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Special thanks to Eugenio Oñate, for giving me the opportunity to collaborate with him
and to learn from him, but above all, for his friendship. My most sincere gratitude and
deeply appreciation.

Many thanks to Carlos Labra for his great support on the programming part of this
thesis. His role was vital in the assembling of the intricate computational tool elaborated
as part of this research.

Thanks also to Xavier Martinez for the thoughtful discussions and the valuable comments
he always had about the topic. For letting me use his perturbation method to adapt it
onto my research. His support is greatly acknowledged.

To Professor Miguel Cervera for his help on the topic of strain softening. His clarify-
ing ideas were very helpful to fully understand this problem.

Thanks to the fantastic group of people that I’ve meet during my stay in Barcelona. To
Patricia Ruiz, Beniamino Russo, Marina Xicola, Ruben Hernández, Keyla Valle, Nikolaos
Galanis, Elli Kartsakli, Oscar Flores, Cristina Heras, Luca Pelà, Rene Brunner, Gregory
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Abstract

Most of the materials that surround us can be considered as composite materials since
nearly all of them, regardless of whether they were man engineered or were naturally
formed, are composed by several phases or constituents at certain spatial scale. Based on
this fact it can be stated that what determines if a material is considered as homogeneous
or as heterogeneous is the scale to which the material is being referenced with.

Within the context of continuum mechanics it is possible nowadays to analyze almost
any homogeneous material that has been subjected to some kind of action getting re-
sults approximate enough to reality by using numerical methods such as the finite ele-
ment method, which is based on physical and mathematical concepts developed within
the scope of computational mechanics. However, when dealing with composite materi-
als or structures composed by two or more materials, each material that is part of the
composite will behave in a characteristic manner according to the physical and chemical
properties that govern its behavior. Several methods have emerged over the last decades
trying to solve the problem of analyzing composite materials following multi-scale tech-
niques. Among these procedures the homogenization method is one of the most commonly
used techniques to estimate or predict the constitutive response at the macroscopic level
of the composite based of an analysis performed on a subscale (also known as micro scale).

The majority of the homogenization techniques developed so far are valid only for com-
posites that have a periodic distribution over the entire domain of the structure such
that they can be represented by one element representative of the volume (or unit cell)
of the composite. However, in some cases the structure or composite may be formed by
more than one type of periodic domain distribution, making the existing homogenization
techniques not suitable to analyze this type of cases in which more than one recurrent
configuration appears. To overcome this problem in this thesis a multi-domain homoge-
nization technique has been proposed and developed based on the solution of a two-scale
method, according to the standard continuum mechanics formulations.

i
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Chapter 1

Introduction

Within the context of solid mechanics, engineering materials can be grouped based on
their atomic configuration according to the predominant type of bonding and spatial ar-
rangement of their constituents into four categories: metals and alloys, intermetallics,
ceramics and glasses, and polymers (plastics). The type of bonding is an essential factor
that influences the physical and mechanical properties and that makes each class of ma-
terials unique. Hence, all the materials that fit in these four categories can be defined as
homogeneous materials from an engineering point of view.

In the scope of continuum mechanics great efforts have been devoted to represent the
behavior of homogeneous materials, by using physical and mathematical concepts, in a
sufficient approximated manner. This knowledge has been applied in the field of computa-
tional mechanics to obtain the mechanical response of materials when they are subjected
to some kind of action, whether external or internal, through several numerical methods,
like for example the finite element method [129]. The overall sum of these concepts makes
it nowadays possible to analyze almost any sort of homogeneous material getting results
approximate enough to what happens in reality.

However, for the case of heterogeneous materials which are formed by the arrangement of
two or more components, the combination of the phases occurs without a chemical reac-
tion, in contrast to the cases where this merging produces a new homogeneous material,
as it takes place for example, in the case of alloys. As a result, each material that is
part of the compound will behave in a characteristic manner according to the physical
and chemical properties that govern their behavior. Therefore, the direct application of
methods like the finite element method (FEM) is not the most appropriate or effective,
since in a conventional FEM analysis the behavior of each component material has to
be expressed by a specific constitutive law with particular parameters, this means that
the model structure has to be discretized in a way that the size of the finite element is
equal at least than the size of the components of the composite. This restriction requires
generating a complex discretized model with a large number of finite elements that may
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be difficult to achieve and in most of the cases it may demand an extremely expensive
computational effort, making the conventional FEM analysis much more difficult to carry
out, and in some cases, unfeasible to perform, therefore a more suitable strategy must be
implemented to analyze composite materials and to characterize their performance and
fracture criterions.

1.1 Background and motivation

Several approaches have been developed to mathematically represent and model compos-
ites as heterogeneous materials. Constitutive models have been developed for a large
number of composites to asses the global behavior of the compound by obeying the ther-
modynamic laws in the linear and the non-linear range. The constitutive equations for the
so called macro-models have been developed for composites with different arrangements
such as materials with long and short fibers, fibers laminated with one or more directions,
rolled-laminated with one or more layers, etc. However, these models can not be general-
ized, since the constitutive relationships were made on a particular composite material and
cannot be extrapolated to other composites, therefore they are restricted by this limitation.

Over the last decades various methods have emerged as alternative to the models de-
veloped explicitly for a particular composite. From these methods the mixing theory and
the homogenization method stand out from the rest since they deal with the problem
of modeling composites in a different manner than when using other formulations which
consider the composite as a single material with properties inherited from its constituents.

The homogenization theory deals with the problem of analyzing composite materials from
an internal point of view of the structure, i.e. the information of the behavior of the whole
composite is obtained through a micromechanical study of the properties of the individ-
ual components and the interaction between them. The properties are obtained through
a subscale (referred as micro scale) level on a representative volume element (RVE) of
the composite (also known as unit cell). Several homogenization techniques have been
developed through the years, among them: the effective medium approach [26], the self-
consistent method [51], the variational boundary method, which provides upper and lower
limits of the total stiffness [50, 96], the method of assembly of spheres [49] and the asymp-
totic homogenization method [7, 103]. The complex task that is required to represent the
physical and mechanical microstructural behavior of composites makes that the use of the
unit cell to represent the internal structure of the composite altogether with the stable
computational methods to be very convenient in most of the cases, in comparison to the
rest of procedures developed so far.

In the field of homogenization methods that use the unit cell or RVE approach there
is a technique for the computation of composites materials and structures known as multi-
scale homogenization methods, also known as global-local analysis. This proposal arose
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because most of the homogenization methods present a problem when the constitutive
behavior becomes non-linear, and a closed form constitutive relation at the macroscopic
level is difficult to achieve. The multi-scale modeling procedures do not result in closed
form general constitutive equations, since they compute the stress-strain ratio at each
point of integration of the macro scale. The stress-strain relationship is obtained by per-
forming a detailed modeling of the internal structure of the composite at the micro scale
of the compound. Among the main features of these procedures it was found that: a)
the multi-scale methods do not require any constitutive assumption at the macro level; b)
are suitable for arbitrary behavior of materials, even physically non-linear response and
time-dependency; c) they can provide the possibility to introduce detailed micro struc-
tural information, including physical and geometric evolution of the microstructure on the
macroscopic analysis; and d) may allow the use of any modeling technique in computing
the response at the micro scale, for example, the finite element method, the Voronoi cell
method, or numerical methods based on fast Fourier transforms, among others.

More recent works in the homogenization field include computing the response of the
composite using a second-order scheme based on the incorporation of the gradient of
the macroscopic deformation [58], using artificial neural networks to obtain the numeri-
cal response of composites [70], or using a reduced multiple scale eigendeformation-based
reduced order homogenization method, which provides considerable computational cost
saving in comparison to the direct homogenization method [125].

On the other hand, the mixing theory treats the composite as a homogeneous mate-
rial which takes into account the behavior of the different constituents according to their
proportion in the volume of the composite [120]. The conventional formulation admits
that all the composite constituents are subjected to the same strains [42, 92, 93]. New
proposals have been made recently in this field which include allowing different strain
deformations at different stages [89] and combining the mixing theory with the anisotropy
theory by mapping spaces for composite reinforced with fibers [14].

In more recent works, one of the main drawbacks of the mixing theory is addressed by
replacing the condition which enforces a parallel distribution of the constituents in the
composite for a serial-parallel model, where the iso-strain condition in the fiber direction
and the iso-stress condition in the parallel direction is enriched by including a formulation
to compute the transverse and shear stiffness in the serial/parallel mixing theory [98]. The
micro-mechanical interaction among components is incorporated in an improved formula-
tion of the serial/parallel mixing theory to model delamination and compression failure
due to fiber buckling by [71].

From the two theories exposed in the above paragraphs, the mixing theory may result
more practical from the point of view of the computational cost, since homogenization is
a rather expensive computational process. However, although great advances have been
made in this method in terms of including the micro-structural interaction, there are still
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some limitations in the formulations proposed recently, such as the inability to model
complex arrangements of the internal structure, as in the case when voids are present in
the composite domain. Therefore this thesis will be focused on developing a technique of
solution for the analysis of composite materials based on the homogenization approach.

Nevertheless, the existing homogenization techniques available present a limitation since
most of them are based on the assumption that the entire domain of the composite is
represented by one periodic or quasi-periodic distribution as the one shown in Figure 1.1a,
being this a limitation since composites may present distributions like the one presented in
Figure 1.1b, where two fields of periodic distributions exist within the same domain of the
composite, making the existing homogenization techniques not suitable for the analysis of
this type of internal structures. Therefore, a different approach has to be followed to ex-
ploit the advantages that the homogenization technique offers in the analysis of composite
materials in order to analyze structural arrangements that are characterized by more then
one periodic distribution.

(a) (b)

Figure 1.1: Examples of heterogeneous materials with different micro-structural composites do-
mains: (a) Composite material with one micro-structural periodic distribution; (b) Composite
material with two micro-structural periodic distributions

1.2 Objectives of this work

This research is focused on developing a homogenization method using a two-scale first-
order approach to find reliable estimates of the linear and non-linear overall response of
composite materials and structures that can be defined as periodic or quasi-periodic, ac-
cording to the internal distribution of the components of the structure. The main objective
of this thesis is to take this formulation further in order to develop a homogenization tech-
nique to analyze composites or structures which contain more than one periodic distribu-
tion over the entire domain of the continuum. In order to achieve this goal, a multi-domain
decomposition homogenization approach is proposed. This approach consists in assigning
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one different unit cell to each of the different subperiodic domains that forms part of the
internal structure of the composite. Each cell may differ in the number of components,
may have different physical configurations and different material properties as well. The
methodology is focused to be extensible to the solution of composite structures exploiting
the same principles that govern the composite material analysis.

The theoretical principles used in multi-scale homogenization are expressed and applied to
assemble a computational tool based on two nested boundary value problems represented
by a finite element code in two scales: a) one global scale, which treats the composite as
an homogeneous material and deals with the boundary conditions, the loads applied and
the different periodic (or quasi-periodic) subdomains that may exist in the composite; and
b) one local scale, which obtains the homogenized response of the unit cell and that deals
with the geometry distribution and with the material properties of the constituents.

Among of the most difficult tasks to compute the response of a composite material is
to obtain the non-linear constitutive tensor of the compound since it changes for each
load increment and for each iteration of the analysis once the structure has entered in the
non-linear range. For this reason, one of the aims of this study is to propose an adequate
method to compute the homogenized non-linear tangent constitutive tensor for each unit
cell once that the threshold of nonlinearity has been surpassed.

One of the main drawbacks of multi-scale homogenization techniques, is that the com-
putational process is rather expensive, thus a serial computational process would not be
the most appropriate to follow. Therefore, among the aims of this research is that in the
implementation of the computational tool a parallelization approach must be followed in
order to overcome the time-consuming process that homogenization implies.

The final objective of this thesis is to prove that the numerical tool developed is capable
of solving composite materials and structures with one or more periodic quasi-periodic
internal distributions independently of the material properties and of the geometrical
arrangement of the constituents in a reliable way. In order to demonstrate that the for-
mulation proposed works adequately, various examples are solved and their response is
compared to benchmark solutions obtained by the FEM.

1.3 Outline

In Chapter 2 the state of the art of the modeling techniques for composite materials is
presented. In this chapter a thorough review is made of the main developments of the
methods that deal with the analysis of composite materials. The chapter starts with a full
description of analytical, semi-analytical and purely numerical methods are presented and
described making use of the most outstanding articles found in the literature review until
this date. The literature review is mainly dedicated to explain the evolution of the different
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multi-scale homogenization techniques starting with the effective medium approximation
of Eshelby and following on until what we know nowadays as the multi-scale homoge-
nization. The chapter also includes a review of the mixing theory since this due to the
importance of the method and its close relationship with homogenization. The different
multi-scale computational techniques found to date based on the homogenization theory
are fully described. The main advantages and limitations of each method are pointed out.

Chapter 3 presents the basis of the mathematical approach for solving composites in terms
of homogenized variables using a multi-domain decomposition approach. The method is
developed within a two-scale framework following a mathematical formulation of first-
order. The problem of homogenization is stated based on the relationship between the
strains at the macroscopic scale with the transformation experienced by the periodicity
vectors that are contained on a structural scale much smaller called micro scale. The ap-
plication of the periodic boundary conditions in the micro scale is fully described as well
as the determination of the average stress measures. The computation of the homogenized
linear-elastic and non-linear constitutive tensors of the composite obtained by means of
perturbations methods are explained in detail. The problems that may originate the local
effects in the global response of the composite when applying the multi-domain decompo-
sition method are discussed thoroughly.

In Chapter 4 the numerical implementation of the homogenization method is presented
following a two-scale framework. The numerical implementation is carried out by means
of two different programs, one that deals with the macroscopic or global scale and another
one that deals with the micro or local scale. Both codes are based on the finite element
code PLCd [19]. The nested solution scheme of the finite element implementation is thor-
oughly described, including the numerical implementation of the procedure to obtain the
homogenized constitutive tensors and the description of the approach used for the paral-
lelization routine of the computational tool.

Chapter 5 present an analysis of the effect of softening in two-scale homogenization fol-
lowing a smeared cracked approach. Mesh objectivity is discussed first within the classical
FE formulation in one scale and then the concepts exposed are extrapolated into the two-
scale homogenization framework. The importance of the element characteristic length in
a multi-scale analysis is highlighted in the computation of the specific dissipated energy
when strain-softening occurs. The problem of objectivity is addressed by modifying the
softening law implemented at the microscale by normalizing it with respect to the element
characteristic length at the macroscale.

In Chapter 6 various examples are presented in order to evaluate and explore the ca-
pabilities of the computational approach presented in this research. Several aspects have
been studied, such as analyzing different composite arrangements that include different
types of materials, composites that present softening after the yield point is reached (e.g.
damage and plasticity) in composites with one and with several periodic domains using
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different unit cell configurations. A comparison of the computational effort of the two-scale
homogenization method with respect to the classical one-scale FE method is performed
on each of the examples presented. Furthermore, the effectiveness of the method proposed
to compute the non-linear tangent tensor of the composite as well as the efficiency of the
parallelization process are exposed in one of the examples presented. The main focus of
this chapter is to demonstrate the applicability of the extended homogenization proposal
and its advantages over the existing homogenization techniques.

Finally in Chapter 7, the main findings of this study are given in terms of a brief sum-
mary and in terms of recommendations and conclusions. Future lines of study and future
developments are given in this chapter as well.
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Chapter 2

Modeling strategies for analyzing
composite materials. State of the
art

The concept of analyzing composite materials as we know it nowadays came up only until
the second half of the twentieth century. Before that date, the analysis and design of this
type of materials was carried out mostly by the use of empirical formulas obtained by
means of laboratory tests which resembled the behavior of the composite in an acceptable
way to some extent in accordance with the existing limitations. The first attempts to
analyze composite structures in a more rigorous manner, made use of effective properties
which are defined simply in terms of the averages of various quantities over the system
(i.e. the components or phases of the composite), however with the appearance of new
numerical methods and new computational tools, altogether with the increasingly use of
new composite materials in the aviation, automobile, naval and civil industries and in the
manufacture of structures which have a significant mechanical performance it has become
vital to obtain the response of composites not only in an approximate manner, but to fully
understand their linear and nonlinear behavior to predict when and how the damage will
occur and the effects that it will produce.

Several numerical and mathematical methods have been developed in recent years to
achieve this task in order to take into account the individual properties of the constituents
and their geometrical arrangement. In the following paragraphs analytical, semi-analytical
and purely numerical methods are presented and described making use of the most out-
standing articles found in the literature review until this date. The literature review
presented in this chapter it is mainly dedicated to explain the evolution of the different
multi-scale homogenization techniques since the research presented in this thesis is devel-
oped based on this theory, starting with the effective medium approximation of Eshelby,
and following on until what we know nowadays as the multi-scale homogenization. Nev-
ertheless, the review starts with a concise description of the mixing theory, due to the
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importance that this branch has on the modeling strategies for analyzing composite ma-
terials and because this theory is in some sense some sort of homogenization.

Different multi-scale computational techniques to obtain the numerical response of com-
posite materials based on the homogenization theory are fully described. The main ad-
vantages and limitations of each method are pointed out.

2.1 Mixing Theory

The mixing theory arose from the study of two or more interacting continua proposed
by Truesdell and Toupin [120]. The theory is established on the principle of interaction
between the components of the composite known as the classical theory of mixtures.

Some of the earliest works that applied and further developed this theory are found in
Truesdell [119] for linear systems; in Adkins [1] and in Green and Adkins [41] who elab-
orated general non-linear constitutive equations; in Green and Naghdi [42] who proposed
a dynamical theory of the flow relative to two continua; in Bowen and Wiese [9] where a
thermo mechanical theory of a diffusing mixture of elastic materials is presented; and in
Ortiz and Popov [92] where general constitutive equations are obtained for unreinforced
concrete idealized as a composite material.

