the formulation considers the friction effect but also a conctact effect,
as the remaining stress of the fractured elements in vertical direction (according to the figure)
avoids the interpenetration of the top piece of the structure into the bottom one.

3.4 Numerical Example: End Notch Flexure (ENF) test

To prove the ability of the serial/parallel mixing theory, together with a damage constitutive
law, to simulate delamination processes this section compares the numerical results obtained
from the simulation of the End Notch Flexure (ENF) test with experimental results. This test
is defined by the European Structural Integrity Society (ESIS) and the Japanese standard JIS
(K-7086) and is used to obtain the toughness for crack propagation in mode II, corresponding
to a shear crack, in unidirectional fibre reinforced polymer composites (FRPC).

The experimental results have been obtained from the tests made by CIMEP (Centre per a la
Innovació en Materials, Estructures i Processos) and the Univerity of Girona for the project
GRINCOMP (ref. MAT2003-09768-C03) (Corbella et al., 2004).

3.4.1 Experimental test description

The End Notch Flexure test is based in the flexure of a beam with an initial crack in one
of its ends. The test has been applied to a composite made of carbon fibres with an epoxi
polymeric matrix. Fibres are oriented in the longitudinal direction of the beam and the
initial crack is created introducing an insert in the laminate during its fabrication. The
width of the gap generated by this insert must be smaller than 50 µm. The span of the
beam is 100 mm and it is loaded with a concentrated load at its mid–span. The test is made
with a displacement controlled mechanism. Three different series, GRIN006, GRIN015 and
GRIN024, each one containing five different samples, where tested during the experimental
campaign. To perform the numerical simulation, the first sample of series GRIN006 has been
considered (beam 3M101, according to the notation used in the tests). The dimensions of
this sample, as well as the dimensions considered for the numerical simulation, are shown in
figure 3.16.

Figure 3.16: Sample geometry used for the ENF test

The experimental test applies a vertical displacement to the beam, as shown in figure 3.16,
until the initial crack starts its propagation. The imposed displacement is applied until the
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crack progression stops and the beam recovers its linear behavior. At this point, the sample is
unloaded. The main results obtained from this test are two: The force–displacement graph,
which shows the structural performance of the composite beam, and the final length of the
initial crack. These two results are the ones that will be compared with the numerical model
developed.

The exact properties of the composite material used in the experimental simulations were
unknown when the experimental tests were performed (Corbella et al., 2004). However, the
composite is known to be made of carbon fibres and an epoxy polymeric matrix from Hexcel
composites. For the numerical simulation, the mechanical values considered to define the
composite are the ones described in table 3.1, obtained form Hexcel Product data description.
The fibre (AS4) and matrix considered are the ones found in HexPly 8552 UD carbon prepegs.

Matrix Properties

Tensile Strength 120.66 MPa
Tensile Modulus 4.67 GPa
Poisson Modulus 0.30
Mode I Fracture Energy 0.68 kJ / m2

Volume Content 42.6 %

Fibre Properties

Tensile Strength 4278 MPa
Tensile Modulus 228 GPa
Poisson Modulus 0.0
Volume Content 57.4 %

Table 3.1: Composite components mechanical properties

3.4.2 Numerical model description

Two different numerical models have been developed to simulate the End Notch Flexure
Test. One using a plain stress two dimensional formulation and a second one using a three
dimensional formulation. The 2D model has been defined with 627 linear quadrilateral ele-
ments while the 3D model has 5016 linear brick elements. The mesh defined for the three
dimensional model is shown in figure 3.17.

Figure 3.17: Three dimensional model developed. Mesh description

Two different materials have been defined in the numerical simulation. One corresponding to
the composite material and another one corresponding to the insert material. The composite
material is defined using the properties of the epoxy matrix and the carbon fibres shown in
table 3.1. Fibre material is defined as an elastic material. Matrix material is characterized
by the damage constitutive law described in section 3.3.

The damage model used requires knowing the relation between the compression strength and
the tension strength of the material in order to obtain the correct damage evolution. As
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these parameters are unknown, the simulation is performed considering that both strengths
are identical (N = 1, equation 3.29). The fracture energy defined corresponds to the mode
II fracture energy obtained from the experimental tests. The value of this energy, for the
3M101 beam, is: GII = 1.02 kJ/m2.

The definition of the insert material properties has been done taking into account its structural
performance. The main effect of this material in the beam is allowing the sliding of the
section found above the insert along the section found below it. To do so, a material with
a shear modulus nearly zero has been defined (it has not been defined as strictly zero to
avoid numerical instabilities during the simulation). On the other hand, the longitudinal and
transversal elastic modulus have been defined with a high value to avoid the penetration of
the section above the insert into the section below it. This material has been defined as an
elastic material. Its main mechanical properties are described in table 3.2

Insert Material Properties

Tensile Modulus 1000 GPa
Shear Modulus 10−9 GPa
Poisson Modulus 0.0
Volume Content 100 %

Table 3.2: Insert material mechanical properties

3.4.3 Comparison between the numerical and the experimental results

The numerical and the experimental results are compared with the force–displacement graph
obtained for both cases. The displacement represented corresponds to the vertical deflection
of the point where the load is applied. This graph is shown in figure 3.18, in which the results
for the 2D and 3D numerical simulations and the experimental test are represented.
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Figure 3.18: Force–displacement graph obtained for the different models.

Figure 3.18 shows that the two dimensional simulation provides exactly the same results as
the three dimensional one, thus, for these kind of problems, 2D simulations are preferable, as
the computer cost is much lower. However, the most important result shown in figure 3.18 is
the agreement between the numerical and the experimental results. The beam initial elastic
stiffness obtained in the numerical simulation is nearly the same that is obtained from the
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experimental test. And this agreement between results is even better when comparing the
beam maximum load capacity or failure point. The only result that differs in the numerical
simulation is the final beam stiffness, when the crack has reached its maximum length. In this
case, the numerical beam is a 6 % stiffer than the experimental one (the stiffness obtained in
each case is, respectively, 1146 N/mm and 1076 N/mm).

The other result to be compared is the final crack length. The experimental values obtained
for this final crack length for the sample being compared (3M101) is of 50.34mm, and the
mean value of the crack length for all the GRIN006 serie is around 49.0mm; this is, a bit less
than half the beam.

In the numerical simulation, the crack points correspond to those in which the damage pa-
rameter, in matrix material, is equal to one. These points have a matrix stiffness equal to
zero. This implies that the composite serial stiffness is also zero, due to the iso–stress condi-
tion imposed by the serial/parallel mixing theory. The points in which matrix is completely
damaged cannot develop any shear strength; hence, the final crack length can be obtained
by finding the point, closer to the beam mid–span, with a value of the damage parameter, in
matrix material, equal to one. Figure 3.19 shows the damage parameter in matrix in the load
step in which the beam reaches its maximum deflection. This figure shows that the crack
length obtained with the numerical simulation nearly reaches the mid–span section, agreeing
with the results reported in the experimental test.

Figure 3.19: Damage in matrix material when the maximum deflection has been reached

The exact value of the damage parameter is shown, for the points represented in figure 3.20a,
in figure 3.20b. In this figure can be seen that point 13 (corresponding to mid–span) reaches
a damage value of 0.6, while the value of point 12 is approximately 0.98. Considering this
last value close enough to one and thus, the section completely broken, the numerical crack
length obtained is of 48mm. The point found at 49mm of the support has a damage value
in matrix material of 0.89, which is also close enough to one to consider that the numerical
results are exactly the same as the experimental ones.

In this last figure is also represented the force–displacement graph (with the force normalized
for a value of 2500N). It can be seen that the main crack is developed just after the beam
reaches its maximum strength capacity. The lost of stiffness suffered by the beam due to the
crack propagation is stabilized as the crack reaches the mid–span section because the crack
cannot pass trough it. The sign of the shear stresses is reversed at mid–span and, just in it,
shear stresses are zero; so, there are no efforts to damage the mid-span section.

3.4.4 Detailed study of the numerical results

According to the force–displacement graph obtained for the beam (figure 3.18), the results
obtained with the three dimensional simulation match exactly with the results obtained with
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Figure 3.20: Evolution of the damage parameter in the beam

the two dimensional simulation. Thus, for the sake of simplicity, the detailed study of the
numerical results is preformed using only the two dimensional simulation.

The first thing to study of the results obtained from the numerical simulations is if the
supposition made to define the insert material is accomplished, this is: that it allows a free
sliding between the section above and below it, by reducing to nearly zero its shear stiffness.
To verify that this is the behaviour found in the insert material, the horizontal gap that
appears between the upper and lower nodes (nodes A and B respectively in figure 3.21a) has
been represented in figure 3.21b. This figure shows a linear increment of the gap between
both nodes for the first load steps. This gap increment proves the validity of the material
defined, as it shows that the section above the insert of the beam slides over the section
below it. This gap increment remains linear until the displacement of the load point is a bit
larger than 1.0mm, at this point the gap increases exponentially doubling its size. This point
corresponds to the load for which the crack propagation begins and it ends when the crack
has reached the section at mid–span. Afterwards, when unloading the beam, the horizontal
gap size recovers the linear behaviour found before the crack propagation.
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Figure 3.21: Evolution of the horizontal gap in the beam along the loading-unloading process
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A better comprehension of the process that takes place in the beam can be obtained studying
the evolution of the horizontal gap along the beam longitudinal axis, and the evolution of
the shear stresses in the same region. Both results are displayed in figure 3.22 for different
load steps. Each load step represented corresponds to a displacement of the load point of
the same magnitude (i.e. step 1.06 corresponds to a load point displacement of 1.06mm).
Figure 3.22 show that for the load step 0.60, when the crack propagation has not begin, the
only gap found is in the sections where the insert is applied and that all shear stresses are
concentrated at the first section without insert (point P01 of figure 3.20a). However, when
the crack begins its propagation, the gap initiation, as well as the shear stresses peak, move
towards the beam mid–span. The final step represented, step 1.28, corresponds to the load
step in which the crack has reached the mid–span section. Figure 3.22 also shows that the
behaviour of the composite, when matrix is completely damaged, is the same found in the
insert material. So, as damage in matrix increases and its stiffness is reduced, the composite
cannot develop shear stresses and the section above the mid–width plane slides freely over
the section below.
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Figure 3.22: Evolution of the horizontal gap (a) and the shear stresses (b) along the beam
mid–width for different load steps

The composite performance is obtained using the serial/parallel mixing theory, which imposes
an iso–strain condition in the fibre direction and an iso–stress condition in the remaining di-
rections. As the shear stresses are developed in the direction in which the iso–stress condition
is applied, when matrix is completely damaged and cannot develop more shear stresses, the
same happens with the rest of composite components (fibre, in this case). This is the reason
because the shear stress of the composite, shown in figure 3.22b, is zero although fibre is an
elastic material and still has the capacity to develop stresses.

The effect of the crack propagation on the beam can also be seen by studying the longitudinal
stresses in the composite (figure 3.23). The contour map of the longitudinal stresses shown
in figure 3.23a corresponds to step 0.6, when crack propagation has not started. This figure
shows that the distribution of longitudinal stresses in the sections with the insert corresponds
to the case of having two beams, one disposed over the other, while the complete section (i.e.
at mid–span) behave like just one beam: the top section of the beam is in compression while
the bottom section is in tension. On the other hand, when the crack has reached the mid–
span section (figure 3.23b), the two beams behavior is extended to all the cracked sections,
as it can be seen along the whole left side of the beam.

Finally, a last numerical test has been performed to validate the fracture length parameter,
required by the damage formulation used to simulate matrix material. According to what has
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Figure 3.23: Longitudinal stresses in the composite for two different load steps

been explained in section 3.3, the fracture length represents the distance, perpendicular to
the fracture surface, in which the fracture will be developed in the finite element formulation.
The mesh used in the finite element simulation has a single element beside the gap opened
by the insert, as it is shown in figure 3.24. This figure also shows the gauss points found in
the finite element.

Figure 3.24: Finite elements and gauss points found around the gap opened by the insert in
the beam

With the gauss point distribution shown in figure 3.24, the fracture length to be defined is
half the gap size, as this is the gauss point length perpendicular to the fracture plane. Three
different simulations have been performed with different gap sizes and fracture lengths. Model
Delam-2D-g20 has a gap size of 20µm and a fracture length of 10µm, model Delam-2D-g50
has a gap size of 50µm and a fracture length of 25µm and, finally, model Delam-2D-g80 has
a gap size of 80µm and a fracture length of 40µm. The force-displacement graph obtained
for these models is displayed in figure 3.25a, and a detail of this same graph in 3.25b. This
figure shows that the results are practically identical in all cases and that only few differences
are found in the crack propagation zone. This agreement among the different models allows
considering the formulation defined, and the fracture length considered, correct.

3.5 Numerical Example: Ply drop-off test

Numerical simulation of large structures made of laminated composites are usually performed
using a lamination formulation, as this formulation provides an accurate approximation of
the structure mechanical performance, taking into account the through-the-thickness config-
uration of the laminate (layer orientation and stacking sequence), with a reasonable computa-
tional effort. Because delamination is one of the main failure causes of this structural types,
some numerical procedure is required to take into account the delamination phenomenon
when large scale simulations of composite laminate structures are performed.
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Figure 3.25: Force–displacement graph obtained for three different gap size models. General
view and detail of the crack propagation zone

The purpose of present simulation is to describe a new procedure to take into account the
delamination failure in large scale simulations of laminated composites. This procedure is
described in the following section. The simulation is also used to assess the effects of the
friction parameter added, to the damage formulation in order to take into account the residual
strength of the delaminated surface.

The simulation has been performed with ComPack-Aero finite element code (CIMNE and
Quantech, 2008), specially developed for the FEMCOM project, “An innovative finite element
method for non linear analysis of composite structures – CIMNE-AIRBUS”. The results of the
simulation have been already described in a delivered report of the project (Martinez et al.,
2007). This code has been developed by the different members working in the FEMCOM
project. Among them, it has to be remarked the work performed by F. Flores, developing the
finite elements technology and the work developed by F. Rastellini, with the implementation
of a simplified version of the serial/parallel mixing theory.

3.5.1 New procedure to take into account delamination in large scale sim-
ulations of laminated composites

ComPack-Aero finite element code

ComPack-Aero (CIMNE and Quantech, 2008) is an explicit finite element code developed by
many researchers at the International Center for Numerical Methods in Engineering (CIMNE)
in Barcelona, Spain. The code has a professional version commercialized by Quantech. A
new version of ComPack-Aero code is in development to fulfill the objectives of FEMCOM
project. The main aim of this project is to develop a non-linear finite element code capable
of solving large scale structural problems of laminated composites, taking into account their
micro-mechanical failures such as delamination or fibre buckling.

Although ComPack-Aero code contains a large number of different elements (such as truss
elements, two- and three-dimensional solids, shells, beams, etc.), developed to solve different
structural problems, in this work only two different elements are used: the LBST shell element
(Flores and Oñate, 2005; Oñate and Flores, 2005; Flores and Oñate, 2007) and a three-
dimensional solid element (Zienkiewicz and Taylor, 1991; Oñate, 1995). The LBST shell
element is formulated as Total Lagrangean assumed strain element without rotational degrees
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of freedom, the computation of the curvatures is made resorting to the geometry of the
adjacent element. This element has two main advantages that make it the most adequate
for the purpose sought. The first advantage is that it reduces significantly the computational
cost of the simulation, as the rotation degrees of freedom are removed from the element.
This feature improves the capacity of the code to deal with large scale simulations. And the
second advantage is that, removing the rotation degrees of freedom, its coupling with solid
elements can be done straightforward, as the degrees of freedom existing in both elements
are the same. The numerical procedure used to couple both elements is described in detail
in Flores (2007).

Despite all advantages provided by the LBST shell element, it has the drawback that shear
stresses are not included in its formulation, therefore it is not possible to take into account
structural failures produced by shear stresses. An example of this sort of failure is, precisely,
delamination. To solve this drawback, a new numerical procedure has been developed in
which the shear stresses are obtained from the angular momentum equations, as a residual
product of the bending forces in the element (Oñate et al., 2007).

The new developed version of ComPack-Aero deals with composite materials using a simpli-
fied version of the serial/parallel mixing theory (Oñate et al., 2007). The simplified version
of the serial/parallel mixing theory considers that the effects fiber in serial directions are
negligible. Therefore, matrix is the only material that collaborates to the composite strength
in these directions. In the parallel direction, the iso-strain relation is used for both compo-
nent materials. Thus, the compatibility and equilibrium equations for the composite can be
written as:

Parallel direction : cεP = mεP = fεP
cσP = mkmσP + fkfσP

Serial direction : cεS = mεS
cσS = mσS

(3.42)

Finally, laminates are treated with the two different procedures described in section 2.3.
LBST shell elements use the classical lamination theory (Barbero, 1999) while solid elements
use the parallel mixing theory to obtain the strain field in each layer and the simplified
serial/parallel mixing theory to obtain the stresses associated to the strain field.

New procedure proposed

Delamination in laminated composites is a failure that, as has been already described in this
work, can be simulated as the total loss of shear strength in some layers of the composite;
this failure is produced by the shear stresses developed between the composite layers. It has
been proved, with the previous numerical example (section 3.4), that this failure phenomenon
can be simulated using the serial/parallel mixing theory together with a damage formulation.
The damage formulation is applied to matrix material and provides its failure due to shear
stresses, if the delamination phenomenon takes place. And, the compatibility equations used
by the simplified serial/parallel mixing theory (equation 3.42) leads to the total loss of shear
capacity by the composite in its serial directions, among them, the shear direction.

Knowing that the formulation used is capable to reproduce the delamination phenomenon, a
new procedure is developed to take into account this micro-mechanical failure in large scale
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simulations of laminated composites, performed with the LBST shell element and the classical
lamination theory.

The first thing to be said is that the delamination phenomenon cannot be properly captured
if the finite element simulation is made using the LBST shell elements; as the LBST rotation-
free shell element used does not contain in its formulation the shear stresses that cause
delamination failure. Therefore, the material cannot lose its shear capacity because it does
not have it, neither can be damaged by shear stresses because they are not included in the
formulation. However, shear stresses can be obtained from the angular momentum equations,
as a residual product of the bending forces in the element (Oñate et al., 2007). These
stresses are included in the composite constitutive equation, to be taken into account by the
damage formulation used to simulate matrix material. Because the damage formulation used
to simulate matrix material is isotropic, the failure of matrix is represented by a strength
reduction in all matrix shear stresses. And, consequently, by a loss of the composite stiffness.

So, the introduction of shear stresses in the composite constitutive equation, which are tres-
passed to matrix constitutive equation by the serial/parallel mixing theory, provides a lost
of the structural capacity of the composite in its serial directions and a global reduction of
its stiffness. Therefore, damage produced by delamination can be taken into account with
the LBST shell element, although there is no way to know if this damage is produced by
delamination effects or by any other cause (such as tension or compression stresses).

In the case of the Ply Drop-off test, the visualization of the delamination phenomenon using
shell elements is even harder, as the main stresses applied to the composite are in fiber
direction, which makes nearly imperceptible the stiffness reduction of matrix material when
studying the composite structural response: although matrix is completely damaged, fibres
continue providing strength in the direction in which they are oriented, that coincides with
the direction in which the load is applied. For this reason it is necessary to post-process the
damage parameter in matrix material, acting as a indicator of damage in the composite.

Most of the structural simulations of composite structures are made to obtain the mechanical
performance of the structure in its service configuration, this is, when no point in the com-
posite is damaged. In this simulations, the representation of the damage parameter provides
enough information as it shows the regions where the structure has to be reinforced. How-
ever, there are some cases in which it is necessary to know the exact damage cause. In these
cases, the damaged shell elements can be replaced by solid elements, using the solid-shell
connection interface included in ComPack-Aero code (Flores, 2007). The new simulation,
performed with shell and solid elements, will show if the damage obtained is produced by a
delamination phenomenon or by any other mechanical failure mode.

Thus, the methodology proposed to solve delamination problems with the numerical code
developed consist on solving the problem using shell elements and, afterwards, replace the
most damaged sections with three dimensional solid elements to obtain a more detailed result
of the critical section of the structure. In the case of the Ply Drop-off test, the section to be
replaced is the section where the variation of thickness in the laminate is found. Figure 3.26
shows this procedure. This methodology can be extended to the calculation of larger struc-
tures such as plane wings. Figure 3.27 shows an schematic representation of the procedure
that should be followed in those cases.
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Figure 3.26: Resolution procedure to solve delamination problems with the code developed

Figure 3.27: Schematic representation the procedure that should be followed to solve large
structural problems
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3.5.2 Description of the ply drop-off test

The Ply Drop-off test consist on applying a tensile stress to a composite laminate that has a
thickness variation at its mid-span. Figure 3.28 shows an schematic representation of the test
set-up and the sample dimensions. The laminate under study is composed by several layers
(varying its number from 18 to 27) of the unidirectional prepeg IMS/977.2. The stacking
sequence of the laminate, each layer orientation and the geometry of the section is which the
thickness increases can be seen in figure 3.29. The properties of the prepeg layers are exposed
in table 3.3.

Figure 3.28: Ply Drop-off model dimensions

Figure 3.29: Stacking sequence and thickness variation of the sample used in the Ply Drop-off
test

E1 [GPa] E2 [GPa] E3 [GPa] G12 [GPa] G13 [GPa] G23 [GPa]

175.0 7.9 7.9 4.3 4.3 4.3

GIc [J/m2] GIIc [J/m2] GIIIc [J/m2] ν t [mm]

555.0 738.0 738.0 0.3 0.26

Table 3.3: Mechanical properties of the UD prepeg IMS/977.2
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All these sample properties (material properties, geometry, etc.) have been used to construct
and define the different finite element models to be used to perform the numerical simulation
of the Ply Drop-off test. The characteristics of these finite element models are explained in
the following section.

3.5.3 Numerical models developed

Three different models are developed to perform the numerical simulation of the Ply Drop-
off test. According to the complexity of the model, the results obtained will be more or less
accurate. The models developed are:

1. Shell model: This model simulates the ply drop-off test using a lamination formula-
tion. Because shell elements are defined using their mid-plane, in order to simulate the
effect of the thickness variation of the sample, a bending moment has been imposed in
the elements where the thickness variation occurs.

2. Solid-Shell model: In this model, the region where the thickness variation takes place
has been simulated with solid elements while, the rest of the structure, is simulated with
shell elements.

3. Solid model: This model is made completely with three dimensional solid elements.
This model is used to verify the results obtained with the two other simulations and to
compare the computational improvement obtained with them.

Each one of these models has two versions. One in which the friction effect is included in
the damage equation and another one in which friction is considered zero. The value of the
friction considered is 2.5% of the matrix tensile strength.

In order to be able to compare the computational cost of each model, the meshes developed
for each one of them have the same number of elements along the longitudinal and the
transversal directions of the sample. In figure 3.30 is shown the number of elements defined
in those directions.

Figure 3.30: Zones in which the model has been divided and number of finite elements defined
in each zone
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As can be seen in figure 3.30, the model is divided in three main zones (each one displayed
with a different color), depending on the number of layers existing in each zone. The green
zone contains 18 layers; the yellow zone corresponds to the area where the thickness variation
is found and the number of layers in it varies from 18 to 27; finally, the blue zone has 27
layers. This figure also shows that the region where the thickness variation occurs only has
defined two finite elements in length. This is because, in order to reduce the computational
cost of the solid models, layers have been grouped in stacks of three. Proceeding in this way,
not only the number of elements required is reduced, but also the number of materials to
be defined. This is shown in figure 3.31, where the geometry and materials considered are
represented in the region where the thickness variation is found.

Figure 3.31: Materials defined in the numerical models

This figure shows that the materials defined in the solid models are:

• Material 1: Composed by two layers oriented at 0◦ and one layer oriented at -45◦

• Material 2: Composed by two layers oriented at 45◦ and one layer oriented at 90◦

These both materials are only used in the solid elements. In the case of shell elements,
each layer is modeled independently along the laminate thickness. However, the thickness
variation region is defined also with two finite elements in order maintain the similarity with
the solid models.

Materials definition

The material properties described in table 3.3 correspond to the homogenized properties
of the unidirectional prepeg IMS/977.2. Although these properties are useful, the mixing
theory does not work with the composite homogenized mechanical parameters but with each
component material properties. In this case, with the matrix and the fibre properties.

To obtain the mechanical properties of each one of the prepeg components, the values of the
homogenized composite have been used considering:

1. Both composite components, fibre and matrix, have the same volumetric participation
in the composite (50%).
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2. Matrix is an isotropic material.

3. According to the simplified serial/parallel mixing theory formulation, fibre only collab-
orates to the composite strength and stiffness in its longitudinal direction.

With these three considerations in mind, the mechanical properties of each component ma-
terial can be computed from the prepeg homogenized properties, obtaining the material
characteristics displayed in table 3.4.

Matrix Properties

Young Modulus 7.90 GPa
Shear Modulus 4.30 GPa
Poisson Modulus 0.30
Tensile Strength 85.0 MPa
Fracture Energy 738 J / m2

Volume Content 50.0 %

Fibre Properties

Young Modulus 342.1 GPa
Poisson Modulus 0.0
Volume Content 50.0 %

Table 3.4: Composite components mechanical properties. The value of the matrix tensile
strength has been obtained from the brochure of CYCOMr 977-2 Toughened Epoxi Resin.

Description of the shell model

The shell model defined is composed by 1632 linear triangle shell elements and 927 nodes.
The mesh developed is displayed in figure 3.32.

Material 1

Material 2

Material 3

Material 4

Figure 3.32: Mesh defined for the shell model. This figure also shows the different materials
defined in the numerical model

Figure 3.32 shows that four different materials are defined in the shell model. The difference
between materials consist in the number of layers defined and the orientation of these layers.
Table 3.5 shows the number of layers and their orientation for each material defined.

As boundary conditions, the movement of the left end is restricted in directions x, y and z
and the right end is restricted in directions y and z. An increasing in time longitudinal force
is applied to the right end of the structure. The simulation has been run for a computational
time of 4.0−3 seconds with a time step of 2.5−8 seconds. The final load applied to the
structure, at the last time step, is of 155.2 kN.

Due to the fact that shell elements are coplanar, in order to simulate the thickness variation
in the structure, the effect of eccentric forces has to be converted to an external load that will
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Layer Num. Material 1 Material 2 Material 3 Material 4

1 –45 –45 –45 –45
2 + 0 + 0 + 0 + 0
3 + 0 + 0 + 0 + 0

4 +45 +45 +45 +45
5 +90 +90 +90 +90
6 +45 +45 +45 +45

7 + 0 + 0 + 0 + 0
8 + 0 + 0 + 0 + 0
9 –45 –45 –45 –45

10 –45 –45 –45 –45
11 + 0 + 0 + 0 + 0
12 + 0 + 0 + 0 + 0

13 +45 +45 +45 +45
14 +90 +90 +90 +90
15 +45 +45 +45 +45

16 + 0 + 0 + 0 + 0
17 + 0 + 0 + 0 + 0
18 –45 –45 –45 –45

19 + 0 + 0 + 0
20 –45 –45 –45
21 + 0 + 0 + 0

22 +45 +45
23 +90 +90
24 +45 +45

25 + 0
26 –45
27 + 0

Table 3.5: Number of layers and fibre orientation defined in the different materials of the
shell model

be applied to the shell elements. This eccentricity generates a bending moment, depending on
the axial force applied to the structure, where the thickness variation occurs. This bending
moment is applied as a pair of forces in the shell model. Figure 3.33 shows how the initial
eccentric load is transformed to the applied pair of forces. The value of the bending moment
and the pair of forces displayed in figure 3.33 is the following,

M = F · e

F+ = −F− =
M

d
=

F · e
d

(3.43)

Figure 3.33: Conversion of the eccentric forces to a pair of forces
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Description of the solid-shell model

The formulation of three dimensional solid elements can provide a better comprehension of
the phenomenons that occur in the structural region where the thickness variation is found.
With this aim, shell elements in this region have been replaced by solid elements. Figure 3.34
shows the mesh developed. This mesh has 2520 linear hexahedrons in the thickness variation
region and 960 linear triangles at each side of this region. The number of nodes is 3852.

Material 1

Material 2

Material 3

Material 4

Figure 3.34: Mesh defined for the solid-shell model. This figure also shows the different
materials defined in the numerical model

Shell elements found at each side of the three dimensional mesh are attached at the mid plane
of the solid, which provides the eccentricity e shown in figure 3.33.

Figure 3.34 shows that four different materials are defined in the model. Materials three
and four correspond to the shell materials already defined for the shell model and exposed
in table 3.5. Materials defined in the solid elements, materials one and two, are based in the
lamination formulation for solid elements of the mixing theory. This formulation considers
that in a solid element composed by different layers, the deformation found in all layers is
the same (and variation of deformation occurs between the different solid elements). With
this consideration in mind, it can be written:

Sε =L1 ε =L2 ε = . . . =Ln ε (3.44)

Where Sε is the solid deformation and Liε is the deformation of layer i. Having the defor-
mation of each layer, the serial/parallel mixing theory can be applied to obtain its stress
state.

Materials defined in solid elements are composed by several layers of the composite material
exposed in table 3.4, each layer with a different orientation. According to the discretization
made along the laminate thickness and shown in figure 3.31, materials 1 and 2 have the
following number of layers and orientations:

As boundary conditions, all displacements of both ends of the structure have been restricted,
except the longitudinal displacement of the right end (according to figure 3.34), where an
increasing displacement has been applied defining a constant velocity. The simulation has
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Material Num. of layers Orientation of layers

Material 1 3 + 0 –45 + 0
Material 2 3 +90 +45 +90

Table 3.6: Laminated solid materials defined in the solid-shell model

been run for a computational time of 4.0−3 seconds with a time step of 3.21−8 seconds. The
final displacement reached, by the right end of the structure at the last time step, is 3.0 mm.

Description of the solid model

The three dimensional solid model developed is used to obtain detailed results of the me-
chanical phenomenons taking place in the structure when it is loaded, as this model contains
the complete strain and stress tensors. Thus, its main function is to provide results to be
compared with the results obtained from the models previously described, to validate their
ability to simulate the mechanical behavior of the structure and the accuracy of the results
obtained with them. Also the computational times obtained with the three dimensional
solid models will be compared with the times obtained with the simplified simulations, as
the three-dimensional times are considered a highest values that can be reached solving the
problem.

The mesh developed for the three dimensional solid model is composed of 6120 linear hexahe-
drons and 7893 nodes. As is shown in figure 3.35, two different materials have been defined.
Both materials are the ones defined for the solid-shell model and described in table 3.6.

Material 1

Material 2

Figure 3.35: Mesh defined for the solid model. This figure also shows the different materials
defined in the numerical model

The boundary conditions applied to the structure, as well as the computational times and
time steps defined, are exactly the same that have been used in the solid-shell model.