The classical theory of mixtures is basically based on the assumption that each component
contributes in the behavior of the composite in the same proportion as their volumetric
proportion allowing the combination of materials which are governed by different consti-
tutive laws and in the assumption that all the component materials which form part of a
solid point of the composite have the same deformation as expressed by (2.1).

εij = (εij)1 = (εij)2 = · · · = (εij)n (2.1)

where εij and (εij)n represent the deformation of the composite and of the n− th compo-
nent of the composite material, respectively.

The last statement, however, poses a strong limitation in the use of this theory for pre-
dicting the behavior of composite materials when they enter in the non-linear range since
each component may be experiencing different deformation stages for a given load step.
To address this problem, several formulations have emerged from the classical theory of
mixtures in order to consider the nonlinearity of each of the components of the composite.

2.1.1 Modifications to the classical theory of mixtures

Among the schemes proposed to modify the classical theory of mixtures there are: the
modified classical theory using a serial-parallel model [91, 82], the generalized theory of
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mixtures [88], the classical theory of mixtures for large strains [13], the generalized theory
of mixtures for large strains [88] and a modification of the theory of mixtures for short
reinforcements [14], among others.

Classical theory of mixtures using a serial-parallel model

The modification of the classical theory of mixtures expressed in small strain deformations
using a serial-parallel model proposed by Oller et al. [91] and Oñate et al. [82] to represent
the behavior of the composite whose constituents are involved in a combination of a
serial-parallel behavior implies an automatic adjustment of the properties of the composite
taking into account each component and their topological distribution, which allows having
different strains in every component that forms part of each point of the solid. The
fundamental hypothesis of this generalization of the theory of mixtures is based on the
definition of the strain field of the whole as a weighted sum of the contributions of the
components in series and parallel as expressed in Equation (2.2).

εij = (1− ℵ)εparij + ℵ εserij (2.2)

where εserij and εparij represents the serial and parallel strain deformations respectively and
ℵ is the coupling parameter that relates the serial-parallel deformation behavior. This
parameter varies among 0 and 1 and it indicates the preferred direction of the material
behavior at one point and which is associated to the principal stress direction. However,
this model has the inconvenient that in order to obtain the value of ℵ a calibration must
be made through experimental results.

Generalized theory of mixtures

The generalized theory of mixtures [88] proposes a modification of the serial-parallel classi-
cal theory to make possible the resolution of any composite with reinforced matrix, without
the limitation required by the classical theory imposed by the deformation compatibility.
On the other hand, this new approach automatically adjusts the closure equation of the
composite material, this means that it allows to establish the relationship between the
deformation in the composite and the deformation in each of the components. This com-
patibility equation provides the link between the hypotheses of parallel behavior with the
hypotheses of behavior in series. For this reason it is called the serial-parallel generalized
compatibility hypothesis and can be expressed as:

(εij)c = (1− χc) · Iijkl εkl︸ ︷︷ ︸
(εparij )c

+χc · [(φijkl)c · (εkl − εpkl) + (εpkl)c]︸ ︷︷ ︸
(εserij )c

(2.3)

Equation (2.3) can be defined as well as:

(εij)c = [(1− χc) · Iijkl + χc · (φijkl)c] : εkl − χc(ε̂ pkl)c (2.4)
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where (ε̂ pkl)c is a plastic strain deformation defined for operational purposes with no phys-
ical meaning, obtained from the mean plastic deformation of the composite distributed
among its members according to their relationships of stiffness (φijkl)c(ε

p
kl) and the real

plastic deformation of the component (εpkl)c. While (εij)c is the strain in the c-th compo-
nent, which can be decomposed into their parallel (εparij )c and series share (εserij )c, while εkl
corresponds to the total deformation that occurs in the composite. In this case the serial-
parallel coupling parameter is defined as 0 ≤ [χc = sinαχ] ≤ 1, with the angle αχ defined

as 0 ≤ [αχ = (xfLoc, x
σ
1 )] ≤ π/2 which corresponds to the angle that there is between the

orientation of the higher principal stress (xσ1 ) with respect to the fiber orientation (xfLoc).
This parameter value is equal to 0 for pure parallel behavior and 1 for pure serial behavior.

Classical theory of mixtures expressed in large strains

The mixing theory of basic substances based on a large strain hypothesis [13] assumes that
the atomic diffusion in the absence of deformations is identical for all components of the
composite as in the classical theory of mixtures for small strains. The hypothesis must be
verified in the referential configuration as in the spatial configuration for each phase. The
hypothesis maintains that the substances are involved in the response of the composite
in proportion to the volume they occupy in the total volume. The hypothesis emphasizes
the relationship between the volume of a component in the spatial and referential config-
uration, which is given by the determinant of the deformation gradient.

To obtain the constitutive equation for the reference and the spatial configurations, the
problem is divided into an elastic problem in small strains and in a problem in large plastic
strains, in which the free energy is uncoupled in elastic and inelastic energy. The solution
is given by an iterative procedure and it starts by computing the strain increments at the
reference configuration and then through tensor transport operations the strain tensor is
obtained in the updated configuration. The integration of the constitutive equation for
each phase of the composite is obtained in the updated configuration as well. Each of
these phases may have different types of constitutive behavior (plasticity, damage, etc.),
which in turn may be isotropic or anisotropic. Once the stress state of each component is
obtained the stresses and the constitutive tensor of the composite are computed accord-
ing to the classical mixing theory. The stresses and the tangent elastoplastic constitutive
tensor are pulled back to the reference configuration. Finally the internal forces are com-
puted and the balance with the external forces applied is verified until convergence of the
method is obtained.

Generalized theory of mixtures expressed in large strains

The generalized theory of mixtures made in large strains [88] provides a conceptual ex-
tension of the definitions made for the classical theory of mixtures in large strains. The
formulation begins from the hypothesis of non-compliance of the compatibility of deforma-
tions expressed in Equation (2.1). The constitutive equations are obtained in the reference
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and the updated configuration following a formulation similar to that for the classical the-
ory of mixtures in large strains, with and essential difference which lies in the definition
of the strains in each configuration, since it is not unique for all the components. Accord-
ing to this definition, the stresses of the composite in the referential configuration S are
computed according to Equation (2.5).

S =
n∑
c=1

kc[(1− χc) · I4 + χc · (Φ)c]
T : [(CS)c : [(1− χc) · I4 + χc · (Φ)c] : (Ee)c] (2.5)

In the updated configuration, the Kirchoff stresses τ are given by Equation (2.6) .

τ =
n∑
c=1

kc[(1− χc) · I4 + χc · (φ)c]
T : [(cτ )c : [(1− χc) · I4 + χc · (φ)c] : (ee)c]

= J σ (2.6)

where kc is the volumetric participation of the c-th component obtained in function of
the Jacobian J , I4 is the fourth order identity tensor, (Φ)c and (φ)c are the serial behav-
ior factor for the referential and the updated configurations respectively, (CS)c and (cτ )c
represent the real anisotropic tangent constitutive tensor for the c-th component for each
configuration, (Ee)c and (ee)c are the elastic deformations of each phase in the reference
and updated configurations respectively and σ is the Cauchy stress tensor.

The rest of the procedure to compute the response of the composite is similar to the one
explained in the classical theory of mixtures for large strains in the preceding paragraphs.

Theory of mixtures for composites with short length fibers

The classical mixing theory formulation is oriented towards composites reinforced with
long fibers, in which the kinematic condition of the classical or generalized formulation is
met. However, for the case of short length reinforcements as the aspect ratio of the fiber
decreases, the status of the fiber-matrix compatibility is no longer fulfilled due to local
effects. This means that the compatibility condition expressed in Equation (2.1) is not
satisfied due to the different strains that occur between the matrix and fibers.

One way to incorporate the contribution of the short fiber reinforcement to the theory
of mixtures is by introducing the average stress along the fiber as shown in Equation
(2.7).

σf = Cσf

[
1−

tanh(β l
2)

(β l
2)

]
Em

= C̃σfEm (2.7)
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where Cσf is the Young’s modulus of the reinforcement, Em is the longitudinal strain of the
matrix component, σf is the average Young’s modulus of the reinforcement or homogenized
module and the parameter β is given by Equation (2.8).

β =

√
Gc
Cσf

2π

Af ln
(
r′

r

) (2.8)

where Gc is the transverse elastic modulus of the composite, Af is average cross section
of the reinforcement and r′ is the mean distance between the reinforcing fibers.

The definition of an average Young’s modulus of the reinforcement which is function of
the length of the fibers and of the geometrical parameters of the composite and that has a
magnitude smaller than the real one, makes clear that its participation on the composite
mechanical properties depend not only on the intrinsic properties of the reinforcement,
but also on the overall properties of the matrix-reinforcement assemblage. This concept,
based on the homogenization of the tension along the fiber expressed in Equation (2.7)
can be extended to a two or tri dimensional plane through simplification, giving as a result
the following approximate constitutive tensor for short-fiber reinforcement.

C̃
S

f = CS
f

[
1−

tanh(β l
2)

(β l
2)

]
(2.9)

where CS
f is the orthotropic constitutive tensor of the reinforcement in the referential

configuration. The constitutive tensor transported to the updated configuration is affected
by the fiber length, the cross section and the separation among the fibers that form
the reinforcement. It can be obtained by pushing forward the constitutive tensor of the
reference configuration as shown in Equation (2.10).

c̃ τ
f = ~φ(C̃

S

f ) (2.10)

Thus the present formulation allows taking into account the loss of effectiveness of rein-
forcement in the response due to the short length effects which prevents a total transfer
of forces from the matrix to the reinforcement. The stresses in the referential and in the
updated configurations are given by Equations (2.11) and (2.12) respectively.

S =

[
1−

tanh(β l
2)

(β l
2)

]
︸ ︷︷ ︸

ς

CS
f : Ee

= (C̃
S

f ) : Ee (2.11)
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τ = c̃ τ
f : ee (2.12)

The factor ς represents the correction factor due to the presence of short length reinforce-
ment in the composite.

2.1.2 Latest developments on the theory of mixtures

Among the latest developments in the engineering field that have been attempted to
analyze composite materials using the theory of mixtures there is the serial-parallel (SP)
continuum approach proposed by Rastellini et al. [99] and a later work based on the SP
mixing theory proposed by Martinez et al. [71], among others.

The serial-parallel (SP) continuum approach

The SP continuum approach was developed assuming that the components of the com-
posite behave as parallel materials in the fibers alignment direction and as serial materials
in the orthogonal direction. The aim of the SP model is to make the composite behavior
dependent on the constitutive laws of the component materials according to their volume
fraction and to their morphological distribution inside the composite.

The proposed composite model is based on the appropriate management of the constitu-
tive models of component phases within a continuum framework by making use of suitable
‘closure equations’ that characterize the composite micro-mechanics.

Two versions of the model were formulated, which basically differ in the closure equa-
tions taken into account: a) the basic serial parallel (BSP) model, which inherits the
closure equations that considers an iso-strain hypothesis in the fiber direction and an iso-
stress hypothesis in the transversal direction and; b) the enriched serial parallel (ESP)
model, which is formulated to improve the transverse and shear stiffness underestimated
by the BSP model.

The formulation asserts that the constitutive laws of each phase still apply to their corre-
sponding volume-averaged state variables. However, this definition by itself is not sufficient
for the characterization of a material model, since the definition of a material model for
the composite needs the introduction of additional equations that specify somehow the
interaction between the component phases. These additional sets of equations are re-
ferred to as closure equations. Therefore the resulting material model depends crucially
on the adopted specific closure equation that characterizes the mechanical interaction at
the micro-scale.

The equations governing the BSP model problem are:
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(1) the constitutive laws of both materials:

cσ̇ = cg (cε, cβ, cε̇)
cβ̇ = ch (cε, cβ, cε̇) (2.13)

where cσ̇ and cβ̇ are the evolution of stress and of the internal variables. With c = f,m,
where the superscripts f and m denote the quantities related to each of the two phases of
the composite, the fiber and matrix respectively.

(2) the equation relating average strains and stresses:

ε = fkfε+m kmε

σ = fkfσ +m kmσ (2.14)

where ε and σ are the composite total strain and the stress, respectively. The volumetric
fraction of each phase is denoted by fk and mk.

(3) the BSP closure equations:

mεP = fεP
mσS = fσS (2.15)

where the subscripts S and P correspond to the serial and parallel behavior of each com-
ponent of the composite.

To solve the system of nonlinear equations that defines the BSP problem a specifically
devised Newton-Raphson iterative strategy was developed. The proposed algorithm is
a general solver for composites that uses the constitutive models of component materi-
als as ‘black boxes’. The composite algorithm makes use of the following serial-parallel
decomposition tangent operators.

cC =


∂cσP

∂cεP

∂cσP

∂cεS

∂cσS

∂cεP

∂cσS

∂cεS

 =

 cCPP
cCPS

cCSP
cCSS

 (2.16)
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with

cCPP = PP : cC : PP

cCPS = PP : cC : PS

cCSP = PS : cC : PP (2.17)
cCSS = PS : cC : PS

with c = m, f . Where cC is the consistent tangent operator for each component, PP

is the fourth order tensor that recovers the parallel components of stress and strain and
PS = I−PP recovers the complementary serial component.

The serial part of matrix strain mεS is selected as the independent variable of the Newton–
Raphson scheme to be adopted for the composite algorithm. Then for the initial approxi-
mation of the unknown it may be stated that the strain increment maintains the tangent
evolution of the previous step. The constitutive model of each material are evaluated to
determine their constitutive tangent tensors corresponding to the previous step (time t).
The increment of the unknown is determined assuming that the total strain increment
is distributed among the constituent materials according to their previous step tangent
stiffness as show in Equation (2.18).

[m∆εS]0 = A :
[
fCSS : [∆εS] + fk

(
fCSP −m CSP

)
: [∆εP]

]
(2.18)

with

[∆εS] = t+∆t[εS]− t[εS]

[∆εP] = t+∆t[εS]− t [mεS] (2.19)

and

A =
(
mkfCSS + fkmCSS

)−1
(2.20)

The initial value of the unknown is given by Equation (2.21).

[mεS]k =t [mεS] + [m∆εS]0 (2.21)

where the index k denotes the iteration number of the Newton-Rhapson method.

The total strain tensors of the components in serial and parallel are determined as a
function of the updated value of [mεS]k.
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[mε]k = [mεP] + [mεS]k (2.22)

[
fε
]
k

=
[
fεP

]
+
[
fεS

]
k

(2.23)

with

[mεP] =
[
fεP

]
= t+∆t [εP][

fεS

]
k

=
1
fk

t+∆t

[εS]−
mk
fk

[mεS]k (2.24)

The residue is evaluated and its norm is compared against the tolerance to find out whether
the stress equilibrium has been achieved as expressed in Equations (2.25) and (2.26).

[∆σS]k = [mσS]k −
[
fσS

]
k

(2.25)

‖[∆σS]k‖ ≤ Tolerance (2.26)

with

[mσS]k = PS : [mσ]k[
fσS

]
k

= PS :
[
fσ
]
k

(2.27)

In case the equilibrium expressed in Equation (2.26) is not fulfilled, the initial prediction
of the matrix strain tensor has to be corrected means of the Jacobian of the residual forces.
The Jacobian is obtained deriving the residue function with respect to the unknown as
expressed in Equation (2.28).

J = [mCSS]k +
mk
fk

[
fCSS

]
k

(2.28)

with

[mCSS]k = PS : [mC]k : PS[
fCSS

]
k

= PS :
[
fC
]
k

: PS (2.29)
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And the update of the matrix of strains corresponding to the serial part of the composite
is expressed as:

[mεS]k := [mεS]k − [J]−1
k : [∆σS]k (2.30)

where k := k + 1.

In addition to the iterative algorithm, for the solution of the global problem, the com-
putation of the tangent operator is also required. If the global problem is solved via the
finite element method, for example, this operation must be accomplished when assembling
the elemental stiffness matrix. The derivation of the tangent matrix for the composite is
performed by linearizing the equations governing the BSP model.

In the BSP model and other formulations, the iso-strain in parallel direction and iso-stress
in serial directions are the usual and simpler assumptions when obtaining the proper-
ties of composite material. However the iso-stress assumption in orthogonal directions to
the fiber (pure serial behavior in transverse directions) constitutes a lower bound for the
transverse/shear stiffness of the composite and for this reason the BSP model needs to be
enriched in order to predict the transversal/shear behavior more accurately, therefore an
evolved version of the method is proposed in the enriched serial/parallel (ESP) model.

The governing equations for the ESP model maintain the structure of the governing equa-
tions for the BSP model (Equations (2.13-(2.15)). The only difference is the use different
close equations to provide a better account for the internal morphology of the composite
and for the stress/strain concentration in the matrix as expressed as follows:

(mε)∗ = [mK]−1 :m ε (2.31)

(mσ)∗ = mK : mσ (2.32)

(mC)∗ = mK : mC : mK (2.33)

with

mK = PP : I : PP +m γPS : I : PS (2.34)

It is worth noting here that fγ = 1, since the fiber stress remains uniform, and conse-
quently it is not necessary to perform a change of variables for fiber material. The gamma
parameter mγ may be obtained through experimental calibration with lamina tests data,
or through analytical analysis. By means of micro-mechanical considerations it is possible
to adopt values of the gamma parameter mγ in terms of the fiber volume fraction fk and
the ratio between fiber and matrix Young modules R = fE/mE. The following analytical
expression for the parameter mγ is proposed:

mγ =

√
η + ω2 (1− η)

η + ω (1− η)
(2.35)
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where ω = 1 + (R− 1)
√
fk and η =

√
fk

1+fk

Among the findings obtained in this study, it was concluded that the basic SP model,
as well as the inverse rule of mixtures method, underestimates the experimental values,
while the enriched SP model obtains an approximation to experimental data as good as
the one given by the Halpin-Tsai equation. Nevertheless, the Halpin-Tsai equation is re-
stricted to the linear elastic region, while the ESP model also provides answers for the
non-linear behavior of the composite material.

In a more recent work, Martinez et al. [71], implemented the serial-parallel mixing theory
developed by [99] in a tri-dimensional framework and applied it for the numerical sim-
ulation of structures of reinforced concrete (RC) retrofitted with carbon fiber reinforced
polymers (CFRP). In this study a different way to compute the tangent constitutive tensor
of the composite is proposed. The tensor of each constitutive material of the composite
is obtained by means of a perturbation method. The perturbation method consists in
defining n small perturbations of the strain vector, to obtain n stress vectors that will be
used to obtain the numerical expression of the tangent constitutive tensor.

In order to simulate the effect of performing a structural retrofitting in a damaged struc-
ture, it is necessary to add the CFRP reinforcement once the structure is already damaged.
With the purpose to simulate this process in a more realistic manner, a construction-stages
algorithm is implemented in a finite element code, so that it is possible to add or remove
structural elements during the calculation process.

The algorithm proposed enables to run the numerical simulation for the desired load
cases, with only some structural elements active in the structure. Being possible to add
new elements at a given load case, without interrupting the calculation process. These
elements must be free from strains and stresses when they are activated. All this process
if performed within the serial-parallel mixing theory framework.

From the results achieved in this research it was proved that the serial-parallel rule of
mixtures can obtain the composite performance by combining the mechanical behavior of
its different constituents, each one computed with its own specific constitutive equation.
The theory takes into account the directional behavior of the fiber constituents and it is
capable of reproducing with great accuracy the effect that CFRP have for retrofitting RC
structures.

2.2 The effective medium approximation and the self-consistent
method

The multi-scale homogenization theory as it is known nowadays is the result of numerous
research studies, most of them based on the mean field model approach originally proposed
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by Eshelby [26]. The method consisted in finding the stresses present in an elastic solid
when a region of the solid called ‘inclusion’ suffered a change of shape and size which is
represented by a uniform homogeneous deformation as if the surrounding material were
absent. This study demonstrated that the results for the inclusion can be used to find how
a uniform stress is disturbed by the presence of an ellipsoidal cavity, or more generally an
ellipsoidal region whose elastic constants differ from those of the remaining material. The
Eshelby problem is posed as follows:

• Consider an infinite, isotropic, linear elastic solid, with (homogeneous) Young’s mod-
ulus E and Poisson’s ratio ν.

• The solid is initially stress free, with displacements, strains and stresses uij=εij=σij=0.

• Some unspecified external agency then induces a uniform ‘transformation strain’ εTij
inside an ellipsoidal region, with semi-axes a1, a2, a3 centered at the origin as shown
in Figure 2.1. The ‘transformation strain’ can be visualized as an anisotropic thermal
expansion if the ellipsoidal region were separated from the surrounding elastic solid,
it would be stress free, and would change its shape according to the strain tensor
εTij .

Figure 2.1: Ellipsoidal region of the Eshelby inclusion

• Because the ellipsoid is encapsulated within the surrounding elastic solid, the stress,
strains and displacement fields are induced throughout the elastic solid. These fields
must be defined carefully because the initial configuration for the solid could be
chosen in a number of different ways. From now on, ui will denote the displacement
of a material particle from the initial, unstressed configuration, as the transformation
strain is introduced. The total strain is defined as:
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εij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
(2.36)

• Inside the ellipsoid, the total strain consists of the transformation strain together
with an additional elastic strain εij = εTij + εeij . Outside the ellipsoid, εij = εeij . The
stress in the solid is related to the elastic part of the strain by the usual linear elastic
equations:

σij =
E

1 + ν

[
εeij +

ν

1− 2ν
εekkδij

]
(2.37)

The Eshelby solution gives full expressions for these fields. It has proved to be one of the
most important solutions in all of linear elasticity: it is of some interest in its own right,
because it provides some insight into the mechanics of phase transformations in crystals.
More importantly, a number of very important boundary value problems can be solved by
manipulating the Eshelby solution. These include (i) the solution for an ellipsoidal inclu-
sion embedded within an elastically mismatched matrix; (ii) the solution for an ellipsoidal
cavity in an elastic solid; (iii) solutions for circular and elliptical cracks in an elastic solid.
In addition, the Eshelby solution is used extensively in theories that provide estimates of
elastic properties of composite materials.

Several authors directly further developed the work of Eshelby. Among those, Hashin
[49], obtained bounds and expressions for the elastic moduli of two- or many-phase non-
homogeneous materials by an approximate method based on the variational theorems of
the theory of elasticity and on a concentric-spheres model. On another study, Budiansky
[12] performed a heuristic analysis for the determination of the elastic moduli of a com-
posite material in which the several constituents are isotropic and elastic. The results are
applied to heterogeneous materials composed of contiguous, more-or-less spherical grains
of each of the phases. Mori and Tanaka [77], developed a method of calculating the average
internal stress in the matrix of a material containing inclusions with transformation strain.
In this work it was shown that the average stress in the matrix is uniform throughout the
material and independent of the position of the domain where the average treatment is
carried out.

The self-consistent method may be considered as an extension of the effective medium
approach. It was initially proposed by Kröner [60] for determining the macroscopic prop-
erties of polycrystalline solids. This model is particularly suitable for multiphase materials
where the different phases are arranged to form an interpenetrating network as it happens
with the different grains of a polycrystalline material. Hill [51] estimates the macroscopic
elastic moduli of two-phase composites by a method that takes account of the inhomo-
geneity of stress and strain in a way similar to the Hershey-Krner theory of crystalline
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aggregates. The phases may be arbitrarily aeolotropic and may have any concentration,
but are required to have the character of a matrix and effectively ellipsoidal inclusions.

A more elaborate version of the classic self-consistent approach is the model of three
phases or generalized self-consistent model due to Christensen and Lo [18], which is re-
solved when the inclusions are spheres or undefined cylindrical fibers. This method which
is not strictly a mean-field model embeds the spherical inclusions (or fibers) in a spherical
(or cylindrical) cap which represents the elastic properties of the matrix. The set formed
by the inclusion and the matrix in turn is embedded in a medium infinity with the effective
properties of multiphase materials to be determined. The values of the effective elastic
constants of the material are obtained integrating the differential equations governing the
behavior of the three-phase boundary conditions and of the applied loads. This model is
particularly suitable for multiphase materials whose microstructure is formed for spherical
inclusions of different sizes that are scattered in an array.

Gonzalez and Llorca [40] developed a model to compute the mechanical behavior of
two-phase materials including the effects of damage or changes in the volume fraction
of each phase. The material is represented by an interpenetrating network of randomly
distributed spheres, which are assumed to behave as isotropic elasto-plastic solids. The in-
cremental self-consistent method is used to compute the effective response of the material
as well as the elastic stress redistribution due to damage or phase change. As an exam-
ple, the model predictions are compared with experimental results previously reported for
a particle-reinforced metal-matrix composite, which presented damage by reinforcement
fracture during deformation. The model predictions, in terms of the tensile stress-strain
curve, the onset of plastic instability and the fraction of broken particles at failure were
in reasonable agreement with the experimental results, showing the ability of the model
to simulate the mechanical behavior of two-phase materials including the effect of damage.

In more recent works, Molinari [76] proposed average models for heterogeneous viscoplastic
and elastic-viscoplastic materials, which in turn formed the basis of the work of Mercier et
al. [72], in the validation of an interaction law for the Eshelby inclusion problem in elasto-
viscoplasticity. Based on these two studies described previously, Mercier and Molinari [73]
proposed two self-consistent schemes for perfectly disordered materials and a Mori-Tanaka
model for composite materials. The first self-consistent scheme is valid for any non-linear
behavior. The second one is dedicated to aggregates with phases having the same strain
rate sensitivity. It is observed that predictions based on the second self-consistent model
are accurate as compared to exact solutions obtained previously for a two-phase linear
viscoelastic aggregate. Both schemes provide similar results when non-linear behavior is
considered. Meanwhile the proposed Mori-Tanaka scheme predicts accurately overall re-
sponse of the composite material and the scheme is able to capture the strain and stress
histories in the phases, crucial when dealing for example with residual stresses after metal
forming operation.
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2.3 Bounding methods

The bounding methods are based on providing lower and upper limits to the total stiffness
of the system. These methods generally try to obtain simpler expressions for the effective
thermo-elastic properties looking for the minimum potential and complementary energies.

2.3.1 The classical bounds of Voigt and Reuss

The idea of the Voigt approach was to determine elastic moduli by averaging stresses,
expressed in terms of strains, over all possible pattern orientations. The method assumes
strain uniformity throughout the composite material as in case of the specimen presented
in Figure 2.2, in which a n-phase composite of domain Ω is being loaded axially causing
a uniform field of strains.

Figure 2.2: Specimen with strain uniformity in all the phases of the composite

Taking into account that the average strain of each phase is equal to the applied strain,
then a rule-of-mixture-type assumption as expressed in Equation (2.38) can be made.

ε(Ω) = ε(Ω1) = ε(Ω2) = · · · = ε(Ωn) (2.38)

where ε(Ω) and ε(Ωn) represent the deformation of the composite and of the n− th compo-
nent of the composite material, respectively. Considering that each component is linear-
elastic, the stresses can be obtained for each phase as:

σ(Ω1) = C1 · ε(Ω), σ(Ω2) = C2 · ε(Ω), · · · ,σ(Ωn) = Cn · ε(Ω) (2.39)

Cn represents the elasticity tensor of the n − th component of the composite material.
The force balance in the load direction can be written as:
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F (Ω) = σ(Ω) ·A(Ω) = F (Ω1) + F (Ω2) . . .+ F (Ωn) (2.40)

where

F (Ω1) = σ(Ω1) ·A(Ω1), F (Ω2) = σ(Ω2) ·A(Ω2), · · · ,F (Ωn) = σ(Ωn) ·A(Ωn) (2.41)

A(Ωn), F (Ωn) and σ(Ωn) are the cross-sectional areas, the acting forces and the stresses in
each of the n-th phase components, meanwhile A(Ω), F (Ω) and σ(Ω) are the corresponding
averaged values over the composite. Taking Equations (2.38) and (2.40) into account, the
following relationship can be obtained:

C(Ω) =

n∑
i=1

Ci · φi (2.42)

where C(Ω) is the effective elastic tensor of the composite, φi and Ci are the volume frac-
tion and the elasticity tensor corresponding to the i phase, respectively.

On the other hand, Reuss [101] proposed to determine the elastic moduli by averaging
strains, expressed in terms of stresses assuming stress uniformity as in the case shown in
Figure 2.3, when all constituents are assumed to have the same stress.

Figure 2.3: Specimen with stress uniformity in all the phases of the composite

The Reuss estimates gives the following estimation of the effective elastic tensor of the
composite.

C(Ω) =

[
n∑
i=1

φi
Ci

]−1

(2.43)
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The Voigt and Reuss estimates tried to provide exact estimations of the elastic moduli of
materials with random microgeometries. However, these estimations give only upper and
lower bounds for the elastic moduli of a composite with an arbitrary random geometry.
The Reuss estimation gives the lower bound of the elastic moduli for the composite, and
the Voigt estimation gives the upper bound. The Voigt-Reuss bounds depend exclusively
on the phase volume fractions and do not require any further information or assumption
concerning the microstructure. The bounds for the effective moduli of composites are valid
form arbitrary microstructures, isotropic and anisotropic.

2.3.2 Variational bounding methods

Hashin and Shtrikman [50] used this variational formulation for the derivation of upper
and lower bounds for the effective elastic moduli of quasi-isotropic and quasi-homogeneous
multiphase materials of arbitrary phase geometry. In the formulation is demonstrated that
when the ratios between the different phase moduli are not too large the bounds derived
are close enough to provide a good estimate for the effective moduli. The variational
principle derived analytical expressions which provide bounds for the elastic constants of
a heterogeneous material with a random isotropic distribution of phases.

Walpole [122] generalized the bounds of Hashin and Shtrikman for materials with sev-
eral phases, while Beran and Molyneux [8] used the variational method to obtain the
limits of two-phase materials based on the probability function of three points where the
effective elastic properties depend on the elastic constants of each phase and two param-
eters that provide information about the microstructure of the material.

In more recent works the nonlinear problem using the variational bounding method is
addressed by Ponte Castañeda [96] where two dual versions of a variational principle are
presented and applied to determine bounds and estimates for the effective energy functions
of nonlinear composites with prescribed volume fractions in the context of the deformation
theory of plasticity. The classical bounds of Voigt and Reuss for completely anisotropic
composites are recovered for the new variational principles and are given as alternative
simpler forms. Also, the use of a novel identity allows the determination of simpler forms
for nonlinear Hashin-Shtrikman bounds, and estimates, for isotropic, particle-reinforced
composites, as well as for transversely isotropic, fiber-reinforced composites. Addition-
ally, third-order bounds of the Beran type are determined for the first time for nonlinear
composites. Meanwhile Talbot and Willis [115] developed bounds of third order for the
overall response of nonlinear composites whose response can be described in terms of a
convex potential function. Bounds are constructed for the overall, or effective, potential
of the composite, given the individual potentials of its constituents. Steady-state creep
is considered explicitly but the results apply equally well to physically nonlinear elastic-
ity, or deformation-theory plasticity, if strain-rate is reinterpreted as infinitesimal strain.
The fields used in this study have the property of bounded mean oscillation. The use of
a theorem that applies to such fields permits the construction of the bounds that were
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previously inaccessible. Results for three-point correlations are presented for an isotropic
two-phase composite, each component of which is isotropic and incompressible. The gen-
eralized Hashin-Shtrikman-type bounds were also investigated by allowing the parameter
corresponding to the three-point correlations to take its extreme values.

Lahellec and Suquet [66] developed a method for determining the overall behavior of
composite materials comprised of nonlinear inelastic constituents using incremental vari-
ational principles in which the evolution equations describing the constitutive behavior
of the phases are reduced to the minimization of an incremental energy function. The
paper is devoted to the effective response of heterogeneous materials, whose individual
constituents exhibit both reversible and irreversible effects in their mechanical behavior.
Upon time-discretization of the constitutive differential equations, an incremental varia-
tional principle has been derived, by means of which the problem can be reduced to the
minimization of a single non-quadratic incremental potential. A strategy, inspired by the
variational procedure of Ponte Castañeda [96], has been used to linearize the non-quadratic
condensed potential and also to define an ‘effective internal variable’ per phase at each
time-step. Comparisons with full-field simulations show that the present model is good
as long as the variational procedure is accurate in the purely dissipative setting, when
elastic deformations are neglected. If this is the case, the present model accounts in a
very satisfactory manner for the coupling between reversible and irreversible effects and
is therefore an accurate model for treating nonlinear viscoelastic and elasto-viscoplastic
materials. However in certain situations, the variational procedure is not accurate in the
purely dissipative limit and examples of such situations are given. In order to enhance
this study a more refined scheme, still based on the condensed variational potential with
a different linearization strategy based on an anisotropic linear viscoelastic composite, is
proposed by Lahellec and Suquet [67]. In this second part of the study, a proper modifica-
tion of the second order procedure of Ponte Castañeda is proposed and leads to replacing,
at each time-step, the actual non-linear viscoelastic composite by a linear viscoelastic one.
The linearized problem is even further simplified by using an ‘effective internal variable’
in each individual phase. The resulting predictions are in good agreement with exact
results and improve on the predictions of the secant model proposed in the first part of
this research.

Though most of the analytical models presented in the sections above are reasonably
effective in predicting equivalent material properties for relatively simple geometries and
low volume fraction of second phase inclusions, they are often incapable of depicting the
evolution of stresses and strains in the microstructure. On the other hand, arbitrary
microstructural morphology, which is frequently encountered in actual heterogeneous ma-
terials, cannot be treated with these models. Moreover, the constitutive response of the
constituent phases is also somewhat restricted and predictions with large property mis-
matches are not very reliable.
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2.4 Asymptotic homogenization theory

The asymptotic homogenization theory laid the foundation for the study of composite
materials in media with periodic structures using a multi-scale approach. This theory has
proven to be a powerful technique for the analysis of structural arrangements in which
two or more length scales naturally exist. These two scales are the microscopic scale of
inter-second phase spacing and the macroscopic scale characterizing overall dimensions of
the structure. Through the use of asymptotic expansions of displacement and stress fields
and appropriate variational principles, the homogenization methods can provide not only
the effective (homogenized) material parameters, but also distributions of stresses and
strains at the two levels. There are two main monographic books on the subject which
laid the mathematical basis for the method and emphasized its application in the solution
of mechanical problems by Bensoussan et. al. [7] and by Sanchez-Palencia [103].

Bensoussan et al. [7] developed an asymptotic expansion of the solution in terms of a
parameter ε which is the ratio of the period of the structure to a typical length in the
region. If the period of the structure is small compared to the size of the region in which
the system is to be studied, then an asymptotic analysis is called to obtain an asymptotic
expansion the link from a microscopic description to a macroscopic description of the be-
havior of the system. The asymptotic problem is formulated in mathematical terms as a
family of partial differential operators, depending on the small parameter ε. The partial
differential operators may be time independent or time dependent, steady or of evolution
type, linear or nonlinear, etc. These operators have coefficients which are periodic (or in
many cases almost periodic) functions in all or in some variables with periods proportional
to ε. Since ε is assumed to be small, we have a family of operators with rapidly oscillating
coefficients. The link from the microscopic to the macroscopic description of the behavior
of the system is given by solving the problem in two scales defined by the spatial variables
x and y, where x is a macroscopic quantity and y = x/ε is a microscopic one ; y is associ-
ated with the small length scale of the inclusions or heterogeneities.