3.5.4 Results obtained

The results of the six different simulations performed, corresponding to the three different
finite element models developed: shell, solid-shell and solid; and if friction has been considered
or not in the matrix damage equation; are shown and compared in this section. In the
following table are exposed the names given to each simulation.
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Model name Description

3D-nF Solid model without friction
3D-F Solid model with friction

3D-Sh-nF Solid-shell model without friction
3D-Sh-F Solid-shell model with friction

Sh-nF Shell model without friction
Sh-F Shell model with friction

Table 3.7: Notation used for each finite element simulation

The firsts results presented are the ones obtained from the simulation made with the three
dimensional solid models. These results show with detail the different phenomenons that take
place in the structure and provide a good comprehension of the results obtained with the
other models. Once knowing the structural performance of the laminate in the Ply Drop-off
test, the results corresponding to the shell models are presented and compared with the solid
ones. This comparison shows all the information obtained, and missing, when a shell finite
element model is used to simulate a delamination phenomenon. Afterwards the results of the
solid-shell element are explained and used to study the improvement obtained when adding
solid elements to an already existing shell structure. Finally, all simulations will be compared
among them. This comparison is made studying the structural performance obtained with
all models, using a force-displacement graph. It is also compared the different CPU times
required to run each simulation. The comparison between the results obtained with the
friction and non-friction models is done when studying each single simulation by its own.

Solid model simulation

In the Ply Drop-off test, when the structure is loaded with a tensile force, the thickness
variation found in the middle of the sample generates a bending moment that bends the
structure as shown in figure 3.36. Results obtained in this figure correspond to an applied
displacement of 0.9 mm to the right end of the structure.

Figure 3.36: Deformation of the 3D-nF simulation when a displacement of 0.9 mm is applied
to the right end of the structure

This thickness variation generates not only a bending moment but also shear stresses, which
are concentrated in the layers of the laminate where the thickness variation takes place. These
shear stresses are represented, also for an applied displacement of 0.9 mm, in figure 3.37.

According to the simplified serial/parallel mixing theory, fibres only collaborate to the com-
posite strength in its longitudinal direction. Thus, all shear stresses affect only the matrix
material. When stresses in matrix reach its maximum elastic value, the stress allowed in
the material falls according to the damage constitutive law. And, when the total fracture
energy has been achieved, the element cannot support more stresses, its contribution to the
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Step 0.0011999

Contour Fill of N Stress, Syz-N Stress.

Deformation (x50): Total Disp of Time Step, step 0.00119999

Figure 3.37: Shear stresses in the 3D-nF simulation

structure strength disappears and all stresses jump to the finite element found beside the
cracked one. Also, the lack of strength of the element, in all directions except the fibre’s
longitudinal one (because fibre is not damaged), implies the disconnection between the finite
elements found above and below the completely damaged element. The mechanical response
of a structure with this sort of failure is exactly the same that is found in a structure when
delaminates. Hence, this procedure localizes delamination without the computational cost of
breaking the mesh, remesh the new delaminated area and add a contact condition to avoid
interpenetration.

This effect is fully shown in figure 3.44 (included at the end of this section), where the shear
stresses found in the structure are shown in one column and, in the column beside it, is
displayed the evolution of the damage parameter. In this figure can be seen that, as the
simulation advances, the maximum shear stresses move to the next element that can still
provide some strength. The damage parameter moves in the same direction and with the
same path as the shear stresses advance.

The damage parameter shown in figure 3.44 can take values between 0.0 and 1.0, both
inclusive. When the damage parameter is 0.0 means that the element is not damaged at all
and when its value is 1.0 represents that the element is completely damaged, being unable
to provide more strength, neither stiffness, to the structure. In the case of laminated solids,
the damage parameter represented keeps its limits between 0 and 1, and is defined as:

d =
1

ve

n∑

i=1

VLi
dLi

(3.45)

Where Ve is the element volume, n the number of layers found in the element, VLi
the volume

of layer Li and dLi
the damage parameter of layer Li.

When friction is applied to the matrix damage constitutive law, the residual strength provided
by friction does not allow the delamination to grow until the end of the sample, as happens
with the model when no friction is applied (figure 3.44, e to g). The delamination phenomenon
stops when all damaged elements can provide, with their residual strength, enough shear
stresses to equilibrate the shear effort that appears due to the thickness variation. Figure
3.45 shows the shear stress evolution and the damage evolution in the 3D-F model.

The differences found between the model in which the residual friction strength is applied
and the model without it can be seen also in the force-displacement graph of the structure,
shown in figure 3.38

This figure shows that for an applied displacement of, approximately, 1.6mm the effect of
damage due to delamination begins to be perceptible in both models as a reduction of the
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Figure 3.38: Force-displacement results for the solid models with and without friction

structure stiffness. However, this reduction is much larger in the case in which friction is not
considered while, when friction is considered, the stiffness reduction is smaller because of the
residual strength imposed in the constitutive equation of matrix material.

Shell model simulation

Once knowing the structural behavior that is expected from the laminate when the Ply Drop-
off test is applied to it, in this section are shown the results obtained from this test when
performing a numerical simulation using shell elements.

As a result of the bending moment applied to the structure (to simulate the thickness vari-
ation of the sample), the structural deformation is the same found in the case of the three
dimensional model. In figure 3.39 can be seen this deformation for an applied displacement
of nearly 0.9 mm.

Figure 3.39: Deformation of the Sh-nF simulation when a displacement of 0.9 mm is applied
to the right end of the structure

When studying the failure criteria of the structure, the first thing that must be noticed is
that, as the rotation-free shell elements do not have shear stresses in their formulation, the
effect of delamination will not be observed in the same way as is observed in the case of
a three dimensional simulation. In the case of shell elements, what can be observed is the
evolution of damage in the material due to delamination.

Although shear stresses are not included in the element formulation, a good estimation of their
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value can be obtained from the angular momentum equations. These stresses are included
in the composite constitutive equation. Following this procedure, the simulation shows that
damage appears in the structure in the same place that appears when performing a three
dimensional simulation, in the section where the thickness variation occurs. This can be
seen in figure 3.46 in which the damage value is shown for different time steps. The damage
parameter represented in this figure has been computed with the same expression described
when studying the results of the three dimensional solid model (equation 3.45).

As can be seen in figure 3.46, damage starts in the structure for an applied displacement of
1.72 mm. Thus, the error in the damage initiation when simulating the Ply Drop-off test with
shell elements is, approximately, of a 15%, when compared with the solid model, in which
damage starts for an applied displacement of 1.50 mm.

The other main difference when comparing both models is that damage moves from right to
left, instead of moving from left to right as happens with the solid model. The explanation
for this effect is the following,

1. Damage starts as a result of the delamination produced by the shear stresses that
appear due to the thickness variation in the structure. In the shell model, this shear
stresses do not advance from left to right because the bending moment is always applied
in the same section of the structure. On the other hand, in the solid model, the bending
moment moves following the crack tip, which also moves the stresses that will propagate
the delamination.

2. When delamination stabilizes, for a displacement of 3.0 mm in 3D-nF model and 2.625
mm in 3D-F model, the damage in the structure moves towards the left end of the
structure, as this region of the structure is weaker than the other one. And this is
exactly what happens in the shell simulation, as delamination crack cannot advance to
the right end of the structure (delamination gets stabilized where the thickness variation
occurs, because the bending moment is always applied in the same section), damage
moves towards the left end.

Hence, the results obtained with the shell model are, with the limitations of the element
formulation, completely coherent with the results obtained from the three dimensional solid
model. In case of requiring a better accuracy and detailed prediction from the simulation,
some shell elements must be replaced by solid elements, as is shown with next simulation.

Finally, the comparison between the model with and without friction shows that, in the case
of a shell simulation, no difference is obtained between both models. Efforts affecting the
structure are mainly longitudinal and matrix collaboration is not as relevant to the final
strength of the structure. So, the effect of residual strength is practically imperceptible. This
can be seen in the force displacement graph obtained from both simulations. This graph is
shown in figure 3.40. In this figure, the results of the model in which friction is not considered,
red line, cannot be seen because they are below the blue line.

Solid-Shell model simulation

This model improves significantly the comprehension of the different mechanical phenomenons
that take place in the Ply Drop-off test, without increasing substantially the CPU time
required to run the simulation. The addition of three dimensional elements in the region where
damage begins, according to the shell model, provides a good prediction of the mechanical
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Figure 3.40: Force-displacement results for the shell models with and without friction

effect that takes place. When discussing the shell models results, damage was associated
with delamination at all time because the phenomenology of this damage was known from
the three dimensional solid model. However, in other cases, the reason because damage starts
can be unknown. The addition of three dimensional solids to the shell mesh will provide this
information.

First result to be shown is that the thickness variation in the structure provides, with the solid-
shell model, the same deformation shown for the previous two simulations. This deformation
is displayed in figure 3.41.

Figure 3.41: Deformation of the 3D-Sh-nF simulation when a displacement of 0.9 mm is
applied to the right end of the structure

Besides the agreement in the displacement field among this model and the previous ones
presented, the most important information to be obtained from this simulation are the me-
chanical effects that lead to the apparition of damage in the structure. This can be seen in
figure 3.47, in which the evolution of shear stresses and damage parameter is shown along
the loading process for the 3D-Sh-nF model.

This figure shows that damage appears in the structure due to a delamination phenomenon:
the layer where the thickness variation starts is completely damaged due to shear stresses.
Thus, the damage cause predicted by the solid-shell model is exactly the same found in the
solid three dimensional model. This agreement between models is also found in the load
step in which damage starts, for an applied displacement of 1.50mm in the right end of the
structure. However, in this case, delamination stops for an applied displacement lower than
2.625 mm, coincident with the displacement in which the delaminated area reaches the end of
the solid mesh and cannot continue through the shell element. At this point, as has been also
obtained with previous models, damage starts increasing from the last delaminated section
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towards the left end of the structure. This evolution of the damage region can be observed
better in figure 3.48, in which the damage parameter in shell elements are depicted. This
figure shows that damage has been already extended along the left side shell elements for an
applied displacement of 2.400 mm.

When comparing the results obtained between the models with and without friction, figure
3.42, it can be seen that in the model in which friction is not considered the stiffness is slightly
lower when damage due to delamination starts. However, results between both simulations
are practically coincident because the delaminated are is too small to provide larger differences
between both models.
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Figure 3.42: Force-displacement results for the solid-shell models with and without friction

Comparison among all simulations

Up to this point, the results obtained with the different simulations performed prove the
ability of shell models to predict the apparition of damage in the structure as a consequence
of delamination phenomenons, and how the structure behaves when this damage appears.
Also the solid-shell model has been proved to be a good complement to the shell formulation,
as it can show the exact failure criteria that originates the damage shown by the shell model.

The structure performance is similar in all models developed, as can be seen in figure 3.43.
In this figure the results obtained with the different finite element meshes (shell, solid-shell
and solid) are compared, for the friction models and the non-friction ones, using the force-
displacement graphs obtained for each simulation. These graphs show that in the elastic range
all models have the same stiffness and, when delamination starts, the stiffness reduction is
proportional to the formulation accuracy of the model. However, the final load reached does
not differ significantly among the different simulations and, when friction is considered, this
difference is even lower.

All results shown so far prove the validity of the procedure proposed to take into account
delamination phenomenons inn laminated structures. This is, localize the damaged regions
in the structure using shell elements simulated with a lamination theory and replace these
elements for solid elements to obtain a detailed representation of the failure cause. However,
to justify the convenience of using this procedure instead of modeling from the beginning the
structure with three dimensional solids, the CPU times required to solve the problem with
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Figure 3.43: Force-displacement graph comparing the results obtained for the non-friction
models and the friction ones

the new formulation proposed must improve significantly the CPU times required with a 3D
simulation.

In the following table, the CPU times required to solve each one of the simulations are
exposed. All calculations have been made with a Dell laptop that has an Intel Core 2 Duo
T7200 CPU working at 2.0 GHz and with a RAM memory of 2GB.

Model name CPU Time Num. iterations

3D-nF 6h 51m 128750
3D-F 6h 51m 127500

3D-Sh-nF 4h 10m 137500
3D-Sh-F 3h 59m 131250

Sh-nF 2h 29m 160000
Sh-F 2h 21m 160000

Table 3.8: Notation used for each finite element simulation

Results presented in table 3.8 show that running the simulation with shell elements reduce
nearly by three the time required by the three dimensional model. And, even when the model
is refined adding solid elements where the thickness variation is found, the CPU time required
is still considerable lower than in the three dimensional simulation, as the reduction of the
CPU time is a bit larger than a 40%.

With the CPU times shown, the cost of running both models proposed to solve the problem,
the shell model and, afterwards, the solid-shell model, is lower than the time required to run
a complete three dimensional model. And, as has been seen, the results obtained with the
methodology proposed are as good as the ones provided by the solid three dimensional models.
It also has to be said that the structure considered in this simulation is quite small and that
the benefits of the procedure proposed will be substantially more visible when applying this
procedure to larger structures such a plane wing, in which the section that will be damaged
is unknown.
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(a) Shear stresses and damage parameter - Long. displacement = 1.500mm

(b) Shear stresses and damage parameter - Long. displacement = 1.725mm

(c) Shear stresses and damage parameter - Long. displacement = 1.950mm

(d) Shear stresses and damage parameter - Long. displacement = 2.175mm

(e) Shear stresses and damage parameter - Long. displacement = 2.400mm

(f) Shear stresses and damage parameter - Long. displacement = 2.625mm

(g) Shear stresses and damage parameter - Long. displacement = 3.000mm

Figure 3.44: Shear stresses and damage parameter in the 3D-nF model. This figure shows
the evolution of both variables as the applied displacement increases
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(a) Shear stresses and damage parameter - Long. displacement = 1.500mm

(b) Shear stresses and damage parameter - Long. displacement = 1.725mm

(c) Shear stresses and damage parameter - Long. displacement = 1.950mm

(d) Shear stresses and damage parameter - Long. displacement = 2.175mm

(e) Shear stresses and damage parameter - Long. displacement = 2.400mm

(f) Shear stresses and damage parameter - Long. displacement = 2.625mm

(g) Shear stresses and damage parameter - Long. displacement = 3.000mm

Figure 3.45: Shear stresses and damage parameter in the 3D-F model. This figure shows
the evolution of both variables as the applied displacement increases
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(a) Damage parameter - Long. displacement = 1.49mm

(b) Damage parameter - Long. displacement = 1.72mm

(c) Damage parameter - Long. displacement = 1.950mm

(d) Damage parameter - Long. displacement = 2.18mm

(e) Damage parameter - Long. displacement = 2.42mm

(f) Damage parameter - Long. displacement = 2.67mm

(g) Damage parameter - Long. displacement = 3.02mm

Figure 3.46: Damage parameter in the Sh-nF model. This figure shows the evolution of
damage parameter as the applied displacement increases
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(a) Shear stresses and damage parameter - Long. displacement = 1.500mm

(b) Shear stresses and damage parameter - Long. displacement = 1.725mm

(c) Shear stresses and damage parameter - Long. displacement = 1.950mm

(d) Shear stresses and damage parameter - Long. displacement = 2.250mm

(e) Shear stresses and damage parameter - Long. displacement = 2.625mm

(f) Shear stresses and damage parameter - Long. displacement = 3.000mm

Figure 3.47: Shear stresses and damage parameter in the solid elements of the 3D-Sh-
nF model. This figure shows the evolution of both variables as the applied displacement
increases
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(a) Damage parameter in shell elements - Long. displacement = 2.250mm

(b) Damage parameter in shell elements - Long. displacement = 2.400mm

(c) Damage parameter in shell elements - Long. displacement = 2.625mm

(d) Damage parameter in shell elements - Long. displacement = 3.000mm

Figure 3.48: Damage parameter in the shell elements of the 3D-Sh-nF model. This figure
shows the evolution of both variables as the applied displacement increases
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3.6 Conclusions and further work

In this chapter two different numerical procedures have been proposed related to the delam-
ination problem. The first one consist on using the serial/parallel mixing theory to obtain
the mechanical performance of the composite. It has been shown that this theory is capable
to simulate delamination in the composite without the need of any additional formulation.
The second procedure proposed provides a methodology to perform large scale simulations
of composite materials, using shell elements and the classical lamination theory, taking into
account delamination failure.

This section describes the main conclusions obtained from the numerical examples used to
prove the performance of the two procedures proposed. It also contains a section in which
are described some research lines that can be followed from the present work.

3.6.1 Conclusions

The main conclusion that can be inferred from the numerical simulations performed in this
chapter, the end-notch flexure (ENF) test (section 3.4) and the ply drop-off test (section
3.5), is that the serial/parallel mixing theory is capable to simulate a delamination process by
using the appropriate constitutive equations to predict the material behavior of the composite
components. No other help or formulation is needed. This assessment has been proved when
comparing the numerical with the experimental results for the ENF test. As the results
obtained with the numerical simulation are practically identical to the results obtained from
the experimental tests.

The structural behavior of the materials, obtained from the numerical simulations, shows that
the delamination phenomenon occurs as a result of the lost of stiffness in matrix material due
to the damage produced by the shear stresses in it. This lost of stiffness in matrix material
implies that no other component material can develop serial stresses, due to the iso–stress
condition of the serial/parallel mixing theory in the serial direction. This is translated in
a lost of stiffness of the composite in all serial directions. In the case considered, the serial
directions are all directions non coincident with fibre orientation. Thus, the composite is
unable to avoid the shear deformations produced by the external loads, allowing a perfect
sliding between the materials existing over and below it.

This procedure to deal with delamination provides an almost perfect simulation of the phe-
nomenon without making any material distinction of the section expected to delaminate.
Thus, the formulation becomes a good tool to study problems in which the delamination is
known to occur but it is not known in which structural component or section will happen.
Also, with the procedure developed, no remeshing formulation, neither contact, is needed to
obtain the delamination effects on the structure; which reduces significatively the computa-
tional cost of the simulation.

The simulations performed have proved, also, that the damage formulation developed to
simulate the matrix material constitutive behavior requires knowing the properties of the
mesh generated to perform the simulation, as the fracture energy that can be developed by
the model depends on the fracture length of it. This fracture length corresponds to the
dimension perpendicular to the fracture surface. However, once knowing this dimensional
parameter, the results obtained are mesh independent.

The second numerical procedure proposed in this chapter is focused in using the methodology
developed to predict delamination failure in large scale simulations of laminated composites.
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This sort of simulations are usually performed using shell elements and the classical lamina-
tion theory. Most of the shell elements implemented in finite element codes do not include
in their formulation the interlaminar shear stresses components, in particular, the LBST ele-
ment used in this work does not have them. However, this drawback can be solved obtaining
the shear stresses as a residual product of the simulation, from the angular momentum equa-
tions. These stresses are included afterwards in the constitutive equation of the composite;
which permits to take into account the delamination failure in the material constitutive per-
formance and localize the elements in which some sort of damage takes place. Once damage
has been localized, the damaged elements can be replaced by solid elements to obtain the
type mechanical failure obtained in the material.

This methodology has been applied to the ply drop-off test, which has proved that, despite
the possible differences in the final values of the different simulations performed (shell, solid-
shell and solid simulations), all of them provide the same qualitative results. All models have
shown that the failure cause of the laminate in the ply drop-off test is due to delamination,
found in the first layer where the thickness of the sample begins to increase. And, when this
delamination stops, damage propagates from the last laminated section in the structure to
the left end of it. The force-displacement graphs have shown that this process is not followed
by a significant reduction of the stiffness, neither the strength, of the laminate.

The results obtained have proved the good performance of shell element simulations, as they
are capable to localize where and when damage starts, as well as the structure behavior as
a result of this damage. The ability to make these predictions works even in cases in which
the failure cause is due to shear stresses (such as delamination), not included explicitly in
the element formulation as they have to be obtained as a residual result from the element
momentums. And, if a better prediction and comprehension of the failure mechanisms wants
to be obtained from the numerical simulation, the code allows replacing some shell elements
with solid three dimensional elements, which will provide a more detailed representation of
the region where damage occurs.

Thus, these results validate the procedure proposed to solve composite laminated structures:
First running a shell model that will localize the regions of the structure where damage occurs
for, afterwards, replacing some shell elements for solid elements in case of requiring knowing
the exact mechanical causes of the damage found with the shell elements. Results obtained
with this procedure, for the Ply Drop-off test, have been compared with a three dimensional
simulation of the test obtaining a perfect agreement among the models.

Also, this new methodology proposed reduces significantly the CPU time required to perform
the simulation, as shell model requires a third of the time needed to perform the three
dimensional simulation. The advantages of the proposed methodology to solve laminated
structures will be more perceptible when dealing with larger simulations, in which the areas
that are damaged are unknown, as it is also unknown the type of damage suffered by the
structure.

Finally, it has to be said that the friction parameter included in the damage formulation
has proved that friction can play an important role in the delamination toughness, as it
stabilizes the fracture propagation. However, this effect is only visible when the delamination
is simulated with solid elements.



134 3.6 Conclusions and further work

3.6.2 Further work

The good results obtained with the new procedures proposed to simulate delamination in
composites using the serial/parallel mixing theory, together with a damage formulation, jus-
tify further research of the delamination phenomenon, following the path began in this work.
Some possible research lines are described hereafter.

• The version of the serial/parallel mixing theory used to simulate delamination only
uses two constituent materials to characterize the composite: fiber and matrix. With
this scope, delamination relies on matrix material. It can be interesting to develop a
new version of the serial/parallel mixing theory capable to deal with three constitutive
materials. The new material added to the formulation can be defined as an interface
material, which will contain all the mechanical parameters required to characterize the
delamination phenomenon (fracture energies, stiffness, etc.)

• The damage constitutive law used to characterize matrix material in the presents sim-
ulations have been proved to work satisfactorily, according to the results obtained from
the simulations. However, further research can be performed trying to improve this
formulation, or studying how the delamination phenomenon is characterized when dif-
ferent yield criterions are used, such Mohr-Coulomb or Drucker-Prager.

• The constitutive laws used to simulate delamination should be improved with a large
strain formulation. The stiffness reduction suffered by the structure due to delamination
leads to large displacements. These should be taken into account in order to obtain
more accurate prediction of the delamination phenomenon and, what is even more
important, to obtain a more accurate prediction of the mechanical performance of the
structure, once delamination has taken place.

• Friction effects. Despite the relevance that have friction effects in the fracture tough-
ness of mode II delamination, few studies have been found in which friction is used
to simulate delamination phenomenons. Therefore, this field is completely opened for
further research. In this work a friction parameter has been introduced in the dam-
age formulation. The new damage formulation has proved that friction can stabilize
delamination propagation. However, this parameter is based on an empirical value dif-
ficult to obtain. The friction parameter should be improved, making it dependent on
the material friction coefficient. Also friction formulation should be improved to take
into account its directional behavior (the formulation developed considers this effect
isotropic) and to make it dependent on the forces normal to the fracture surface.

• Finally, the simulations included in this work have proved the ability of the numer-
ical procedures proposed to deal with the delamination problem, but they are small
simulations that do not take advantage of all capabilities provided by the proposed
procedures. Now these procedures should be used to perform simulations of large scale
laminate structures, obtaining their structural performance taking into account possible
micro-mechanical failures, such as delamination. These simulations will increase the ex-
isting knowledge of how laminated structures behave and will reveal possible drawbacks
of the procedures proposed, hidden when these are used in small scale simulations.
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Balacó de Morais, A. and Pereira, A. (2006a). Mixed mode I+II interlaminar fracture of
glass/epoxi multidirectional laminates – part 1: Analysis. Composites and Science Tech-
nology, 66(13):1889–1895.
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4.1 Introduction

The failure criteria of long fibre composites subjected to compressive forces can be due to two
main reasons, fibre buckling and/or composite delamination (Welsh and Adams, 1997). Re-
garding the fibre buckling phenomenon, first studies correspond to Rosen (1965) who defined
two different buckling modes and the compression stress at which this buckling occurs; this
expression depends on matrix shear strength and on the volumetric participation of fibres in
the composite. Rosen initial formulation lead to new studies which tried to predict with more
accuracy the composite critical compression stress due to fibre buckling. Of those, its worth
to mention the works of Barbero and Tomblin (1996), Balacó de Morais and Torres Mar-
ques (1997) and Drapier et al. (1999). The models proposed by these authors are based on
energetic equilibriums between the composite components, these equilibriums lead to a final
expression of the maximum compression stress that can be applied to the composite. It is
also interesting the scope used by Parnes and Chiskis (2002) or Kosker and Akbarov (2003);
in both cases the fibre buckling problem is solved studying the compatibility between the
strain–stress state of fibre and matrix materials.

The expressions found in all models agree in the dependence of the critical compression stress
on three main parameters:

1. Matrix shear strength

2. Fibre initial misalignment

3. Proportion between fibre and matrix in the composite

Thus, the limit compression stress of these new formulations depends on the same parameters
pointed out by Rosen and on a new one: fibre initial misalignments. It can be concluded
that any formulation regarding fibre micro–buckling must take into account fibre initial mis-
alignments to predict accurately composite compression limit stress.

According to Jochum and Grandidier (2004), fibre misalignments are produced in the com-
posite manufacturing process, during the matrix curing. These misalignments are regular in
frequency and amplitude along the whole fibre length and can be represented by a sinusoidal
shape. Figure 4.1 shows a photograph of the misalignments found in a carbon fibre embedded
in an epoxy matrix.

Fig. 2. Example of microbuckling measurements (in micrometers) done

on a T300 carbon fibre inside of an LY556 epoxy matrix.

Figure 4.1: Initial fibre misalignments (Jochum and Grandidier, 2004)
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There are two main problems in all known formulations developed to obtain the compression
strength of the composite. The first one is that most of them only provide an expression
to obtain the maximum stress can be applied to the composite before fiber buckling occurs.
However, in a structural problem, a local failure does not imply the total failure of the
structure, being necessary to know the post-critical behavior of the material to continue the
simulation, in order to obtain the global structure performance.

The second problem appears because the composite is treated as a single material with
average properties from its constituents. A formulation based only in the composite, forces
to pre-define the constitutive performance of the composite constituents in order to obtain
the expressions that will provide the critical buckling strength of the material. In example,
Drapier et al. (1999) consider that the fibers are an elastic material and the matrix is modeled
with a J2 law. Thus, the application range of the formulation developed is reduced to those
composites which constituents have an specific constitutive performance, being necessary to
reformulate the whole problem if a different constitutive law is required.

These two problems: impossibility to obtain the post-critical strength of the composite and
pre-defined constitutive behavior of the composite components, can be solved simulating
the composite material with the serial/parallel mixing theory developed by Rastellni et al.
(2007) and described in chapter 2. This theory can be understood as a constitutive equations
manager that obtains the composite constitutive performance by combining the mechanical
behavior of its different constituents. Therefore, the main aim of this chapter is to develop
a compression strength formulation to be included in the serial/parallel mixing theory and
capable of taking advantage of all the benefits provided this theory. A first attempt to include
the fiber buckling phenomenon in the mixing theory has been already made by Puig et al.
(2001), with promising results.

The fiber buckling phenomenon is included into the serial/parallel mixing theory by modi-
fying the constitutive performance of the composite constituent materials (fiber and matrix)
according to the micro-structural interaction that exist between them. The modification of
the constitutive performance of both components is made using an homogenization method
(Sánchez-Palencia, 1987; Oller et al., 2005).

Homogenization methods deal with the global problem of composite material in a two scale
context. The macroscopic scale works with the composite material to obtain the global
structural response; composites are treated as homogeneous materials in this scale. The mi-
croscopic scale corresponds to an elemental characteristic volume in which the microscopic
fields inside the composite are obtained, this scale works with the component materials of the
composite, studying the behavior of a Representative Volume Element (RVE). Homogeniza-
tion theory assumes a periodical repetition of the RVE in the composite material to relate
these two scales.

The study of the fibre buckling problem using an homogenization method would consist on
obtaining the composite performance by solving an RVE with a finite element model of the
fibre–matrix system, using a large displacement theory to obtain the moment in which fibre
buckles, and taking into account the initial fibre misalignments. Figure 4.2 shows a possible
finite element model of the RVE. Results obtained from this model would be extrapolated to
the composite to solve the structural problem.

However, homogenization methods are unaffordable to be used nowadays due to their com-
putational cost: obtaining the response of a real structure with this methods implies solving
a complex finite element model for each point in which the structure is discretized. Thus all
efforts are focused on the study of the structural performance of RVE’s (Gónzalez and Llorca,
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Figure 4.2: Finite element model of a RVE that takes into account fibre initial misalignments

2007) or on how the information can be transferred from the micro–scale to the macro–scale
(Zalamea, 2001; Car et al., 2002). To improve the computational efficiency of the formula-
tion developed, the RVE shown in figure 4.2, is simplified to an unidirectional case using the
existing analogy between the micro-structural performance of the RVE and a Curved Bar
under unilateral Elastic Restrain (CuBER problem, figure 4.3). It will be shown that this
simplification makes a significant reduction on the computational cost without reducing the
amount of information obtained, neither the accuracy of it.

Figure 4.3: Problem of a curved bar under unilateral elastic restriction (CuBER problem)

The homogenization method used consist in transforming the structural solution provided
by the CuBER problem, characterizing the interaction between fiber and matrix, into some
parameters to be included in the constitutive equations of both components of the composite:
fibre and matrix. Thus, what is homogenized is not the composite but its constituents
performance. Once having a modified constitutive behavior of the composite constituents, the
serial/parallel mixing theory can be used to obtain a composite performance that will take into
account the micro–structural interaction of fibre and matrix due to fibre initial misalignments.
It will be shown that the new constitutive performance of both materials, together with the
mixing theory formulation, is capable to simulate the fiber buckling phenomenon and, thus, to
obtain the critical compression stress of the composite and its post-critical behavior. Also, the
formulation developed establishes a direct relation between the compression capacity of the
composite and the three main parameters defined in literature to obtain this final compression
strength: fibre initial misalignments, matrix shear strength and proportion between fibre and
matrix in the composite.

The new homogenized constitutive equations are included in an algorithm that do not only
provides the compression strength of composite materials made of long fibers with initial
misalignments but goes a step further, taking into account all possible situations that can
be found in the numerical simulation of structures. The algorithm takes into account the
direction of the stresses applied to the fibers: compression or tension, and is capable to obtain
the composite performance when it is unloaded. Also, the algorithm provides a solution to the
case in which fiber initial misalignments are too small to affect the composite performance,
in this case the buckling formulation of a straight bar is applied to obtain the constitutive
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performance of the composite components.

This chapter is structured as follows. Section 4.2 contains a brief state of the art of the
different theories and formulations existing nowadays to obtain the compression strength of
composite materials. Afterwards, in section 4.3 is described the formulation required to solve
the CuBER problem, as well as the methodology used to transform the structural performance
of this problem into two homogenized constitutive laws, one for the fibre and the other for the
matrix. These modified constitutive laws are used by the mixing theory. The validation of
the new homogenized constitutive equations is shown in section 4.4. In this section the results
obtained with the new formulation are compared with the results that are obtained from a
micro-model of the RVE cell considered. Once having proved the correct performance of the
methodology proposed, section 4.5 defines the algorithm used to implement, in a finite element
code, the effect of fiber buckling to reduce the compression strength of composite materials.
This algorithm includes the homogenized constitutive equations for matrix and fiber in the
serial/parallel mixing theory, taking into account the different loading cases that can be found
in the composite as well as the level of fiber misalignment in the composite. The validation of
the algorithm proposed to obtain the compression strength of composite materials is described
in section 4.6. This validation compares the numerical results with experimental data existing
in literature and includes a numerical example in which a composite structure is solved with
the new formulation developed. Finally, section 4.7 includes the conclusions obtained from
the formulation described and validations performed in this chapter.