The two-scale process introduced in the partial differential equations of the problem pro-
duces equations in x, in y and in both variables. Generally speaking, equations in y are
‘solvable’ if the microscopic structure is periodic, and this leads to a ‘rigorous’ deduction of
the macroscopic equations (in x) for the global behavior. ‘Rigorous’ is here understood in
the sense of ‘straight-forward if the two-scale scheme is postulated’ and, moreover, in most
problems, a mathematical proof of the convergence of solutions to the ‘homogenized solu-
tions’. It is emphasized that the ‘homogenized coefficients’ depend on the local structure
of the medium, which may be obtained by numerical solution of boundary value problems
in a period of the structure which has boundary conditions mostly of the periodic type. In
the following paragraphs the standard classical formulation of this theory is given following
the notation as expressed by Sanchez-Palencia in a later work [104].
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2.4.1 Two-scale asymptotic expansions and local periodicity

In mathematics an asymptotic expansion is defined as the formal series of functions which
has the property that when the series is truncated after a finite number of terms, it provides
an approximation to a given function, as the argument of the function tends towards a
particular, often infinite, point. This method has been applied in several scientific areas in
pure and applied mathematics to represent the behavior of several physical phenomena.
For example, in classical mechanics of vibrations, the asymptotic expansion method is
applied to describe the motion of an oscillating pendulum when a small factor (in this
case a small damping factor) modifies the motion, which should be otherwise, periodic in
time. Due to the damping effect, the response of the system is such that each ‘period’
is almost analogous to the preceding one, however the cumulative effect of the damping
causes important differences (of the amplitude, for instance) of the motion of two ‘far in
time’ located periods as shown in Figure 2.4.

Figure 2.4: Response of a damped harmonic oscillator

Besides the time factor t, another two variables are needed to mathematically describe
this type of phenomena: the variable t∗ = t and τ = εt, corresponding to the so-called fast
and slow times respectively. The variable ε is the small parameter related to the damping
of the system. The asymptotic expansion to find the solution for uε(t) is given by the
expression of the form:

uε(t) = u0(t∗(t), τ(t)) + εu1(t∗(t), τ(t)) + · · · (2.44)

Where the local periodic phenomena is described by the dependence on t through t∗, and
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the slow modulation by the dependence on t through τ , then derivative of the function
with respect to the two parameters is given by Equation (2.45).

d

dt
=

∂

∂t∗
+ ε

∂

∂τ
(2.45)

Making analogous considerations, the later formulation can be applied to mathematically
describe the behavior of solids when subjected to small or large perturbations. Let Ω be a
body made of a composite material in the R3 space of the standard coordinates (x1, x2, x3).
Moreover, we assume that its mechanical properties are periodic described by the small
parameter ε. In the auxiliary space of the variables (y1, y2, y3), a parallelepipedic period
denoted by Y (with edges Y1, Y2, Y3) is considered as illustrated in Figure 2.5 as well as the
parallelepipeds obtained by translations of an integer number of periods in the directions
of the axes.

Y

Y1

Y2

Figure 2.5: Periodical space Y

Now, if it is considered that εY is the homothetic of Y with ratio ε and that the body Ω
has a εY -periodic structure, then a property uε(x) that represents some property of the
mechanical process is searched under the form of an asymptotic expansion. The variable
u may denote displacement, stress or some other property. The asymptotic expansion has
the following form:

uε(x) = u0(z(x), y(x)) + u1(z(x), y(x)) + · · · (2.46)

with

z(x) = x ; y(x) =
x

ε
(2.47)

In order to reduce the expression, for the sake of simplicity Equation (2.46) can be ex-
pressed as:

uε(x) = u0(x, y) + u1(x, y) + · · · (2.48)
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and the derivative of the function with respect to the two scales is given by:

d

dxi
=

∂

∂xi
+

1

ε

∂

∂yi
(2.49)

With the purpose to study the influence of external effects on the macroscopic scale re-
sponse of a composite, an expansion of the type presented in Equation(2.48) with functions
ui Y -periodic with respect to the variable y and smooth with respect to x is studied. Each
function ui(x, y) is defined on Ω x Y (or on Ω x R3, since the function is Y -periodic).

Let’s consider a periodic medium domain Ω which is divided in periodic unit-cells as
presented in Figure 2.6. If the values of the function ui(x, y) at two points P 1,P 2 homol-
ogous by periodicity corresponding to two contiguous periods are compared then it can
be stated that by periodicity the dependence on y is the same and the dependence on
x is ‘almost the same’ because the distance P 1-P 2 is small and therefore ui is a smooth
function of x. On the other hand, let P 3 be a point homologous to P 1 by periodicity, but
located far from P 1. The dependence of ui on y is the same, but the dependence on x
is very different because P 1 and P 3 are not near to each other. Finally we compare the
values of ui at two different points P 1 and P 4 of the same period. The dependence on
x is almost the same, but dependence on y is very different because P 1 and P 4 are not
homologous by periodicity, since in fact, the distance P 1-P 4 is ‘large’ when measured with
the variable y. The concepts expressed in the preceding paragraphs are known as the local
periodicity hypothesis.

Figure 2.6: Periodic domain Ω
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It is evident that this locally periodic expansion is fit to describe the solution in regions of
Ω far from its boundary, or from regions where the local effects are not εY -periodic, such as
discontinuities of the microscopic structure, consequently in such regions the asymptotic
expansion may be of different nature. Therefore it can be stated that the solution using
asymptotic expansions is mainly affected by two factors:

1. The first is the scale of Ω and arises from the forces applied and the conditions at
the boundaries.

2. The second is due to the periodic structure, which is given by the arrangement of
the components.

2.4.2 Model equations for composite structures

To express the model equations using asymptotic expansions, the formulation expressed
by Devries et al. [22] and later extended by Ghosh et al. [34] is followed in the next
paragraphs. This formulation considers an elastic body which occupies a region Ω related
to a system of orthonormal axes (0,x1, x2, x3). The body is subjected to a system of body
forces f and of surface forces F on a portion ΓF of the boundary ∂Ω. The other portion
of the boundary is Γ0, on which a zero displacement condition is imposed. The material
is covered by a set of identical periods with the same geometrical configuration.

A period characteristic of the material similar to that presented in Figure 2.5 denoted
by Y has been designated and enlarged by homothetics. The small parameter ε designates
the homothetic ratio which relates Y to a period in the elastic material. Therefore, it can
be stated that the elastic structure of the material is fully described if it is given over a
single period Y related to the orthonormal axis system (0,y1,y2,y3). Let Cijkl(y) be the
coefficients of elasticity on Y , which generally change very quickly with respect to y, but
satisfy rigorously the symmetry relations as expressed by Equation (2.50).

Cijkl(y) = Cjikl(y) = Cklij(y) (2.50)

The functions y → Cijkl(y) defined on Y are extended by Y -periodicity to the entire
space (0y1y2y3), assumed to be covered by contiguous periods identical to Y . Then, the
coefficients of elasticity Cεijkl in the material Ω are defined by:

Cεijkl = Cijkl(y), y =
x

ε
(2.51)

The terms presented in Equation (2.51) can also be expressed as:

C(y) = {Cijkl(y)} , Cε(x) = C
(x
ε

)
, σ = {σij} (2.52)
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Therefore, the stresses and displacements fields of the heterogeneous material should sat-
isfy the following boundary value problem.

∂σεij
∂xj

= −fi, in Ω (2.53)

σεij = Cεijklε
ε
kl, εεkl =

1

2

(
∂uεk
∂xεl

+
∂uεl
∂xεk

)
(2.54)

σεij · n = F , on ΓF (2.55)

uεi = 0, on Γ0 (2.56)

Where n is the unit normal to the boundary. Since small deformation is assumed, the
normal vector does not change significantly with load. In homogenization theory, the Y -
periodic displacement rate or increment field is approximated by an asymptotic expansion
with respect to parameter ε.

u ε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + . . . , y =
x

ε
(2.57)

Since it is known that the spatial xε derivative of any function Φ depends on the two
length scales, it can be expressed as:

∂

∂xεi

[
Φ
(
x, y =

x

ε

)]
=
∂Φ

∂xi
+

1

ε

∂Φ

∂yi
(2.58)

Therefore the strain field tensor may be expressed as follows:

εεkl =
∂uεk
∂xεl

=
1

ε

∂u0
k

∂yl
+

(
∂u0

k

∂xl
+
∂u1

k

∂yl

)
+ ε

(
∂u1

k

∂xl
+
∂u2

k

∂yl

)
+ · · · (2.59)

The stress field is given by:

σεij =
1

ε
σ0
ij + σ1

ij + εσ2
ij + . . . (2.60)

with

σ0
ij = Cijkl(y)

∂u0
k

∂yl

σ1
ij = Cijkl(y)

(
∂u0

k

∂xl
+
∂u1

k

∂yl

)
(2.61)

σ2
ij = Cijkl(y)

(
∂u1

k

∂xl
+
∂u2

k

∂yl

)
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Putting the expansion set in Equation (2.60) in the form of equilibrium Equation (2.53),
and setting each coefficient of εi (i = -1, 0, 1,2, . ..) to zero, results in the following set of
equations.

∂σ0
ij

∂yj
= 0

∂σ1
ij

∂yj
+
∂σ0

ij

∂xj
= 0 (2.62)

∂σ2
ij

∂yj
+
∂σ1

ij

∂xj
+ fi = 0

If the two scales represented by the variables x and y are considered independent, the
set of Equations (2.62) form a recursive system of differential equations for the functions
u0
i , u

1
i , u

2
i , . . . parameterized by x, which has a solution of the form:

− ∂

∂yi

(
aij(y)

∂Φ

∂yj

)
= F in Y (2.63)

for a Y -periodic function Φ = Φ(x, y) has a unique solution defined by:

〈F 〉 =
1

|Y |

∫
Y
F dy = 0 (2.64)

where the 〈·〉 operator denotes mean value and |Y | denotes the volume of the representative
volume of the element (RVE). Equations (2.61) and (2.62) together with (2.64) leads to the
trivial solution for σ0

ij = 0 and therefore it may be established that u0 is only a function
of x, this is:

σ0
ij = 0, and u0

i = u0
i (x) (2.65)

• Microscopic equilibrium equation and homogenized constitutive relation

Substituting Equation (2.65) into the second Equation of set (2.62), it leads to the Y -
domain (RVE domain) equilibrium equation:

∂σ1
ij

∂yj
= 0 in Y (2.66)

Neglecting the terms associated with ε in Equations (2.59) and (2.60) the constitutive
relation in Y of Equation (2.56) is expressed as:
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σεij = σ1
ij = Cεijklε

ε
kl (2.67)

with

εεkl = ε̄kl + ε∗kl =

(
∂u0

k

∂xl
+
∂u1

k

∂yl

)
(2.68)

where εεkl is the local or microstructural strain tensor, for which ε̄kl = ∂u0
k/∂xl is an aver-

aged macroscopic part, and ε∗kl = ∂u1
k/∂yl, is denoted as a fluctuating strain tensor.

Due to the linearity of σ1 and u1, these variables can be expressed as follows:

σ1
ij = sklij (y)

∂u0
k

∂xl
, u1

i = χkl(y)i
∂u0

k

∂xl
(2.69)

where sklij is a Y -antiperiodic function and χkl is a Y -periodic function representing char-
acteristic modes of the RVE and with Equation (2.70) representing the equilibrium at the
microscopic scale.

∂sklij (y)

∂yj
= 0 (2.70)

Substituting Equations (2.69) in Equation (2.61) yields the microscopic constitutive rela-
tions as:

sklij (y) = Cεijkl

[
Iklij +

∂χkl

∂y

]
(2.71)

where Iklij is a fourth-order identity tensor expressed as:

Iklij =
1

2
(δikδjl + δilδjk) (2.72)

Substituting Equation (2.71) in the solution of σ1
ij , the expression stays as follows:

σ1
ij = Cεijkl

[
Iklij +

∂χkl

∂y

]
∂u0

k

∂xl
(2.73)

and by taking the mean value in the domain Y as the homogenized tension

〈
σ1
ij

〉
= Cxijkl

∂u0
k

∂xl
(2.74)
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where

Cxijkl = 〈Cijkl(y)〉 −
〈
Cijpq(y)

∂χkl(y)p
∂yq

〉
(2.75)

These coefficients are independent of the macroscopic scale x and they define the equivalent
homogeneous material. These vales are known as the homogenized coefficients.

• Macroscopic equilibrium equation

The equation of equilibrium in the macroscopic domain is obtained by taking the mean of
the third equation presented in (2.62) on Y and applying the condition (2.64) to the first
term ∂σ2

ij/∂yj leads to an averaged form of the global equilibrium equation as:

∂
〈
σ1
ij

〉
∂xj

+ fi = 0 in Ω (2.76)

Therefore, the averaged stress Σ =
〈
σ1
〉

and the displacement field u0 are the solution to
the elastic problem defined by the following set of equations:

∂Σij

∂xj
= −fi in Ω (2.77)

Σij = Cxijklε̄kl (2.78)

Σij · n = F , on ΓF (2.79)

u0
i = 0, on Γ0 (2.80)

The averaged stress field Σ is also known as the macroscopic stress field, meanwhile the
strain field E expressed in Equation (2.81) is referred as the macroscopic strain field.

E = ε̄kl (2.81)

Equation (2.81) satisfies the following condition:

E = 〈ε̄kl + ε∗kl〉 (2.82)

• Application procedure

To use the formulation presented above, a process called localization procedure is pre-
sented. In this process it is remarked that the stress field σ1

ij is the first term of the
asymptotic expansion of the stress field σε(x) solution of the initial physical problem.
This field it is known as the microscopic stress field. Then for each point x ∈ Ω there is a
small εY period which gives a stress field σ1

ij .
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It can be demonstrated that:

σε(x)− σ1
ij

(
x,
x

ε

)
→ 0, in the L1(Ω) norm (2.83)

when ε tends to zero.

Equation (2.83) proves that σ1
ij (x, x/ε) is an approximation of σε(x) when ε is small.

The microscopic stress field σ1
ij , y = x/ε can be computed as follows:

1. Determine the six vector fields χkl on Y associated with the tensor Ikl solution of
problem (2.71), which is an elastic-type problem on the non-homogeneous domain
Y .

2. Obtain the homogenized coefficients Cxijkl from the vector fields χkh(y), as in deter-
mined in (2.75).

3. By solving the homogenized elastic problem presented in Equations (2.77)-(2.80) on
Ω, the macroscopic stress field Σ and the macroscopic deformation field E = ε̄kl are
obtained for x ∈ Ω.

4. For any point x fixed in Ω, the stress field σ1
ij field on Y shows how the macroscopic

stress Σ =
〈
σ1
〉

is located within in a εY period at x ∈ Ω.

The asymptotic homogenization theory has been applied in conjunction with several nu-
merical methods in order to perform multiple scale analysis, such as the finite element
method, the Voronoi cell finite element model, the stochastic analysis, etc. to solve lin-
ear elastic and non-linear problems. The combination of the asymptotic homogenization
with these methods it is what gives origin to what later was denominated as multi-scale
homogenization. In the next section a thorough description of the most notables existing
multi-scale homogenization techniques is presented.

2.5 Multi-scale homogenization

The multi-scale homogenization has emerged as one of the most promising methods to
compute the response of composite structures. In the last years a variety of direct micro-
macro methods, also known as global-local analysis have been developed as the evolving
result of the application of the asymptotic homogenization theory. These approaches
estimate the relevant stress-strain relationship at a macroscopic point by performing cal-
culations on a separated scale determined by a macroscopic point using different methods
to compute the structural response at the different scales.

Suquet [110] laid down the basic principles of homogenization with the purpose of find-
ing the constitutive equations for the averaged effective or macroscopic properties of a
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heterogeneous material. The multi-scale homogenization of composite materials can be
established following the next three-step scheme. The scheme is illustrated as well in
Figure 2.7:

• Definition of a volume element, which is statistically representative for the whole
material microstructure under consideration. The size of the representative volume
element (RVE) should be large enough to contain a sufficient number of micro-
heterogeneities of which the constitutive behavior of these individual constituents
is assumed to be known. The RVE should permit micromechanical analysis in the
framework of available computational resources.

• Localization (macro-micro transition): microscopic boundary conditions are ob-
tained based on the macroscopic input variables (e.g. strain tensor), taking into
account the geometry, constitutive laws, etc.

• Homogenization (micro-macro transition): macroscopic output variables are ob-
tained based on the computation of the microscopic behavior of the RVE. Macro-
scopic properties of the equivalent homogeneous medium are evaluated.

Figure 2.7: Homogenization scheme in two scales

It must be highlighted however, that the concept of homogenization is applicable only
if at least two length scales in the problem can be defined. Several features that result
very convenient for the analysis of composites are offered by the multi-scale computational
homogenization techniques, as mentioned by Koutnetzova et al. [58]. Among the most
remarkable features there are:
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• No explicit assumptions on the format of the macroscopic local constitutive equa-
tions are required, since the macroscopic constitutive behavior is obtained from the
solution of the associated microscale boundary value problem.

• The techniques are suitable for arbitrary material behavior, including physically
nonlinear and time dependent.

• Permit the incorporation of large deformations and rotations on both micro and
macrolevel.

• Possibility to introduce detailed microstructural information, including the physical
and geometrical evolution of the microstructure, into the macroscopic analysis.

• Consent to use of almost any modeling method to compute the numerical response
on the microlevel, e.g. the finite element method, the boundary element method, the
Voronoi cell method, or numerical methods based on fast Fourier transforms, etc.

Regardless of the apparent fact that the multi-scale homogenization requires a compu-
tationally expensive coupled nested solution, it may be considered as a valuable tool to
analyze composite structures due to the ability to establish non-linear micro-macro struc-
ture property relations with relatively easiness. This feature is particularly useful in the
cases where the complexity of the mechanical and geometrical microstructural properties
prohibits the use of other modeling techniques. The seemingly high computational cost of
the method can be solved by using parallel computation. By doing this the main drawback
of the homogenization method is diminished.

2.5.1 Determination of the representative volume element

As pointed out in the preceding section, the multi-scale homogenization is based on the
use of a representative volume element (RVE). The RVE is a representative domain that is
employed to determine the corresponding effective properties for the homogenized macro-
scopic model. The RVE definition corresponds to a microstructural subregion that is
representative of the entire microstructure in an average sense. For the case of compos-
ites, it is assumed that it must contain a sufficient number of inclusions, which makes the
effective moduli independent of assumed homogeneous tractions or displacements on the
RVE boundary.

Among the different ways to characterize the representative volume element there are
two significantly different approaches to define it as pointed out by Drugan and Willis
[23]. The first approach arises from the perspective that in order to characterize macro-
scopic composite constitutive response, the statistical nature of the microstructure of the
composites must be recognized. This point of view leads to the conclusion that the small-
est RVE for which a macroscopic effective constitutive theory could apply is one that is
sufficiently large to be statistically representative of the composite, so it can include effec-
tively a sampling of all possible microstructural configurations that occur in the composite.
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This approach implies that the RVE must include a very large number of the composites
microheterogeneities (such as grains, inclusions, voids, cracks, fibers, etc.). Such state-
ments are invariably qualitative; therefore studies that focus on the overall composite
response generally state that the RVE must be chosen ‘sufficiently large’ compared to the
microstructural size for the approach to be valid. The second approach defines the RVE
as the smallest material volume element of the composite for which the usual spatially
constant overall modulus macroscopic constitutive representation is a sufficiently accurate
model to represent mean constitutive response. A thorough examination of the several
RVE definitions found in the literature can be consulted in the review made by Gitman
et al. [39].

There is consensus in the literature review that the RVE is clearly defined for two sit-
uations as Ostoja-Starzewski [94] pointed out: (i) when there is a unit cell in a periodic
microstructure (i.e. the volume element is chosen so as to contain a single inclusion in a
matrix phase) as seen in Figure 2.8a and (ii) when there is a volume containing a very large
set of micro-scale elements, possessing statistically homogeneous and ergodic properties
as presented in Figure2.8b.

(a) (b)

Figure 2.8: Modeling of representative volume element: (a) unit cell approach; (b) statistical and
ergodic approach.

2.6 Computational techniques to obtain the numerical re-
sponse of composite materials

Several computational methods have been developed to addressed the problem that multi-
scale homogenization poses in a rather straightforward manner. Different procedures have
been implemented to assess the macroscopic influence of the micro-structural parameters
by addressing the large computationally effort that this method requires in the best possi-
ble way. In the following sections an overview of the most outstanding works found in the
literature using different computational techniques to solve the multi-scale homogenization
problem is presented.
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2.6.1 Multi-scale homogenization using the FE method

The idea of using a finite element discretization to model the multi-scale approach was
first addressed by Renard and Marmonier [100]. The method consists in solving two fi-
nite element problems, one for each scale. In the micro scale the geometry of the RVE
is meshed and homogenization rules are used to link these microfinite element computa-
tions to the macroscopic scale. Guedes and Kikuchi [43] implemented the homogenization
method to model the mechanical behavior of linear elastic composite materials. A finite
element-based computational tool to perform the homogenization was developed by means
of two separated blocks. The first generates the material properties for a general struc-
ture meanwhile, the second, computes localized information (displacements, stresses and
strains).

Swan and collaborators [112, 111], developed a framework within the context of the dis-
placement finite element method for applying periodic boundary conditions to period basic
cells under the influence of applied macroscopically homogeneous stresses and strains. The
performance of both the stress and strain driven methods are demonstrated and assessed
on a complete set of homogenization computations for an elasto-plastic composite.

In 1988, Smith et al. [108] presented a homogenization method that accounts for large
deformations and viscoelastic material behavior. This method is based on . A multi-level
finite element program was implemented based on the classical homogenization theory
assuming local spatial periodicity of the microstructure as depicted in the schematic rep-
resentation presented in Figure 2.9.

Figure 2.9: Schematic representation of the multi-level finite element program (Smith et al.
[108]).

The microstructure is identified by a representative volume element (RVE) with conformity
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of opposite boundaries at any stage of the deformation process. The local macroscopic
stress is obtained by applying the local macroscopic deformation, represented by the de-
formation tensor imposing appropriate boundary conditions and averaging the resulting.
On each iteration cycle of the macroscopic finite element procedure the integration point
stress σmacro and stiffness Smacro are obtained by a separate finite element analysis on
the RVE that is assigned to that macroscopic integration point. RVE averaged stress
σRV E and stiffness SRV E are computed from the actual RVE vertex positions yi, forces
fi, and stiffness matrix K and subsequently returned to the macroscopic integration point
as σmacro and Smacro In this study it was demonstrated that the method successfully pre-
dicted the mechanical response of a perforated plane strain sheet.

The generalization of the mathematical homogenization method based on double-scale
asymptotic expansion to account for damage effects in heterogeneous media was presented
by Fish et al. [30]. This generalization consisted in deriving a closed-form expression re-
lating local fields to overall strains and damage. Non-local damage theory was introduced
by establishing the concept of non-local phase fields (stress, strain, free energy density,
damage release rate, etc.) in a manner analogous to that currently practiced in concrete.
The numerical results presented demonstrated the applicability and the potential of the
method.

Terada et al. [116] presented a study in which the convergence of the homogenization
method is examined. Among the main findings of this study it was demonstrated numeri-
cally that the periodic boundary conditions provide the most reasonable estimates among
the class of possible choices for statistical homogeneous media. Numerical simulation also
justified that the asymptotic homogenization can be applied to the analysis of general
heterogeneous media by taking the unit cell size as large as possible. Moreover, it was
concluded that the periodicity of RVE geometry when evaluating the effective properties
is not strictly required.

Feyel and Chaboche [27] discussed the behavior of periodic or quasi-periodic structures
reinforced by long fiber SiC/Ti as that presented in Figure 2.10. These authors demon-
strated that it was possible to consider realistic composite structural computations that
yields a detailed geometric description and constitutive equations giving access to mi-
crostructural data, instead of only obtaining phenomenological macroscopic data difficult
to correlate with the local mechanical state. The essential role of the fiber/matrix inter-
face strength at the microscopic scale was highlighted, since it conditions the macroscopic
behavior, especially the damage and failure phases.

Zalamea [126] developed a two-scale numerical method within the context of homoge-
nization theory assuming the periodicity of the internal structure of the material. Oller
et al. [90] extended this work by addressing the problem of the steep gradient that ap-
pears in the macroscopic field variables. This gradient is produced by the local boundary
effects and was solved by performing a refinement of the finite element mesh on the mi-
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croscale. By doing this, the periodic condition on the boundaries of the cells near to the
perturbation is maintained

Figure 2.10: Quasi-Periodic microstructure of a SiC/Ti composite (taken from Feyel and
Chaboche [27]).

Ladevèze and coworkers [62, 64] proposed a mixed, multilevel domain decomposition
method or, more precisely as a ‘structure decomposition’ method in which the structure is
partitioned into substructures and ‘material’ interfaces which, themselves, are particular
substructures. Each of these entities has its own variables and equations. The two-scale
description takes place only at the interfaces, where forces and displacements are split
into ‘macro’ contributions and ‘micro’ complements. The macro quantities are some mean
values over space and time of the forces and displacements, such that the macroforces
verify the macroequilibrium at the interfaces a priori.

Many more studies have been conducted using multi-scale homogenization in conjunc-
tion with the FE method, however these jobs are not discussed in this section as they
are modified or extended versions that follow specific approaches when applying the ho-
mogenization method, so they need to be treated separately, as may be the case of ho-
mogenization in 3D (Section 2.6.6), multi-scale homogenization studies using a high-order
formulation (Section 2.6.7) or the hierarchical multi-scale approach (Section 2.6.8).

2.6.2 Multi-scale homogenization using the Voronoi cell method

The Voronoi cell finite element method (VCFEM) was proposed as an alternative to the
traditional method of finite elements to solve nonlinear problems of composite materials.
The Voronoi cell finite element model originates from Dirichlet tessellation of a represen-
tative material element (RME). The Tessellation of a RME is a process of subdivision of
space, determined by a set of points, such that each point has associated with it a region
that is closest to it than to any other. The method discretizes the domain into a network
of multisided convex ‘Voronoi’ polygons containing one second phase inclusion at most.
Taking by example the composite material depicted in Figure 2.11a, the corresponding dis-
cretization using Dirichlet tessellation results in a network of Voronoi polygons, as shown
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in Figure 2.11b. Each Voronoi cell is a basic structural finite element containing an in-
clusion embedded in the matrix with independent formulation stresses and displacements
which can be identified with the basic structural elements as depicted in Figure 2.11c and
can be directly treated as elements in the FE method.

The Voronoi cell finite element method has the potential for establishing a direct cor-
relation between techniques of quantitative metallography for actual heterogeneous ma-
terials microstructures and their stress/deformation analysis. The numerical implemen-
tation technique drastically reduces the number of degrees of freedom of analysis using
finite elements which reproduce the complex stress and strain fields that appear near the
inclusions.

Formulations have been developed for directly treating multiple phase Voronoi polygons
as elements in a finite element model by Ghosh and Mukhopadhyay [37, 38] for linear elas-
ticity and by Ghosh and Liu [35] for micropolar thermo-elasticity. Tessellation methods
have been used by Spitzig et al. [109] and by Brockenbrough et al. [11] for quantitative

(a) (b)

(c)

Figure 2.11: Representation of a heterogeneous structure with the VCFEM. (a) Composite ma-
terial formed by two composites randomly distributed; (b) heterogeneous structure discretized by
Dirichlet tessellation; (c) basic structural element represented by a Voronoi cell.
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characterization of micrographs obtained from automatic image analysis systems. This
method has also been coupled with asymptotic homogenization theory for simultaneous
prediction of global and local responses of elastic structures by Ghosh et al. [33]. Ghosh
and Moorthy [36] applied the method to solve small deformation elastic-plasticity prob-
lems for arbitrary heterogeneous materials.

Ghosh and coworkers [34] presented a multiple-scale computational tool for performing
elasto-plastic analysis of heterogeneous materials with inclusions and voids in the mi-
crostructure. The microscopic analysis is conducted with the Voronoi Cell finite element
model while a conventional displacement based FEM code executes the macroscopic anal-
ysis. The introduction of micromechanics consideration tremendously enhances VCFEM
accuracy for various microstructures at very moderate computational efforts. However
a shortcoming of the homogenization method in its present form is the incorporation of
boundary condition at regions of material discontinuity. Boundary conditions should be
applied in the microstructure and not at the macroscopic level as is presently done. The
boundary effect can become pronounced in some cases, and then homogenization results
become less accurate near the boundary.

Lee et al. [69] proposed a hierarchical multiple scale computational model to concur-
rently predict evolution of variables at the structural and microstructural scales, as well
as to track the incidence and propagation of microstructural damage. The microscopic
analysis is conducted with VCFEM while a conventional displacement based FEM code
executes the macroscopic analysis. Adaptive schemes and mesh refinement strategies are
developed to create a hierarchy of computational sub-domains with varying resolution.
Such hierarchy allow for differentiation between non-critical and critical regions, and help
in increasing the efficiency of computations through preferential ‘zoom in’ regions. Cou-
pling between the scales for regions with periodic microstructure is accomplished through
asymptotic homogenization, while other regions of nonuniformity and non-periodicity are
modeled by true microstructural VCFEM analysis.

This method results effective for the study of composites with random distribution and also
it can represent a unit cell of periodic continuum even in some cases with a single Voronoi
finite element; this represents an advantage in terms of computational time. However, even
when the overall average value of these fields is very approximated to the results obtained
by a unit cell, it may affect the response of the microscopic fields, since the assumptions
that this formulation is supported on are based on the results of a single Voronoi element
resulting in poor accuracy in comparison to the unit cell results (obtained by various fi-
nite elements). Moreover, the formulation may present some difficulties when pursuing
the solution to problems of periodic continuum with complicated forms of heterogeneities
and with composites with more than two phases.
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2.6.3 Multi-scale homogenization using FFT-based methods

Among the numerical methods developed as an alternative to the Finite Element Method
to solve the problem of homogenization of composite materials there is a method intro-
duced by Moulinec and Suquet [78, 79] to determine the local and overall responses of
nonlinear composites based on the Fast Fourier Transform (FFT) to solve the unit cell
problem, even when the constituents have a nonlinear behavior.

The initial idea of the method proposed was to make direct use of these digital images
of the real microstructure in the numerical simulation. The method avoids the difficulty
that represents using a model mesh since the algorithm requires data sampled in a grid
of regular spacing in order to directly use the digital images of the microstructure. The
method makes use of an iterative process which not requires the formation of a stiffness
matrix reducing the number of degrees of freedom and therefore reducing the size of the
problem.

Nevertheless, the method has some limitations due to a lack of convergence for mate-
rials containing voids or rigid inclusions as Moulinec and Suquet [80] and Michel et al.
[74] pointed out in later papers. Several developments have been proposed in the last
decade in this research field, among the latter [10, 127], however major improvements
have not been found and the initial problem that poses the use of the FFT method to
solve composite materials remains without being fully answered.

2.6.4 Multi-scale homogenization using stochastic analysis

Several procedures have been developed using stochastic homogenization to compute the
local and global properties of multi-phase periodic composites. Most of these methods
consist on obtaining effective properties derived from the homogenization method in order
to transform a heterogeneous medium into a homogeneous one with the purpose of reducing
the number of the degrees of freedom; however, the vast majority of the schemes based
on the stochastic homogenization have been formulated for the elastic range only, limiting
the application and the relevance of these type of methods by this restriction. Among
the studies that make use of this methodology there are the publications presented by
[57, 53, 124, 102, 118].

2.6.5 Analysis of composite materials using ANN

Artificial neural networks (ANN) have emerged as one of the most useful concepts in the
field of artificial intelligence used in different applications, such as in medical applications,
image and speech recognition, classification and control of dynamic systems, and in several
engineering applications and in recent years have been started to be used in modeling the
mechanical behavior of composite materials. The ANN architecture generally used consist
of a number of layers following the scheme presented in Figure 2.12, in which the layer
where the input patterns are applied is called the input layer, the layer where the output
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is obtained is the output layer, and the layers between the input and output layers are
hidden layers. Neurons in each layer are fully or partially interconnected to preceding and
subsequent layer neurons with each interconnection having associated connection strength.

Figure 2.12: General configuration of an artificial neural network

In the field of composite materials analysis plenty of research has been done to predict
the response with the help of the ANN techniques. Among some of the most relevant
studies found, Zhang and Friedrich [128] looked at the various applications of ANN to
obtain the numerical response of polymeric composites, polymers, metals as well as other
materials. Pidaparti and Palakal [95] proposed a back-propagation neural network for
predicting the non-linear stress-strain behavior of graphite-epoxy laminates. The process
involved specifying fiber-angles, initial and incremental stresses for which the trained net-
work will predict the corresponding total strain. The study showed that ANN analysis
can be effectively used to represent the cyclic stress-strain behavior in composites.

Aymerich and Serra [3] used a back-propagation ANN to predict the fatigue strength
of APC2, an AS4-graphite in a thermoplastic peek matrix with fibers. The sequences
examined assured a wide range of failure modes ranging from matrix-dominated to fiber-
dominated behavior. Among the main findings of this study were that although the use of
ANN resulted in some good fatigue life prediction in fiber- reinforced composites, a larger
set of experimental data representative of the failure modes and the laminate sequences
was necessary. Lee et al. [68] used the fatigue data for five carbon reinforced plastics and
one glass-reinforced plastic laminate to evaluate the performance of ANN in fatigue life
prediction of composites. This study raised very interesting conclusions, highlighting that
ANN can be trained to model constant-stress fatigue behavior at least as well as other pre-
diction methods and can provide accurate results from quite small experimental databases;
however, they noticed that there seems little prospect of transferring the predictive ca-
pability of a network with any degree of accuracy from one family of composites to another.
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Todoroki [117] studied the monitorization of the delamination of composite laminates
by means of using ANN. Changes in electrical resistance were used to identify delamina-
tion cracks in carbon/ epoxy laminates. The authors concluded that although the results
obtained showed that the ANN estimated the exact location and size of the delamination
for the specimens tested, it was not the most convenient tool of diagnosis to identify de-
lamination in composites. Chandrashekhara et al. [17] developed a method of determining
the contact force on laminated composite plates subjected to low velocity impact by using
FEM and ANN. A finite element model based on a higher-order shear deformation theory
is used to calculate the strain pattern and contact force for low-velocity impact. The ANN
is trained using the results from the FEA. In this study is concluded that the network can
be used for on-line estimation of contact force if the impact-induced strain pattern can be
obtained experimentally or numerically.