4.2 Compression strength of composite materials

Since the first investigation made by Rosen (1965), many authors have studied the problem
of long fiber composites under compression efforts. These studies have lead to different
formulations that provide an approximation to the maximum compression stress that can be
applied to the composite. The present section summarizes the most relevant formulations
found in literature dealing with the problem of compression strength in long fiber composites,
due to the fiber buckling phenomenon.

4.2.1 Rosen model

The first known study in which the compression strength of long fiber composites was related
to the fiber buckling problem corresponds to Rosen (1965). This study has been summarized
by Jones (1999). To obtain the compression strength of the composite, Rosen considered the
fiber as a column on an elastic foundation. With this model in mind, two different buckling
modes were defined: extensional and shear buckling (see figure 4.4).

Figure 4.4: Shear and extensional buckling modes defined by Rosen (1965)
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To obtain the compression strength of the composite Rosen defined a two dimensional model
in which fibers are considered plates infinitely wide. With this assumption, the Timoshenko
and Gere (1961) energy method was applied to obtain the buckling load of the plate con-
sidering m transversal restrictions along its length. Minimizing the resulting expression in
function of m, the equations obtained to compute the composite maximum compression stress
are, for each buckling mode:

Extensional mode:

σc, max = 2

[

Vf + (1 − Vf )
Em

Ef

]
√

VfEmEf

3(1 − Vf )
(4.1)

Being Vf the fiber volumetric participation and Em and Ef the matrix and fiber elastic
modulus, respectively. This equation considers an iso-strain condition in fiber direction.
If Em ≪ Ef , it can be considered that matrix stresses are nearly zero and expression
4.1 can be simplified to:

σc, max = 2Vf

√

VfEmEf

3(1 − Vf )
(4.2)

Shear mode:

σc, max =
Gm

1 − Vf
(4.3)

Where Gm is the shear stiffness of matrix material.

The buckling mode that will lead to the failure of the composite depends on the volume
content of fiber in the composite. The plot of the results obtained with expressions 4.1 and
4.3 in function of the fiber volumetric participation for an E-Glass composite, is displayed
in figure 4.5. This figure shows that for fiber volume contents lower than 0.18 the buckling
mode that will lead to the composite failure is the extensional mode and, for fiber contents
larger than 0.18, the maximum compression strength is produced by the shear mode.
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Figure 4.5: Maximum compression stress that can be applied to an E-Glass composite using
Rosen’s formulation

The most known expression known of the Rosen model corresponds to the maximum compres-
sion of the composite due to shear buckling (equation 4.3). This is because the fiber volume
content in the most commonly used composites, is in the range of 50 – 60%. Therefore,
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according to figure 4.5, the failure in the most commonly used composites will be produced
by shear buckling.

Following the same idea used by Rosen to formulate his model, Lo-Chim and Xu-Reifsnider
developed two different models that try to improve Rosen’s one. Hereafter are both of them
briefly explained.

Lo-Chim model

The model proposed by these authors follows the same procedure used by Rosen but reduce
the number of assumptions. They add a term, during the derivation of the result, to account
for unknown boundary conditions. This term is obtained by fitting the model to the experi-
mental results. Therefore, the equation proposed to obtain the compression strength of the
composite is (Lo and Chim, 1992):

σc, max =
G12

1.5 + 12
(

6
π

)2
(

G12

E11

) (4.4)

where the variables G12 and E11 are obtained using the elastic mechanical parameters of fiber
and matrix and their volumetric participation in the composite.

Xu-Reifsnider model

The model proposed by Xu and Reifsnider (1993) replace the Timoshenko beam formulation
used to obtain the compression strength of a column by the problem of a column embedded
in an elastic foundation. With this substitution, the expression obtained by these authors to
characterize the maximum strength that can be applied to the composite becomes:

σc, max = Gm

[

Vf +
Em

Ef
(1 − V f)

]




2(1 + νm)

√
√
√
√

π
√

πηrf

3
(

Em

Ef

)(

Vf
Em

Ef
+ 1 − Vf

)

(1 + Vfνf + νm(1 − Vf ))

+1 − ξ − sin πξ

2π

)

(4.5)

From the first model developed by Rosen, and the updates proposed by Lo-Chim and Xu-
Reifsnider, different authors have studied the fiber buckling problem in composites obtaining
more accurate expressions to compute the maximum compression strength that can be applied
to the composite. All new formulations maintain the dependence of fiber buckling in fiber
volume fraction and matrix shear stiffness but they do also introduce a new parameter in the
equation: fiber initial misalignments.
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4.2.2 Fiber initial misalignments

The effect of fiber initial imperfections on the compression performance of long fiber com-
posites has been assumed and proved by all authors studying the problem. Therefore, the
measurement of fiber initial misalignments appears essential to obtain an accurate prediction
of the compression strength of the composite (Jochum and Grandidier, 2004).

Yurgartis (1987) developed an optical technique which consist on cutting the composite at an
angle and measuring the major axis of the ellipse formed by the intersection of a cylindrical
fiber with the cutting plane. The determination of the cutting angle was made assuming a
symmetric distribution of fiber misalignment. This technique has been refined afterwards by
Barbero and Tomblin (1996), which accurately measured the angle of cut by measuring the
major and minor axes of the ellipse formed by the rod specimen.

A first attempt to obtain a three dimensional measurement of fiber initial misalignments
was made by Paluch (1996) by taking a stack of sections of the composite and matching
the fibers found in each XY image of each section. From this first attempt, Clarke et al.
(1995) developed a new technique in which the three dimensional spatial distribution of fiber
misalignments could be obtained. This technique uses a confocal laser scanning microscope
(CLSM) to obtain the each fiber position along the Z axis of the sample. The main advantage
of using a CLSM is that the data acquisition is non-destructive, therefore the composite does
not have to be cut at different Z sections, being more easy to correlate the fiber position
between sections.

Finally, its worth to mention the work made by Jochum and Grandidier (2004). These
authors made several single fiber specimens of a Torray T300 carbon fiber embedded in an
epoxy matrix. The apparition of initial fiber misalignments where recorded during the curing
process using an optical microscope, thanks to the transparency of the matrix. These authors
propose an elastic microbuckling model to explain the apparition of fiber initial misalignments
during the curing process of the composite.

4.2.3 Barbero and Tomblin model

Being aware of the importance of fiber initial misalignments in the compression performance
of composite materials, Barbero and Tomblin (1996); Tomblin et al. (1997); Barbero (1998),
developed a formulation, based on continuous damage mechanics, to predict the compression
strength of composite materials taking into account fiber initial imperfections.

The model developed is based in the following hypothesis: (a) Matrix shear stiffness is non-
linear and can be characterized by an hyperbolic tangent function. (b) Fiber misalignments in
the composite follow a Gaussian distribution. Taking into account these two hypothesis, the
relation between the buckling stress in the composite and the fiber imperfection is obtained
using the principle of total potential energy. The final expression obtained to calculate the
critical compression stress in the composite is (Barbero, 1998):

σ(α, γ) =
τu

2(γ + α)

(
√

2 − 1)(e
√

2g − e2g) + (
√

2 + 1)(e(2+
√

2)g − 1)

1 + e2g + e
√

2g + e(2+
√

2)g
(4.6)

With g = γGLT /τu. And being τu the maximum shear strength of matrix material, GLT the
matrix shear stiffness (defined by an hyperbolic tangent function), γ the shear strain in the
composite and α the misalignment angle of fibers.
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Expression 4.6 provides the maximum compression strength that can be applied to the com-
posite considering that fibers have a misalignment angle α. Once having this expression, a
continuum damage model is applied to the compression stress of the composite to obtain the
composite performance. Therefore,

σC = σ(α)[1 − ω(α)] (4.7)

Where ω(α) is the area of buckled fibers per unit of initial fiber area. The area of bucked fibers
is proportional to the area under the normal distribution located beyond the misalignment
angle ±α, and it can be computed as:

ω(α) = 2

∫ ∞

α

f(α′) dα′ (4.8)

with f(α) the probability density of the normal distribution.

Thus, the model developed by Barbero and Tomblin not only provides the maximum com-
pression strength that can be applied to the composite before fiber buckling (for a given
misalignment angle, equation 4.6), but also provides the stress evolution of the composite.
This stress evolution depends on the number of fibers that have buckled; fibers with large
misalignments will buckle for lower loads. This last equation is important because there are
few models that provide the post-critical performance of the composite once the maximum
compression stress has been reached.

4.2.4 Balacó de Morais model

Another approximation to the compression strength of composite materials due to fiber mi-
crobuckling is the one provided by Balacó de Morais (Balacó de Morais, 1996; Balacó de
Morais and Torres Marques, 1997; Balacó de Morais, 2000). This author considers that fiber
misalignments have a sinusoidal shape and assumes a shear buckling mode of the fibers.
The compression strength is derived from the variational principle of the minimum potential
energy of the system, which is defined as:

Π = Uf + Um − W (4.9)

Being Uf the fiber bending strain energy, Um the matrix shear strain energy and W the
work done by the compression load. To obtain the shear strain energy of matrix material a
Drucker-Prager yield model has been considered. The work done by the compression load is
obtained using a large displacement formulation.

Once having defined all parameters of equation 4.9, the minimum potential energy equation
is numerically solved for successive increments of the stress acting on the fiber, to obtain the
lamina compression strength:

σL = Vfσf + (1 − Vf )σm (4.10)

The main problem with this approach is that it is computationally very expensive. To solve
this inconvenience, the model is simplified to a linear formulation (Balacó de Morais, 2000).
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The new model assumes small displacements to compute the work done by the compression
load, matrix strain energy is obtained considering linear elasticity and fiber strain energy
is neglected. With these assumptions, a fourth order polynomial equation is obtained that
provides the compression strength of the composite.

A further simplification is made with the consideration that if fibers are considerably stiffer
than matrix, when matrix fails, matrix compression stress is much smaller than the com-
pression yield stress and thus negligible. This assumption leads to a close form expression in
which the composite compression strength is obtained as:

σC =
τum

θ0 +
1−Vf

1+V f
τum

Gm

(4.11)

Being, τum the maximum shear stress that can take the matrix, θ0 the initial fiber misalign-
ment angle and Gm the matrix shear stiffness. According to Balacó de Morais (2000), this
expression works well with composites made with stiff fibers such as Kevlar or Carbon but
loses its accuracy with less stiff fibers as E-Glass.

4.2.5 Drapier model

An interesting approach to obtain the compression strength of composite materials is the
one developed by Drapier et al. (1999, 2001), who solves the fiber microbuckling problem
in a two scale context. The displacement field is formulated taking into account the meso-
displacements of the structure and the micro-displacements obtained due to fiber initial mis-
alignments. Therefore, the displacement is written as,

u(x) = uG(x) + uL(x) (4.12)

being uG the displacement related to the structural scale, which is modulated by the uL, the
displacement at the ply scale.

With this scope, an specific finite element is developed which formulation is obtained by
coupling the equilibrium in both scales, which is defined using the principle of virtual work.
The micro scale equilibrium takes into account fiber bending stiffness.

In this formulation, fibers are considered elastic. Thus, the composite failure is obtained by
the failure of matrix material (simulated with a J2 model), produced by the efforts obtained
from the micro and the meso scales.

The results obtained with the proposed model provide a good agreement with theoretical and
experimental data. The model developed can also take into account the stacking sequence,
stiffness effects and the type of loading and boundary conditions.

4.2.6 Other authors dealing with the problem. Structural models

Another scope used to solve the problem, different of all the formulations shown above, is the
one used by Parnes and Chiskis (2002) or Akbarov and Kosker (2001); Kosker and Akbarov
(2003). In both cases the problem is solved studying the structural compatibility between
fibre and matrix stress-strain fields.
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Parnes and Chiskis use the Euler-Bernoulli beam equations and consider fibres as a bar
embedded in an elastic foundation. According to the authors, the formulation obtained can
be used for composites with low fiber content or in composites in which fibers have an infinite
wave-length.

On the other hand, the solution of Akbarov and Kosker follow the path defined by Guz and
Lapusta (1999), based on using the three dimensional linearized equations of stability and
the model of a piecewise uniform medium. The matrix (uniform medium) is simulated with a
viscoelastic model. The formulation developed obtains the time required to buckle the fibers
when a uniform pressure is applied to the composite. Fiber buckling is considered to occur
when its initial imperfection starts growing indefinitely.

4.2.7 Puig and Oller model

The model developed by Puig and Oller (Puig, 2001; Puig et al., 2001, 2002) to obtain the
compression strength of composite materials due to fiber buckling can be considered the point
of departure for the formulation that is presented in this chapter.

These authors deal with the compression strength problem using a continuum mechanics ap-
proach and obtaining the constitutive performance of the composite using the mixing theory.
Up to this point, all authors studying the fiber microbuckling problem obtain expressions
that provide the maximum compression stress that can be applied to the composite, which
is treated as a single material. These formulations cannot provide solutions for composites
in which its constituent materials show a non-linear behavior and, when non-linearities are
considered, fibers are defined as elastic materials and the non-linearities are introduced in ma-
trix, that is simulated with a pre-defined constitutive model that cannot be modified without
modifying the formulation developed.

Therefore, the main advantage of the model proposed by Puig and Oller is that, using the
mixing theory, composite constituents can be simulated with any existing constitutive model.
This increases the applicability of the formulation developed, being possible to use it for
simulating any possible composite in which the compression strength due to fiber buckling
has to be taken into account.

The formulation proposed by these two authors in based in a modification of the isotropic
damage model defined by Kachanov (Kachanov, 1986; Oliver et al., 1990), introducing a new
internal variable related to the fiber buckling phenomenon. Therefore,

σ = (1 − df )(1 − dp)C : ε (4.13)

Being C the composite constitutive tensor, df the mechanical damage parameter and dp the
buckling damage parameter. The expression for this last parameter is:

dp = f1(fibre)f2(matrix) (4.14)

Where f1(fibre) is a function that depends on fibre buckling stress and f2(matrix) is the
matrix damage parameter. Function f1 is obtained from the critical Euler load that can be
applied to a column. Its final expression is (Oller, 2003):

f1(fibre) =

(
4l

nπd

)2

ε (4.15)
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Being l the length of the fiber, which is a parameter required by the formulation, n the
buckling mode, d the fiber diameter and ε the longitudinal strain of fiber material. The
buckling mode that will lead to fiber buckling is computed as:

n =
4l

πd

√
ε (4.16)

Although the model developed by Puig and Oller provides a good numerical performance, it
fails in not considering important parameters related to the fiber microbuckling problem such
as fiber initial misalignments. Also, the buckling stress of fiber material is obtained without
considering the restrain provided by matrix. This restrain effect is introduced afterwards,
with the f2 function.

4.3 Homogenized constitutive equations. CuBER problem

This section provides the procedure and formulation used to include the effects of fiber mis-
alignments and the interaction between fiber and matrix in the constitutive equations of both
composite components. This is done homogenizing the constitutive equations of fiber and ma-
trix using the results obtained from the solution of a representative volume element (RVE) of
an initially misaligned fiber embedded in a matrix. The solution of the RVE is obtained using
the existing analogy with the problem of a curved bar under unilateral restriction (CuBER
problem).

This section includes a description of the problem to be solved and the formulation used to
solve it, as well as the boundary conditions and the parameters required from the composite to
obtain this solution. Afterwards the procedure used to homogenize the constitutive equations
of fiber and matrix materials, using the results obtained form the CuBER formulation, is
described.

4.3.1 Representative Volume Element to solve the fibre buckling problem

According to the different authors that have studied the problem, a micro-model able to
simulate the fibre buckling phenomenon must take into account fibre initial misalignments, the
proportion of fibre and matrix in the composite and matrix shear strength. A representative
volume element, depending on these three parameters, can be the one shown in figure 4.6.
This figure shows also, in dashed lines, the final position of that would be expected in fibres
after applying the compression force to the composite.

Figure 4.6: Fibre-matrix system. Fibre behaviour when the composite is compressed

The performance that is obtained from fibre and matrix materials when solving the RVE
shown in figure 4.6 must be translated to constitutive properties in order to include them in
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a mixing theory formulation. Figure 4.6 shows that when the composite is compressed, fibre
initial misalignments tends to increase due to fibre structural deformation. This deforma-
tion is restrained by matrix material. Thus, the constitutive performance expected in each
material is:

Fibre: Its structural stiffness is reduced due to its original misalignment: for a fixed value
of compression force P , fibre longitudinal strain is increased due to its structural de-
formation. This structural deformation depends on matrix elastic restrain

Matrix: Stresses in it are increased due to the restriction made over fibre movement. These
stresses correspond to shear stresses and transversal stresses. Both components are
found in the serial direction of the composite.

It will be shown that these two performances can be obtained also by solving a simplified
unidirectional model consisting in a curved bar under unilateral elastic restrain (CuBER),
like the one shown in figure 4.7. The solution to the structure shown in this figure has already
been used by other authors to solve similar problems. Naik et al. (2003) used it to study
weave fabric composites and Wang and Shenoi (2004) to study curved sandwich beams.

Figure 4.7: Curved bar under unilateral elastic restrain problem

4.3.2 CuBER equations

The problem of a curved bar under unilateral elastic restrain was first formulated and solved
by Hetényi (1971). Figure 4.8 shows the geometry considered.

Figure 4.8: Geometry of the bar to be considered in the CuBER problem

The hypothesis in which the curved bar under unilateral restriction problem is solved are the
following:

1. All components defining the problem, the bar and the foundation in which it is sup-
ported, have an elastic behavior.

2. The the axis of the bar is contained in an arch of a circle of radius R. The arch length
is defined by its internal angle α (figure 4.8).
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3. The reaction forces of the foundation are proportional to the radial deflection of the
bar.

4. The deformation of the bar due to normal stresses is negligible.

According to the hypothesis exposed, the elastic restrain of the bar can be idealized as a
continuous spring which produces a radial load in the bar, proportional to its radial displace-
ment:

q = k ω (4.17)

Being q the radial load produced by the elastic restriction over the bar, ω the bar radial
displacement and k the elastic restrain.

The equations describing the bar behavior are obtained studying an infinitesimal section of
the bar, such the one displayed in figure 4.8, in which acts a normal force N , a shear force Q
and a bending moment M . These are displayed in figure 4.9.

Figure 4.9: Forces acting on an infinitesimal section of the curved bar

The study of the equilibrium of forces in the beam infinitesimal section lead to three different
equilibrium equations. The equilibrium equation in the radial direction can be written as:

qds − Ndφ = dQ (4.18)

The equilibrium equation in the tangential direction is:

Qdφ = dN (4.19)

And the momentum equilibrium equation is written as:

QRdφ = dM (4.20)

Neglecting the axial deformation of the bar due to the normal force N (hypothesis 4), the
differential bending equation of a circular arch of radius of curvature R and flexural rigidity
EI is, according to Hetényi (1971),

EI

(
d2ω

ds2
− ω

R2

)

= −M (4.21)
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Rearranging equations 4.18 to 4.21, the bar displacement in its radial direction is defined by
the differential equation:

d5ω

dφ5
+ 2

d3ω

dφ3
+ η2 dω

dφ
= 0 (4.22)

where

η =

√

R4 · k
EI

+ 1 (4.23)

The general solution for equation 4.22 is:

ω(φ) = C0 + [C1 cosh(η1φ) + C2 sinh(η1φ)] cos(η2φ)+
+ [C3 cosh(η1φ) + C4 sinh(η1φ)] sin(η2φ)

(4.24)

Being C0, C1, C2, C3, C4 the integration constants of the differential equation, which value
is obtained when imposing the boundary conditions of the problem; and η1 and η2:

η1 =

√

η − 1

2
η2 =

√

η + 1

2
(4.25)

Once having obtained the general expression for beam displacement, equations 4.18 to 4.21
can be derived to obtain the general expressions for the bending moment, the shear force and
the normal force in the bar. These are:

M(φ) = −EI
R2 {C0 −2η1η2 [{C1 sinh(η1φ) + C2 cosh(η1φ)}] sin(η2φ)+

+2η1η2 [{C3 sinh(η1φ) + C4 cosh(η1φ)}] cos(η2φ)}

Q(φ) = −EI
R3 2η1η2{ + [(η1C1 + η2C4) cosh(η1φ) + (η1C2 + η2C3) sinh(η1φ)] sin(η2φ)+

+ [(η2C1 − η1C4) sinh(η1φ) + (η2C2 − η1C3) cosh(η1φ)] cos(η2φ)}

N(φ) = RkC0 +EI
R3 2η1η2{ + [C1 sinh(η1φ) + C2 cosh(η1φ)] sin(η2φ)−

− [C3 sinh(η1φ) + C4 cosh(η1φ)] cos(η2φ)}
(4.26)

These equations can be simplified using the arch symmetry shown in figure 4.8. Defining
the axis of symmetry as the origin of φ angle, it can be easily verified that in this axis the
following boundary conditions must be fulfilled:

dω

dφ

∣
∣
∣
∣
φ=0

= 0 and Q (φ = 0) = 0 (4.27)

The result of applying these two conditions to the previous equations is that the integration
constants C2 and C3 disappear and equations 4.24 and 4.26 become:
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ω(φ) = C0 + C1 cosh(η1φ) cos(η2φ) + C4 sinh(η1φ) sin(η2φ)

M(φ) = −EI
R2 {C0 − 2η1η2 [C1 sinh(η1φ) sin(η2φ) − C4 cosh(η1φ) cos(η2φ)]}

Q(φ) = −EI
R3 2η1η2 {(η1C1 + η2C4) cosh(η1φ) sin(η2φ) + (η2C1 − η1C4) sinh(η1φ) cos(η2φ)}

N(φ) = RkC0 + EI
R3 2η1η2 {C1 sinh(η1φ) sin(η2φ) − C4 cosh(η1φ) cos(η2φ)}

(4.28)

The final expression for the bar radial displacement ω as well as for the bar efforts (M , Q
and N) depends on the value of the integration constants: C0, C1 and C4. Their value will
be determined applying to the problem three more boundary conditions.

According to Hetényi (1971), the angular deflection of the beam can be obtained as the
integral of the elementary rotations M/EI along the bar. If this integral starts in the axis
of symmetry shown in figure 4.8, the initial rotation is zero and the value of the angular
deflection becomes:

θ(φ) =

∫ S

0

M(s)

EI
ds =

∫ φ

0

M(ϕ)

EI
R dϕ (4.29)

And the vertical and horizontal displacement of the beam can be obtained as,

u(φ) = u0 −
∫ φ

0
θ(ϕ)R sin(ϕ) dϕ

v(φ) = v0 −
∫ φ

0
θ(ϕ)R cos(ϕ) dϕ

(4.30)

Including the angle definition (equation 4.29) in equation 4.30, and defining the initial hori-
zontal displacement u0 equal to zero (as a result of the symmetry existing in the problem),
the final expression obtained to calculate the horizontal displacement, for a defined angle φ,
is:

u(φ) = C0 (sin φ − φ cos φ) − C1Υ (η1I211 − η2I121) + C4Υ (η1I121 + η2I211) (4.31)

with,

Υ =
2η1η2

η2
1 + η2

2

I211 =

∫ φ

o

cosh(η1ϕ) sin(η2ϕ) sin ϕ dϕ

I121 =

∫ φ

o

sinh(η1ϕ) cos(η2ϕ) sin ϕ dϕ
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To obtain the vertical displacement for any desired angle φ first it is necessary to obtain the
vertical displacement in the bar for φ = 0.0. This vertical displacement corresponds to the
radial displacement of the bar and its value is:

ω(φ = 0) = C0 + C1 cosh(0.0) cos(0.0) + C4 sinh(0.0) sin(0.0)

= C0 + C1
(4.32)

The final expression for the vertical displacement is:

v(φ) = C0 (sin φ − φ cos φ) + C1 [1 − Υ (η1I212 − η2I122)] + C4Υ (η1I122 + η2I212) (4.33)

with,

I212 =

∫ φ

o

cosh(η1ϕ) sin(η2ϕ) cos ϕ dϕ

I122 =

∫ φ

o

sinh(η1ϕ) cos(η2ϕ) cos ϕ dϕ

These two bar displacements are related to the radial deflection in the following manner:

ω = u(φ) sin(φ) + v(φ) cos(φ) (4.34)

4.3.3 Boundary conditions and solution of the CuBER problem

The final expressions defining the behavior of the CuBER problem require the definition of
three boundary conditions, that will allow finding the value of the integration constants C0,
C1 and C4.

Using all symmetries existing in the geometry shown in figure 4.7, the problem can be sim-
plified to the following one:

Figure 4.10: Boundary conditions to be applied to the CuBER problem

In which the boundary conditions to be applied are:

1st BC: M (φ = α) = 0
2nd BC: N (φ = α) cos(α) − Q (φ = α) sin(α) = P
3rd BC: v (φ = α) = 0

(4.35)
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When the expressions of M , N , and Q, defined in equation 4.28, and the expression of v,
defined in equation 4.33, are included in the boundary conditions defined in equation 4.35, a
linear system of three equations with three unknowns, as the following, is obtained:







a1C0 + b1C1 + c1C4 = d1

a2C0 + b2C1 + c2C4 = d2

a3C0 + b3C1 + c3C4 = d3

(4.36)

The constants ai, bi, ci and di, i = 1 ÷ 3 depend on the fibre misalignment geometry, and
the fibre and matrix stiffness. These constants can be easily computed when the misalign-
ment parameters are defined. The linear system shown in equation 4.36 is solved using a
factorization method.

After solving the linear system shown in equation 4.36, the value of the integration constants
can be added to the different equations described in this section in order to obtain the efforts
and displacements of the bar for any desired angle φ. The values obtained can be used to
include the structural effects provided by the CuBER problem in the constitutive equations of
fibre and matrix, so the initial fibre misalignments can be taken into account in the composite
constitutive performance.

4.3.4 Definition of the CuBER problem using the composite properties

The formulation described in previous section provides a simplified methodology to solve the
RVE that is used to obtain the compression strength of composite materials. This section de-
scribes the properties required form the composite in order to define the parameters required
by the CuBER problem.

The fibre buckling problem is formulated for composite materials composed by long fibres
embedded in a matrix. Thus, the fibre buckling problem will be characterized by the proper-
ties of fibre and matrix materials. Most of the fibre reinforced composites used nowadays are
composed by multiple layers. These layers can have different fibre orientations. Therefore,
the described properties will be required for each layer.

Matrix characteristics

When solving the CuBER problem, matrix is considered an isotropic material. This suppo-
sition allows defining the elastic restrain k defined in equation 4.17, as a constant variable
with the same value in all space directions.

Even the serial/parallel mixing theory allows considering any kind of material evolution to
define the materials that compose the composite, the formulation developed to solve the
fibre–buckling phenomenon uses the isotropic damage formulation described in section 3.3
(Oliver et al., 1990; Oller, 2001) to obtain the post-critical performance of matrix material.
This formulation provides a damage variable that reduces the real stresses in the material
according to the damage existing in it:

mσ = (1 − d)mσ0 (4.37)
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Being σ the real stress tensor and σ0 an effective stress tensor. In an isotropic damage
formulation, this relation between stresses is also applied to the stiffness parameters of the
material. Therefore, the restrain that will be applied by matrix to the fibre depends on the
level of damage existing in the matrix and is computed as:

k = (1 − d)k0 (4.38)

Where k0 corresponds to the initial elastic restrain, which value is defined as the matrix
Young Modulus, mE, and k is the effective restrain that can be applied in function of the
level of damage existing in matrix material.

Although the performance of matrix material has been defined using a damage formulation,
in the procedure developed this formulation can be easily replaced by other material evolution
laws such as plasticity. In the particular case of a plastic law, the internal variable d used in
equation 4.38 must be replaced by κ (with κ the plastic damage variable).

Fibre characteristics

The equations describing the CuBER problem take also in consideration the elastic stiffness
of fibre material. Usually, fibre buckling occurs before the material reaches its yield stress, so
the initial Young Modulus of fibre will characterize its elastic stiffness. However, in order to
take into account possible damages in fibre material (i.e. if a tensile stress is applied to the
composite before compressing it), the elastic stiffness used in the CuBER problem for fibre
material will be, at every stage of the load process:

fE = (1 − d)fE0 (4.39)

Being d the fiber damage parameter (if a damage formulation is used to characterize fiber
material). As has been aready commented with matrix, this parameter can be prelaced by
a plastic damage parameter of for any other, depending on the formulation used to simulate
this material.

Fibre Misalignments

Fibre misalignments are commonly defined in literature as a sinusoidal form, characterized by
its amplitude (A) and wave length (λ). To be able to use the CuBER problem formulation,
it is necessary to transform this shape into an arch of circumference. It is considered that
both curves are similar enough.

Figure 4.11 shows with a continuous line the original sinusoidal shape and with a dashed line
the circumferential arch to be used in the calculations. As can be seen, both geometries are
very similar.

Applying the circumferential equation, the radius and the arch angle can be obtained from
the amplitude and wavelength values as:
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Figure 4.11: Transformation of a sinusoidal shape into a circumferential one

R =
A2 + (λ/4)2

2A

α = arcsin

(
λ

4R

) (4.40)

Non-linear performance of the CuBER problem

As has been described in the hypothesis defined to solve the CuBER problem, one of its main
conditions is that all components acting in the problem are considered to be elastic. Thus,
when solving the CuBER problem to modify the constitutive laws of fibre and matrix, the
behavior expected in both materials is an elastic one. However, both materials are simulated
using a damage formulation, which provides a non-linear material behavior.

In order to be able to solve the CuBER problem formulation when any of the composite
components reach its elastic yield stress, an explicit incremental approach is used to solve
the CuBER equations. This approach is based on the assumption that during a load step,
the variation in the stiffness of the composite components is small enough to provide the
same results obtained when using a constant stiffness value. The stiffness values considered
in each time step for the matrix and the fibre are the ones exposed in equations 4.38 and
4.39, respectively.

Considering correct the assumption that the stiffness variation is negligible in a load step,
what must be taken into account is the stiffness variation of both materials along the whole
loading process. To do so, an incremental approach is used: At each load step, the fibre mis-
alignment geometry is actualized according to the results obtained when solving the CuBER
problem. This procedure requires that the load P , defined in equation 4.35, must be the
load increment corresponding to the current load step, and not the total load applied to the
element.

Applying this explicit incremental methodology, the fibre misalignments will vary according
to the real material properties of the composite components and the linear formulation of the
CuBER problem becomes non-linear. Figure 4.13 shows schematically the expected variation
of fibre misalignments as the compression load increases in the composite.

4.3.5 Fibre homogenized constitutive equation

The effects of fibre misalignment and its interaction with matrix material, obtained from the
solution of the CuBER problem, must be included in the fibre constitutive equation so the
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Figure 4.12: Evolution of fibre misalignments in the loading process

serial/parallel mixing theory can take them into account. These effects are applied only to
the longitudinal direction of the fibre (or parallel direction) as this is the only component of
the strain and stress tensors that is affected by fibre buckling.