Haj-Ali and Kim [45] presented an approach to generate nonlinear and multi-axial constitu-
tive models for fiber reinforced polymeric composites using ANNs. The ANN constitutive
models were integrated with displacement-based FE software for the nonlinear analysis
of composite structures. The ANN constitutive models were trained with experimental
data obtained from off-axis tension/compression and pure shear tests. The ability of the
ANN models to predict material response was tested directly and through FE analysis of
a notched composite plate. Notched composite plates were also tested to verify the FE,
with ANN material models, to predict general nonhomogeneous responses at the struc-
tural level. It was demonstrated that the proposed FE-ANN simulation code can be used
for the analysis of layered composite plate and shell structures.

By using ANN in the computation of composites, which are executed usually in the frame
of FE2 approach in multilevel homogenization, costly constitutive calculi in many points of
integration are replaced by using a suitably trained ANN to recall the effective constitutive
relationships for the homogenization process at the higher structural level. The training of
the ANN can be done during regular computation, usually executed in multiscale analysis.
However, the main drawback of this approach is that since the computational process in
the non-linear range is an evolving process (i.e. the homogenized nonlinear tensor of the
composite changes for every load increment) requiring a new training cycle for the ANN
for every load increment, making the method to lose its main advantage, since this training
may result time consuming.

Several other studies have been performed involving composite materials; however they
were more focused on the validation of the ANN than on the analysis of composites or
in the usage of ANN in manufacturing process optimization of composites, which lie out
of the scope of this research. Another methods using ANN’s were developed in other
computational contexts such as the works presented by Unger and Könke [121] and Lefik
et al. [70] developed under a hierarchical multi-scale approach presented in Section 2.6.8.
For a thorough review of the use of ANN in the analysis of composite materials the reader
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is referred to [56].

2.6.6 Multi-scale homogenization in 3D

The expansion of two-dimensional multi-scale homogenization to a three-dimensional for-
mulation is a non-trivial endeavor due to different characteristic micromechanical solutions
and differences in geometric considerations that may affect the homogenization process (i.e.
boundary and periodicity conditions). Among the different formulations found, one of the
first studies that deal with homogenization in three dimensions was performed by Guedes
and Kikuchi [43]. This homogenization method obtained the effective average constants
of linear elastic 2D and 3D composite materials by considering their microstructure. The
homogenized elastic constants for macroscopic stress analysis were obtained for typical
composite materials to show the capability of the method.

Haj-Ali and Muliana [46] introduced a three-dimensional micromechanical modeling ap-
proach for the nonlinear viscoelastic behavior of pultruded composites. Simplified 3D
micromechanical models were proposed to compute the effective response of the different
layers used in the pultruded cross sections. These models recognize the in situ response
of the fiber and matrix constituents. Another micro-model for a sub-laminated model is
proposed for the nonlinear effective continuum response of a periodic layered medium.
The last part of the study is concerned with the calibration of the in situ fiber and matrix
properties to use the calibrated modeling framework to predict the effective viscoelastic
response under different multi-axial stress states. Experimental creep tests with off-axis
coupons are used to assess these predictions. In an extension of this work the same authors
[47] addressed the modeling of nonlinear viscoelastic behavior in laminated composites.
The multi-scale 3D structural framework proposed uses both 3D and shell based FE mod-
els. In the case of 3D elements, the sublaminate model represents the nonlinear effective
response at each material point (Gauss point). In the case of shell elements, each layer is
explicitly modeled with one or more integration points under plane stress condition and
the sublaminate model is reduced to the classical lamination theory in this case. Constant
transverse-shear cross-sectional stiffness is assumed for the shell elements. This assump-
tion is valid in the cases where the transverse stresses in the different layers are very small
compared to the in-plane stresses. The 3D micromechanical models provide for the ef-
fective nonlinear constitutive behavior for each Gauss point. The shell element’s effective
through-thickness response is generated at select integration points on its reference sur-
face by integrating the effective micromechanical response over all Gaussian points. The
proposed formulation is depicted in Figure 2.13.

Following the same framework, in a latter work Haj-Ali et al. [44] addressed the model-
ing and analysis of thick-section fiber reinforced plastic (FRP) composite materials. The
proposed modeling framework is applied to a pultruded composite system. It consists
of two alternating layers with unidirectional fiber (roving) and continuous filaments mat
(CFM) reinforcements. Nonlinear 3D micromechanical models representing the different
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Figure 2.13: multi-scale micromechanicalstructural framework for nonlinear viscoelastic analysis
of laminated composite structures (taken from Haj-Ali and Muliana [47]).

composite layers were used to generate through-thickness composite’s effective responses.
Experimental data was used to verify the predictions of the CFM micromodel predictions
for the effective elastic and nonlinear uniaxial compression response. The results obtained
demonstrated good prediction capabilities for effective properties and for multi-axial non-
linear behavior of pultruded composites.

Cartraud and Messager [15] developed a formulation to compute the effective elastic prop-
erties of periodic beam-like structures. The homogenization theory is used and leads to
an equivalent anisotropic Navier-Bernoulli-Saint-Venant beam. The overall behavior is
obtained from the solution of basic cell problems posed on the three-dimensional period
of the structure and solved using three-dimensional finite element implementation. The
procedure is first applied to two corrugated zigzag and sinus beams subjected to in-plane
loading. The axial elastic properties of a stranded wire-cable are computed as well.

Galli et al. [32] developed an elastoplastic three-dimensional homogenization model for
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particle reinforced composites. The microstructure is expressed generating particles in
a pre-existent constrained Delaunay tetrahedralization of a cubic volume by means of a
modified random absorption algorithm. This technique allows generating models with dif-
ferent amounts of reinforcement by using the same FE mesh. Homogenization is carried
out for a typical particle reinforced metal matrix composite with different reinforcement
volume fractions with the RVE size evaluated for both elastic and elastoplastic behaviours.
In this latter case the RVE size depends on the amount of plastic strain which develops in
the matrix material and a criterion to evaluate the model representativeness is proposed
based on the amount of elastic energy stored in the composite. In another work that uses
Delaunay decomposition of a cubic volume, Wellmann et al. [123] proposed a homoge-
nization method for granular material modeled by a three-dimensional discrete element
method that uses superellipsoids as particles. Macroscopic quantities are derived from the
microscopic quantities resulting from a DEM simulation by averaging over a RVE. The
resulting expression for the stress tensor consists of a summation over the inter-particle
contact forces on the RVE boundary. The corresponding strain tensor is obtained by in-
tegration over the displacement field defined by the mass centers of the particles on the
RVE boundary. This boundary is defined as the convex hull of the particle centers. The
determination of the convex hull by a Delaunay triangulation yields a discretization of the
boundary and the enclosed volume right away. The homogenization strategy is validated
by DEM simulations of compression and shear tests of cohesionless granular assemblies.

2.6.7 Multi-scale homogenization using higher-order deformation for-
mulations

The multi-scale methods mentioned in the previous sections are commonly denominated as
first-order approaches, since in the mathematical formulation considers only the first gra-
dient of the macroscopic displacement field. The first-order computational homogenization
technique has been proved to be a very versatile strategy to retrieve the macroscopic me-
chanical response of non-linear multi-phase materials. However, there are some limitations
in the application of the first-order homogenization schemes that derive from the assump-
tion that the microstructural length scale is significantly smaller than its macrostruc-
tural counterpart. To overcome the problems that may be derived from the fundamental
assumption of the first-order formulations, several authors have suggested using higher-
order approximations, e.g. Cosserat, couple-stress, strain-gradient, or non-local continua
to describe the behavior of either the microstructural constituents or the homogenized
macrostructure or both, or to employ generalized continuum models at both levels simul-
taneously.

Forest et al. [31] applied the asymptotic homogenization method to analyze linearly elas-
tic Cosserat microstructural constituents. It was shown that depending on the ratio of
the micro structural intrinsic Cosserat length and the macrostructural size, the homog-
enized material should be treated either as a classical (Cauchy) continuum with volume
couples or as a Cosserat medium. More recently, De Bellis [21] presented a Cosserat multi-
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scale technique for masonry structures based on an adaptation of a Cosserat medium at
the macro-level and a Cauchy medium at the micro-level. The formulation consisted on
adding to the traditional Cauchy continuum formulation additional strain and stress vari-
ables in order to reproduce an independent rotational degree of freedom assigned to every
material point.

Ponte-Castañeda [97] proposed a procedure to compute the effective behavior of non-
linear composite materials that consisted in replacing the nonlinear potentials for each
phase by their quadratic Taylor approximations, evaluated at appropriate estimates for
the average strains in their respective phases. The procedure was applied to composites
with two isotropic phases and with statistically isotropic particulate microstructures, by
taking advantage of the Hashin-Shtrikman estimates for linear and non-linear plastic com-
posites. Estimates were obtained also for transverse and longitudinal shear loading of a
fiber-reinforced composite with a statistically isotropic distribution of fibers in the trans-
verse plane. The approach was found to be useful in the context of the classical secant
modulus method. In particular, the use of second moments was found to be helpful in
incorporating compressibility effects on the effective behavior of a porous material with
an incompressible matrix phase.

Kouznetsova et al. [59] developed a gradient-enhanced computational homogenization pro-
cedure that allows modeling of microstructural size effects. The macroscopic deformation
gradient tensor and its gradient are imposed on a RVE to incorporate the microstructural
size and to account for non-uniform macroscopic deformation fields within the microstruc-
tural cell. The second-order computational homogenization scheme is obtained through the
generalization of the first-order case. The coupling between the kinematics of both scales
relies on a Taylor series expansion of the classical nonlinear deformation map, ~x = φ( ~X),
applied to a finite material vector ∆~x in the deformed state:

∆~x = FM ·∆ ~X +
1

2
∆ ~X · 3GM ·∆ ~X + Ø

(
∆ ~X3

)
(2.84)

Hence, the macroscopic (coarse scale) kinematics is determined through the deformation

gradient tensor FM =
(
~∇0M~x

)
c

and its Lagrangian gradient 3GM = ~∇0MFM. From the

solution of the microstructural BVP the macroscopic stress tensor and the higher-order
stress tensor are derived based on an extension of the Hill-Mandel condition. This con-
dition requires the microscopic volume average of the variation of work performed on the
RVE to equal the local variation of the work on the macro-scale.

Taking into account that on the macro level the modeling deals with a full gradient higher-
order continuum the relations for the macroscopic first PiolaKirchhoff stress tensor PM

and the macroscopic higher-order stress tensor 3QM are obtained. Expressed in terms of
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volume averages of the microstructural quantities, the macroscopic stress tensor PM again
equals the volume average of the microscopic stress tensor Pm.

PM =
1

V0

∫
V0

PmdV0 (2.85)

However, as for the kinematical quantities, the macroscopic higher-order stress tensor 3QM

does not equal the volume average of the gradient of the microscopic stress tensor ∇0mPm.
The following relation holds instead:

3QM =
1

2V0

∫
V0

(
Pc

m
~X + ~XPm

)
dV0 (2.86)

From the computational point of view, the method proposed gives a solution of the mi-
crostructural problem as fast as the classical approach, since it remains as a classical
BVP. The only difference that it presents is in the solution of the higher-order equilibrium
problem on the macro level representing an additional computational effort due to the
gradient-enhancement procedure. The method presented can be used as a versatile tool
to numerically obtain a higher order constitutive response with direct account for the col-
lective behaviour and evolution of the microstructural features or to construct and verify
micromechanically based closed-form higher-order constitutive models.

Kaczmarczyk et al. [54] extended Kouznetsova’s second-order scheme to encompass not
only periodic-type boundary conditions for the RVE but also traction and displacement
boundary conditions in a generalized unified manner. The BC’s construction was decou-
pled from the method by which they are numerically enforced. The numerical enforcement
was undertaken using projection matrices for multiple constraints in a simple and efficient
manner. In an extension of the previous work Kaczmarczyk et al. [55], presented a study
of the microstructural size effect and higher-order deformation using second-order com-
putational homogenization. The response of the RVE subjected to different boundary
conditions confirmed that the commonly held assumption that the displacement bound-
ary conditions provide an upper bound solution while the traction boundary conditions
provide a lower bound when using second-order computational homogenization. Another
important conclusion was that the result was dependent on the intrinsic length of the
RVE and that for problems in which there is a poor separation of scales, size effect is an
important consideration.

Coenen et al. [20] proposed a computational homogenization technique for thin-structured
sheets based on the computational homogenization concepts for first- and second-order
continua in three-dimensions. The 3D heterogeneous sheet is represented by a homog-
enized shell continuum for which the constitutive response is obtained from the nested
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analysis of a RVE on the microstructural scale, incorporating the full thickness of the
sheet and an in-plane representative cell of the macroscopic structure. At an in-plane
integration point of the macroscopic shell, the generalized strains, i.e. the membrane
deformation and the curvature, are used to formulate the boundary conditions for the
microscale RVE problem. At the RVE scale, all microstructural constituents are modeled
as an ordinary 3D continuum, described by the standard equilibrium and the constitu-
tive equations. Upon proper averaging of the RVE response, the macroscopic generalized
stress and the moment resultants are obtained. In this way, an in-plane homogenization is
directly combined with a through thickness stress integration. From a macroscopic point
of view, a numerical generalized stressstrain constitutive response at every macroscopic
in-plane integration point is obtained. A scheme of the computational homogenization for
structured thin sheets proposed by Coenen et al. is presented in Figure 2.14.

Figure 2.14: General scheme of the computational homogenization for heterogeneous thin sheets
(taken from Coenen et al. [20]).

2.6.8 Hierarchical multi-scale approaches

In multi-scale homogenization of composite materials in some cases the gap that exists
between the different scales (i.e. the local scale, in a two-scale homogenization scheme,
and the component phases) is significantly large, causing in many cases a high gradient of
the macroscopic stress/strain fields, making the commonly used two-scale homogenization
unsuitable for the analysis of composites. To solve this problem a hierarchical multi-scale
approach was developed.

The idea of hierarchical modeling originated as an approach to overcome the difficulties
that are present in multi-scale modeling when analyzing highly heterogeneous materials.
Hierarchical modeling can be portrayed as a methodology with a tree-like structure which
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links the adaptive selection of mathematical models from a structural level that lies be-
neath the actual scale. This assumption leads to the suggestion that, at a chosen scale, a
representative volume element (RVE) exists and can be formed to contain entities of lower
scales such that a property of interest at the RVE scale can be derived by appropriate
averaging over the RVE volume.

A schematic representation of a hierarchical modeling is presented in Figure 2.15 where
a three-scale hierarchical multi-scale approach is depicted. The three-scale hierarchical
structure consists of a macroscale, a mesoscale and a microscale. The macroscale con-
stitutive model is obtained by homogenizing the mesoscale response. The mesoscale cor-
responds to a RVE of the macrostructure and it is response is obtained in turn through
periodic assembly of microstructural arrangements.

Figure 2.15: General scheme of a three-scale hierarchical analysis applied to composite materials
and structures.

The hierarchical multi-scale approach has been addressed by several authors implying the
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use of more than 2 scales in the analysis process. Among those authors, Takano et al.
[114] proposed a four-level hierarchy modeling for the analysis of textile composites such
as woven and knitted fabric. The four scales consisted in: global, local, mesostructural
and microscopical level. The stresses at the mesostructure, which is a periodic unit cell of
textile composite materials consisting of fiber bundles and matrix, can be evaluated ac-
curately by the homogenization method and finite-element mesh superposition technique.
The latter technique makes it possible to overlay arbitrary local fine mesh on the global
rough mesh. Anisotropic damage mechanics is also utilized for strength evaluation at the
mesoscale. Three-dimensional modeling of the mesostructure of woven and knitted fabric
composite materials is shown.

Takano and Okuno [113] proposed a three-scale computational method to analyze fracture
in composites that simultaneously considers the microstructure of the heterogeneous ma-
terials, the macroscopic component, and the fracture origin such as interface or crack. The
synergetic application of the asymptotic homogenization and mesh superposition methods
to problems with strong scale mixing is emphasized. The scale gap between the microstruc-
ture and the component is very large and the fracture origin is at the middle scale between
them. The overall behavior is analyzed by means of the homogenization of the hetero-
geneity expressed by the unit cell model, while the fracture origin is modeled directly with
the microscopic heterogeneity by another microscopic mesh. The microscopic mesh is su-
perposed onto the macroscopic mesh. This mesh superposition method can analyze the
non-periodic microscopic stress at the crack tip under a non-uniform macroscopic strain
field with high gradient.

Unger and Könke [121]proposed a multiscale approach on different spatial scales using
neural networks. Based on a set of mesoscale simulations a system of neural networks
is trained to approximate the response of simple concrete-like structures. A macroscale
constitutive model is obtained by homogenizing the mesoscale response. Special focus is
put on the mesh sensitivity, since the mesoscale model includes softening and consequently
the width of the localization zone compared to the dimension of the mesoscale model will
influence the model response. Lefik et al. [70] proposed different concepts for the use of
Artificial Neural Networks in modeling of composites and hierarchical structures. Starting
from a relatively small set of suitable numerical experiments performed on a unit cell, a
proper set of corresponding input-output data is created to train the network to identify
the effective properties. Furthermore, ANN based procedures can be exploited in a mul-
tiscale analysis as a tool for the stress-strain recovery at lower levels of the hierarchical
structure and/or to estimate the state of yielding of the materials. These procedures are
good enough to be iterated across the various levels of a hierarchical structure to compute
effective characteristics and predict some properties of stress and strains fields defined on
the micro-cell, reducing thus the time of computations in homogenization of hierarchical
composite.