The solution of the CuBER problem provides a structural displacement of fibres due to its
initial misalignments. To include this effect into the constitutive equation of fibre material,
this displacement must be transformed into a strain value. As the CuBER problem does not
take into account the normal deformation of the bar due to the compression force (Hetényi,
1971), the total parallel strain in fibre material is divided in two components, a structural
strain, fsεP , provided by the CuBER problem and a constitutive strain, fcεP , due to the
compression force applied to the composite. Thus, the total parallel strain in the composite,
fεP , is:

fεP =fc εP +fs εP (4.41)

Equation 4.41 considers a serial distribution of the two mechanical phenomenons, constitutive
and structural, that take place in the fibre material. Therefore, the effect of fibre misalignment
introduces a new structural stiffness to the fibre material, as it is shown in the following
diagram:

Figure 4.13: Serial coupling of the fibre structural and constitutive stiffness

With the configuration shown in figure 4.13, the new fibre buckling stiffness of fibre material
fbE, in its longitudinal direction, can be computed as the serial composition of the fibre
constitutive (fcE) and structural (fsE) stiffness.

1
fbE

=
1

fcE
+

1
fsE

(4.42)

Where the fibre constitutive stiffness corresponds to the Young Modulus of fibre material in
its longitudinal direction, and fibre structural stiffness is obtained form the results provided
when solving the CuBER problem.

The new fibre buckling stiffness, fbE, is introduced in the constitutive equation of fibre
material using a damage formulation. Thus, a new fibre buckling damage parameter, fbd is
defined as:
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fbE = (1 − fbd)fcE → fbd = 1 −
fbE
fcE

(4.43)

The fiber buckling damage parameter affects the constitutive performance of fibre material as
any other damage formulation, with the only difference that the fibre buckling damage is not
an isotropic damage but an anisotropic damage: it only affects the longitudinal direction of
the stress tensor. Thus, the real stresses in fibre will be obtained from the elastic prediction
of the stresses as:

fσ = (I − fbD) · fσ0 (4.44)

with,

fbD =








fbd 0 · · · 0
0 0 0
...

. . .
...

0 0 · · · 0








(4.45)

This definition of the fibre buckling damage matrix is correct considering that the first compo-
nent of the fibre stress tensor corresponds to the parallel direction. If the parallel component
is found in any other position, the fibre buckling damage parameter must be moved to the
diagonal term where the stress parallel component is found.

The fiber buckling damage formulation described above can be coupled easily with the con-
stitutive damage formulation used to characterize fiber material. Thus, the final stress in
fibre material, when coupling the effects of fibre buckling and the constitutive effects, is:

fσ = (1 − d) · (I − fbD) · fσ0 (4.46)

Being d the damage parameter obtained from the damage constitutive equation applied to
the fibre material.

Fibre structural stiffness, fsE

The fibre structural stiffness that appears in equation 4.42 is obtained when solving the Cu-
BER problem, from the relation obtained between the force applied as a boundary condition
and the displacement obtained as a result of the force applied. As the problem is elastic,
the relation between the displacement obtained when solving the CuBER problem and the
force applied will be always the same. However, in order to apply a force proportional to the
dimensions of the problem, the force P that will be defined as a boundary condition corre-
spond to the force corresponding to the total deformation found in the RVE to be solved.
Being the total deformation of the element fεP , the stresses in the fibre will be:

σ = fcE · fεP (4.47)

and, the force in one fibre:
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P = σ · Afib (4.48)

Being, Afib the area of one fibre of the composite. The force computed with this procedure
will be applied to the CuBER problem to obtain a longitudinal displacement of the fibre,
u(φ = α) (see figure 4.10). This displacement can be transformed into a strain dividing by
the total length of the bar considered in the CuBER problem which, according to figure 4.10,
corresponds to one quarter of the wave-length defined as a misalignment property. This is:

ε =
u(φ = α)

0.25λ
(4.49)

The structural stiffness can be computed from the strain stress relation:

fsE =
σ

ε
=

P

Afib

0.25λ

u(φ = α)
(4.50)

Equation 4.50 shows that the structural stiffness varies in function of the relation between
P and u, which depends of fibre initial misalignments and the matrix stiffness. This relation
will remain constant while these both parameters remain constant but, as soon as fibre
misalignments suffer a large variation or matrix stiffness is reduced, the structural stiffness
will vary, modifying also the constitutive performance of fibre in the composite.

Once having the structural stiffness due to fibre misalignments, the real structural deforma-
tion can be computed using equations 4.41 and 4.42, obtaining:

fsε =
fcE

fcE + fsE
· fε (4.51)

Although the only parameter required to modify the fibre constitutive equation is the struc-
tural stiffness, it is important to obtain the real strains affected by the fibre buckling problem
in order to scale other parameters obtained from the resolution of the CuBER problem. To
take into account the material non-linearities of the problem, it is necessary to know the exact
deformation of the fiber in each load step. When solving the CuBER problem, the variation
obtained for fiber misalignments (amplitude and wave-length) correspond to an input strain
of fε, while the real strain that should be considered is fsε. Thus, the values of the results
obtained must be scaled by:

SF =
fsε
fε

(4.52)

To obtain the new amplitude of fibre misalignments, the vertical displacement of the CuBER
bar, for φ = 0, has to be added to the previous amplitude (see figure 4.10). The new wave
length is obtained subtracting four times the horizonal displacement u (as only a quarter
of the wave length has been considered when solving the cuber problem). Therefore, the
regularized misalignment value becomes:

newA = A + SF · v(φ = 0)
newλ = λ − 4 SF · u(φ = α)

(4.53)



4. Compression Strength of Composite Materials 163

4.3.6 Matrix homogenized constitutive equation

The structural displacement of fibres due to their initial misalignment generates stresses in
the matrix material that surrounds the fibre when the composite is loaded with a compression
force. This effect can be seen in figure 4.14, where are shown the transversal stresses (respect
fibre direction) and the shear stresses found in matrix material when a finite element micro-
model of the RVE is compressed.

(a) Transversal stresses (b) Shear stresses

Figure 4.14: Matrix structural stresses produced by fibre displacements

These structural stresses, that do not exist in the case of aligned fibres, lead to a matrix
failure for lower compression efforts. The stress state for which the matrix failure will occur
is defined by the constitutive equation defined for matrix material. In this case, a damage
constitutive law. Therefore, in order to obtain the new matrix homogenized constitutive
equation, the structural stresses produced by the interaction of matrix with fibre, must be
included in the damage constitutive law. Two different structural stresses must be considered:
transversal and shear stresses.

Again, as happened when obtaining the homogenized constitutive performance of fibre mate-
rial, the structural results (loads and displacements) provided by the CuBER problem must
be transformed into parameters that can be understood by a constitutive equation, this is:
stresses and strains.

As has been pointed out by Gónzalez and Llorca (2007), final fracture in reinforced composites
usually occurs due to stress concentrations or localized failures. Thus, when extracting the
stress results from the CuBER problem to modify the matrix constitutive law, the values
that would be sought are the maximum values of shear and transversal stress provided by
the model.

Matrix structural transversal stress

Matrix structural transversal stresses will be obtained from the elastic restriction applied
by matrix over fibre when solving the CuBER problem. Fibre displacement and the elastic
restrain provided by matrix are related by matrix elastic constant:

q = kω

Where q is the radial load produced by the elastic restriction over the fibre, k is the matrix
Young Modulus and ω is the fibre radial displacement. This last parameter can be computed,
according to equations presented when solving the CuBER problem, as:
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ω = C0 + C1 cosh(η1φ) cos(η2φ) + C4 sinh(η1φ) sin(η2φ)

To convert the structural problem into a mechanical one, the radial load q must be trans-
formed into a stress, which can be done dividing it by the affected area. This area is obtained
using a finite element micro-model of a transversal section of the fibre-matrix system. In it,
a vertical displacement has been applied to fibre material to see the stress distribution in
matrix due to its elastic restriction.

Figure 4.15: Stresses in a transversal section

Figure 4.15 shows transversal stresses in matrix. As can be seen, the acting force of fibre
over the matrix can be distributed uniformly along whole fibre diameter. Also, the resultant
stress must be divided by two, as half of it correspond to the compression stress produced by
the fibre over the upper matrix and the other half corresponds to the tensile stress produced
over the lower matrix. Therefore, the matrix transversal stresses can be computed, from the
equilibrium in the solid, as:

σyy =
k ω

2Øf

(4.54)

With Øf the fiber diameter. With the transversal stress appears also a perpendicular one
due to Poisson effects, which value is:

σ⊥ = −νσyy = −ν
k ω

Øf

(4.55)

According to figure 4.14, the maximum transversal stress in matrix material due to fibre
misalignments is found where the misalignment amplitude is maximum. In these places, the
fibre displacement corresponds to ω(φ = 0) (figure 4.10) and can be obtained from equation
4.28 when solving the CuBER problem. Considering x the direction in which fibers are
oriented, the transversal stress is found in y direction and teh perpendicular stress in x
direction. Thus, the final matrix structural (ms) transversal stress state found in φ = 0 is:







msσxx = −ν
k ω(φ = 0)

2Øf

msσyy =
k ω(φ = 0)

2Øf

(4.56)
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Matrix structural shear stress

The unidimensional model developed to simulate the fibre-matrix interaction of the RVE
considered cannot obtain directly the matrix structural shear stress, as there are not tangen-
tial springs in the model for simulating the matrix shear behavior. This is solved computing
matrix shear stress value from the fibre deformation. Shear stresses are produced by the
distortion of an infinitesimal element due to a stress state. This distortion is defined as
(Timoshenko, 1940a):

γ =
dux

dy
+

duy

dx
(4.57)

Where the values of ux and uy, as well as their derivatives, can be obtained from equation
4.30. Once the value of the distortion is known, the shear stress is obtained as the product
of the distortion by the matrix shear stiffness modulus, mG, thus:

msσxy = mG γ (4.58)

According to figure 4.14, the maximum value of matrix shear structural stress is found at
the inflection point between the convex and concave arches of circumference. This point
corresponds, in the CuBER problem (figure 4.10), to the angle φ = α. Therefore, the
maximum expected shear stress is:

msσxy = mG

(

dux

dy

∣
∣
∣
∣
φ=α

+
duy

dx

∣
∣
∣
∣
φ=α

)

(4.59)

Addition of matrix structural stresses in its constitutive equation

The obtained matrix structural stresses cannot be introduced as real stresses in the matrix
constitutive equation, as the equilibrium between the internal and external forces will be lost.
If the RVE is loaded with a compression force (in the direction of fibres), the only stresses
that can appear in matrix material are in that same direction. Stresses in other directions
cannot appear as there is no external force to equilibrate them. However, if the simulation
done with the CuBER problem has to include the same parameters that the finite element
simulation of the RVE, the effect of these stresses must be included.

The effect of matrix structural stresses on the RVE is that the elastic limit of matrix material
is reached for lower loads, matrix is not only affected by the longitudinal stress but also by
transversal and shear stresses, which leads to a faster failure of the composite. Thus, it is
not necessary to know the exact value of structural stresses as long as their effect on matrix
can be reproduced. To do so, the structural stresses are defined as fictitious stresses and are
included directly in the matrix constitutive equation as internal variables. These internal
variables will lead to a matrix failure for lower compression loads. Defining the initial matrix
yield function as (Oller, 2002):

m
F (mσ, qi) ≤ 0 (4.60)
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Where mσ is matrix stress tensor and qi matrix internal variables. When introducing matrix
structural stresses in the yield function equation 4.60 becomes,

m
F
∗ (mσ, qi,

msσ) ≤ 0 (4.61)

with msσ the matrix structural stresses or fictitious stresses. This new matrix yield function
is defined as:

m
F
∗ (mσ, qi,

msσ) = m
F (mσ + msσ, qi) (4.62)

Figure 4.14 shows that transversal and shear fictitious stresses are located at different points
of the RVE geometry. Hence, the value of matrix fictitious stresses to be included as internal
variable will the most critical of the following two, in a 2D case:

{
msσ1 = SF( msσxx

msσyy 0 )
msσ2 = SF( 0 0 msσxy )

(4.63)

With FS the scale factor defined in equation 4.52. This scale factor is necessary to adjust the
values obtained when solving the CuBER problem to the real strain that is applied to the
RVE due to fibre misalignments.

The two cases to be considered in a two dimensional simulation must be increased to five
in the case of a three dimensional simulation. This is because fibre initial misalignments
can be found either in the plane xy or in the plane xz (unless it is known and defined the
plane in which they are found). Thus, as the fictitious stresses interact with the stresses
found in matrix material due to the loading process, it is not possible to know a priori which
configuration will damage more the matrix and all of them must be taken into account.
Considering that the matrix stress tensor is defined by the following components:

mσ = [σxx σyy σxyσzz σxz σyz] (4.64)

The fictitious stresses that has to be considered in the new constitutive equation are:







msσ1 = SF( msσyy
msσyy 0 0 0 0 )

msσ2 = SF( msσyy 0 0 msσyy 0 0 )
msσ3 = SF( 0 0 msσxy 0 0 0 )
msσ4 = SF( 0 0 0 0 msσxy 0 )
msσ5 = SF( 0 0 0 0 0 msσxy )

(4.65)

Matrix affected by fibre misalignments

In function of the fibre volumetric participation in the composite, not all matrix material will
be affected by the structural stresses produced by fibre misalignments. As it is shown the
results from the micro-model (figure 4.14), only matrix that surrounds the fibre is affected
by fibre misalignments.

To take into account this situation, matrix damage parameter is divided in two components,
a structural damage and a constitutive one. Obtaining:
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dm = AkAd + nAknAd (4.66)

Where Ak and nAk are the proportion of matrix affected and not affected by fibre misalign-
ments, respectively, and Ad and nAd are the damage parameters obtained for the affected
and not affected matrices, respectively.

The proportion of matrix affected by fibres is obtained considering that fibres affect matrix
in a region equal to the amplitude of the misalignment. This region is displayed in figure
4.16.

Figure 4.16: Matrix volume affected by fibre buckling effects

Assuming an homogenized distribution of fibre and matrix in space, the proportion of affected
matrix can be obtained considering only one of the directions perpendicular to the fibre
longitudinal axis. Therefore, the lenght Dmat can be computed using the fibre and matrix
volumetric participation (fk and mk respectively), as:

mk =
Dmat

Dmat + Dfib

=
Dmat

Dmat + Øf

→ Dmat =
mk Øf

1 − mk
(4.67)

According to figure 4.16, the length of matrix matrix affected by fibre misalignments is:

ADmat = 2A (4.68)

With these two lengths, the proportion of matrix affected by fibre misalignments is obtained
as the quotient between the affected matrix and the total length of matrix in the composite:

Ak =
ADmat

Dmat
= 2A

1 − mk
mk Øf

(4.69)

And the proportion of not affected matrix becomes:

nAk = 1 − Ak (4.70)

To compute the matrix damage parameter, the constitutive equation must be verified twice.
The first time introducing a fictitious stresses equal to zero in the yield function mF∗ (equation
4.62) to obtain the non affected damage parameter. And the second time introducing the
fictitious stresses defined in equation 4.63 or in equation 4.65, depending on the dimension
of the problem, to obtain the affected damage parameter.

When solving for second time the damage constitutive equation, with the structural fictitious
stresses, another parameter to be changed in the damage formulation is the fracture length
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considered (see section 3.3). In this case the fracture length do not depend on the dimension
of the finite element but on the dimensions of fibre misalignments. When homogenizing a
structural behaviour, each gauss point contains all information of the RVE, independently of
the dimension of the gauss point. Thus, even the dimension of the finite element is of, i.e.
5.0µm, if the wave length of the misalignment is of 400.0µm, the fracture energy released in
the micro-model will correspond to damaging all the wave length of the fibre misalignment.

The model developed in the CuBER problem represents half the wave length of fibre mis-
alignments. Therefore, the fracture length considered when adding the structural fictitious
stresses to the constitutive equation is:

lf = 2Rα (4.71)

4.4 Validation of the homogenization method

In this section, the approach used to include the effects of fibre misalignment and the inter-
action between fibre and matrix due to this particular geometric configuration, is validated.
To do so, the results of a finite element micro-model of the representative volume element
(RVE) to be simulated are compared with the results obtained with the formulation pro-
posed. It will be shown that the behavior of the RVE is the same in both models. This result
agreement justifies the use of the constitutive equation homogenization approach to obtain
the performance of the RVE.

4.4.1 Models description

A basic composite configuration has been defined to verify the agreement between the finite
element micro-model and the composite model that uses the serial/parallel mixing theory
to obtain the composite performance, with the homogenized constitutive laws for fibre and
matrix materials. The composite defined is made of glass-fibres embedded in an epoxi ma-
trix. The values considered for each component material are average values, obtained from
literature. These are shown in table 4.1.

Matrix Properties

Elastic Modulus 3.00 GPa
Poisson Modulus 0.30
Tensile Strength 90.00 MPa
Fracture Energy 1.00 kJ/m2

Fibre Properties

Elastic Modulus 80.00 GPa
Poisson Modulus 0.00

Table 4.1: Composite components mechanical properties used to validate the homogenized
constitutive equations

Matrix material has been described with the modified damage constitutive law defined in
previous section. The yield function used to obtain the stress state in which damage starts
in matrix material is based in the norm of the principal stresses (see section 3.3), which
non-homogenized expression is (Oliver et al., 1990; Oller, 2001):

F (σ, qi) =
√

σ2
1 + σ2

2 + σ2
3 − σmax ≤ 0 (4.72)
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Being σi the principal stresses values obtained from the matrix stress tensor and σmax the
matrix maximum stress, which value has been defined as 90 MPa (table 4.1).

Using the fact that fibre buckling becomes before fibres reach their limit elastic strength, fibres
are considered to be an elastic material. The other parameter required to define fibre elastic
properties is the Poisson modulus, which is considered equal to zero. This is done because
fibre transversal deformations, due to their longitudinal strains, are considered negligible.

The misalignment properties considered for the basic model are the ones defined by Jochum
and Grandidier (2004). These authors obtain fibre misalignment properties from different
samples using an optical microscope. The results obtained from these observations are:

1. The diameter of the fibre is of 7.0 µm

2. Amplitude is one to twice the fibre diameter

3. Wave length is comprehended between 150 and 300 µm

4. Undulations have a periodic form along the fibre length

With these values in mind, the misalignment configuration defined for the basic model of
the RVE are the ones shown in figure 4.17 and described in table 4.2. The volumetric
participation of fibre and matrix in the composite is obtained from the geometry shown in
figure 4.17. This figure shows that only two fibres are considered in the RVE model. This
small fibre proportion has been chosen in order to see more clearly the interaction between
fiber and its surrounding matrix.

Figure 4.17: Geometry of the Representative Volume Element simulated

Fibre diameter 7.0 µm
Amplitude 10.5 µm
Wave length 225.0 µm
Fibre Vol. particip. 7.0 %
Matrix Vol. particip. 93.0 %

Table 4.2: Misalignment properties and volumetric participations used to validate the ho-
mogenized constitutive equations
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To be certain of the good performance of the formulation proposed, six different variations
of the basic RVE model have been defined. Each one modifying the different parameters
that affect the micro-mechanical behavior of the RVE. These are: fibre initial misalignment
geometry, which depends on misalignment amplitude (A) and wavelength (λ), fibre diameter
(Øf ) and stiffness properties of fibre and matrix materials (fE and mE, respectively). Each
one of these parameters have been increased and reduced respect the basic model, in order
to see the dependence of the developed formulation in all of them. The values of the different
parameters applied to the geometry, as well as the name assigned to each model developed,
are described in table 4.3.

RVE Øf [µm] A [µm] λ [µm] fE [GPa] mE [GPa]

Bmod 7.0 10.5 225.0 80.0 3.0

DfiM 5.0 10.5 225.0 80.0 3.0
DfiL 9.0 10.5 225.0 80.0 3.0

AmpM 7.0 7.0 225.0 80.0 3.0
AmpL 7.0 14.0 225.0 80.0 3.0

FreM 7.0 10.5 150.0 80.0 3.0
FreL 7.0 10.5 300.0 80.0 3.0

Wmat 7.0 10.5 225.0 80.0 1.5
Sfib 7.0 10.5 225.0 230.0 3.0

Table 4.3: Parameters defining the different RVE models developed

All different RVE configurations described in table 4.3 have been modeled with a finite element
micro-model and with the new formulation proposed. Each micro-model is labeled with the
word micro, thus, the micro-model of Bmod RVE is named micro-Bmod. On the other hand,
the models developed with the new formulation will be labeled with the word RoM which
names, the Bmod RVE, as RoM-Bmod.

Finite element micro models

The finite element micro–models have been defined using a two dimensional plane stress
formulation. The geometry has been modeled using linear quadrilateral elements, which
number varies between 2880 elements in the FreM and FreL models to 3185 elements in all
other models. All models have 48 elements in direction y (each fibre is modeled with four
elements in its transversal direction to capture with more accuracy its bending stiffness) and
60 or 64 elements, depending on the RVE cell simulated, in direction x. The mesh used for
the micro-Bmod model is displayed in figure 4.18.

The difference between the mesh shown in figure 4.18 and the meshes developed for all the
other RVE models is found in the fibre geometry. Which is modified in order to follow the
different fibre misalignments defined.

Figure 4.18 also shows the boundary conditions defined in all micro-models. The longitudi-
nal movement in left boundary is fixed to zero while the longitudinal movement right one,
displayed with a dashed line, is moving towards the fixed one. This movement generates a
compression on the RVE. The two points plotted in both boundaries correspond to the points
in which the transversal displacement has been fixed to zero, in order to stabilize the model
and avoid undesired translations of it. In the moving boundary it has been applied a fixed
displacement, instead of a compression load, so the models can provide their post-critical
strength, avoiding a sudden finish of the numerical simulation because the model cannot
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FIXED BOUNDARY MOVING BOUNDARY

Figure 4.18: micro-Bmod finite element model. Mesh and boundary conditions defined

reach the applied load.

Two different materials have been defined in each micro-model. The green material shown
in figure 4.18 corresponds to the matrix material, which is characterized by a damage con-
stitutive law. The blue material corresponds to fibre which, as it has been already said, is
characterized using an elastic law. The mechanical properties of both are described in table
4.1.

Finite element RoM models

The RoM models obtain the performance of the different RVE defined using the homogenized
constitutive equations for matrix and fibre presented in section 4.3. The finite element models
developed also use a plain stress formulation. The mesh used for these simulations contains
only eight linear quadrilateral finite elements. This mesh is shown in figure 4.19.

Figure 4.19: RoM finite element models. Mesh and boundary conditions defined

The arrows shown in the right side nodes define the displacement direction applied to those
nodes. This displacement is the same that has been applied to the RVE micro models. Again,
the election of applying displacements instead of forces is made with the aim of obtaining
the post-critical behavior of the composite once the maximum compression load has been
reached.

It is important to remark the difference in the number of mesh elements required by the micro
models and the RoM models. The number of elements required by the micro models is three
orders of magnitude larger than the number of elements required by the RoM models. There-
fore, if the results provided by both procedures are similar, the new formulation proposed
will offer the possibility to do large scale simulations taking into account the fibre-matrix
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micro-structural interaction due to fibre initial misalignments. Possibility that is unbearable
by nowadays personal computers if a complete homogenization method wants to be used.

The model is defined with a single composite material, which constitutive performance is
obtained using the serial/parallel mixing theory. The fibre and matrix defined for the com-
posite, as well as their constitutive laws, are defined at the beginning of this section. The
volumetric participation considered for each component material has been obtained from fig-
ure 4.17. However, fibre volumetric participation has been reduced approximately 1.5% of
the total composite volume in all models. This has been done because RoM models turned
out to be slightly stiffer than the micro models, when the composite is still in its elastic range.
Applying the new fibre volumetric participation, the stiffness difference is reduced and the
comparison among the different models can be made easily. As this modification has been
done proportionally in all RoM models, the results obtained do not lose their validity, as the
reduction can be understood as the calibration required in all finite element simulations in
order to obtain a better agreement with real results.

Another particularity of the RoM models is the proportion of affected matrix considered in
the simulations. The value of affected matrix is computed automatically by the code using
expression 4.69. However, in the RVE considered, as the amount of fibre in the composite is
very small, the quantity of affected matrix shown by the micro models exceed the computed
value. The implementation of the CuBER problem in the finite element code (which will
be described in section 4.5) allows providing user-defined value of the affected matrix due to
fibre buckling. The value defined for the RoM models is 0.75. Which is, approximately, the
amount of matrix affected according to the micro model results.

4.4.2 Results to be studied in the code validation

The study of the results obtained with the different models developed to validate the proposed
formulation must be done comparing the global performance of the micro models with the
RoM models. The comparison of the specific performance of each model cannot be made
because the results obtained are completely different in both simulations: a single finite
element do not provide all information obtained from a model with thousands of elements.
However, as the interest lays on the global performance of the RVE cell, if the global results
are similar, the formulation can be considered to be valid.

The global performance expected from the RVE when including fibre misalignments is a
reduction on the composite stiffness and an initial failure on the composite for lower loads,
due to the failure of matrix material. Therefore, these two effects are the ones to be compared.
The reduction of composite stiffness is produced by the reduction of fibre stiffness due to its
micro-structural displacements and the failure for lower loads is produced because matrix
stresses are increased with the shear transversal structural stresses that appear as result of
the fibre structural displacements.

Even the main interest, when comparing the results obtained with each formulation, lays into
the RVE global behavior; it is also interesting the comparison of the parameters used by the
serial/parallel mixing theory to include the results of the CuBER problem in its constitutive
behavior. These parameters are the matrix maximum stresses and the fibre stiffness reduction
due to its structural displacements. Matrix stresses will be compared using the maximum
shear and transversal stress found, nearby the fibre, in the micro model and the structural
stresses provided by the RoM model, which are stored as internal variables.

On the other hand, the reduction of fibre stiffness cannot be compared between both models.
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Fibres are modeled as an elastic material and their stiffness is not modified at any load step
in the micro models while, in the RoM models, its stiffness is modified due to the structural
damage defined in section 4.3. Thus, fibre stiffness will be constant in the micro models and
will vary in the RoM models. However, as one of the main parameters defining the stiffness
reduction in the RoM models are fibre misalignments, what can be compared is the evolution
of fibre amplitude and wave-length with both models. It is important to remark that these
two parameters, by themselves, are not a direct indicator of how fibre stiffness will change,
as it also depends on fibre diameter, matrix stiffness and fibre constitutive stiffness.

Hence, the validation of the formulation proposed is made comparing the structural results of
both RVE models, micro and RoM, studying the load for which composite failure starts and
the stiffness of the composite before and after the failure. This comparison is made using the
force-displacement curves obtained for the RVE. The results obtained with both models for
matrix structural stresses and the evolution of fibre misalignments are also compared. This
second validation, although less relevant, will provide a better comprehension of the behavior
of the developed formulation. These two validations are performed in detail for one of the
RVE models: the Bmod model. Afterwards, with a more general view, all other RVE cells
simulated are also compared.

4.4.3 Detailed comparison of the results obtained with the micro-Bmod and
RoM-Bmod simulations

In order to obtain a better comprehension of the performance of the RVE studied and of
the performance of the new formulation developed, in this comparison the micro-mechanical
behavior of both models is studied first. This performance is studied comparing the two
main parameters to be used when defining the homogenized constitutive equations of fibre
and matrix in the RoM models: matrix structural stresses and the evolution of fibre initial
misalignments. Afterwards, the global behavior of the RVE simulated obtained with both
models will be compared.

Matrix structural stresses

If fibre initial misalignments are not present in the RVE (case of straight fibres) the matrix
stresses that are obtained when the structure is loaded with a compression force are constant
along the whole element in the longitudinal direction and zero in the transversal and shear
directions. Otherwise, when fibre initial misalignments are present, the interaction between
fibre and matrix modifies the constant stress field in longitudinal direction and generates
stresses in the transversal and shear directions, as can be seen in figure 4.20.

Figure 4.20 shows the effect of fibre misalignments in matrix material and the distribution of
the transversal and shear stresses that appear when the composite is compressed. The results
represented correspond to an applied displacement on the composite material of 5.0 µm.
When applying this displacement, the composite is still under elastic conditions: no damage
has appeared in matrix material. It has been chosen this load step because, once damage
appears in matrix, the comparison between the stresses found in the micro model and the
RoM models is no longer valid, as matrix damage has a different meaning in each formulation.

The results of these figure have been also used to obtain the proportion of matrix that is
considered to be affected by fibre misalignments, which is set as a 75%.
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(a) Longitudinal stresses

(b) Transversal stresses (c) Shear stresses

Figure 4.20: Matrix stresses in micro-Bmod for a compression displacement of 5.0 µm

To obtain the maximum stress values that are found in matrix material, a section of the
composite has been studied (figures 4.21, 4.22 and 4.23). From the contour plot obtained
from the finite element model, it has been obtained the exact values of the stresses in the
gauss points (marked with a point in the figures) found in the element just above and below
the fibre. The values of the stresses in those gauss points are plotted in the graphs displayed
beside the contour plot figure.
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Figure 4.21: Matrix Sxx stresses in micro-Bmod for a compression displacement of 5.0 µm

From the graphs displayed in figures 4.21, 4.22 and 4.23 the transversal and shear stresses can
be obtained to be compared with the structural fictitious stresses computed with the RoM
model. Longitudinal stresses have been also obtained in order to verify the reduction made,
due to poisson effects, of these stresses when they are included in the transversal fictitious
stress vector (equation 4.63) used in the homogenized constitutive law. The maximum shear
stress obtained with the finite element micro-model is found in the elements above the fibre
and its value is 18.2 MPa. And the maximum transversal stress is found in the elements
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Figure 4.22: Matrix Syy stresses in micro-Bmod for a compression displacement of 5.0 µm
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Figure 4.23: Matrix Sxy stresses in micro-Bmod for a compression displacement of 5.0 µm

below the fibre and its value is 15.1 MPa. The longitudinal stress associated to this value is
of 25.9 MPa.

When studying the structural stresses obtained with the RoM model for matrix material,
only one value is obtained from the solution of the CuBER problem for each load step.
This value corresponds to the maximum shear or transverse value that can be obtained
in a micro-structural simulation of the RVE cell. Figure 4.24a shows the fictitious stress
values obtained with the RoM simulation and the homogenized longitudinal stress value
obtained for the matrix material. It is worth to remark the two changes in the stiffness slope
observed in the longitudinal stress values (Sxx). This effect can be better understood looking
at the damage parameters in matrix material displayed in figure 4.24b. The first stiffness
reduction appears due to the structural damage (for an applied compression displacement
slightly larger than 0.01mm) and the second stiffness reduction is found when damage starts
also in the matrix not affected by fibre misalignments, plotted as constitutive damage in
figure 4.24b. The apparition of the structural damage before the constitutive one proves that
the fictitious stresses applied to the homogenized constitutive equation of matrix leads to a
faster degradation of this material.

However, to validate the accuracy of the stress values obtained from the CuBER problem,
the stress comparison must be done for the same applied compression displacement used to
obtain the stresses in the micro model. This is, for an applied displacement of 5.0 µm. The
value of these fictitious stresses for the RoM-Bmod are displayed in table 4.4. This table also
contains the stresses found with the micro-Bmod model and the error obtained when using the
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Figure 4.24: Stresses in matrix and evolution of the damage parameter in RoM-Bmod model

proposed formulation, considering that the real results are the ones obtained with the finite
element micro simulation. An error with a positive value means that the stresses obtained
with the RoM model are larger than the stresses provided by the micro simulation and vice
versa.