Zheng and Fish [125] presented a hierarchical model reduction approach aimed at reducing
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computational complexity of non-linear homogenization at multiple scales is developed.
The method consists of the following salient features: (1) formulation of non-linear unit
cell problems at multiple scales in terms of eigendeformation modes that a priori satisfy
equilibrium equations at multiple scales and thus eliminating the need for costly solu-
tion of discretized non-linear equilibrium, (2) the ability to control the discretization of
the eigendeformation modes at multiple scales to maintain desired accuracy, and (3) hi-
erarchical solution strategy that requires sequential solution of single-scale problems. A
two-scale formulation is verified against a one-dimensional model problem for which an
analytical solution can be obtained and a three-scale formulation is validated against tube
crash experiments.

Hierarchical multi-scale approaches involving more than two scales represents a promising
approach towards the research and development of various advanced materials such as
advanced composite materials, polycrystalline materials, and porous materials. Yet, while
computational homogenization approaches can drastically reduce the computational cost
of the direct numerical simulation (let’s say a FE simulation) they remain computationally
prohibitive, in many cases, for non-linear problems involving more than two scales. For
example, in a two-scale non-linear problem, the unit cell (or RVE) has to be solved a num-
ber of times equal to the product of number of quadrature points at a coarse-scale times
the number of load increments and iterations at the coarse scale. With each additional
scale the number of times the finest-scale unit cell problem has to be solved is increased
by a factor equal to the product of the number of quadrature points, load increments and
iterations at the previous scale, thus the method becomes very expensive computationally
and depending on the case, unachievable.
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Chapter 3

Homogenization theory using a
multi-domain decomposition
method

In this chapter the concepts that serve as basis to the homogenization theory using a multi-
domain decomposition approach are presented within a two-scale framework following a
mathematical formulation of first-order. The problem formulation based on the relation-
ship between the strains at a macro scale, by means of the transformation experienced
by the periodicity vectors that are contained on a micro scale, is thoroughly explained
in this section. The application of the periodic boundary conditions in the micro scale is
carefully examined as well as the determination of the average strains, stresses and inter-
nal variables measures. The computation of the homogenized linear-elastic and non-linear
constitutive tensors of the composite obtained by means of perturbations methods are
explained in detail. The problems that originate the local effects in the global response
of the composite when applying the multi-domain decomposition method are discussed in
detail and its solution is addressed following a practical approach.

3.1 Introduction

Numerous efforts have been made to mathematically model composite materials and struc-
tures using the homogenization method by using suitable multi-scale techniques with rel-
atively good approximation to the real global response of the composite and in some
cases even providing information about the deformation mechanisms that occur in the
microstructure of the composite, as it was shown in Chapter 2. Nevertheless, the vast ma-
jority of the existing homogenization techniques present a limitation, since most of them
are suitable for arrangements that present only one periodic or quasi-periodic distribution
over the entire domain of the composite. This limitation restricts the potential of the
homogenization method since a large number of composites and structures are set by two
or more periodic distributions.

59
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Hence, it may be very helpful if the classical multi-scale homogenization method of anal-
ysis could be expanded to analyze this type of structural arrangements when they require
to be considered as a single structure at once. Therefore, the main objective of this in-
vestigation is to develop a method that is capable of analyzing composite structures with
several periodic distributions by partitioning the entire domain of the composite into sub-
structures making use of the classical homogenization theory.

On the other hand, in the literature review presented in the previous chapter it was
inferred that homogenization methods that make use of higher order methods appear to
have a better ability to establish micro-macro relationships which are reflected in the
capacity of consider size effects and macroscopic localization. However, despite these ap-
parent advantages, formulations that make use of higher order formulations present some
drawbacks that from a practical point of view they may be considered of high importance.

Among the main disadvantages present in the high-order formulation methods it was
found that they generally involve elements that make use of a larger number of nodes and
degrees of freedom in a finite element mesh which may result in an increment of the com-
putational effort of the multi-scale scheme. Another limitation is that these methods need
additional boundary conditions with respect to first-order formulations. Furthermore, the
selection of higher-order boundary conditions is rather an arbitrary task which makes that
the solution obtained by this type of methods is not fully standardized so far, since this
selection is a matter of choice. Because of the aforementioned reasons, in this research
the decision of following a first-order computational scheme was adopted to formulate the
multi-domain homogenization method.

The micro-macro coupling procedure that follows the first-order homogenization proce-
dure can be identified as a ‘deformation driven’ procedure. This procedure consist in that
given a deformation at the macro scale (or global) level, expressed by the strain gradient
tensor ε̄, the homogenized stress σ̄ and the homogenized constitutive tensor C̄ can be
determined at the micro scale (or local) level based on the interaction among the con-
stituents at the RVE or unit cell.

The first-order homogenization framework presented here takes knowledge from the for-
mulation proposed by Zalamea [126] and that later was extended by Oller et al. [90] and
by Badillo and Oller [4]. The formulation is based on classical homogenization approaches
originated from the asymptotic homogenization theory. The basic features of the theory
were highlighted in Sections 2.4 and 2.5, meanwhile that the mathematical formulation of
the classical homogenization theory and the main difficulties found on its implementation
are described and discussed in detail in the following sections of this chapter.
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3.2 General concepts and basic hypothesis

The homogenization theory formulates the problem of analyzing composite materials using
a multi-level approach in which two or more length scales of different order of magnitude
naturally exist. In this study all the formulation will be expressed following a two-scale
approach. The first scale is identified as the macro scale (or global level), in which the
overall behavior of the structure is taken into account as if it were a homogeneous material.
The second scale is referred to as the micro scale (or local level), which is characterized
by a representative elementary volume or unit cell, in which the microstructural fields are
defined. The division of the problem in two scales is justified when the difference in mag-
nitude between these scales is large. That is, if L is the dimension of the global mean or
the characteristic wavelength of the macroscopic problem and if l is the dimension of the
cell or the period of the characteristic wavelength in the microstructure, the relationship
between the two scales, ε = l/L tends to zero.

This formulation, seeks to take advantage of the local periodicity hypothesis arising from
the periodicity of the internal structure of the composite. This hypothesis shows that the
symmetries of the field variables naturally take place as a consequence of the principle of
minimization of energy. This principle ensures that each of the RVEs or unit cell domains
that represent the microstructure seeks the inner balance with the minimum energy con-
sumption. Since by definition these domains are considered equal and are placed next to
each other then the field of forces and displacements generated in these domains results
the same.

3.2.1 Base vectors and local periodicity

According to the definition of periodic continuum, the internal structure of the compos-
ite should be generated by repetition of the components. This phenomenon causes some
symmetry in the solid, which allows dividing the composite into unit cells or RVEs in a
way that each particle that conforms the continuum is related to other particles that are
distributed recurrently following a periodicity ratio. This means that by periodicity any
point inside a cell or RVE has an equivalent point in each of neighboring cells. These
points are known as periodic points. According to this characterization, the link that con-
nects each periodic point is known as a base vector of periodicity (or periodicity vector).
Therefore each RVE or unit cell is associated to a specific base vector of periodicity.

Now, let’s take for example the cell represented in Figure 3.1. If the contour of the
cell is taken as reference, the periodic faces ∂ of the neighboring cells remain ‘parallel’ by
means of the periodicity vectors D ; this happens even when the cells suffer a change on
their form. This fact guarantees the compatibility of displacements at the global scale,
otherwise it would produce an overlap in the configuration of the composite or form voids
or gaps. Note that this particular field displacement has the characteristic of maintaining
the local periodicity of the continuum. Something similar occurs with the forces generated
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on the boundary of the cell, since the forces acting on the face of a cell, by the principle
of action and reaction are transmitted with the same magnitude and in opposite direction
to the neighbor cell. Hence, in these cells, the forces produced are of the same magni-
tude and in opposite directions to their periodic faces. This principle has been called in
homogenization as a field of anti-periodic force (see Figure 3.3).

Figure 3.1: Schematic representation of the local periodicity hypothesis on a RVE

An analysis of the displacement fields that are generated in a periodic domain reveals
that these displacements produce two effects simultaneously. The first is a differential
displacement of the particles within the cell, which causes deformation of the faces. If
this shift does not alter the periodicity vectors, the displacement can be understood as a
disturbance since it only happens at the microstructural level. The second consequence of
the periodic displacement field is that it changes the base of the periodic vectors. These
two effects, which occur simultaneously, are very important since the first, which can be
considered as a differential displacement of the particles, is required for the cells to reach
their internal balance, meanwhile that the second, which alters the periodicity vectors,
is directly associated to the deformation of the continuum. It must be remarked that
the macro scale deformation is linked to the transformation that the periodicity vectors
experience, in other words, to the relative displacement between periodic points.

3.3 Formulation of the problem using homogenized vari-
ables

The problem of homogenization is based on the relationship between the strains that arise
on the macro scale with the transformation suffered by the periodicity vectors that are
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contained on the microscale. The strain deformation at the macroscale can be related to
the relative displacement between the periodic points that take place at the microstruc-
tural level by means of the homogenization of the strain and stress tensors; once this
relationship is completed then it can be formulated and solved the equation that dictates
the balance of the composite structure.

In classical homogenization approaches it has been found that there are three different
types of boundary conditions: i) prescribed displacements, ii) prescribed tractions, and
iii) prescribed periodicity. From these three boundary conditions, it has been pointed
out by different authors that periodic boundary conditions provide a better estimation
of the homogenized properties than the other two, since periodic conditions preserve the
periodicity of the RVE or unit cell in the deformed state (see for example Terada et al.
[116]).

3.3.1 Homogenized strain tensor

Consider a point P inside a composite material body Ω in two dimensions, formed by a
periodic distribution of the component materials, which at the macro scale level is asso-
ciated to a reference coordinate system X . Assuming that an amplification of the point
P at the macroscopic domain could be represented by the cell domain Ωc located on a
system of coordinates in the referential space Y in a way that the material components of
the composite can be perfectly identified. In the space Y the referential (or also known as
material) space configuration, the cell domain Ωc is associated with the periodicity vectors
D as shown in the left in Figure 3.2, meanwhile at the updated configuration the same
space is associated to the vectors d as shown in the right of the same figure.

In this figure, the points P0, P1, P2, represent the periodic points of a cell in the ref-
erence coordinate system. Therefore, the periodicity vectors in this case, are defined by
the distance between these points, as follows:

Di = YPi − YP0 ; i = 1, 2 (3.1)

Moreover, consider also that the continuum Ω undergoes a displacement u(x, y), which
generates a new position at the updated configuration of the particles at the macro scale
as follows: x = X + u . At the micro scale level meanwhile, the cell is represented at
the updated configuration by y , as presented in Figure 3.2. The updated displacement
field u translate the position of the points P0, P1, P2, of the material space coordinates to
the position p0, p1, p2 in the updated configuration. According to the hypothesis of local
periodicity, the continuum is deformed but its variables maintain the local periodicity.
Consequently, the cell is associated with a new base of frequency vectors d , defined by the
position of the periodic points in the updated configuration as:

di = ypi − yp0 = Di + uPi − uP0 ; i = 1, 2 (3.2)
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Figure 3.2: Schematic representation of the relation of the periodicity vectors in the referential
and updated configurations.

where d is called the updated periodicity vector and uPi−uP0 is the relative displacement
between periodic points.

The transformation of the cell space is associated with the change at the periodicity
vectors. The partial derivative of these vectors is defined as follows:

∂di

∂Dj
=

∂ (ypi − yp0)

∂ (YPi − YP0)
(3.3)

From the macroscopic point of view the periodicity vectors represent some infinitesimal
vectors, therefore under the global scale the change over these vectors can be expressed
as:

∂di

∂Dj
= lim

D→0

[
∂ (ypi − yp0)

∂ (YPi − YP0)

]
' ∂xi

∂Xj
= F̄ (3.4)

Hence,

d = F̄ ·D (3.5)

where F̄ is the homogenized deformation gradient tensor. This simple change of scale
allows determining the macro scale strain field through to concepts that are commonly
applied in classical continuum mechanics. Now, in order to obtain the homogenized strain
tensor, first we compute the square of the length of the updated periodical vector.
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|d |2 = dT · d
= DT · F̄T · F̄ ·D (3.6)

Afterwards, the difference between the square of the length of the periodicity vectors in
the updated and those in the reference configuration is computed as:

|d |2 − |D |2 =
[
DT · F̄T

]
·
[
F̄ ·D

]
−DT ·D

= DT ·
[
F̄
T · F̄ − I

]
·D (3.7)

Since by definition the Green Lagrange tensor for an homogeneous material is given by
ε = 1

2

[
FT · F − I

]
, by making the analogy to the two-scale formulation presented here,

Equation (3.7) can be expressed as a measure of the strain at the macoscopic scale ε̄ as:

|d |2 − |D |2 = 2DT · ε̄ ·D (3.8)

Therefore, the Green Lagrange tensor obtained as a measure of the strain at the macro
scale can be called the homogenized strain tensor. This tensor is fully associated with the
change of the periodicity vectors.

ε̄ =
1

2

[
F̄
T · F̄ − F

]
(3.9)

This strain deformation quantifies the overall change of the cell’s space under a periodic
displacement field and is independent of the patterns generated in the contours of the cells.
Moreover, since this homogenized strain deformation tensor measures the deformation that
occurs between the domain boundary periodic faces or points of the cell, this value also
corresponds to the average value of the strain deformation at the domain as shown in
Equation (3.10).

ε̄ = 〈ε (y)〉Ωc

=
1

Vc

∫
Vc

ε (y) dVc (3.10)

=
1

Vc

∫
Vc

1

2

[
∇y u + (∇y u)T

]
dVc

where 〈ε (y)〉Ωc
is the micro scale strain field, Ωc is the domain of the cell, Vc is the volume

contained in Ωc, and ∇y u is the gradient of the displacement of a particle with respect to
the updated configuration y . Moreover, this definition coincides with the classic equation
of the averaged solution and with the asymptotic homogenization theory presented in
Chapter 2.
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3.3.2 Homogenized stress tensor

The local stress field σ at the microscale in addition to being periodic, is in equilibrium
throughout the entire periodic solid. Therefore, the local stress field must satisfy an equi-
librium equation inside the entire volume of the cell Vc. Using the Cauchy equilibrium
equation on the micro scale and neglecting the inertia forces, since the problem is formu-
lated considering static equilibrium, the equilibrium equation that ensures balance in the
microstructure can be expressed as:

∫
Sc

σijnj dSc−
∫
Vc

ρbi dVc = 0 (3.11)

where n is a unit normal vector of the surface element, ρ is the mass, b is the force asso-
ciated with the mass, Sc is the boundary surface of the unit cell’s domain Ωc.

Considering that the cell’s domain is very small from the macroscopic point of view
(Ωc → 0), then it can be assumed that the value of the forces of the volume are also
small and tend to zero. Therefore Equation (3.11) may be reformulated as:

lim
Ωc→0

(∫
Sc

σijnj dSc

)
≈ 0 ; lim

Ωc→0

(∫
Vc

ρbi dVc

)
≈ 0 (3.12)

The first integral of the expressions presented in Equation (3.12) indicates the concept
of balance in the microstructure, i.e. the integral of the forces on the contour of the cell
domain Ωc is zero. In contrast, the second integral shows that at the microstructure level
the effect of mass forces is not required to be taken into account, since the cell is relatively
small, which makes that the integral over the mass forces is of an order of negligible mag-
nitude.

Moreover, let’s consider now two surface elements ∂S located at periodic points with
unitary normal vectors (n1 and n2) in opposite directions as those presented in Figure
3.3. The tractions that emerge on opposite boundaries of the unit cell are deduced by
translation along directions of invariance of the lattice and are opposite vectors. These
vectors depends not only on the position, but also the orientation of the surface element
addressed by n. By definition of periodic surfaces, the orientation vectors n1 and n2 out-
side the domain of the cell are equal but opposite. If the effects of mass and inertia forces
are neglected, since the forces are relatively very small, the principle of action and reaction
ensures that the surface force f = t(n)dSc in the two periodic surface elements ∂S are of
equal magnitude and of opposite direction. This principle is expressed as the antiperiodic
stress field in the boundary of the cell in the homogenization formulation.

Now, if a second order tensor σ̄ij is defined as the average of the forces at the boundaries
of the cell as:
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Figure 3.3: Schematic representation of the traction forces that appear on opposite boundaries
of the unit cell or RVE.