Stress micro RoM Error

Sxx 25.9 MPa 28.6 MPa 10.4 %
Syy 15.1 MPa 15.8 MPa 4.6 %

Sxy 18.2 MPa 17.9 MPa −1.6 %

Table 4.4: Stress comparison between micro-Bmod and RoM-Bmod

Results displayed in table 4.4 show the good agreement among the stresses obtained with
each simulation. Having the same stress tensor in both models assures that the apparition
of damage in all of them will begin for the same applied compression load. Although in the
micro model the damage is localized in the element with maximum stresses and in the RoM
model the damage is applied in all the matrix material affected by fibre misalignments.

Fibre initial misalignments

The evolution of fibre misalignments has been obtained for both simulations of the RVE cell.
Fibre misalignments in the micro-Bmod model have been computed from the displacement
along the loading process of the nodes A and B shown in figure 4.25. Fibre misalignments in
the RoM-Bmod model are obtained as an output result of the CuBER problem.

A

B

Figure 4.25: Nodes from which fibre misalignments are obtained

The agreement between both simulations is not, in this case, as good as it was in the case
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of structural stresses. The micro model provides larger values for the increment of amplitude
and wave length than the RoM model. However, the trend obtained with both simulations is
similar. In order to appreciate better this trend, the amplitude and wave length increment
of the results obtained with the micro model have been divided by 10. Figure 4.26a shows
the evolution of misalignment amplitude along the loading process while figure 4.26b shows
the evolution of the wave length. It can be seen that the trend in both cases is very similar.
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Figure 4.26: Evolution of fibre misalignments along the loading process in micro-Bmod and
RoM-Bmod models

When comparing the amplitude variation it is important to point out that when damage ap-
pears in matrix material, for an applied displacement slightly larger than 0.01 µm (see figure
4.24b), the amplitude starts increasing faster than it did when matrix behavior was elastic.
This effect is shown by both RVE simulations and proves the effect of matrix stiffness in the
CuBER problem: as matrix damage increases, its capacity to restrain fibre displacements is
reduced and fibre misalignments start increasing faster. On the other hand, the evolution
of the wave-length follows this same pattern in the RoM model but not in the micro model,
in which a constant reduction of this parameter is observed. This last result, which was not
expected, proves that although the micro model provides, in theory, a better approximation
of the composite RVE cell, the results obtained with it do not have to be trusted at a 100%.

Global behavior of the RVE

Despite of all the resemblances and differences obtained when comparing specific parame-
ters provided by both models: micro and RoM, the most important issue to compare is the
global behavior of the RVE. Although is not the case, even having partial results completely
different, if the new formulation proposed is capable to reproduce a global behavior of the
RVE similar to the one obtained with the micro-model, the formulation can be considered
valid to include the effect of fibre misalignments and fibre interaction with matrix material
in the serial/parallel mixing theory, in order to obtain the compression strength of composite
materials.

The global performance of the RVE is defined by two main parameters: the load for which
damage appears in matrix and the stiffness of the composite, before and after, matrix failure.
These two parameters can be studied with the force-displacement graph obtained for each
simulation of the RVE. Both graphs are represented in figure 4.27.

Figure 4.27 shows that the initial stiffness of the RVE cell is exactly the same for both the
micro-Bmod and RoM-Bmod models. It is also the same the load for which damage starts,



178 4.4 Validation of the homogenization method

 0

 1

 2

 3

 4

 5

 6

-0.025-0.02-0.015-0.01-0.005 0

C
om

pr
es

si
on

 fo
rc

e 
[N

]

Displacement [mm]

’Micro-Bmod model’
’RoM-Bmod model’

Figure 4.27: Force-displacement graph showing the global behavior of the Micro-Bmod and
RoM-Bmod models

which corresponds to the load in which the stiffness changes its slope. This agreement is
produced thanks to the agreement in the transversal and shear stresses of matrix material,
shown in table 4.4. The parameter that differs more in both models is the final stiffness
slope, developed once matrix degradation has started. The RoM-Bmod model is slightly
stiffer than the micro-RoM model. However, the difference found in this last slope is small
enough to consider that the RoM model performance is correct and practically the same as
the performance shown by the micro model. Thus, it can be conclude that the global behavior
of both models is equivalent.

A better comprehension of the global performance shown by the RoM-Bmod model can be
obtained form the stress-strain graphs, of the composite and of its constituent materials,
obtained from the simulation. The stresses and strains represented correspond to the lon-
gitudinal direction of the RVE. These graphs, shown in figure 4.28, are displayed together
with the results obtained from the same RVE simulation when the fibre misalignment phe-
nomenon is not considered. Opposing these both graphs, the effects using the homogenized
constitutive equations for fibre and matrix can be seen more clearly.

Figure 4.28b shows that matrix degradation appears, due to the effect of fibre misalignment,
for a longitudinal stress which is more than 20% lower than the stress in which damage starts
if the misalignments are not considered. Of the two different fictitious stress tensors added
to the homogenized constitutive law (equation 4.63), damage is produced by the stress tensor
containing the fictitious structural shear stress. This is a relevant issue as provides another
agreement with the fibre buckling theories existing in literature: one of the main parameters
that defines the fibre buckling problem is the shear strength of matrix. This shear strength
is represented in the proposed formulation by the homogenized constitutive law and, as has
been seen, the fictitious stresses that lead to matrix failure are the shear stresses.

Fibres in the misaligned model show a small reduction of their elastic stiffness from the be-
ginning of the stress-strain graph, when they are compared with the aligned model. However,
this reduction becomes more important, and keeps increasing, when damage appears in ma-
trix (figure 4.28c). The stiffness reduction can be seen more clearly with the fibre structural
damage parameter. This is represented in figure 4.29 together with the matrix damage pa-
rameter. This figure shows how an initial damage is present in fibre material due to the
initial misalignment and how damage remains constant until matrix degradation starts. At
this point, fibre structural damage starts increasing exponentially.
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Figure 4.28: Stress-strain graphs obtained for the RVE with the serial/parallel mixing theory,
with aligned and misaligned fibres
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Figure 4.29: Fibre and matrix structural damage. RoM-Bmod model

Finally, when comparing the stress-strain behavior of the composite between the aligned
and the misaligned case (figure 4.28a), it can be seen clearly the effects of fibre and matrix
materials. Degradation starts before in the RVE with misalignments, as damage degradation
starts before, and the stiffness reduction of the composite after matrix degradation is rather
larger in the case in which misalignments are considered because the fibre contribution to the
composite stiffness is smaller, as its stiffness is also reduced.
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4.4.4 Comparison of the results obtained with the micro and RoM models
for the different RVE considered

This section validates the performance of the developed formulation, to homogenize the con-
stitutive equations of fibre and matrix material, by studying the global behavior of the RVE
when the different parameters included in the CuBER problem are modified. This parame-
ters are fibre initial misalignments (amplitude and wave length), fibre diameter and fibre and
matrix stiffness.

A detailed description of the different RVE models developed has been already shown in table
4.3. However, here is described briefly the parameters modified in each model, respect the
Bmod configuration, and the name given to the model:

AmpL: Misalignment amplitude is decreased to 7.0 µm
AmpM: Misalignment amplitude is increased to 14.0 µm
FreL: Misalignment wave length is decreased to 150.0 µm
FreL: Misalignment wave length is increased to 300.0 µm
DfiL: Fibre diameter is decreased to 5.0 µm
DfiM: Fibre diameter is increased to 9.0 µm
Wmat: Matrix stiffness is decreased to 1.5 GPa
Sfib: Fibre stiffness is increased to 230.0 GPa

As has been done with the Bmod simulation, the global behavior of the composite will be
studied with the force-displacement graph obtained for each RVE simulation. It will be also
presented the comparison of the matrix structural stresses with the maximum stresses found
in the micro models, as these stresses have been proved a good parameter to verify the load
at which composite degradation starts due to fibre buckling.

Matrix structural stresses

The firsts results that will be compared are the matrix shear and transversal stresses obtained
for each RVE simulation. The stresses provided by the micro models as well as the stresses
provided by the RoM models and the error obtained with these last models (if the micro
model stresses are considered to be correct) are displayed in table 4.5 for the models in which
amplitude is modified, table 4.6 for the models in which wave length is modified, table 4.7
for models with different fibre diameter and, finally, in table 4.8 for the models in which the
composite components stiffness is modified.

Model Stress micro RoM Error

AmpL
Sxx 30.0 MPa 30.1 MPa 0.3 %
Syy 11.4 MPa 10.7 MPa −6.1 %
Sxy 14.1 MPa 11.5 MPa −18.4 %

AmpM
Sxx 25.2 MPa 27.1 MPa 7.5 %
Syy 16.3 MPa 20.6 MPa 26.4 %
Sxy 22.3 MPa 25.3 MPa 13.5 %

Table 4.5: Stress comparison between RVE simulations in which the amplitude is modified

Results shown in tables 4.5 to 4.8 show that the new formulation proposed captures with a
good accuracy the modification of matrix structural stresses when the different parameters
involved in the CuBER problem are modified. If the stresses increase in the micro model, also
increase in the RoM model. Also, the error obtained when comparing the exact value of the
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Model Stress micro RoM Error

FreL
Sxx 23.0 MPa 23.6 MPa 2.6 %
Syy 21.8 MPa 32.4 MPa 48.6 %
Sxy 23.9 MPa 38.0 MPa 59.0 %

FreM
Sxx 27.4 MPa 30.6 MPa 11.7 %
Syy 10.4 MPa 9.1 MPa −12.5 %
Sxy 14.6 MPa 9.9 MPa −32.2 %

Table 4.6: Stress comparison between RVE simulations in which the wave length is modified

Model Stress micro RoM Error

DfiL
Sxx 26.4 MPa 29.8 MPa 12.9 %
Syy 11.5 MPa 11.6 MPa 0.9 %
Sxy 13.7 MPa 13.2 MPa −3.6 %

DfiM
Sxx 26.1 MPa 27.3 MPa 4.6 %
Syy 18.1 MPa 20.2 MPa 11.6 %
Sxy 21.4 MPa 22.3 MPa 4.2 %

Table 4.7: Stress comparison between RVE simulations in which the fibre diameter is modified

Model Stress micro RoM Error

Wmat
Sxx 18.0 MPa 20.3 MPa 12.8 %
Syy 32.4 MPa 43.4 MPa 34.0 %
Sxy 34.6 MPa 36.6 MPa 5.8 %

Sfib
Sxx 10.4 MPa 12.0 MPa 15.4 %
Syy 12.8 MPa 15.4 MPa 20.3 %
Sxy 14.3 MPa 14.4 MPa 0.7 %

Table 4.8: Stress comparison between RVE simulations in which the fibre and matrix stiffness
are modified

structural stresses computed is, in most cases, lower than a 5%. This error tends to be lower
for the shear structural stresses than for the transversal ones. This is an important issue
as the fictitious stress tensor which leads to the apparition of damage in matrix material
corresponds, in all simulations performed, to the stress tensor defined by shear stresses.
Again, this result agrees with all existing literature treating the fibre buckling problem.

Concerning the error obtained when computing the shear structural stresses, it can be said
that the two cases in which larger errors are found are when the fibre misalignment parameters
are modified: amplitude and wave length. Being quite larger when modifying the wave length
parameter. Although differences are important, and are reflected in the force-displacement
graph, it has to be reminded that this is a partial result that do not imply obtaining a wrong
global behavior of the RVE cell.

Global behavior comparison

The comparison of the global behavior of all the RVE cells simulated with the micro and RoM
models is performed using the force-displacement graphs obtained from the calculations. As
has been done when comparing the structural stresses, four different graphs will be shown,
each one containing the simulations in which one of the parameters defining the CuBER
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performance is modified. All graphs contain also the result obtained with the Bmod models
which works as a reference of the two other results displayed.

Figure 4.30 includes the global performance of the models in which the amplitude is increased
or reduced, related to the value defined by the Bmod model. In figure 4.31 the results for the
models in which the wave length is modified are displayed. Figure 4.32 shows the results for
the models with different fibre diameters and, figure 4.33 includes the results for the models
in which the stiffness of matrix and fibre are modified.
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Figure 4.30: Force-displacement graph showing the global behavior of the models in which
the amplitude is modified
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Figure 4.31: Force-displacement graph showing the global behavior of the models in which
the wave length is modified

As can be seen in figures 4.30 to 4.33, the global behavior of the RVE obtained with the new
proposed formulation and the global behavior obtained from the micro models is nearly the
same in all cases. When one of the parameters defining the CuBER problem is modified, it
also modifies the point in which damage appears in the composite, as well as the composite
stiffness before and after damage apparition. The force-displacement graphs represented show
that the modification of these three mechanical performances of the composite is the same in
the micro and in the RoM models.

Figure 4.30 shows that the elastic stiffness of the composite suffers small variations when the
misalignment amplitude is modified. Despite of the error found in the fictitious structural
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Figure 4.32: Force-displacement graph showing the global behavior of the models in which
the fibre diameter is modified
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Figure 4.33: Force-displacement graph showing the global behavior of the models in which
the stiffness of the composite constituents is modified

stresses, the differences between the load for which degradation starts in the composite is
nearly unnoticeably when comparing the global behavior of the micro and the RoM models.
And, finally, the error obtained in the composite stiffness after the apparition of damage
seems to increase as fibre amplitude is increased. However, the error is small enough to
consider the results correct.

When comparing the RVE performance when misalignment wave length is increased of re-
duced (figure 4.31), the error obtained in the calculation of matrix structural stresses is clearly
reflected. Specially when the wave length is reduced. On the other hand, the prediction of
the two stiffnesses shown by the composite, before and after fibre damage, are very accurate
in all cases.

The comparison of the results obtained for the models in which fibre diameter is modified (fig-
ure 4.32) shows a perfect agreement between the micro and the RoM model. This agreement
is found in all the composite stiffnesses and in the load for which the composite degradation
starts.

The last parameters modified are the fibre and matrix stiffness, which results are shown
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in figure 4.33. This figure shows that even the matrix structural stress prediction is quite
accurate, the accuracy of the results cannot be guaranteed. While the prediction of the RVE
performance with the RoM model is nearly the same that the one obtained with the micro
model when matrix stiffness is reduced, the prediction for the case in which fibre stiffness is
increased is not as accurate. Specially the stiffness obtained after the apparition of damage
in the composite. Thus, composites with larger fibre stiffness will require a better calibration
to adjust the micro-structural performance of both models.

With all results shown, it can be concluded that the developed formulation to include the
micro-structural effects of fibre misalignment in the serial/parallel mixing theory, using the
homogenized constitutive equations obtained from the solution of the CuBER problem, pro-
vide accurate results when they are compared with the performance of a finite element micro
model. The formulation developed is able to capture modifications in fibre misalignments
and fibre and matrix properties; being those the parameters defined in literature related to
the fibre buckling problem. Also, the failure cause of matrix material has been found to be
due to shear stresses in all simulations performed.

4.5 Numerical procedure to obtain the compression strength
of composites

4.5.1 General description of the numerical procedure developed

According to the different authors that have studied the problem of compression strength
of long fibre composites (Rosen (1965), Barbero and Tomblin (1996), Balacó de Morais and
Torres Marques (1997) or Drapier et al. (1999), to name a few), this type of failure is produced
by the fibre buckling phenomenon. The formulation proposed by these authors depends on
three main parameters: fibre initial misalignments, shear strength of matrix material and the
proportion between fibres and matrix in the composite. Using these parameters, different
formulations are proposed to obtain the maximum compression stress that can be applied to
the composite before it fails due to fibre buckling.

In this work, the composite performance is obtained with the serial/parallel mixing theory,
which obtains the composite constitutive behavior from the constitutive behavior of its con-
stituent components (section 2.3, Rastellini (2006)). Using the serial/parallel mixing theory,
the formulations proposed in literature cannot be used, as they have to be applied to the
composite and not to its different constituents. Moreover, as the serial/mixing theory pro-
vides the stress-strain for each component material, it is worth take advantage of this extra
information (not provided by other composite formulations) to obtain a formulation capa-
ble to provide results for tensional states beyond the maximum compression load, and more
similar to the real micro-mechanical phenomenons taking place in the composite.

Up to this point, it has been described a new methodology and formulation to take into
account the effect of the micro-structural interaction between fibre and matrix, due to fibre
initial misalignments, in the serial/parallel mixing theory (section 4.3). To do so, the effects of
this micro-structural interaction have been included in the constitutive equations of fibre and
matrix defining an homogenized constitutive law for each material. The good performance
of this new methodology has been proved in the numerical validation shown in section 4.4.

Therefore, the effects of fibre initial misalignments, as well as the interaction between fibre
and matrix due to these misalignments, can be included in the serial/parallel mixing theory
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with the formulation developed. It will be shown in this section that if the new formulation
is properly included in a finite element code, the compression strength of the composite is
obtained straightforward from the constitutive performance of the composite constituents
(this ability of the formulation has been already proved in Mart́ınez et al. (2007)).

However, to obtain a general procedure to calculate the compression strength of composite
materials, there are other cases that have to be considered that are not included in the
homogenized constitutive equations for fibre and matrix obtained in section 4.3. These cases
are the situation in which fibres do not have initial misalignments or the situation in which
fibre initial misalignments are to small to affect significantly the constitutive behavior of fibre
and matrix. A general procedure to obtain the compression strength of composite has also to
be able to deal with unloading processes and must provide a different composite performance
depending on the sign of the load applied to it: tensile load or compression load.

The procedure proposed to obtain the compression strength of composites, is based in a
phenomenological representation of the micro-mechanical performance of the composite con-
stituents. This procedure, besides including fibre initial misalignments in the constitutive
equations of fibre and matrix, it also considers other fibre configurations and it takes into
account the loading history of the composite.

The two first subjects described in this section are the methodologies used by the new pro-
cedure to deal with fibres without initial misalignments and with initial misalignments. In
the case of misaligned fibres two different situations are considered: large and small misalign-
ments. Afterwards it is described the numerical implementation of the different formulations
developed to obtain the compression strength of the composite. First it is shown how the
new procedure is included in the serial/parallel mixing theory and after it is explained how
all the formulation is included in a finite element code. Finally, some numerical examples are
shown to illustrate the performance of the new fibre buckling theory developed.

4.5.2 Compression strength in fibres without initial misalignments

One of the main parameters defining the fibre buckling phenomenon is fibre initial misalign-
ments. However, there are situations in which these misalignments can be small enough to
be imperceptible to the testing methodologies used to record them. There can be also other
situations in which their wave length is too large to be considered a proper misalignment. An
example of this last situation can be the case of steel reinforcements in a concrete column;
according to Barbat and Cardona (1999), the buckling of steel reinforcements in reinforced
concrete columns (figure 4.34) is one of the main failure causes of these structural elements
in the case of an earthquake. This situation can be understood as a compression failure
of a composite (reinforced concrete) due to the fiber buckling phenomenon. In those cases,
although misalignments exist, the wave lengths are too large and amplitudes too small to
consider the geometric imperfections of the bar fibre misalignments.

To take into account these two particular cases, or any other case in which fiber misalignments
can be considered non-existent, it is necessary to obtain a formulation to obtain the maximum
compression force that can be applied to the composite due to fibre buckling effects.

The main task of matrix in fibre reinforced composites is to transmit the loads applied to the
composite to fibres, which are the elements that will support the load (Oller, 2003). However,
if the load applied to the composite is a compression force, matrix also has the function of
confining fibres avoiding them to buckle. Fibres are very slender elements that, without the
surrounding matrix, will buckle for an infinitesimal load.
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Figure 4.34: Buckling of the steel reinforcement of a reinforced concrete column (Barbat and
Cardona, 1999).

Although matrix is restraining fibres from buckling, the relation of both materials when
fibres do not have initial misalignments is, before fibre buckling, the one provided by the
serial/parallel mixing theory: both composite constituents have the same strain in parallel
direction and the same stresses in serial directions. But, at a certain load, is possible that
matrix cannot restrain fibres any more and fibre buckling occurs.

As has been done with misaligned fibres (section 4.3), this problem can be solved using
the existing analogy between the fibre-matrix system and the case of a bar in an elastic
foundation. Thus, the fibre buckling load can be computed considering fibres a bar and the
matrix in which they are embedded the elastic foundation. Matrix stiffness provides the
elastic variable of the foundation. If damage appears in matrix material, the elastic variable
defining the foundation will be reduced proportionally to the degradation found in matrix.

The procedure developed to obtain the compression strength of composite materials do not
only finds the maximum load that can be applied to the composite but also its post critical
strength. Therefore, once fibres without misalignment have buckled, it is necessary to find
their new configuration and constitutive performance.

Once the fibre has buckled it will adopt a new geometry. This new geometry is similar to
the one found in the case of fibres with initial misalignments and can be defined by a wave
length and an amplitude. Therefore, after fibre buckling, the new fibre geometry will be
computed and the composite post-critical behavior will be obtained using the formulation
already developed for fibres with an initial misalignment.

This section defines the buckling stress for which fibre buckling will occur and the geometric
configuration expected in fibre when it has reached this limit buckling stress. At the end of
the section is included brief summary of the procedure to be followed and the parameters
required by it.

Buckling stress for fibres without initial misalignments

In the case of fibres without initial misalignment, the buckling stress is obtained from the
critical buckling load of a straight bar in an elastic foundation. The geometry of the problem
is shown in figure 4.35.

To obtain the critical buckling load of a bar under unilateral elastic restriction the energy



4. Compression Strength of Composite Materials 187

Figure 4.35: Geometry considered to obtain the buckling load of straight fibres

method described by Timoshenko (1940b) will be used. This is an approximate method in
which the strain energy of bending (∆U) is compared with the decrease in the potential work
of the load (∆T ). A lower value of ∆T than ∆U means that the deflection of the bar requires
an increase of the potential energy of the system; or, which is the same, means that the
system is stable. On the other hand, if ∆U < ∆T , the deflection of the bar is accompanied
by a decrease in the potential energy of the system, which makes it unstable. The load that
separates both situations is defined as the critical buckling load and can be obtained defining:

∆U = ∆T (4.73)

According to Timoshenko and Gere (1961), in the case of a bar on an elastic foundation, to
obtain the buckling load of the bar its necessary to add the strain energy of the foundation
to the energy of bending. Thus, equation 4.73 becomes:

∆U1 + ∆U2 = ∆T (4.74)

Where U1 is the bending energy and U2 is the strain energy of the foundation.

In order to obtain the critical load from equation 4.74, it is necessary to know the deflection
that will have the bar when buckling. The general equation for the deflection curve of the
beam can be expressed by the fourier series:

ω =
∞∑

n=1

an sin
(nπx

l

)

(4.75)

Once knowing the expected deflection, the expression that provides the energy of bending is:

∆U1 =
EI

2

∫ l

0

(
d2ω

dx2

)2

dx =
π4EI

4l3

∞∑

n=1

n4a2
n (4.76)

And the strain energy of the elastic foundation is:

∆U2 =
k

2

∫ l

0
ω2dx =

kl

4

∞∑

n=1

a2
n (4.77)

Being k the elastic modulus of the foundation and n the buckling mode shape.

Considering that the beam is loaded with a normal compressive force, the decrease in the
potential work of the load can be written as:
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P

2

∫ l

0

(
dω

dx

)2

dx =
π2P

4l

∞∑

n=1

n2a2
n (4.78)

The substitution of expressions 4.76 to 4.78 into equation 4.74 leads to the expression that
will provide the critical buckling load of a bar on an elastic foundation, which is:

π4EI

4l3

∞∑

n=1

n4a2
n +

kl

4

∞∑

n=1

a2
n =

π2P

4l

∞∑

n=1

n2a2
n (4.79)

To obtain the critical value of load P , the deflection curve of the beam can be simplified
defining all an parameters equal to zero except one (Timoshenko and Gere, 1961). So, writing
the deflection of the bar as,

ω = an sin
(nπx

l

)

(4.80)

Equation 4.79 becomes,

π4EI

4l3
n4a2

n +
kl

4
a2

n =
π2P

4l
n2a2

n (4.81)

This last expression must be valid for any value of an. Thus, the critical buckling load of a
beam under unilateral elastic restriction can be written as,

Pcr =
π2EI

l2

(

n2 +
kl4

n2π4EI

)

(4.82)

Where the n value defines the buckling mode of the bar. According to equation 4.82 the
value of n that makes Pcr minimum depends on the elastic modulus of the foundation and
the length and stiffness of the bar. So, the buckling mode of the bar will depend on the value
of these parameters.

One of the main problems found with the formulation described to obtain the buckling load
of a bar in an elastic foundation is the definition of the buckling length l to be used. In the
case considered, fibre vertical movement is restrained with the same intensity along the whole
fibre length.

In order to consider the most unfavorable situation, the buckling length that will be assumed
is the buckling length that minimizes the critical buckling load. This buckling length can be
obtained searching the value of l that minimizes the function Pcr(l) defined in equation 4.82:

d Pcr

dl
= 0.0 −→ −2π2EI

(
n2

l3
− kl

n2π4EI

)

= 0.0 (4.83)

Expression 4.83 defines a critical buckling length, which value is:

lcr = nπ
4

√

EI

k
(4.84)
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If the buckling length defined in equation 4.84 is replaced in expression 4.82, the critical
buckling load obtained is:

Pcr = 2π
2
√

kEI (4.85)

This last expression is interesting to be analyzed because, as it can be seen, the dependence on
the buckling mode disappears from the critical load value, which provides a unique buckling
load value for all buckling modes. The only dependence in the buckling mode is found in the
critical length, which increases linearly with the value of n. A better understanding of these
results can be obtained looking at table 4.9 in which the buckling load, buckling length and
final bar deformation are displayed for different buckling modes. This table has been made
considering the following values defining the problem: E = 78.0 GPa, Øf = 15 µm (from the
fibre diameter can be obtained its inertia) and k = 3.0 GPa.

Buckling Buckling Buckling Bar
mode load length deflection

1 4.71 N 50.0 µm

2 4.71 N 100.0 µm

3 4.71 N 150.0 µm

4 4.71 N 200.0 µm

Table 4.9: Critical buckling load and length for different buckling modes

Table 4.9 shows that for the same buckling load, different bar deformations can be obtained
depending on the buckling length or buckling mode considered. All deformations obtained are
a combination of the first buckling mode deformation. Thus, if an infinite fibre is considered,
the buckling load provides a deformation that follows a periodic misalignment path. This
effect validates the assumption that after fibre buckling, the formulation developed for fibres
with initial misalignments can be used to predict the post-critical behavior of straight fibres.

Once knowing the critical buckling load for which fibres will buckle, this load must be con-
verted to a critical stress in order to be verified by the constitutive equation of fibre material.
This conversion is made dividing the critical load by fibre area. Therefore, the critical stress
that will lead to fibre buckling is:

σcr =
2π 2

√
kEI

πØ2
f

/

4
=

8 2
√

kEI

Ø2
f

(4.86)

The critical stress defined in equation 4.86 corresponds to the critical stress in fibre longitu-
dinal direction. Thus, it has to be compared with the parallel component of the stress tensor
obtained for fibre material provided by the serial/parallel mixing theory.

Geometry of fibres after buckling

Once fibres have reached their buckling stress, their geometry must change from aligned to
misaligned in order to apply the misaligned fibre formulation and obtain their post-critical
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performance. The new geometry configuration of fibres is provided by the the bar deflection
equation used to obtain the buckling stress (equation 4.75), which is defined by the amplitude
an and the wave length lcr.

The value of lcr that is considered corresponds to the first buckling mode of the fibre. There-
fore, to determine the fibre new geometry is necessary to determine the value of the amplitude
a1. The value of this parameter is obtained using the existing equilibrium between the critical
buckling load applied to the fibre and the restrain effort made by matrix material to avoid
fibre displacement.

Two different equations are defined to obtain the new fibre geometry. These equations are
deduced using the following hypothesis:

1. Fibre new geometry is considered to be contained in an arch of circumference. This
approximation has been already used when solving the CuBER problem and it has been
already proved its validity.

2. When fibre buckles it increases its length. This length increment implies a reduction of
the longitudinal stress found in fibre material.

3. New fibre geometry is determined by the equilibrium between matrix efforts over fibres
and fibre normal stresses.

4. Only longitudinal stiffness is considered in fibre to obtain its new geometry. Flexu-
ral stiffness is considered negligible in the mechanical effects that provide new fibre
configuration.

Based on the hypothesis mentioned above, the first equation used to calculate the new fibre
geometric configuration is based on geometry assumptions. The length of the fibre before
applying any load to the composite is, as it is shown in figure 4.36, lcr.

Figure 4.36: Fibre geometry before applying any load to the composite

As the compression load increases in fibre, its length is reduced according to the longitudinal
strains applied to the composite. Thus, just before buckling, the fibre geometry is the one
shown in figure 4.37, and its length is l2:

Figure 4.37: Fibre geometry just before reaching the critical buckling load

l2 = lcr(1 − εcr) (4.87)

where εcr, is obtained from the critical buckling stress:

εcr =
σcr

E
(4.88)
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When fibre buckles it geometry must change from the geometry shown in figure 4.37 to
a curved geometry. At this point, the first hypothesis defined is used to obtain the new
fibre geometric configuration. Thus, the new fibre shape must be contained in an arch of
circumference and the new fibre length can be obtained from the arch equation. Figure 4.38
shows the new geometry of the fibre and the most relevant parameters defining the geometry.
It is important to notice in this figure that the distance between the ending nodes of the
fibre remains l2: the longitudinal length of the fibre must remain constant and what varies
its transversal geometry.

Figure 4.38: Fibre geometry just after reaching the critical buckling load

From the final geometry of the fibre, shown in figure 4.38, can be obtained the relation
between the internal angle α and the radius R. This is:

sin(α) =
l2
2R

=
lcr(1 − εcr)

2R
(4.89)

The other equation required to calculate the final configuration of the fibre is obtained impos-
ing the second and third hypothesis. The second hypothesis says that the length increment of
fibre after buckling implies a reduction of the applied force in the fibre. The length increment
in fibre due to the change in its geometry is obtained losing some of the longitudinal strains
existing before fibre buckling. Therefore, the new longitudinal strain in fibre is:

ε̂ =
l1 − l3

l1
=

lcr − 2αR

lcr
(4.90)

This variation in the longitudinal strain of fibre material produces a variation in the longitu-
dinal stress and, consequently, a variation on the axial force applied to the fibre. The value
of the new axial force is:

σ̂ = Eε̂ ; P = σ̂Af ; → P = EAf
lcr − 2αR

lcr
(4.91)

According to the third hypothesis, the new axial force in the fibre must be in equilibrium
with the external load, q, result of the restrain of matrix material over fibre (figure 4.39).
The external load is proportional to the fibre radial displacement ω:

q = kω (4.92)

The expression of the radial displacement suffered by the fibre can be obtained from the
circumferential properties of the new fibre geometry. Thus,
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Figure 4.39: Equilibrium defined between compression force in fibre and elastic restrain of
matrix

ω(φ) = R

(

1 − cos φ

cos α

)

(4.93)

In order to have the system displayed in figure 4.39 in equilibrium, the sum of the external
forces made by matrix over the fibre must be equal to the axial force existing in fibres.
Therefore,

P =

∫ α

0
qR dφ =

∫ α

0
kR2

(

1 − cos φ

cos α

)

dφ (4.94)

Being P the axial force in fibre defined in equation 4.91. Replacing the expression of this force
in equation 4.94 the second equation required to obtain the fibre new geometric configuration
is obtained:

EAf
lcr − 2αR

lcr
=

∫ α

0
kR2

(

1 − cos φ

cos α

)

dφ (4.95)

The new fibre geometry, defined by the arch radius R and the internal angle α can be
obtained with the non-linear system defined by equations 4.89 and 4.95. After solving the
integral defined in equation 4.95 and rearranging both equations, the system to be solved
becomes:
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− EAf
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(4.96)

This non-linear system of equations is solved using a Newton Raphson method (Hoffman,
2001). To do so, the second equation of 4.96 is transformed into the function f(α) that has
to be minimized:

f(α) = kR2
(

α − cos α ln
[

tan
(π

4
+

α

2

)])

− EAf
lcr − 2αR

lcr
(4.97)

The procedure starts with an initial prediction of α equal to the maximum angle allowed
by the equations: α = π/2. From this initial prediction the value is corrected following the
Newton Raphson scheme,
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αi+1 = αi − f(αi)

f ′(αi)
(4.98)

until the desired tolerance is obtained:

f(αn) ≤ toler (4.99)

With this procedure in less than seven iterations the error is smaller than 10−10.

Once having the new geometry radius and internal angle, both values must be converted to
the amplitude, A, and wave-length, λ required by the CuBER formulation (equation 4.100).
With the new misalignment parameters, the formulation of fibres with initial misalignments
can be applied to obtain the post-critical behavior of the fibre.

A = R (1 − cos α)

λ = 4R sin α
(4.100)

Parameters required by the formulation developed for fibres without initial mis-
alignments and procedure summary

The equations described previously provide the constitutive performance of composite ma-
terials made of fibres without initial misalignments under compression efforts. This section
reviews the most important expressions obtained to solve the problem and defines the main
parameters required by the formulation from the finite element code.

To verify if fibre buckling occurs or not in the composite is required to compare the parallel
stresses of fibre material with the critical buckling stress obtained in equation 4.86.

fσP ≤ σcr =
8 2
√

kEI

Ø2
f

(4.101)

Thus, to know if fibre buckling occurs it is necessary provide to the formulation the fibre
parallel stress component. It is also required the fibre longitudinal stiffness, E, and the
matrix stiffness, k. Both stiffnesses are defined by each material young modulus when the
material is still under elastic conditions. However, if damage has appeared in any of the
composite constituent materials, the damage effect must be included in the stiffness value
(see equations 4.38 and 4.39 in section 4.3 for matrix and fibre, respectively). Finally, it is
also necessary to know the fibre diameter, which is required by the equation and to obtain
the moment of inertia I.

If fibre buckling occurs, the new fibre geometry will be obtained using the non-linear system
of equations 4.96. Which requires, to be solved, the same information used to obtain the
fibre buckling stress.

Once the fibre new geometric configuration is known, to obtain the post-critical performance
of the composite the code uses the formulation developed for composites in which fibers have
initial misalignments. The parameters required by this problem are fully described in next
section.
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4.5.3 Compression strength in fibres with initial misalignments

The procedure used to obtain the compression strength of composite materials in which
fibres have initial misalignments is based in the composite performance obtained with the
homogenized constitutive equations presented in section 4.3 of the present chapter. Section
4.4 has shown the mechanical performance obtained in the composite when fibre and matrix
are simulated using the homogenized constitutive equations developed: degradation in matrix
appears for lower compression stresses and fibre stiffness is reduced. This reduction of fibre
stiffness becomes more significant as matrix damage increases because the confinement effect
provided by matrix is weaker.

As the load in the composite increases, it is possible that the damage in matrix and the
structural damage in fibre makes the the composite unable to support the applied load. At
this point the maximum compression force that can be applied to the composite is reached and
the stress-strain relation begins to decrease providing the post-critical path of the composite.

This situation is shown in figure 4.40 in which the force-displacement graph obtained for the
composite and the damage evolution in matrix and fibre are represented. In this graph it
has been marked the displacement in which the maximum load is reached in the composite
(disp = −35.5 µm). The composite properties defined to obtain this graph correspond to the
properties of the RoM-Bmod model defined in section 4.4.
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Figure 4.40: Post critical performance of a composite with fibres with initial misalignments

Figure 4.40 shows that the formulation developed to take into account fiber initial misalign-
ments and the interaction between fiber and matrix provides the buckling strength of the
composite without requiring any additional formulation. When matrix cannot restrain fibers
any more, their initial misalignment starts increasing indefinitely, being unable to provide
more strength to the composite. This state is taken as fiber buckling. This approach to
obtain the fiber buckling load has already been used in the work of Akbarov and Kosker
(2001).

Eventually, damage in matrix can reach a level in which the confinement effect becomes
non-existent. When this situation is reached, the equations that provide the structural dis-
placement of the fibre are not longer valid and must be replaced by the equations of a curved
bar.

Another situation that must be considered in the case of fibres with initial misalignments
corresponds to the case in which the misalignments are too small (very large wave length
with small amplitudes) to affect significantly the composite performance. In these situations
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is possible that fibre buckle like a straight fibre before the homogenization procedure affects
the composite performance. As there is no way to know a priori if the compression strength
of composites with misaligned fibres will be determined by the homogenized constitutive
equations or if fibres will buckle because misalignments are too small, it is necessary to verify
at each load step if the stresses applied over the misaligned fibre are larger than the buckling
stresses.

In the case of misaligned fibres, the buckling stress is obtained using the existing analogy
between the composite micro-structural configuration and the case of a curved bar in an
elastic foundation, for which the buckling load can be obtained.

Therefore, to obtain the compression strength of fibres with initial misalignments it has to be
included, to the numerical procedure based in the homogenized constitutive equations, the
performance of the fibre when there is no more matrix to restrain it and the calculation of
the buckling stress in the case of curved fibres. The formulations required for these two last
calculations are described in the following. Afterwards it will be drawn a brief summary of
the procedure used to obtain the compression strength of composite with misaligned fibres.

Fibre performance when matrix is completely damaged

At has been already commented, when matrix is completely damaged the equations used to
solve obtain the constitutive performance of fibre and matrix due to fibre initial misalignments
are no longer valid. Therefore, the CuBER formulation must be replaced by the formulation
of a curved bar. The geometric configuration of the problem considered is shown in figure
4.41.

Figure 4.41: Geometry of the curved bar problem when matrix is completely damaged

The displacements of the bar shown in figure 4.41, for the applied force P can be obtained
easily using the unit force method described in (Cervera and Blanco, 2004). This method
is based in the principle of virtual work. In order to obtain the displacement in a specific
point of the structure, a unit force, in the same direction of the displacement sought, must
be applied to the point in which the displacement is required. Therefore, the displacement
becomes:

di =

∫ L

0

MM∗

EI
dS (4.102)

Being M the bending moments law of the structure, M∗ the bending moments law obtained
from the unit force applied and L the total length of the structure.

Using the existing symmetry of the problem, and transforming the axis to polar coordinates,
the horizontal displacement of the curved bar in point C is obtained with the following
expression:
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uC = −PR3
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And the vertical displacement of point B is obtained as:

vB = −PR3
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] (4.104)

The displacement values obtained for the case of a curved bar, without any kind of restriction,
can be used as were used the displacements obtained when solving the CuBER problem to
obtain the homogenized constitutive law of fibre material. Therefore, the new structural
stiffness for fibre becomes:

fsE∗ =
P

Afib

0.25λ

uC
(4.105)

This new value of fibre structural stiffness is used to obtain the homogenized constitutive
performance of fiber material if the matrix confinement of fibres becomes negligible. This
situation is considered to occur when the new fibre structural stiffness is larger than the
structural stiffness obtained with the CuBER problem (equation 4.50). The values for the
amplitude and wave-length are actualized with the values obtained for uC and vB.

It is important to point out that if this new fiber stiffness replaces the stiffness obtained when
solving the CuBER problem, no structural stresses must be added to the matrix homogenized
constitutive law, as matrix collaboration has been assumed non-existent.

Buckling stress of misaligned fibres

The critical buckling stress for fibres with initial misalignments is obtained following the same
procedure used to obtain the buckling stress of straight fibres. The buckling load is obtained
from the energy equilibrium:

∆U1 + ∆U2 = ∆T (4.106)

In this case, the radial deflection of the beam produced by a small perturbation of the load
applied is:

ω = ω0 + δω (4.107)

Where ω0 is the beam deflection in the equilibrium state and δω is the perturbation of this
deflection, that can be expressed by Fourier series as,



4. Compression Strength of Composite Materials 197

δω =
∞∑

n=1

an sin

(
nπφ

α

)

(4.108)

Wang and Shenoi (2004) define the following expressions to characterize the energy variation
in the case of a curved beam. The expression for the change in the bending strain energy is:
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Rdφ − U1 (4.109)

Being U1 = (EI/2R3)ω2
0α the bending strain energy of the beam in its equilibrium state. If

equation 4.109 is integrated and ω is replaced by its definition according to equations 4.107
and 4.108, the final expression for the change in the bending strain energy becomes:

∆U1 =
EI

4R3
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(πn

α

)2
]2

a2
n +
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(4.110)

The expression for the change in the elastic foundation strain energy is:

∆U2 =
1

4
kαR

∞∑

n=1

a2
n + 2kω0R

∞∑

n=1,3,5...

anα

πn
(4.111)

And, the work done by the external forces (considering the contribution of the normal force
and the bending moment) can be written as:

∆T =
π2ω0

4α

(

k +
EI

R4

) ∞∑

n=1

n2a2
n − 2πEIω0

αR3

∞∑

n=1,3,5...

nan (4.112)

This last equation is obtained considering the bending moment and the normal force con-
stants, with the following expression at the static equilibrium state:

P0 = kRω0 M0 =
EIω0

R2
(4.113)

Replacing in equation 4.106 the expressions defined in 4.110 to 4.112 and rearranging the
result, the critical buckling load of a curved beam in an elastic foundation can be written, in
a general form, as:
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(4.114)

Following the same procedure defined for the straight beam, the critical buckling load can
be obtained considering only the contribution of one of the terms of the Fourier series. The
solution for n = 1 will not be considered because it corresponds to a rigid body movement.
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The critical buckling load for even n values is:

Pcr =
α2
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+ kR2

(
1 + EI

kR4

)
n2

(4.115)

And the critical buckling load for odd n values is:
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From this last equation can be obtained the value of an:
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The deflection amplitude an reaches its maximum value when the denominator of this ex-
pression becomes zero. This condition leads to the expression of the critical buckling load for
odd n values, which is exactly the same as the one found for even n values (equation 4.115).

This result is coherent with the critical buckling load obtained for a straight beam. It can
be easily verified that equation 4.115 becomes equation 4.82 when αR → l and R → ∞.

In the case of fibres with initial misalignments, the buckling length considered corresponds
to the length between two consecutive inflection points of the misalignment. This is:

l = λ/2 (4.118)

So, in order to obtain the critical buckling load of the system, is required to evaluate expres-
sion 4.115 for different n values until the minimum value of Pcr is found. The buckling stress
will be calculated as:

σcr =
P ∗

Af

with P ∗ = min {P (n = i); i ∈ N} (4.119)

If at any load step fibre parallel stresses are larger than σcr, fibre buckling will occur and the
new misalignment configuration should be computed. To obtain the new amplitude and wave
length the same procedure used for straight fibres is used. However, in this case, the length
used to obtain the new geometry corresponds to the buckling length l (defined in equation
4.118) divided by the n value defining the buckling mode. The reason for which this length is
used can be easily understood looking at the buckling deformation obtained, for example, for
n = 2. This deformation is shown in figure 4.42. This figure shows that the new misalignment
is contained in half the buckling length used to verify the critical buckling stress in the fibre.
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Figure 4.42: Second buckling mode of a curved beam in an elastic foundation

4.5.4 Parameters defining the fibre buckling problem

Having defined all the numerical procedures required to obtain the compression strength
of composite materials and all the formulation involved, they must be included in a finite
element code in order to perform numerical simulations of composites taking into account
the fibre buckling phenomenon.

The numerical code in which the procedures are included is PLCd (CIMNE, 2008). This is
a finite element code that works with two and three-dimensional solid geometries and with
beam elements. Composite materials are treated in it using the serial/parallel mixing theory
developed by Rastellini (2006). It can deal with kinematic and material nonlinearities. It
uses various constitutive laws to predict the material behavior (Elastic, visco-elastic, dam-
age, damage-plasticity, etc. Oller et al. (1990)) and uses different yield surfaces to control
their evolution (Von-Mises, Mohr-Coulomb, improved Mohr-Coulomb, Drucker-Prager, etc.
Malvern (1968); Lubliner et al. (1989)). The Newmark method (Barbat et al., 1997) is used to
perform dynamic analysis. The beam element formulation included in PLCd is fully described
in Mata et al. (2007, 2008).

The input data file required by PLCd contains all information related to a finite element
method: mesh elements, mesh nodes, material properties, boundary conditions, etc. As
PLCd code deals with composites using the serial/parallel mixing theory, it requires the defi-
nition of each composite material according to its constituent materials and their volumetric
participation. Finally, to be able to obtain the compression strength of the composite with
the new formulation developed, few more parameters must be defined for each composite
used in the simulation. In the following these parameters are described, as well as the way
in which the code uses them.

There are five misalignment parameters required by the formulation that must be included
in the PLCd input data file. These are described in table 4.10.

Rfib: Fibre radius
Ampl: Misalignment amplitude
Freq: Misalignment wave-length
AffM: Proportion of matrix affected by fibre misalignments
FrLe: Fracture Length to be considered in matrix damage formulation

Table 4.10: Parameters required by PLCd to obtain the compression strength of composites

There can be some simulations in which the compression strength of the composite is not a
limitation factor, either because the composite is always loaded with tensile stresses, either
because the compression forces applied to the composite are very small. In these cases, it is
interesting to skip all the compression strength procedure to reduce the computational cost
of the simulation. For this reason, the Rfib parameter not only provides to the code with
the information of fibre radius but also tells the code if the compression strength procedure
must be applied to the present simulation or not. If this parameter is defined as 0.0, the code
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understands that the compression strength of the composite is not an important issue in the
simulation and skips its verification.

The Ampl parameter does also have a double meaning as it tells the code if fibres have initial
misalignments or not. If Ampl is defined as 0.0 the code considers the case of straight fibres.
Otherwise, if an amplitude value is given to Ampl, the initial misalignment formulation will
be applied in present simulation. In this case it is necessary to give a value different of 0.0
to Freq parameter.

Finally, the last two parameters defined in table 4.10, AffM and FrLe, should be defined
as 0.0 except in exceptional cases. These two parameters, amount of matrix affected by
fibre misalignments and fracture length to be applied to matrix damage formulation, are
automatically computed by the code according to the expressions 4.69 and 4.71 defined in
section 4.3. However, there can be some simulations in which these parameters must be
defined manually. In these cases, they can be defined in the input data file replacing the 0.0
(which tells the code to calculate them) for the value that wants to be considered.

4.5.5 Implementation of the numerical procedure proposed in a finite ele-
ment code

The numerical procedures and formulations developed to obtain the compression strength of
composite materials due to the fibre buckling phenomenon are included in PLCd, a finite
element code that deals with composite materials using the serial/parallel mixing theory.
Therefore, the mixing theory algorithm (already described in section 2.3) must be modified
to include the new formulations developed.

The fibre buckling formulation not only affects the constitutive performance of fibre and
matrix materials but also requires to establish communication between both materials, as
the degradation and the stress-strain state of each one affects the other one. This situation
forces the compression strength procedure to interact in different places of the serial/parallel
mixing algorithm to gather all information required by the fibre buckling formulation and to
provide a correct constitutive performance of the composite.

This section describes, using flow charts, how the formulation defined in this section and in
section 4.3 is implemented in the serial/parallel mixing algorithm. The first flow chart shown,
in figure 4.43, provides a description of the modifications required in the serial/parallel mixing
theory to include the fibre buckling procedure. In this flow chart all procedures related to
the compression strength formulation are shaded in blue. As can be seen it is necessary to
modify the serial/parallel mixing theory algorithm in two different places.

The first time in which the CuBER problem is solved is just after obtaining the prediction
of the strain tensors for fibre and matrix, in order to obtain the fictitious structural stresses
required by the matrix homogenized constitutive equation. It is important to remark that
the CuBER problem is solved only if fibres are misaligned. In case of aligned fibres there is
no need to solve the CuBER problem because matrix structural stresses are zero.

The second time in which the serial/parallel mixing theory algorithm has to be modified is
after solving the matrix homogenized constitutive law. At this point, the code enters into the
fibre buckling algorithm (or compression strength algorithm), described in figure 4.44, with
the matrix damage parameter obtained from matrix constitutive law. This damage parameter
is required to obtain the fiber homogenized constitutive performance. The code enters into
the fibre buckling algorithm in each iteration performed by the serial/parallel mixing theory,
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Figure 4.43: Flow chart with the implementation of the compression strength algorithm in
the serial/parallel mixing theory. The algorithm used to solve the fibre buckling problem is
described in figure 4.44

as the matrix damage parameter can be modified in each iteration, being possible that these
modifications affect fibre constitutive performance.

The fibre buckling algorithm calculates the parameters required by fibre and matrix homoge-
nized constitutive equations for all the possible situations considered to obtain the compres-
sion strength of composite materials. Therefore, three different numerical procedures can
take place depending on the situation in which the fibre-matrix system enters the algorithm.
This situation is described by three different paramters: fibre radius, misalignment amplitude
and the parallel strain of fibre material.

Having a fibre radius equal to zero tells the program that the compression strength of the
composite due to fibre buckling effects does not have to be considered. In this case no
calculations are performed and the code leaves the algorithm. On the other hand, if fibre
radius is non-zero, two different situations can be found: that fibres are aligned or misaligned.

In the case of aligned fibres, the code checks if they are in tension or compression (fε∗ > 0
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Figure 4.44: Fibre buckling algorithm included in the serial/parallel mixing theory. The
procedure shaded in blue is described in the flow chart shown in figure 4.45

or fε∗ < 0, respectively). If fibres are in tension the code leaves the algorithm while, if they
are in compression, the parallel component of the stress tensor of fibres is compared with the
critical buckling stress for straight fibres. If fibre stress is smaller than the buckling stress the
code leaves the algorithm but, in case of fibre buckling, the new fibre geometry is calculated
and the misaligned fibre problem is solved.

The case in which the fibres enter the fibre buckling algorithm with some misalignment, either
initial misalignment or a misalignment produced by fibre buckling of straight fibres, the code
verifies if the parallel strain of fibre material is a compression or a tension strain. When
a tensile load is applied to misaligned fibres, the micro-structural displacement suffered by
them implies a reduction of their misalignment, transforming their curved geometry into a
straight one. Thus, if the strain applied is a tensile strain, curved fibres are transformed into
straight fibres defining their Ampl value as 0.0. On the other hand, if fibres are compressed,
the problem of misaligned fibres is solved. The flow chart used to solve this problem is shown
in figure 4.45.

This last flow chart shows the algorithm already described when defining the numerical
procedure used to obtain the compression strength of fibres with initial misalignments. The
CuBER problem is solved to obtain the structural damage parameter of fibre material. The
fibre structural stiffness used to calculate the structural damage parameter must be larger
than the structural stiffness obtained in the case in which matrix is not confining fibres
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Figure 4.45: Flow-chart description of the numerical procedure used for misaligned fibres

any more. Having obtained fibre structural stiffness, the new parallel stress prediction of
fibres is compared with the buckling stress of a curved bar in an elastic foundation. If
fibre buckle (fσ > σcr) the new buckled geometry is calculated and the problem is solved
again. Otherwise, the prediction of fibre stresses are considered correct and the code leaves
the algorithm after modifying the amplitude, wave-length and matrix structural stresses
according to the scale factor defined in equation 4.52.

4.5.6 Numerical performance of the procedure developed to obtain the
compression strength of composite materials. Numerical examples

The main objective of this section is to illustrate the numerical performance of the new pro-
cedure developed to obtain the compression strength of composite materials. With this aim
different numerical simulations of a RVE cell are studied. In each simulation some parameters
are modified to obtain different RVE behaviors that will provide a better comprehension of
how the numerical procedure developed works and the results that will be expected when
performing numerical simulations of composite materials in which their compression strength
is obtained with the developed methodology.
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The RVE cell used to perform the different numerical simulations included in this section
has the geometry shown in figure 4.46 and the material properties used for all simulations,
except specified otherwise, are shown in table 4.11. Both materials, fiber and matrix, are
defined as isotropic materials (the composite anisotropy is provided by the serial/parallel
mixing theory). They are modeled using the homogenized constitutive equations obtained
modifying the damage constitutive law defined in section 3.3.

Figure 4.46: Geometry and mesh of the RVE used in the numerical simulations to study the
procedure developed to obtain the composite compression strength

Matrix Properties

Elastic Modulus 2.00 GPa
Poisson Modulus 0.30
Compression Strength 50.00 MPa
Fracture Energy 0.35 kJ/m2

Volume fraction 0.50 kJ/m2

Fibre Properties

Elastic Modulus 70.00 GPa
Poisson Modulus 0.00
Compression Strength 2400.00 MPa
Fracture Energy 50.00 kJ/m2

Volume fraction 0.50 kJ/m2

Fibre diameter 7.00 µm

Table 4.11: Fibre and matrix mechanical properties used to study the performance of the
numerical procedure developed to obtain the compression strength of composites

The compression force applied to the RVE is obtained with a displacement in the right nodes
shown in figure 4.46. Applying a prescribed displacement instead of a force allows obtaining
the post-critical path of the composite once the maximum compression load has been reached.

The numerical examples shown in this section can be classified in different groups depending
on the results expected to be obtained from them. The first group compares the performance
of the composite when fibres have initial misalignments, when fibres are straight and when
the fibre buckling problem is not considered. Afterwards the influence of matrix stiffness
is studied in the case of straight fibres and in the case of fibres with initial misalignments.
Next group verifies that the results obtained with the numerical procedure developed are
mesh independent. Finally, the performance of the composite is studied for different loading-
unloading cases. These last simulations will show how the formulation developed behaves
when unloading the composite or when tensile stresses are applied to composites in which
fibres have initial misalignments.
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Comparison of the compression strength obtained when fibres have or do not
have initial misalignments

In this section the performance of the RVE cell shown in figure 4.46, with fibre initial mis-
alignments, is compared with the performance obtained when fibres do not have initial mis-
alignments and when the compression strength of the composite is not considered. This
comparison provides a good understanding of the effects of fibre misalignments and of the
reduction obtained in the composite compression strength due to fibre buckling.

Figure 4.47 shows the force-displacement response of the different RVE simulated for this com-
parison. This figure shows that fibre initial misalignments reduce the compression strength of
the composite in more than a 50%. On the other hand, in the case considered, having aligned
fibres does not reduce the compression strength of the composite, as fibre damage appears
before the buckling stress is reached. However, the fibre buckling formulation provides a
different unloading path, as fibre buckling occurs for an applied displacement of 22 µm, when
matrix reach a damage level in which it cannot restrain fibres anymore.
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Figure 4.47: Comparison among the results obtained when fibres have original misalignments,
when fibres are straight and when the fibre buckling problem is not considered

Another important information provided by figure 4.47 is the composite stiffness, which is
lower in the case of fibre misalignments than in the other two simulations. This is because
fibre initial misalignments introduce an initial structural damage in fibre material that reduce
its stiffness. The evolution of fibre structural damage is represented in figure 4.48b. Figure
4.48a shows the evolution of matrix damage.

Figure 4.48 shows very clearly the effect of fibre buckling in the case of straight fibres.
When fibre buckling occurs damage in matrix and in fibre suffers an instantaneous increase
due to the new geometric configuration of fibres. This effect is also shown when studying
the misalignment evolution in the different simulations performed (figure 4.49). This figure
shows that while in the case of fibre with initial misalignments these increase continuously,
in the case of aligned fibres the misalignment appears when fibre buckling occurs.

From the results shown in this last figure it is also interesting the study of the quotient
between misalignment amplitude and wave length, which provides a good estimation of the
grade of misalignment of fibre (larger values are obtained for larger misalignments). In the
case of fibres with initial misalignments the values obtained for this quotient are compre-
hended between 0.07 and 0.11 at the beginning and at the end of the simulation, respectively.
On the other hand, the values obtained for straight fibres are comprehended between 0.13
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Figure 4.48: Evolution of matrix and fibre damage in the case of fibres with initial misalign-
ments, straight fibres and when the fibre buckling problem is no considered
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Figure 4.49: Evolution fibre misalignments in the case of fibres with initial misalignments,
straight fibres and when the fibre buckling problem is no considered

and 0.23. This shows that when straight fibres buckle, their new geometric configuration
provides misalignments that are always more pronounced than the misalignments defined for
the composite with fibres initially misaligned. Having larger fibre misalignments provides a
weaker fibre due to micro-structural effects.

This situation explains that the structural damage in fibre (figure 4.48b) is larger in the case
of aligned fibres than when fibres have an initial misalignment. It also explains the result
obtained in the force displacement graph (figure 4.47), which shows that the final load reached
in the composite is lower in the case in which fibre buckling occurs than in the composite with
initial misalignments. Hence, it can be concluded that although a composite with straight
fibres can reach larger critical loads, its structural behavior is more brittle than the failure
obtained in a composite which fibres have initial misalignments.

Misaligned fibres: Dependence on the level of initial misalignment

In this section the performance of two different RVE simulations containing fibres with initial
misalignments is studied. The initial misalignments considered are defined varying the wave
length shown in figure 4.46. Their mechanical performance is compared also with the results
obtained for the RVE cell when the compression strength formulation is not used. To perform
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these simulations, the compression strength of fibre material has been increased to 4500 MPa.

Two different wave length values have been consider to compare the effects of the level of
initial misalignment in fibre materials. One of the RVE models has an initial wave length
of 150 µm while the other has a wave length of 350 µm. Thus, using the quotient between
amplitude and wave length previously defined, the misalignments defined for the model with
a wave length of 150 µm are 2.3 times more pronounced than in model with a wave length
of 350 µm.

Figure 4.50a shows the force displacement graphs obtained for the different simulations per-
formed. This graph shows that if fibre initial misalignments are reduced, the composite
performance is more similar to the performance obtained when no misalignments are consid-
ered. In fact, the situation of straight fibres can be understood as an initial misalignment
with a wave length equal to inf. Therefore, the critical load for the simulation with a wave
length of 350 µm is reached when fibre buckles and not because the misalignment level reaches
the maximum load that can be taken by the composite. The effect of fibre buckling in the
simulation with a wave length of 350 µm can be seen more clearly studying the fibre struc-
tural damage parameter (figure 4.50b). Fibre buckling occurs when the damage parameter
increases suddenly, for an applied displacement of 26 µm, varying its value from 0.08 (value
obtained due to the initial misalignment defined) to 0.8.
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Figure 4.50: Composite performance for different levels of fibre initial misalignments

Aligned fibres. Effect of matrix confinement

This section shows the effect of matrix confinement in composites in which fibres do not have
initial misalignments. Matrix confinement is directly proportional to matrix stiffness, there-
fore, two different simulations of the RVE cell described in figure 4.46 have been performed
with two different matrix stiffnesses.

All material material properties considered in these simulations correspond to the properties
defined in table 4.11, with the exception of matrix young modulus. The matrix defined in one
of the simulations has a young modulus of mE = 2000 MPa while, in the other simulation,
the matrix material defined has a young modulus of mE = 200 MPa. Thus, the confinement
capacity of this last matrix is reduced ten times compared to the first matrix defined.

The composite performance obtained for these two simulations is shown in the force displace-
ment graph displayed in figure 4.51a. This graph shows that while the maximum compression
load is defined by fibre compression strength when matrix is strongly confining fibres (case of
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mE = 2000 MPa), if this confinement capacity is reduced by ten fibre buckles before reach-
ing its maximum compression stress. This figure also shows that, as fibre buckles before,
its post-critical strength is slightly larger than when fibre buckles for larger loads. This is
because the misalignments obtained are lower if the buckling load is lower. This affirmation
is proved by the value of the fibre structural damage parameter, shown in figure 4.51b.
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Figure 4.51: Fibre buckling load dependence on matrix confinement capacity in composites
with initially aligned fibres

These simulations prove the ability of the numerical procedure developed to take into ac-
count the effect of matrix confinement when no fibre misalignments have been defined in
the composite. This ability is rather important when simulating composite structures under
cyclic loads. In these cases matrix degradation increase as the number of cycles increase; this
degradation reduces matrix stiffness and, at a certain number of cycles, a sudden fracture of
the composite can occur due to fibre buckling.

Dependence on mesh refinement

One of the main problems found when fracture mechanics is applied to the finite element
method is that in most cases the results become mesh dependent. This happens because
a continuum formulation (fracture mechanics) is being used in a discrete procedure (finite
elements). Thus, many efforts must be done when implementing a continuum formulation in
a finite element code to avoid these situation. When using the damage formulation described
in section 3.3, the mesh independency is obtained with the definition of the fracture length
parameter.

In the numerical procedure developed to obtain the compression strength of composite ma-
terials, the fracture length has been re-defined when formulating the matrix homogenized
constitutive law (section 4.3), in order to adjust the physical meaning of fracture energy to
the parameters included in the new constitutive equation. The fracture length of the matrix
affected by fibre misalignments depends of the wave length of these misalignments instead of
depending on the finite element size.

To prove the validity of the new fracture length considered, three different numerical simu-
lations of the RVE cell defined in figure 4.46 and table 4.11 have been performed with three
different meshes. Each mesh has a different number of finite elements: 8, 32 and 512. Figure
4.52 shows the finite element models developed.

The results provided by the three different simulations are exactly the same, as proves the
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Figure 4.52: Finite element models used to prove the mesh independency of the new procedure
developed

force displacement graph shown in figure 4.53. This agreement among the results obtained for
all simulations shows the validity of the fracture length value defined for the new homogenized
constitutive equation of matrix material.
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Figure 4.53: Force displacement graph for the different simulations performed

Numerical performance of the formulation for different loading paths

The last group of simulations carried out, in order to show the performance of the numerical
procedure developed to obtain the compression strength of composites, apply different loading
paths to the RVE models of the composite in which fibres have initial misalignments and the
composite in which fibres do not have initial misalignments.

The main objective of these simulations is to show the performance of the numerical simula-
tion developed when the composite is unloaded and when tensile stresses are applied to the
composite. With this aim, two different loading paths have been defined. In the first one the
RVE cell is loaded and unloaded several times but the composite remains always under com-
pression efforts. The other loading path considered, the first unloading branch is extended
until a tensile stress is applied to the RVE cell. Figure 4.54 shows both load paths. As the
load is applied as an imposed displacement, the graphs displayed correspond to displacement
vs. time curves.

The first results that are shown correspond to the composite in which fibres have initial
misalignments when it is loaded following the first load path. The composite performance is
studied using a force-displacement graph, which shows the maximum compression load that
can be applied to the composite and its post-critical behavior once the maximum load has
been reached. The force displacement graph obtained for the RVE cell in this case is shown
in figure 4.55.
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Figure 4.54: Load paths applied to the different RVE cell models

 0

 2

 4

 6

 8

 10

 12

-0.07-0.06-0.05-0.04-0.03-0.02-0.01 0

F
or

ce
 [N

]

Displacement [mm]

Figure 4.55: Composite with misaligned fibres under load path 1. Force-displacement graph

This graph shows that the unloading branches are not straight (as usually happens with
a damage formulation) but, instead, the composite stiffness increases as the load is being
reduced. This effect is produced by fibre misalignments: as the load is reduced, fibre mis-
alignments are also reduced, which leads to a stiffer composite material. These effect can
be seen more clearly when studying the variation of the misalignment amplitude and wave
length, which is shown in figures 4.56a and 4.56b, respectively.

It is interesting to observe that not only the amplitude and wave length are recovered but also
their final value is lower (amplitude) and larger (wave length), after the unloading process.
Or, in other words, the level of misalignment is lower after unloading the RVE cell. This
is because when the unloading process starts, matrix is already damaged and its capacity
to confine fibres is reduced. Therefore, fibres can extend more easily and their level of
misalignment is reduced.

This effect provides a damage formulation for the composite in which damage is recovered if
the material is unloaded. Thus, unlike the damage formulation described in section 3.3, the
structural damage due to fibre buckling does not remain constant in the structure. However,
although composite stiffness is recovered, when it is compressed again the load does not follow
the elastic branch but, instead, follow the path defined in the unloading process (figure 4.55).
To explain this effect is useful plot the damage evolution of fibre and matrix, which are shown
in figure 4.57.

As can be seen in this figure, although damage in fibre is partially recovered (due to the
reduction of fibre misalignments), matrix damage remains constant during the unloading
process. Thus, when the compression load is applied again, the confinement capacity of
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Figure 4.56: Composite with misaligned fibres under load path 1. Evolution of fibre initial
misalignments
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Figure 4.57: Composite with misaligned fibres under load path 1. Evolution of damage in
matrix and fibre

matrix is lower than the confinement capacity provided by the matrix the first time that the
composite was compressed, which leads to a faster increase of fibre initial misalignments.

A completely different composite performance is obtained if tensile stresses are applied to
the composite when it is unloaded. In this case, the formulation developed converts curved
fibres into straight fibres. Therefore, when the composite is loaded again, it follows the initial
elastic branch because fibres have recovered their initial stiffness. This can be observed in the
second simulation developed, in which the second loading path is applied to the composite
in which fibres have initial misalignments. Figure 4.58 shows the force displacement graph
obtained for this simulation.

In this case the performance of the composite, when it is compressed after having applied
to it tensile stresses, is exactly the same that is obtained in a composite with fibres without
initial misalignments. And the maximum compression strength is obtained for the load that
leads to fibre buckling. This effect is fully described by the graphs showing the evolution of
matrix and fibre damage (figure 4.59).

This figure shows that when the RVE cell is unloaded, matrix damage remains constant with
a value of 0.90. On the other hand, during the unloading process, fibre structural damage
is reduced from 0.82 to 0.60; and, when the applied displacement produces a tensile stress
in the composite, this damage becomes zero and remains zero during the loading process,
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Figure 4.58: Composite with misaligned fibres under load path 2. Force-displacement graph
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Figure 4.59: Composite with misaligned fibres under load path 2. Evolution of damage in
matrix and fibre

until fibre buckling occurs for an applied compression displacement of 0.14 mm. After fibre
buckling, fibre structural damage keeps increasing according to the performance provided by
the formulation for fibres with initial misalignments.

The other two cases considered in this group of simulations obtain the performance of com-
posites in which fibres do not have initial misalignments, when the load path 1 and 2 are
applied to them. The first case shown corresponds to the load path 1. The force displace-
ment graph obtained for the RVE displayed in figure 4.60. In this case, the first time the
structure is unloaded fibre buckling has not yet occurred. Therefore, the unloading path and
the following loading path have a constant stiffness. After fibre buckling, the performance
of misaligned fibres is recovered: when the structure is unloaded it recovers its stiffness and
when it is loaded again, it follows the unloading path.

This simulation is also useful to see that the buckling load obtained in the simulation with
initially misaligned fibres, loaded following the second load path, is lower than the buckling
load obtained when fibres are aligned and the composite is compressed for the first time. In
the first case the buckling load is 20 N (figure 4.58), while when fibers are initially aligned
the buckling load is 24 N. The difference found in the values for the maximum compression
load that can be applied to the composite shows the effect of matrix damage the compression
strength of the composite, and proves the ability of the numerical procedure developed to
take into account this damage.

In this simulation is also interesting the study of fibre constitutive damage and fibre structural
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Figure 4.60: Composite with initially straight fibres under load path 1. Force-displacement
graph

damage. Both parameters are represented in figure 4.61. This figure shows that while fibre
constitutive damage remains constant during the unloading process, fibre structural damage
is modified as the misalignments produced by fibre buckling are reduced during the unloading
process.
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Figure 4.61: Composite with initially straight fibres under load path 1.Evolution of damage
in fibre

Figure 4.61 provides also another important composite performance obtained with the sim-
ulation developed: when fibre buckling occurs, fibre constitutive damage do not increase
anymore and all damage increment in fibre material is due to fibre structural damage. This
behavior is consequence of the fibre buckling effect. The apparition of fibre structural dam-
age reduces fibre longitudinal stresses due to fibre geometric configuration: part of the fibre
deformation is used not to increase fibre stress but to increase fibre misalignment. Therefore,
stresses in fibre do not reach the maximum stress value allowed by fibre constitutive law and
fibre damage remains constant.

The last simulation performed corresponds to the composite in which fibres are originally
aligned, when the second load path is applied to it. In this case, as can be seen in figure 4.62,
the fibre buckling phenomenon occurs twice. The second time the RVE cell is compressed
fibre geometric configuration corresponds again to the case of straight fibres, therefore, their
structural performance is provided by the straight fibre buckling phenomenon. However,
this second time, the load for which fibre buckling occurs is much lower than the first fibre
buckling load (6.8 N and 24 N, respectively). This difference is obtained due to damage in
matrix material, which is much larger the second time that the composite is compressed,
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being reduced its confinement capacity.
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Figure 4.62: Composite with initially straight fibres under load path 2. Force-displacement
graph

It is worth to notice that, in this last simulation, the buckling load obtained the second time
the RVE cell is compressed is slightly larger, 6.8 N, than the compression load that would be
obtained if no tensile stresses would have been applied to the composite, 5.6 N (this value
corresponds to the minimum value obtained in the first loading branch, value that would have
been recovered if no tensile stresses had been applied to the composite). However, although
the compression load reached is larger, after fibre buckling the compression post-critical load
is lower: 3.1 N against 5.6 N for an applied displacement of −0.03 mm. This result shows that
the effect of fibre buckling reduces the post-critical compression capacity of the composite.
This is because each time that fibre buckling occurs, a sudden damage increase is experienced
by the composite components.

4.6 Validation of the formulation proposed and numerical ex-
ample

In this section the formulation proposed to obtain the compression strength of composite
materials is validated comparing the results obtained from the numerical prediction with
the experimental data provided by Barbero and Tomblin (1996). This validation proves
the ability of the numerical procedure developed to obtain the compression strength of real
composite materials due to the fibre buckling phenomenon.

However, the main purpose of the fibre buckling formulation presented is not to obtain the
compression strength of composites, performing finite element calculations of representative
volume elements, but to be used in finite element simulations of structural elements. There-
fore, after validating the formulation, the finite element simulation of a cantilever beam is
described to show the performance of the developed code when used to calculate a structural
element. To see more clearly how the fibre buckling formulation affects the structural behav-
ior of the cantilever, the numerical results obtained with the new formulation are compared
with the results obtained when the fibre buckling theory is not considered in the simulation.
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4.6.1 Validation of the formulation developed to obtain the compression
strength of composite materials

The validation of the formulation developed to obtain the compression strength of composite
materials has been done comparing the compression load obtained with the new formulation
with the experimental results described in the paper of Barbero and Tomblin (1996). First it
is described how the experimental tests are performed and the compression values obtained
with them, afterwards is defined the finite element model used to obtain the compression
strength with the new formulation developed. Finally, the experimental results are compared
with the numerical results.

Description of the experimental test

The experimental tests performed by Barbero and Tomblin (1996) and Tomblin et al. (1997)
where made over cylindrical rods, with a diameter of 9.2 mm, pultruded by Creative Pultru-
sions Inc. The composite materials used were made of E-Glass fibers embedded in a polymeric
matrix. Eleven different composites where tested, each one with a different combination of
fiber, matrix and fiber volumetric participation. For each one of these materials, eight differ-
ent compression tests were performed to obtain an average value of the compression strength
for each one of them.

The compression tests were performed using short samples (38 mm) to prevent the global
buckling of the sample and, as a result, avoiding the application of a lateral support. Strain
gages with a length equal to the specimen size where applied to each sample. Half of the
samples contained gages disposed back-to-back to verify the specimen alignment. The com-
pression failure was observed at the center of the gage section for the 75% of the samples.
The compression strength was obtained using a modified ASTM D-695 test fixture (Barbero
and Tomblin, 1996).

From all the tests performed by Barbero and Tomblin, three of them (chosen as the most rep-
resentative) are used to validate the proposed formulation. Their mean compression strength
value and the 95% confidence interval is displayed in table 4.12.

Sample σC [MPa]

ACA 560.90 (±35.1)
CAA 477.74 (±36.6)
CBB 521.56 (±16.2)

Table 4.12: Compression strength of the samples that will be compared with the numerical
results

The constituent materials, fiber and matrix, of each sample used to validate the formulation
and their volumetric fractions are shown in table 4.13. As the materials properties were not
defined in the paper of Barbero and Tomblin (1996), their value has been obtained from the
most common values defined in literature for polymeric matrices and e-glass fibers. Matrix
mechanical characteristics are described in table 4.14. Table 4.15 describes the mechanical
characteristics of fibers. The consititutive law used to simulate all component materials is a
damage law.

Misalignment measurements were performed with the optical technique proposed by Yurgartis
(1987). This technique consist of cutting the composite at an angle and measuring the major
axis of the ellipse formed by the intersection of a cylindrical fiber with the cutting plane. The
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Sample: ACA
Matrix material: 2036C Polyester with added styrene
Fibre material: Glass fiber OC 102-AA-56
Fibre vol. fraction: 55.2 %

Sample: CAA
Matrix material: 2036C Polyester
Fibre material: Glass fiber OC 102-AA-56
Fibre vol. fraction: 40.2 %

Sample: CBB
Matrix material: D-1419 Vinyl Ester
Fibre material: Glass fiber OC 366-AD-113
Fibre vol. fraction: 43.0 %

Table 4.13: Material components and volume fractions of the experimental samples used to
validate the developed formulation

2036C Polyester

Elastic Modulus 3.00 GPa
Poisson Modulus 0.35
Tensile Strength 35.00 MPa
Fracture Energy 0.17 kJ/m2

D-1419 Vinyl Ester

Elastic Modulus 3.50 GPa
Poisson Modulus 0.35
Tensile Strength 40.00 MPa
Fracture Energy 0.31 kJ/m2

Table 4.14: Matrix mechanical properties

E-Glass OC-102-AA-56

Elastic Modulus 80.00 GPa
Poisson Modulus 0.20
Tensile Strength 1500.00 MPa
Fiber Diameter 13.00 µm

E-Glass OC-366-AA-113

Elastic Modulus 80.00 GPa
Poisson Modulus 0.20
Tensile Strength 1500.00 MPa
Fiber Diameter 23.00 µm

Table 4.15: Fiber mechanical properties

misalignment angle is computed from the major axis length, the fiber diameter (which can
be measured as the minor axis of the ellipse), and the angle of the cutting plane.

The number of measurements made to each sample was determined so that the expected
value of the half normal distribution had a 95 % confidence interval of ±0.2◦. The half normal
distribution is considered because fiber micro-buckling occurs at the same load for positive
or negative misalignment angles (Barbero and Tomblin, 1996). Therefore, the symmetric
normal distribution was converted to a half normal distribution, in which the negative side
gets folded onto the positive side. The number of measurements performed to each sample,
as well as the half normal distribution expected angle, are displayed in table 4.16.

Finally, Barbero and Tomblin also obtained experimentally the value of the shear stiffness
for the different composites with a torsion test (Sonti and Barbero, 1996). However, neither
the test nor the values obtained are explained in this document because, in the current
validation, the shear stiffness will be obtained from the young modulus value, using the
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Sample
Half normal distribution Number of
expected value (degrees) measurements

ACA 2.87 1359
CAA 2.76 1271
CBB 2.63 1224

Table 4.16: Misalignment values and number of measurements performed by Barbero and
Tomblin

elasticity formulation.

Description of the numerical simulation

To validate the proposed formulation to obtain the compression strength of composite mate-
rials, a numerical simulation of the three different samples previously described: ACA, CAA
and CBB, has been performed. The numerical model developed corresponds to a representa-
tive volume element (RVE) in which a two dimensional iso-strain formulation has been used.
The geometry of the RVE considered is displayed in figure 4.63. This figure also shows the
finite element mesh used to perform the simulation and the boundary conditions applied to
it.

Figure 4.63: Geometry and mesh defined for the simulation used to validate the formulation
developed

The compression effort on the finite element model has been applied as a constant displace-
ment of the right side of the structure (figure 4.63). This boundary condition provides the
post-critical performance of the composite once the maximum compression load has been
reached.

Three different numerical simulations have been performed corresponding to the three exper-
imental samples used to validate the formulation. The composite material defined in each
simulation correspond to the composites defined in table 4.13. The properties of the matrix
and fiber materials are the ones shown in tables 4.14 and 4.15, respectively.

In order to take into account fiber initial misalignments in the calculation of the compression
strength of the composite three different parameters are required: fiber radius, misalignment
amplitude and misalignment wave-length. Fiber radius is a known parameter dependent
on the fibers used and its value is defined in table 4.15. Misalignment values are obtained
from values provided by Barbero and Tomblin for the half normal distribution expected
misalignment angle (table 4.16).

The angle defined in table 4.16 is defined as the angle found in the inflection point of the
fiber geometry (point A in figure 4.64). This angle corresponds to the largest angle found in
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the sinusoidal geometry defined for fiber misalignments. Although the physical meaning of
the expected angle obtained by Barbero and Tomblin does not correspond to the angle that
is defined in the numerical simulation, both angles are a measure of fiber initial misalign-
ments. Results obtained with the performed simulations prove that these two angles can be
considered equivalents.

Figure 4.64: Fiber misalignment and misalignment angle considered

To obtain the misalignment parameters required by the formulation developed, another value
is needed. An amplitude and a wave length must be defined but, at this point, only an angle
is known. The amplitude required is obtained from the statement made by Jochum and
Grandidier (2004), who define the amplitude value as one to two times the fiber diameter.
Once having defined the misalignment amplitude, using the value of fiber diameter, the wave-
length can be computed from the misalignment angle defined by Barbero and Tombin as:

λ = 2A
sin α

1 − cos α
(4.120)

Being λ and A the misalignment wave-length and amplitude (respectively) and α the mis-
alignment angle. The misalignment parameters used to perform the finite element simulations
are the ones displayed in table 4.17 for each sample considered. The amplitude value has
been defined, randomly, slightly larger than one time the fiber diameter.

Sample ∅fib A λ

ACA 13µm 15.0µm 1198µm
CAA 13µm 15.0µm 1246µm
CBB 23µm 25.0µm 2175µm

Table 4.17: Misalignment parameters defined in the finite element models used to validate
the developed formulation

As has been already said when describing the experimental test, shear stiffness is computed
automatically by the finite element code using the elasticity formulation. Its value depends
on the material Young modulus and Poisson ratio. The expression that defines the shear
stiffness is:

1

Gij
=

1 + νji

Ei
+

1 + νij

Ej
(4.121)

Being i and j the directions for which the stiffness modulus is computed. In the case of an
isotropic material, the expression of the shear stiffness is simplified to:

G =
E

2(1 + ν)
(4.122)



4. Compression Strength of Composite Materials 219

Comparison among the experimental and the numerical results

The comparison between the experimental and the numerical results is made with the force-
displacement graphs obtained from the numerical simulation. The force applied to the finite
element structure is plotted against the displacement in the face where the load is applied.
The stresses provided by Barbero and Tomblin are transformed into the force that would
resist the RVE defined in figure 4.63.

The maximum experimental compression strength obtained for each composite is represented,
in figure 4.65, with an horizontal line while, the numerical results, are represented as force-
displacement graphs. This figure shows the agreement between the maximum compression
strength obtained with the formulation developed and the experimental results.
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Figure 4.65: Comparison among the experimental and the numerical compression stress ob-
tained for each sample

The maximum error obtained with the numerical simulations correspond to the ACA sam-
ple and is lower than a 2.6%. Also, it is worth to point out that the error obtained with
all numerical models is inside the 95% confidence interval obtained with the experimental
data. The maximum compression values, as well as the errors obtained with each model are
displayed in table 4.18.

Sample
Experimental Numerical

F max [N] F max [N] Error [N] Error [%]

ACA 112.18(±7.02) 115.09 2.91 2.6%
CAA 95.55(±7.32) 96.29 0.74 0.8%
CBB 104.31(±3.24) 101.84 −2.47 −2.4%

Table 4.18: Maximum compression load of the experimental and numerical samples and error
obtained with the numerical simulations

Figure 4.65 shows that when the compossite reaches the maximum compression load, its
post-critcal strength falls abruptly. This is because the fibre buckling phenomenon. The
maximum compression load is reached when matrix cannot restrain fibre micro-structural
deformation any more (for an applied displacement of 0.006 mm, matrix damage is nearly
1.0). At this point fiber structural damage increases exponentially leading to the reduction
of the compression load that can be applied to the composite material. This phenomenon is



220 4.6 Validation of the formulation proposed and numerical example

shown in figure 4.66 in which the fiber and matrix structural damage parameters are plotted
against the compression displacement applied to the RVE that simulates the ACA sample.
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Figure 4.66: Structural damage in fiber and matrix materials. ACA sample

The developed formulation adds two different structural stresses to matrix material to increase
its damage due to the fiber-matrix micro-structural interaction (see section 4.3). Of these
two stresses the one that leads to the matrix damage shown in figure 4.66 is the one that
increase the shear stresses in matrix material. This result is important as it agrees with all
existing theories dealing with the fiber buckling problem (i.e. Rosen (1965); Tomblin et al.
(1997); Balacó de Morais and Torres Marques (1997); Drapier et al. (1999)), in which the
compression strength of the composite has a strong dependence on the shear strength and
stiffness of matrix material.

It is also interesting to compare the RVE response that is obtained if the compression strength
algorithm is not used in the simulation. Figure 4.67 shows the performance of the ACA sample
when it is simulated using the compression strength formulation and when this formulation
is not considered. The composite performance is shown with a force-displacement graph.
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Figure 4.67: Comparison of the results obtained when the fiber buckling formulation is or is
not considered in the numerical simulation. ACA sample

This last figure shows that, when matrix damage starts, for an applied displacement of
0.004 mm (see figure 4.66), the composite stiffness is slightly reduced when compared to
the simulation in which the fiber buckling formulation is not used. This last figure also
shows that the maximum compression load reached, in the simulation that does not use the
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compression stregnth algorithm developed, is obtained when fibers reach their yield strength.
Having defined a yield stress in fibers of 1500 MPa, the reduction in the compression capacity
obtained with the developed formulation is larger than a 30%.

With these results, it can be concluded that the formulation developed to obtain the com-
pression strength of composite materials can reproduce experimental results obtained with
real composites. And that the reduction of the compression capacity in the composite is
significant enough to be taken into account. Therefore, the theory can be used to simulate
structures taking into account the reduction of the composite compression strength due to
the fibre micro-buckling phenomenon.

4.6.2 Numerical simulation of a cantilever beam

Once having proved the validity of the formulation developed, in this section this formulation
is used to obtain the structural performance of a cantilever beam when the fiber buckling
phenomenon is taken into account. This numerical simulation proves the ability of the for-
mulation proposed to be used in more complex simulations, in which the stresses found in
the different elements used to discretize the structure are not only compression stresses.
These stresses may vary from one element to the next one, forcing the formulation to provide
different behaviors in each case.

Cantilever model

A cantilever beam has been chosen as the structural tipology to prove the ability of the
formulation developed to be used in structural simulations. The beam is loaded in its free
edge with a vertical force, which produces an increasing bending moment in the beam that
reaches its maximum value in its clamped end. The dimensions of the beam considered
are shown in figure 4.68. The election of a cantilever beam for this simulation has been
made because in the clamped end coexist two different stress states: the bottom section
is in compresion while the top section is in tesion. As the absolute value of both stresses
is the same (varying only their direction), the differences between the compression and the
tension performance in the beam, obtained with the developed formulation, will be shown
very clearly.

Figure 4.68: Cantilever geometry and mesh used for the numerical simulation

Figure 4.68 shows the geometry and the boundary conditions applied to the cantilever beam.
The vertical load has been applied as a constant displacement in order to obtain the post-
critical performance of the structure. This figure also shows the finite element mesh used to
simulate the beam. The beam has been discretized with quadrilateral elements using a two-
dimensional plane-stress formulation. It has 12 elements along its thickness and 53 elements
along its length, which makes a total of 636 quadrilateral elements and 702 nodes.
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Two different colors have been used to represent the cantilever beam displayed in figure 4.68,
each one corresponding to a different material used in the simulation. The material drawn in
darker green corresponds to the composite of sample CAA defined by Barbero and Tomblin
(1996). The compounding materials of this composite and their volumetric participation are
defined in table 4.13. The matrix and fiber mechanical properties are defined in tables 4.14
and 4.15 respectively. The second material used is represented in light green. This material
is also the CAA composite but, in this case, both fiber and matrix are simulated with an
elastic law. Because the interest of this simulation lays in obtaining the structural behaviour
of the clamped end of the cantilever, an elastic material has been considered in the elements
where the load is applied to avoid the distortion of the results because of local effects in those
elements.

Two different numerical models have been performed for the structure defined: Cant-FB
and Cant-noFB. The first model computes the structure using the formulation developed
to obtain the compression strength of composites while, the second model, does not use this
formulation. In this second model, the compression and the tensile strengths of the composite
are equal and are defined by the damage law of each component material. The comparison
of the results obtained with each model shows the effects of the new formulation when it is
used in the simulation of structural elements.

Results obtained with the numerical simulations

To compare the structural performance obtained with both numerical simulations, a force-
displacement graph has been used (figure 4.69). This graph contains in the x axis the vertical
displacement of the free edge of the cantilever and in the y axis the vertical load applied to
obtain this displacement. In red is represented the structural response of the model that uses
the compression strength formulation developed (Cant-FB model) and in blue is represented
the response obtained with the model that does not reduce the compression strength of the
composite material due to the fiber buckling phenomenon (Cant-noFB model). This color
criterion is used in all graphs shown in this section.
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Figure 4.69: Force displacement graph obtained for the Cant-FB and the Cant-noFB models

Figure 4.69 shows that the structural performance of both models is practically the same.
Both models have a linear relation between the force applied and the vertical displacement
obtained in the free edge of the structure. However, the maximum load applyied to the
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Cant-FB model is 56.3 N while the maximum load applyied to the Cant-noFB model is 78.2
N. This is, the maximum vertical load that can be applied to the structure when the fiber
buckling phenomenon is not considered is 39% larger than when fiber buckling is taken into
account.

The difference found in the maximum load that can be applied to the cantilever is due to the
difference found in the structural performance of the clamped section in both models. The
study of this section is made comparing the results obtained in the top section (Ts) and the
bottom section (Bs). The results corresponding to the top section are plotted with dashed
lines and the results of the bottom section are plotted with continuous lines. This criterion
is be used in all graphs shown in this section.

In figure 4.70 are represented the longitudinal strains found in the top and bottom sections of
the clamped edge as a function of the load applied to the structure. This graph shows how,
in the Cant-FB model, the strains in the compressed section (Bs) start increasing before the
beam failure while the strains in the tension section (Ts) maintain their linear behaviour. The
strain increment obtained in the Bs section is produced by fiber micro-buckling. This effect
is not reproduced by the Cant-noFB model, in which the compression and tension graphs
present a nearly perfect symmetry. This symmetry proves that the structural behaviour of
both sections is the same.
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Figure 4.70: Force strain straphs obtgained for the cantilever models

The difference found between the top and the bottom section of the cantilever, in its clamped
edge, is found because the effect of fiber buckling. The maximum compression stress that can
be applied to the composite is lower when the fiber buckling formulation is used to perform
the numerical simulation. This stress reduction is only found in the compressed elements,
therefore, the failure of these elements takes place for lower loads than for the elements under
tensile stresses, which maintain their linear behaviour. This situation is perfectly shown when
studing the stress-strain graphs obtained for the top section (Ts) and the bottom section (Bs)
of the structure. These graphs are shown, for the composite material, in figure 4.71. In this
figure, the strains are represented in its absolute value, so the tensile results are ploted in the
same scale than the compression results, making easier the interpretation of the graph. This
graph shows that the maximum compression strength obtained in the Cant-FB model is 24%
smaller than the compression strength obtained when the fiber buckling formulation is not
considered in the simulation; the compression stresses reached are 461.1MPa and 609.1MPa,
respectively.

Fiber buckling phenomenon is produced by the interaction between matrix and fiber due to
fiber initial misalignments. This interaction accelerates damage in matrix material which
leads to a stiffness reduction of fiber material. Both effects can be clearly seen in the stress-
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Figure 4.71: Composite longitudinal stress against longitudinal strain for the Cant-FB and
the Cant-noFB models

strain graphs obtained for both materials. Again, it is interesting to see in these graphs
that the tensile performance of the structure, in the model using the compression strength
formulation, is the same that is obtained with the Cant-noFB model. This last model shows a
symmetric behaviour for the compression and tensile cases. The stress-strain graph obtained
for matrix material is shown in figure 4.72 and the graph obtained for fiber material is shown
in figure 4.73.
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All results described above provide a detailed comprehension of the effects found in the
clamped section of the cantilever. This section is the most relevant of the structure because
beam failure occurs in it: the section cannot develop more compression forces being not
possible to equilibrate the external load applied to the structure. However the fiber buckling
formulation is applied to all the compressed elements of the structure, although its effect
cannot be seen in the structural performance because the stresses in those elements are not
large enough to reach the maximum compression load that can be applied to the composite.

In the following, the finite element maps containing the matrix and fiber structural damage
parameter are included to prove that the fiber buckling formulation developed is applied to
the whole structure. Matrix structural damage parameter is represented in figure 4.74. This
figure shows that damage is larger in the compression region than in the tensile region. In
fact, structural damage in the tensile area is zero because the fiber buckling formulation is
not applied in this region (the values obtained in this region correspond to the constitutive
damage in matrix material). Figure 4.74 shows that not only matrix structural damage is
larger in the compression region but it increases towards the clamped edge of the structure,
where compression stresses are larger. Thus, the performance of matrix material along the
whole structure is proven to be as expected.

Figure 4.74: Matrix structural damage obtained at the last load step with the Cant-FB model

Fiber structural damage parameter (figure 4.75) provides the same information obtained
whith matrix damage parameter: Fiber structural damage only appears in the compressed
area and it is larger as the section gets closer to the clamped end of the cantilever. The values
of fiber structural damage shows that the element found in the clamped section has a damage
value close to one, which implies that fiber buckling has occured in that element. Otherwise,
the rest of elements have a damage parameter lower than 0.004. This value corresponds to
the damage in fiber due to its original misalignment and is small enough to be certain that
fiber buckling has not yet occur in those elements.

Figure 4.75: Fiber structural damage obtained at the last load step with the Cant-FB model

In this last figure it is also interesting to see that there are some elements in which damage
is exaclty equal to zero. Stresses in these elements are in tensile direction, so the fiber
buckling formulation is not applied to them. Therefore this graph shows how the formulation
developed is capable to differentiate between the finite elements in tension or in compression,
and only apply the fiber buckling algorithm to those elements under compression stresses,
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although the same material has been defined for all of them.

All results shown with the numerical example included in this section prove the ability of
the formulation developed to perform more accurate and realistic numerical simulations of
strcutrual elements, as the real compression strength of the composite is taken into account.
The results also show the necessity to reduce the compression strength of the composite due
to fiber micro-buckling, as the failure cause of the structure is significantly different when
this strength reduction is taken into account compared to the failure cause obtained when the
compression strength is the same than the tensile strength. Moreover, in the case considered,
if the compression strength of the composite due to fiber micro-buckling is not reduced,
the beam increses its strength nearly a 40%. Results have also shown that the formulation
developed is capable to differentiate between elements in tension or in compression, being
applied only to the elements that require it.

4.7 Conclusions and further work

From the validation and the numerical performance obtained with the formulation developed
to calculate the compression strength of long fiber composites, some conclusions are inferred
in this section. This section also describes some improvements that can be done to the
formulation and provides some guidelines of the further work that can be developed, following
the path that has been started with the numerical procedure proposed.

4.7.1 Conclusions

In this chapter it has been described a new numerical procedure, which has been developed
with the aim of obtaining the compression strength of long fiber composites due to the effect
of fiber micro-buckling. The formulation provides the maximum compression stress that can
be applied to the composite and it also provides the post-critical performance of the material
once fiber buckling has occur. This last achievement is important because, when performing
numerical simulations of structures, the failure of an element does not always imply the
failure of the whole structure. Therefore, the post-critical strength of the element is required
to continue the calculation.

The formulation presented has been developed taking into account that its implementation
is made in a finite element code (PLCd) that deals with composite materials using the se-
rial/parallel mixing theory. During the process of defining the formulation proposed, the
characteristics of these two numerical methods have been always taken into consideration,
in order to take advantage of all possibilities and information provided by them. Following
this approach, the final formulation does not consist of an equation (or a set of equations)
that provides the maximum stress that can be applied to the composite. Instead, it estab-
lish a relation between the mechanical performance of the composite components that leads,
straightforward, to the result sought: the maximum compression that can be applied to the
composite due to the fiber buckling phenomenon.

The compression strength formulation has been obtained defining an homogenization of the
constitutive performance of fiber and matrix materials. This homogenization introduces the
micro-structural interaction between these two composite components into their constitutive
equations. This homogenization has been developed considering that both materials are
simulated using a damage constitutive law. However, as has been said during the description
of the homogenization process, the formulation can be easily modified to include in it any
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other constitutive performance (such as plasticity). This is an important issue, as it gives a
versatility to the procedure proposed not seen in any other model existing in literature. The
homogenized constitutive equations have been introduced in an algorithm that interacts with
the serial/parallel mixing theory taking into account all possible situations that can be found
in a long fiber reinforced composite, from loading paths to level of initial misalignment in the
fibers.

During the study of the numerical performance of the numerical procedure developed, it has
been proved that the formulation has a strong dependence on the three parameters in which
are based all formulations dealing with the problem (since the first approach proposed by
Rosen, 1965): fiber initial misalignment, shear strength of matrix material and volumetric
participation of fiber and matrix in the composite. The dependence on these three parame-
ters is important because it proves that the formulation developed agrees with the existing
knowledge on the field. Besides this agreement, the study of the formulation performance has
also shown that the expected mechanical behavior of composites under compression forces
is well represented by the numerical procedure proposed. In the following are described the
most significant mechanical behaviors of compressed composites that are reproduced by the
developed formulation.

• The damage obtained in the composite due to fiber buckling is partially recoverable.
Damage found in fibers, as a result of buckling, can be recovered if the composite is
unloaded because fibers recover their original alignment. However, the damage suffered
by matrix as a result of the efforts applied to it, which are increased by the micro-
structural interaction between fibers and matrix, is not recoverable. Therefore, although
damage in fiber is recovered, damage in matrix not, so fiber buckling occurs for lower
loads is the composite is loaded again.

• When fiber initial misalignments are too small or non-existent, the compression load
that can be applied to the composite is substantially larger. However, in these cases,
fiber buckling is followed by a sudden lost of strength in the composite, obtaining a
brittle failure of the material. This performance agrees with the buckling performance
obtained in any structural member, the new geometry adopted by the buckled structure
produces a sudden reduction of the longitudinal length of the element, increases the
second order effects and leads to a dramatic reduction of the structure stiffness.

• The brittle failure obtained in the case of having initially aligned fibers provides a lower
post-critical strength in the composite than in the case of having initially misaligned
fibers. In this last case, the post-critical path followed by the composite is smoother
because the existing misalignment in fibers is smaller (the quotient between the am-
plitude and the wave-length is smaller). Having smaller misalignments provides stiffer
fibers and reduces the structural damage in matrix due to the fiber-matrix interaction.

• The mechanical performance obtained in fibers with small misalignments, large wave-
length with small amplitudes, is very similar to the mechanical performance obtained in
fibers that are considered straight. The effects of fiber buckling are the same obtained
for initially straight fibers: brittle failure and smaller post-critical strength (when com-
pared with the post-critical strength obtained in fibers with larger misalignements).

• Matrix stiffness has an important role in fiber buckling phenomenon as it is confining
fibers. If matrix is stiffness is reduced, in example, because is is damaged due to
tensile stresses applied before compressing the composite, its confinement capacity is
also reduced and fiber buckling will occur for lower loads. This effect is obtained
independently of the level of initial misalignment found in fibers.
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The validation performed of the formulation developed, comparing numerical with experi-
mental results, have proved the ability of the formulation to simulate real composites and to
obtain their compression strength. This validation has also shown the necessity of taking into
account the compression strength of the composite, as the maximum compression stress that
can be applied to it is lower than a 30%, compared with the maximum compression applied
if the algorithm developed is not used.

The necessity of using the formulation developed has also been proved in the numerical sim-
ulation performed of a cantilever beam. This simulation has shown that not only the load for
which the beam failure occurs is lower (28% lower) when taking into account the compres-
sion strength reduction due to fiber buckling, but also the failure cause is different. When
the compression strength is taken into account, the failure is produced because compression
efforts cannot be developed in the clamped end of the cantilever while, if the formulation
developed is not used, the failure occurs is in the whole clamped section due to tensile and
compression efforts.

Therefore, with the validations performed, it has been proved the ability of the procedure
proposed to obtain the compression strength of long fiber composites due to fiber buckling,
as well as its ability to perform numerical simulations of structural elements, taking into
account the fiber buckling effects in the regions of the structure that require the use of the
formulation.

Finally, it has to be said that one of the main achievements of the formulation proposed, as
important as the results obtained with it, is the methodology developed to include micro-
structural effects into the serial/parallel mixing theory. The homogenization method proposed
takes the serial/parallel mixing theory one step beyond, as it allows introducing the inter-
action between composite components into the formulation. This new methodology, which
validity has been proved with the implementation of a fiber buckling formulation, can be
used to take into account many other micro-structural effects found in composites such as
kink-band formation, fiber-matrix debounding, interaction between fibers and voids in the
composite or the characterization of woven composites. With the new methodology devel-
oped, these micro-structural interactions are included in the formulation and are modifying
the mechanical performance of the composite, without increasing significantly the compu-
tational cost of the numerical simulation, when compared with a simulation that uses an
homogenization process, this last, nowadays, unaffordable. In section 4.4 has shown that nei-
ther the accuracy nor the amount of information obtained, is lost with this new procedure.

4.7.2 Further work

Improvements of the formulation developed

The conclusions inferred from the results obtained with the new procedure developed to
obtain the compression strength of composite materials, have proved that the formulation
has achieved its main objective. However, some improvements can be made to it that will
provide a more powerful method to deal with composites under compression forces. Hereafter
they are described.

• The curved bar with unilateral restriction problem, used to homogenize the constitutive
equations of fiber and matrix material, is solved with an elastic formulation. Material
and geometric non-linearities have been introduced in the solution using an incremental
explicit method. Although the mechanical performance of the composite obtained with
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this procedure provide good results, it would be interesting to replace the linear elastic
formulation by a non-linear one, that will reduce the small errors obtained when using
an explicit formulation.

• All formulations used to characterize the fiber buckling problem are based in a small
displacement formulation. Their use has been considered valid to represent the phe-
nomenology of the process and, the equations used, have also the advantage of their
reduced computational cost. However, an accurate representation of any buckling prob-
lem requires solving it using a large displacement formulation. Therefore, to obtain a
better representation of the phenomenon and more accurate results, some of the equa-
tions used in this work should be replaced by the equations obtained from a large
displacement formulation.

• The homogenization method proposed to take into account the micro-structural inter-
action between fiber and matrix should be applied to other constitutive laws, such as
plasticity. In this work, the constitutive equations used to simulate fiber and matrix are
based on a damage formulation. However, the procedure developed can be implemented
in any other constitutive law (it has been already defined how it should be done). This
implementation would increase substantially the applications in which the formulation
can be used.

• Include bending effects on fiber homogenized constitutive equation. These effects are
not included in the formulation developed, which leads to an elastic performance of
fiber material, as the only damage that appears in it is the structural damage produced
by fiber buckling. However, the bending effects in fibers introduce some stresses in the
material that will produce an unrecoverable damage in them. Or, in other words, fiber
bending can break the fibers. This effect is not considered in the developed formulation
and should be taken into account.

• Implement a large-displacement formulation in PLCd finite element code. This will be
a large improvement which is required to perform accurate simulations of compressed
composite structures. The buckling problem solved with the formulation proposed
corresponds to a micro-buckling that leads to a material failure. This micro-buckling is
usually followed by a macro-buckling of the structure that can be only simulated using
a large displacement formulation, able to take into account the second order effects.

Further work

Having a compression strength formulation validated and implemented in a finite element
code, the next step that should be followed is to use the formulation to perform numerical
simulations of compressed structures made of composite materials. These simulations will be
the real prove of the capabilities offered by the numerical procedure defined in this section.
There are many engineering fields that deal with compressed composite structures and that
can use the code developed, to name a few: In civil engineering it can be used to compute the
critical strength of compressed columns, mainly in earthquake cases, where the concrete is
damaged due to the the bending moments produced by the dynamic forces. In aeronautical
engineering it can be used to simulate composite plane wings, in which the compression
efforts are one of the main concerns. And, in mechanical engineering, it can be used to
simulate compressed elements in fatigue conditions, where damage in matrix appears due to
the periodic loads.
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However, the most important research lines that can follow the work presented in this chap-
ter would be based on using the homogenization procedure proposed, in which the micro-
structural interaction of composite materials is included into the serial/parallel mixing theory
formulation, to solve other micro-structural problems found in composite materials. It has
been proved that the results obtained with this methodology are a good approach to real-
ity and that the computational effort required does not make impossible to simulate real
structures with the new algorithm developed. Applying this methodology to other micro-
mechanical phenomenons such as kink-band formation, fiber debounding or to characterize
woven composites can improve substantially the accuracy of the simulations performed with
the serial/parallel mixing theory, making this formulation the most suitable to calculate
composite structures with nowadays technology and computation capabilities.
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reforzados con fibras largas, pages 295–320. CIMNE (Centro Internacional de Métodos
Numéricos en Ingenieŕıa), Barcelona, Spain.
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5.1 Conclusions

The three topics discussed along this document,

1. Numerical simulation of composite materials using the serial/parallel mixing theory (SP
RoM), and the finite element method.

2. Simulation of delamination using the SP RoM.
3. Development of a new procedure and formulation to predict the compression strength

in composites, due to fiber buckling, using the SP RoM.

have provided a comprehensive description of the numerical procedure proposed in this work
to perform large scale simulations of composite structures, taking into account their micro-
mechanical failure modes.

This work has proved, in chapter 2, that the serial/parallel mixing theory is an adequate
formulation to perform numerical simulations of composite materials. The scope used by
the SP RoM to simulate advance composites has been proved capable to perform accurate
simulations, taking into account the material non-linearities in the composite, with a reason-
able computational cost. The serial/parallel mixing theory not only obtains the mechanical
performance of the composite, coupling the constitutive behavior of fiber and matrix, but it
also takes into account the directional behavior of fibers. This is done using an iso-strain
condition in fiber direction (parallel direction) and an iso-stress condition in the remaining di-
rections (serial directions). With these two closing equations, the contribution of fibers to the
strength and stiffness of the composite is significantly larger in their longitudinal direction,
than in the serial directions.

However, the most important achievement of this project is the development of a new numer-
ical procedure capable to include the micro-structural interaction between fiber and matrix,
into the serial/parallel mixing theory. The new methodology proposed takes the SP RoM
a step beyond its actual performance. Now, the SP RoM, together with the new procedure
developed, is capable to predict the mechanical behavior of the composite from the consti-
tutive behavior of its components, and it is also capable to take into account the failure
mechanisms found in the composite, consequence of the micro-structural interaction between
its components.

The new procedure developed consist in modifying the constitutive equations of the composite
components, according to the micro-structural interaction between them. The serial/parallel
mixing theory provides, at each load step, the stress and strain fields for fiber and matrix
materials. These two fields are used to establish the micro-structural interaction between the
composite components and to modify their constitutive performance. This is done with an
homogenization method. With this procedure, the interaction between fiber and matrix is
actualized at each load step, using the current strain-stress state of each component material.
Therefore, the procedure proposed modifies the constitutive performance of each composite
component, taking into account the mechanical evolution of the other.

This new methodology has been applied to characterize the compression strength of fiber
reinforced composites. This failure mechanism is produced by fiber micro-buckling. It has
been proved, in chapter 4, that with the proposed procedure the fiber buckling phenomenon
can be characterized. The homogenized constitutive equations are capable to predict the
stress state for which fiber buckling occurs, this is, the maximum compression stress that
can be applied to the composite, and they also provide the post-critical performance of the
composite, once the maximum stress has been reached. Having a numerical procedure capable
to obtain the post-critical performance of the material is important because the main aim
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of this work is to obtain a code to perform numerical simulations of composite materials.
This code must be capable to continue with the simulation although some elements have
reached their maximum stress value and, to do so, it is necessary to know the post-critical
performance of these elements.

The homogenized constitutive equations have been used to develop a compression strength
algorithm. This algorithm interacts with the serial/parallel mixing theory to provide the
compression strength of composites, taking into account all possible situations that can be
found in long fiber reinforced composites under compression forces, from loading paths to the
level of initial misalignments found in fibers.

The validation performed of the proposed compression strength formulation, has demon-
strated the ability of this formulation to obtain, the maximum compression strength that can
be applied to the composite, and its post-critical behavior. Moreover, this validation has also
proved that the proposed methodology, developed to include the composite micro-structural
effects into the serial/parallel mixing theory, is capable to do so. This is considered an im-
portant achievement, as this methodology can be used in further research to include other
micro-mechanical effects that take place in fiber reinforced composites, such as kink-band
formation, fiber-matrix debounding or to characterize woven composites.

The other micro-mechanical phenomenon studied in this work is delamination. This phe-
nomenon consist in the lost of adherence between the different layers of the composite, which
leads to a reduction of the section strength and stiffness, that can finish in a structural failure.
It has been proved, in chapter 3, that this failure criteria can be simulated straightforward
with the serial/parallel mixing theory, if the appropriate constitutive equations are chosen to
predict the mechanical performance of the composite constituents.

Therefore, the serial/parallel mixing theory not only is capable to predict the material non-
linear response of fiber reinforced composites, from the constitutive performance of their
component materials, but along this work it has been proved that this theory is also capable
to predict the failure of the composite due to micro-mechanical phenomenons. Although,
to obtain this prediction capacity, it is necessary: either to implement an homogenization
of the constitutive equations of the composite constituents, in order to take into account
their micro-structural interaction; either to chose the appropriate constitutive equations, to
simulate the composite constituents mechanical performance.

All numerical formulations and procedures presented along this work have been implemented
in PLCd, an implicit finite element code developed by several researchers, professors and
PhD candidates at CIMNE (International Center for Numerical Methods in Engineering)
and RMEE (Department of Structures and Strength of Materials, UPC). Among the differ-
ent features of PLCd, it should be remarked its ability to deal with material and geometric
non-linearities, with an extensive database of constitutive equations and yield laws, and its
capability to perform static or dynamic simulations. Before this work, PLCd dealt with com-
posite materials using the classical lamination theory and simulations should be performed
using two-dimensional solid elements.

During this project, in order to implement the different formulations and procedures de-
veloped, the mixing theory implemented in PLCd has been replaced for the serial/parallel
mixing theory, and the solids elements have been upgraded to the three-dimensional case.
It has been also modified the database system in order to improve the code computational
performance. Therefore, the new version of PLCd has become a powerful numerical tool
capable to perform 2D and 3D simulations of composite materials, using the SP RoM, and
taking into account the composite micro-mechanical failures. Besides, its capacity to perform
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dynamic calculations remains intact.

Also, in the frame of the FEMCOM project, some of the numerical procedures developed have
been implemented in the ComPack-Aero code. This is an explicit finite element code that
works with solid and shell elements. The numerical implementations performed in ComPack-
Aero are co-authored with Fernando Flores and Fernando Rastellini. ComPack-Aero has
been improved with a simplified version of the serial/parallel mixing theory and with the
damage formulation presented in chapter 3. With these new implementations, the code has
been used to propose a new procedure to take into account the delamination phenomenon in
large scale simulations of laminated composites.

Besides the general achievements described previously, each topic discussed in this work
(numerical simulation, delamination and compression strength of composites) has provided
some important results that have been already described in the conclusions included in each
chapter. These conclusions are summarized in the following,

Numerical simulation of composites

The numerical simulation of composite materials is performed using the serial/parallel mix-
ing theory. This theory, as well as its numerical implementation in a finite element code, is
described in detail in chapter 2 of the present document. The ability of the serial/parallel
mixing theory to perform accurate simulations of composite structures has been proved us-
ing it to solve the problem of reinforcement and retrofitting, of reinforced concrete (RC)
structures, using fiber reinforced polymers (FRP). The main conclusions obtained from the
solution of this problem are described in the following:

• The first and main conclusion obtained from the simulations performed is that the
serial/parallel mixing theory, implemented in a finite element code, is capable to pre-
dict the mechanical performance of structures made with composite materials. This
assessment has been demonstrated comparing the experimental and numerical results
obtained, in the case of a four node bending test of a RC beam, reinforced with FRP.
The agreement between the numerical and the experimental simulations is found in
the force-displacements graphs obtained for the structure and, also, in the failure mode
observed.

• To solve the problem of structural retrofitting of RC structures with FRP, a new algo-
rithm has been developed. This algorithm offers the possibility to add new elements
to the calculation at a certain load step. So, the FRP reinforcement can be added to
the simulation when the RC structure is already damaged. This new algorithm has
shown that the stiffness of the retrofitted structure does not depend on the level of
damage existing in the structure when the FRP is applied to it. However, the stresses
and deformations reached by the structure are larger is the FRP is applied when the
structure is already damaged, which can jeopardize the structure serviceability.

• Finally, regarding the effectiveness of the structural reinforcement with FRP, the simu-
lations performed have proved the mechanical improvement of the structure when they
are reinforced with FRP. This improvement can increase the strength capacity of the
structure in, at least, a 20%. However, depending on the type of reinforcement applied
to the structure, the finite element simulation can provide an overestimation of the
effects of the FRP. This has been found in the simulation of the framed structure, when
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applying lateral reinforcements. In this case, 2D simulations consider an even distri-
bution of the reinforcement along the cross section of the structure, overestimating the
contribution of the FRP.

Delamination using the SP RoM

Chapter 3 has proved the ability of the serial/parallel mixing theory to simulate the de-
lamination phenomenon, if the appropriate constitutive equations are chosen to characterize
the composite constituents. This chapter also contains the description of a new procedure to
characterize delamination in large scale simulations of laminated composites. In the following
are summarized the main conclusions obtained from the work performed.

• The main achievement of the work performed in this chapter has been to demon-
strate that the serial/parallel mixing theory can simulate the delamination phenomenon
straightforward. The damage obtained in the matrix material due to shear stresses re-
duces to zero the stiffness of the composite in its serial directions. This mechanical
performance is exactly the same obtained in a delaminated composite. The main ad-
vantage of this procedure is that all elements in the simulation are computed with
the same formulation, being unnecessary to define special elements where delamination
takes place; which increases substantially the computational cost of the simulation if
the delamination path is unknown and these elements have to be placed between all
laminate layers. Also, the simulation of the delamination phenomenon using a con-
stitutive approach makes unnecessary the addition of remeshing techniques or contact
formulations, that also increase the computational cost of the simulation.

• This chapter also contains the description of a new procedure to deal with the delami-
nation phenomenon in large scale simulations of composite laminated structures, using
the classical lamination theory. This consist in localize the shell elements where de-
lamination takes place, using the SP RoM and a damage formulation to characterize
the composite. Afterwards, the damaged elements are replaced with solid elements, to
obtain a better representation of the delamination phenomenon.

• This procedure has provided correct results in the simulation of the ply drop-off test.
Taking into account the limitations of the shell formulation (it cannot propagate the
delamination), the methodology is capable to localize the region of the structure where
delamination takes place and to predict the load for which delamination occurs with a
reasonable error. When the damaged shell elements are replaced with solid elements, the
simulation of the delamination phenomenon is exactly the same obtained in a simulation
performed with solid elements to define the whole structure. The advantage of the
proposed procedure is found in the computational cost of the simulation, significantly
lower than the computational cost required for three dimensional simulations, specially
in the case of large structures.

• The damage constitutive equation used to simulate the delamination phenomenon has
been improved with the addition of a friction parameter. The simulations performed
with this new damage law have proved the importance of friction in delamination tough-
ness, as friction is capable to stabilize the fracture propagation.
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Compression strength of composites

Chapter 4 is dedicated to develop a new formulation to obtain the compression strength
of composite materials and its post-critical performance. This formulation has been defined
using a new methodology, consisting in the homogenization of the constitutive equations of the
composite constituents, fiber and matrix, in order to include their micro-structural interaction
in the serial/parallel mixing theory. The main conclusions obtained from the validation of
the proposed methodology, as well as the validation of the formulation developed to obtain
the compression strength of composites, are described in the following:

• This chapter contains what is considered the most important achievement of this work.
The development of a numerical procedure capable to introduce the micro-structural
effects, found in composite materials, into the serial/parallel mixing theory.

• The new formulation developed has been used to include the fiber micro-buckling phe-
nomenon in the SP RoM. This formulation has been implemented in an algorithm
capable to obtain the compression strength, and the post-critical response, of compos-
ite materials. The algorithm takes into account the loading-unloading conditions in the
composite, as well as the fiber initial misalignments.

• The results obtained with the proposed formulation are in agreement with experimental
values of compression strength of composite materials. This agreement is also found in
the dependence, of the maximum stress that can be applied to the composite, in the
parameters in which are based all other formulations found in literature: volumetric
participation of fibers in the composite, shear strength of matrix material and fiber
initial misalignments.

• The last numerical simulation performed has shown the effects of fiber buckling in
real structural simulations. The maximum force that can be applied to a cantilever
laminate, if the compression strength is limited due to fiber buckling, is a 28% lower
than if this compression strength is limited by the material properties.

• Besides the previous conclusions, more have been obtained regarding the mechanics
of the fiber buckling phenomenon, when studying the performance of the formulation
developed. Some of them are outlined in the following,

– The damage obtained due to the fiber buckling phenomenon is partially recover-
able. If tensile stresses are applied to the composite after fiber buckling, fibers
recover their original alignment, recovering also their strength properties.

– Fibers with small initial misalignments behave like fibers without initial misalign-
ments (straight fibers). In this case, fiber buckling is followed by a sudden lost
of strength which reduces fiber post-critical performance to lower levels than the
ones obtained in initially misaligned fibers.

– Matrix stiffness plays an important role in the fiber buckling phenomenon, as it
restrain fibers from buckling. If matrix material is damaged, due to a previous
buckling of fibers, fatigue effects, etc. its confinement capacity is reduced and fiber
buckling will occur for lower loads.
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5.2 Further work

This work has presented different formulations and numerical procedures that have been
developed to perform numerical simulations of composite structures, taking into account their
micro-mechanical effects. Despite the good results obtained in the simulations performed,
the different solutions provided to solve the problems treated are far from being perfect.
Therefore, further work can be performed to improve their accuracy, their computational cost
or to widen their application range. Also, the different topics discussed, and the solutions
provided to the problems found, have opened new research paths that can be followed in
further research studies.

Both issues, the improvements that can be made to the formulations and numerical procedures
developed, and the research lines that can be followed from the path opened within this work,
are described hereafter.

5.2.1 Improvements of the formulation developed

The serial/parallel mixing theory has proved, along this work, its capability to obtain the
mechanical performance of composite materials, taking into account their material non-
linearities. However, the way in which this theory is implemented limits the number of
constituent materials in the composite to only two of them: fiber and matrix. It could be
interesting the development of an improved serial/parallel mixing theory, capable to include
more than two constituents in the composite.

This new feature can be very useful to simulate the delamination phenomenon. Although the
SP RoM has proved its ability to simulate delamination processes, with the actual formulation
this failure effect relies in the constitutive performance of matrix material. If more materials
are included in the SP RoM, the parameters defining delamination onset and propagation can
be defined in a third material, which will increase the versatility of the simulation procedure.

But, regarding delamination, main improvements will come from a more detailed study of the
friction developed between the fractured surfaces. The friction parameter included in the for-
mulation has provided qualitative results of how friction affects the delamination toughness,
and has shown the necessity to include this effect in the simulation. A better characterization
of the friction effects and the implementation of those in the formulation will provide a better
simulation and numerical prediction of the delamination phenomenon.

However, the formulation that can gain more of further work is the new procedure developed
to obtain the compression strength of composites. This formulation is based in the homoge-
nization of the constitutive equations of the composite components, to take into account their
micro-structural interaction. In the development of this procedure, some assumptions have
been made, and some effects have been omitted, which improvement will provide a better
characterization of the fiber buckling phenomenon. In the following are described the main
improvements proposed,

• Although the fiber buckling phenomenon is highly non-linear, the solution of a curved
bar with unilateral restriction has been solved with a linear elastic formulation. To solve
this drawback, an incremental explicit method has been applied to take into account the
non-linearities. The replacement of the formulation used for a non-linear formulation
will provide a better characterization of fiber buckling, improving the accuracy of the
simulation.
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• The homogenization of the constitutive equations has been done, only, for the damage
formulation. However, the methodology can be extended to other constitutive laws
(such as plasticity). This extension will widen the applicability range of the formulation,
as it will allow to consider other material performances.

• Bending effects in fibers, when they buckle, can lead to the fiber fracture. This phe-
nomenon has not been considered and should be taken into account.

• The compression strength formulation developed should be integrated with a large dis-
placement formulation. These two formulations, together, will provide a better charac-
terization of the buckling phenomenons that take place in laminated composites, as the
simulation will be able to capture the mechanical coupling existing between the micro-
buckling (defined by fiber buckling) and the structural macro-buckling (simulated with
the large displacements formulation).

Finally, a detailed study of the numerical convergence obtained with all formulations de-
veloped can be performed in order to improve, when possible, the convergence obtained.
Following the same purpose, the code algorithm and its databases can be optimized. These
measures will improve the numerical performance of the code, reducing its computational cost,
which will increase its capability to perform large scale simulations of composite structures.
In addition to all these actions, the larger computational cost reduction will be obtained with
the parallelization of the code.

5.2.2 New research lines

As important as the improvement of the formulation developed is to identify the research
lines that can be followed from the path opened with this work.

Being, the main achievement of this work, the description of a new methodology to include
micro-structural phenomenons into the serial/parallel mixing theory; the main research lines
that can follow this work are obtained from the application of the methodology proposed to
other micro-mechanical effects found in composites. In the following are described some of
them:

Kink-band formation: The kink band formation is also a compression failure mechanism,
in which the loss of strength and stiffness of fibers is produced by the formation of a
kink-band. As the strain-stress fields found in fiber and matrix due to this phenomenon
are different from the ones obtained in case of fiber buckling, a new set of equations
should be defined to characterize this effect and, these equations, should be introduced
in the constitutive performance of fiber and matrix with an homogenization procedure
similar to the one exposed in this work.

Fiber-matrix debounding: The phenomenon of fiber-matrix debounding is characterized
by the lost of adherence between fiber and matrix materials. In this situation, matrix
cannot transfer the efforts to fiber. With the new methodology developed, this effect can
be characterized decoupling the stress and strain fields of both composite components.

Characterization of woven composites: In these composites, fibers in different directions are
interweaved. The shape of fibers is curved, therefore, the curved bar under unilateral
restriction equations can be also used to characterize these composites. However, in this
case, it is necessary to establish an interaction among the different fibers interweaved
and matrix material, and not only between fibers and matrix.
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Further research lines are not only restricted to the development of new formulations but
they also can be found in the application of the numerical procedures presented in this work.
The codes developed, PLCd and ComPack-Aero, can be used to study the performance of
composite materials, taking into account their micro mechanical effects in cases of fatigue,
ageing, impact loads, etc.

But, the codes developed will provide their most if they are used to perform numerical
simulations of composite structures. The purpose of these simulations can be to obtain the
optimal composite configuration for the application developed or, simply, the study of the
composite structure performance. All these simulations will increase the existing knowledge
of the mechanical behavior of composite structures. More and better knowledge is translated
in a more reliability on these materials, that will lead to an increase of the engineering
applications in which they are used.

5.3 Original contributions of this work

The different procedures and formulations included in this document would not exist without
the research and work performed by a large amount of research fellows, that have treated
the different subjects contained in this dissertation previously. Along the whole document it
has been tried to refer all these authors with honesty and excuses are asked for any possible
omission.

Therefore, in order to do justice to all work performed by others, in this section are described
what are considered to be the original contributions of this work.

Original formulation

In this group are included the different formulations developed and presented along this
document, that are considered to be original contributions.

• The most important original formulation developed in this work corresponds to the new
methodology proposed to take into account the micro-structural interaction between
composite components into the serial/parallel mixing theory. This methodology is
based in an homogenization of the constitutive equations of the composite components.

• The new methodology has been applied to obtain the compression strength of fiber
reinforced composites. In this case, the homogenized constitutive equations take into
account the interaction between fiber and matrix due to fiber initial misalignments and
the level of damage in both materials.

• A new algorithm has been developed to obtain the compression strength of FRP, using
the homogenized constitutive equations for fiber and matrix and the serial/parallel
mixing theory. This algorithm takes into account the loading path in the composite, as
well as the level of initial misalignments in fibers.

• A new friction damage law has been proposed, with the addition of a friction parameter
into the damage formulation used to characterize delamination, in laminated compos-
ites.
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• A construction stages algorithm has been formulated in order to be able to simulate
FRP retrofitting of RC structures. This algorithm adds new elements to the simulation
for the desired load case, when the rest of the structure has been already loaded.

• PLCd code has been improved with a numerical derivation, using a perturbation method,
to obtain the tangent constitutive tensor. This procedure is capable to obtain an accu-
rate approximation of the tangent constitutive tensor for any constitutive law.

Original applications and procedures

As important as the development of new formulations is the application of already existing
formulations to solve engineering problems. In many occasions, to solve the targeted problem,
is necessary to develop new numerical procedures and to adjust the existing formulation, in
order to obtain an accurate simulation and characterization of the problem solved. In the
following are described what are considered original contributions of this work in this field,

• Solution of the problem of reinforcement and retrofitting of RC structures using FRP.
The solution of this problem has shown the capability of the SP RoM to perform
simulations of composite structures and has also shown the mechanical performance of
FRP when it is used to strengthen RC structures, as well as the mechanical performance
of the RC structure once it has been reinforced.

• Solution of the delamination problem using the SP RoM. To solve this problem it has
been necessary to find the constitutive equations that provide a better characterization
of the delamination phenomenon.

• A new procedure has been proposed to characterize delamination in composite struc-
tures simulated using shell elements and the classical lamination theory. This new
procedure is co-authored with all members working in the FEMCOM project, specially
acknowledged is the contribution of F. Flores and F. Rastellini in this issue.

• The two procedures developed, to take into account the micro-mechanical effects in
composite materials, are based in the constitutive performance of the composite con-
stituents. Therefore, both phenomenons: delamination and fiber buckling, are coupled
without requiring any other formulation. The result is a numerical procedure capable
to simulate the delamination that takes place in compressed composites, consequence
of the material strength reduction produced by the fiber buckling phenomenon.
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In last decades, advanced composites have become a revolution in structural

engineering. Their high strength/weight and stiffness/weight ratios, together with the

possibility to tailor made the material for the specific loading environment in which it is

used, make these new materials optimal for many structural applications. Despite all

existing information and actual knowledge about these materials, their complex

behavior, highly non-linear, anisotropic and with different failure causes not found in

traditional materials, requires a greater effort in their study in order to improve their

performance and take advantage of all possibilities offered by them.

Among all possible numerical procedures and formulation available to predict the

mechanical performance of fiber reinforced composites, this work uses the serial/parallel

mixing theory. This theory obtains the mechanical performance of the composite by

coupling the constitutive performance of its constituents, fiber and matrix. This theory

provides an accurate prediction of the mechanical performance of composites, taking

into account their material non-linearities.

However, although it is necessary to consider material non-linearities for a correct

characterization of fiber reinforced composites, it is not sufficient. The most common

failure modes of advance composites, like delamination or fiber buckling, are produced

by the interaction between the composite components, and not as a result of a material

failure. Therefore, an accurate simulation of composites must take into account the

micro-mechanical interaction between its components, in order to be able to

characterize their failure modes.

This work studies and proposes different formulations and numerical procedures to

simulate the micro-mechanical phenomenons that take place in composites, using the

serial/parallel mixing theory. Two different failure modes are discussed: delamination

and compression failure due to fiber buckling.

All formulations and procedures included in this work provide a new numerical approach

to characterize composite materials, capable of considering both, the material non-

linearities and the micro-mechanical phenomenons that take place in them. Simulations

performed with this new formulation can contribute to increase the actual knowledge of

advanced composites, improving their reliability and opening new application fields.

ESCOLA TÈCNICA SUPERIOR

D’ENGINYERS DE CAMINS,

CANALS I PORTS DE BARCELONA
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