σ̄ij =

∫
Sc
ykσirnr dSc∫
Sc
yknj dSc

(3.13)

where k and r = contracted indexes. Thus, if the effect of the volume forces is disregarded
(σij,j = 0), and using the divergence theorem gives the following average theory equation:

σ̄ij =

∫
Vc
yk,rσir dVc∫
Vc
yk,j dVc

=

∫
Vc
δk,rσir dVc∫
Vc
yk,j dVc

(3.14)

=
1

Vc

∫
Vc

σij dVc

The overall surface force t̄(n̂) is defined as the average of the forces on the boundary of
the cell Sc, that is determined by the direction of the macro scale unitary vector n̂ . The
force t̄(n̂) can be identified as the homogenized traction vector as follows:

t̄i (n̂) =

∫
Sc
ykσirnr dSc∫
Sc
yknj dSc

· n̂k

(3.15)

=
1

Vc

∫
Vc

σij dVc · n̂k
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The value of the right hand side of Equations (3.15) is a linear function that depends on
the direction of n̂ . Since by definition we have that:

t̄i (n̂) = σ̄ij · n̂k (3.16)

The tensor σ̄ satisfies at the macro scale level the same requirements as the stress tensor σ
for the case of homogeneous materials. Consequently, the tensor σ̄ is hereinafter referred
as the homogenized stress tensor. Consider now that the entire domain of the periodic
continuum Ω can be represented as a homogeneous material composed of a large number of
cells that are exactly alike. Therefore, it is possible to express the global balance equation
as the integral of the balance equation on each of these cells as:

∫
VΩ

(
1

Vc

∫
Vc

σij,j dVc

)
dVΩ +

∫
VΩ

(
1

Vc

∫
Vc

ρ bi dVc

)
dVΩ = 0 (3.17)

On the macro scale, the body forces per unit volume have to be considered because at this
level their magnitude can be significant. These forces may be computed as the average of
the volume forces inside the cell as:

b̄i =
1

Vc

∫
Vc

ρ bi dVc (3.18)

Substituting Equations (3.14) and (3.18) in Equation (3.17) and using the divergence
theorem, the global balance equation becomes:

∫
VΩ

σ̄ij,j dVΩ +

∫
VΩ

b̄i dVΩ = 0 (3.19)

Equation (3.19) is valid for any region Ω of the composite material, therefore it is also valid
even when a very small domain is chosen, since the limit is the cell’s domain. Consequently
the homogenized local equation of static equilibrium is obtained based on this preceding
equation and is expressed in the following way:

σ̄ij,j + b̄i = 0 (3.20)

3.4 Linear-elastic homogenized formulation in two scales

In order to assemble the general formulation in the linear elastic range using a double scale
method, the behavior of the composite is obtained by considering the cell as a structural
unit and by considering the problem as a quasi-static problem expressed in small strains.
The variables of the problem are established and the governing equations are formulated
following this approach. For simplicity, we consider in this work that the component
materials are perfectly bonded, however the method does not exclude the possibility of
debonding among the component materials.
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3.4.1 Linear formulation at the macro scale

To formulate the problem at the macrostructural level first, a boundary value problem
(BVP) which consists of a composite material domain Ω is considered. The internal
structure of this material is arranged periodically, such that with respect to a macro scale
x the material is considered as an homogeneous material. The domain of the material is
limited by the boundary ∂Ω, with the following boundary conditions:

∂Ωu ∩ ∂Ωt = 0

∂Ωu ∪ ∂Ωt = ∂Ω (3.21)

where ∂Ωu is the boundary in which the displacement is known (Dirichlet condition), and
∂Ωt is the boundary where the forces are known (Neumann condition).

The kinematics of the problem is related to a displacement field u(x) on the macro scale,
which expresses the displacement of each particle of the domain Ω. Furthermore, the in-
ternal structure of the composite is susceptible of being divided into very small structural
units called cells or RVEs, whose domain is characterized by Ωc, in a way that the entire
domain Ω can be represented by an orderly repetition of these cells, which gives origin to
the two-scale homogenized analysis. These two scales of different order of magnitude, are
arranged in a such way that for each particle xi at the domain Ω there is a cell domain
Ωc which consequently contains a local space yi.

At the macro scale level, the problem of obtaining the response of composite materi-
als becomes a BVP similar to those problems in which homogeneous materials are solved.
Therefore, the displacement u(x) and stress σ̄(x) fields at the BVP at the macro scale
level must satisfy the following set of equations:

∂ σ̄(x)

∂x
+ b̄ = 0 equilibrium equation in Ω (3.22)

σ̄(x) =
1

Vc

∫
Vc

σ(x, y) dVc constitutive equation in Ω (3.23)

u(x) = ū(x) displacements in ∂Ωu (3.24)

σ̄(x) · n = t̄ (x) forces in ∂Ωt (3.25)

3.4.2 Linear formulation at the micro scale

To formulate the problem at the microstructural level it is necessary to establish the bound-
ary conditions that attain the cell domain. In a standard homogeneous material problem,
the boundary conditions present are similar to those presented above in Equations (3.21).
However, for the case of the unit cell or RVE of the composite, special boundary condi-
tions are required, such as to introduce the local periodicity of the displacement field and
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forces at the microstructural level. By considering that the composite undergoes a macro
scale deformation, the local periodicity hypothesis implies that the domain is associated
with a periodicity vector in the space of reference, and to another periodicity vector at the
updated configuration. The change or transformation of the periodicity vectors represents
a relative displacement (shift) between periodic points, as pointed out before in Equation
(3.2). However, under the global perspective (where |D | → 0) this relative displacement
can be interpreted as:

d −D = lim
|D|→0

(up+D − up)

= ∇u(x) ·D (3.26)

where∇u(x) is the displacement gradient at the macro scale. Following the approximation
made by Zalamea [126] considering a small strain formulation, the relative displacement
between the cell boundary’s periodic points can be approximated by taking into account
only the symmetric part of the velocity gradient tensor, called the deformation rate tensor;
meanwhile the effect of the anti-symmetric part of the velocity gradient tensor, called the
spin tensor is neglected. Then the relative displacement between the cell boundary’s
periodic points can be expressed as:

up+D − up ∼= ε̄ ·D (3.27)

where ε̄ is the homogenized strain tensor or strain tensor at the macro scale.

Furthermore, the external forces on the domain of the cell associated with two periodic
boundary surface elements are equal in magnitude but in opposite directions. This con-
dition ensures the periodicity of the field of forces and should be satisfied when the cell
reaches the equilibrium under the minimum energy consumption. Under these consider-
ations, the local microstructural problem of composite materials on the local scale y is
reduced to solve the following boundary value problem in the domain of the cell Ωc.

∂ σ(y)

∂y
= 0 equilibrium equation in Ωc (3.28)

σ(y) = C(y) : ε(y) constitutive equation in Ωc (3.29)

up+D − up = ε̄(x) ·D periodic displacements in ∂Ωcu (3.30)

tp+D = −tp periodic forces in ∂Ωct (3.31)

where the micro scale stress σ(y) and strain ε(y) fields are the unknowns of the problem,
C(y) is the constitutive tensor corresponding to the respective component material at each
point inside the domain which may represent any kind of mechanical behavior (elastic,
plastic, etc.), ε̄(x) is the homogenized strain tensor, D represents the periodicity vectors
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which relate the periodic boundary points of the cell and the traction vector t. In the
equations presented above it can be observed that the periodic displacement and forces
in the boundary of the cell ∂Ωcu and ∂Ωct , are directly related to the homogenized (or
global) strain tensor ε̄(x) at the macro scale level. Consequently, due to this fact the two
problems are coupled, and therefore, the solution of the problem on the macro scale is
obtained following a classic procedure, using the equilibrium equation in a discrete solid
which requires that the micro scale BVP conditions be satisfied in each point of the macro
domain Ω.

Periodicity conditions on the cell’s domain

Analytical problems frequently require specific constraints to be imposed on certain so-
lution variables in order to achieve a desired solution. These constraints may consist of
certain continuity requirements, the imposition of specified values for the solution vari-
ables, or conditions to be satisfied between certain variables. This is the case of the
problem formulated in Equations (3.28-3.31) which poses a well conditioned BVP whose
solution represents the equilibrium of the microstructure. This equilibrium is restated
through the virtual work formulation to a balance of forces inside the domain with respect
to the forces that act on the boundary of the same domain as:

R(σ) = F (t) (3.32)

where R(σ) represent the forces inside the cell domain that are in function of the internal
stresses (it can be represented simply as R), meanwhile F (t) are the forces on the bound-
ary of the cell originated by the external traction forces (which can be represented simply
as F ). This problem can be expressed in a discrete way by using the Finite Element
Method; in this case the latter equation can be rearranged in the following way:

K · u = F (3.33)

where K is the global stiffness matrix of the structure, u is the displacements nodal
vector and F the force vector on the boundary of the domain of the cell. However, the
system of equations represented by Equation (3.33) must include restrictions of the peri-
odic displacements and forces over the boundary of the domain as exposed in the preceding
paragraphs of this chapter. In this case, a general formulation that permits the imposi-
tion of the boundary conditions to any kind of cell type is desired (i.e. in shape and space).

The implementation of the restrictions on the displacements and forces corresponding
to the degrees of freedom of the domain’s boundary, derived from the periodicity require-
ment, can be accounted for through several methods such as elimination of redundant
unknowns, penalty methods, Lagrange multipliers, etc. as remarked by Michel et al. [74].
Each method has its advantages and disadvantages according to the nature of the problem;
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in this study the technique that is considered as the most appropriate for the resolution
of this problem is the method that employs the Lagrange multipliers. The Lagrange mul-
tiplier method can operate on the variational or weighted residual formulations as Bathe
[5] points out.

Lagrange multipliers

Lagrange multipliers can be used to find the extrema of a function f (x1, x2, · · · , xn) (f is
a multivariate function) subject to the constraint g(x1, x2, · · · , xn) = 0, where f and g
are functions with continuous first partial derivatives on the open set containing the curve
g(x1, x2, · · · , xn) = 0, with ∇g 6= 0 at any point on the curve, where ∇ is the gradient
operator. The method of Lagrange multipliers is based on a simple observation concerning
the perpendicularity of the gradient of the objective function to the constraint curve at
an optimal point.

As a brief explanation to the Lagrange multipliers method, consider a problem, which
calls for maximizing its objective function f (x, y), subjected to the constraint g(x, y) = k
(where k is any constant). It is assumed that both functions f (x, y) and g(x, y) are con-
tinuously differentiable functions. To illustrate this explanation, consider Figure 3.4, in
which as the levels of the curves of f (x, y) increase, short sections of the curves of f (x, y)
form secant curves to g(x, y) = k. It follows that the highest level curve of f (x, y) inter-

Figure 3.4: Representation of the variation of the function f (x, y)

secting g(x, y) = k must be tangent to the curve g(x, y) = k, which is possible only if
their gradients ∇f is and ∇g are parallel as presented in Figure 3.5.
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Figure 3.5: Representation of the variation of the function f (x, y) as function of the gradients
∇g and ∇g .

If ∇g is parallel to ∇g , then there is a number λ for which:

∇f = λ∇g (3.34)

Thus, the extrema of f (x, y) subject to g(x, y) = k must occur at the points which are
the solution to the following system of equations:

〈
f x, f y

〉
= λ

〈
gx, gy

〉
,

〈
gx, gy

〉
= k (3.35)

Equation (3.35) is called a Lagrange multiplier problem meanwhile λ is referred as a
Lagrange multiplier.

Implementation of the periodicity conditions

In many cases it is often that symmetry considerations can be invoked to reduce the peri-
odicity conditions to usual boundary conditions, when both the geometry and the loading
exhibit sufficient symmetry. For example, when the unit cell exhibits a plane of symmetry
(both for its material properties and its geometry), the local problem can be reduced to
a problem on half of the unit cell with standard boundary conditions on the plane of
symmetry; following a two-dimensional approach, another example could be considered in
the case that the unit cell has two orthogonal lines of symmetry, then the local problem
can be reduced to a local problem on one fourth of the original unit cell where the bound-
ary conditions on the plane of symmetries would be the standard ones. But even under
a large number of geometric symmetry conditions, multiaxial overall stress states, such
as off-axis tension, do not satisfy the required symmetries and the periodicity conditions



74 CHAPTER 3. HOMOGENIZATION THEORY USING A MULTI-DOMAIN DECOMPOSITION METHOD

cannot be eliminated; therefore, in this formulation, only the full geometry of the cell will
be considered for the representation of the RVE.

The numerical solution of the RVE domain requires that each node located on the bound-
ary resulting from the discretization must take into account the conditions of periodicity
of displacements and forces. Such conditions are introduced in the system of equations
presented in Equation (3.33) by means of the Lagrange multipliers as mentioned earlier.
This method however, also has its disadvantages, such as increasing the number of equa-
tions, increasing the bandwidth of the stiffness matrix and generating null terms in the
stiffness matrix. Nevertheless, this technique is still considered as the most suitable for
the resolution of the augmented system including the periodic conditions, since some im-
provements have been made afterwards in order to get rid of these disadvantages.

Among the improvements that were made to the this method, Anthoine [2] proposed
dividing the Lagrange multipliers into two groups, λ1 and λ2. This two operators relate
the boundary forces on the restricted nodes and the corresponding periodic magnitudes.
By doing this, the problem where zeros appear on the diagonal of the stiffness matrix K
is solved, therefore a more stable method is obtained. The steady state of the increased
functional by the Lagrange multipliers is given by:

∏
=

1

2
uT ·K · u − uT · F + λT1 · (kp · u −∆D)

+λT2 · (kp · u −∆D) +
1

2
(λ1 − λ2)T · (λ1 − λ2) (3.36)

The minimization of
∏

leads to a well-conditioned symmetric linear system provided that
K is also a well-conditioned symmetric matrix. The minimization of the global system is
done by minimizing the functional with respect to the three unknown vectors u , λ1 and
λ2 as:

∂
∏∗
∂u

= 0;
∂
∏∗
∂λ1

= 0;
∂
∏∗
∂λ2

= 0 (3.37)

Expressed in matrix terms stays as:

 K kTp kTp
kp I −I
kp −I I

 ·
 u
λ1

λ2

 =

 F
∆D
∆D

 (3.38)

where K is the stiffness matrix of the RVE; kp is an arrangement matrix that relates the
degrees of freedom of the nodes of the boundary. Each row of this matrix contains the
value -1 on each degree of freedom which is restricted and the value +1 corresponding
periodic node to the restricted one, meanwhile that the rest of the other values are equal
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to zero; I is the identity matrix; u is the displacement vector; F is the force vector; ∆D
is the relative nodal displacement vector for the periodic degrees of freedom of the nodes
of the boundary. The two vectors λ1 and λ2 are obviously equal and correspond to the
reaction forces associated with the Dirichlet boundary conditions.

In order to illustrate the assembly of the aforementioned system let’s take for example
the schematic representation of the RVEs presented in Figures 3.6a and 3.6b.

(a) Squared cell array

(b) Hexagonal cell array

Figure 3.6: Discretization of the unit cell or RVE into FE and relationship of the periodic faces
of the boundaries for different geometric arrays.

In the left side of the figure the discretization of the RVEs into finite elements is presented,
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meanwhile on the right side the boundaries of the RVEs divided into pairs of periodic faces
are presented. In the case of the squared cell presented in Figure 3.6a, the boundary of
the RVE is divided into two pairs of periodic faces related by the vectors D1 and D2,
meanwhile that for the hexagonal cell in Figure 3.6b, the boundary is divided into three
pairs of periodic faces, which are related by the vectors D1, D2, and D2 −D1 (in other
words, by means of a linear combination of the vector D2 −D1).

The periodicity relationships of the boundary of the RVE, needs to be translated for
its implementation in a Finite Element code by expressing the periodic vertices and nodes
that relate the periodic points of the faces in terms of nodal points. This information
is presented in Table 3.1, where the number of periodic vertices, the number of pairs of
periodic nodes, the node numbers of periodic vertices and the node numbers of periodic
pair of nodes is presented for the two RVEs depicted above in Figures 3.6a and 3.6b.

Geometry of the cell Squared Hexagonal

Number of periodic vertices 4 3
Number of pairs of periodic nodes 14 13
Node numbers of periodic vertices 1,9,73,81 58,64,84
Node numbers of periodic pair of nodes 2-74 13-119

3-75 22-128
4-76 31-137
5-77 40-146
6-78 49-155
7-79 19-124
8-80 28-132

10-18 37-143
19-27 46-151
28-36 55-159
37-45 65-75
46-54 76-86
55-63 87-97
64-72 - -

Table 3.1: Periodicity relationships of the boundary for two RVE geometry configurations.

The information presented in Table 3.1 for the case of the squared cell seems to be very
straightforward, therefore no explanation of this will be made. However for the case of the
hexagonal cell, some clarifications will be made since in this case this cell has 6 vertices
(a, b, c, d, e, f), however due to the definition of periodicity, the vertices of a hexago-
nal cell are divided into two groups of periodic vertices, so only one node needs to be
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fixed. Therefore the number of periodic vertices for the hexagonal RVE is three (vertices
a,c,e or b,d,f). The nodes associated to these vertices determine the periodicity vectors D .

The position or the cell space is set through the periodicity vertices. Suppose that vertex
number 58 of the hexagonal cell is set in its initial position, then the position of the nodes
64 and 164, at different load increments, is set by the relative displacement ε̄ ·D respect
to node 58. The position of the other nodes of the boundary is it unknown, but what is
known is that the relative displacement between each pair of periodic nodes (for example,
the node 13 to node 119, 55 to 159, etc.) is defined at the kp matrix, meeting the condition
imposed ε̄ ·D within the vector ∆D . In these nodes, the forces outside the domain have
the same magnitude (which is unknown) but on opposite direction to each other. These
forces are represented by the Lagrange multipliers λ1 and λ2.

Note that since the cell definition is a purely geometric concept, therefore any cell configu-
ration can be used to represent the periodic internal structure of the continuum. Therefore,
the proposed method should provide the same result from any geometric cell arrangement.
In other words, the formulation must be objective.

Although this method may appear quite heavy in computational terms, since two more
unknowns are needed for each periodic boundary condition, its general character is a
strong advantage when implementing the homogenization method, making it feasible to
characterize any type of geometrical shape of RVE.

3.4.3 Determination of the homogenized elastic constitutive tensor

The determination of the elastic constants of the composite structure is formulated follow-
ing the basis presented in the theory of averages and in the asymptotic expansion theory
[7, 22, 34, 103, 110]. Considering that all the constituents of the composite materials are
elastic and without admitting the possibility of debonding between the component mate-
rials, the elastic constitutive law for the composite which relates the global variables, in a
similar way as in the classical expression for homogeneous materials can be expressed as:

σ̄(x) = C̄(x) : ε̄(x) (3.39)

where C̄(x) is the tensor formed by the elastic constants of the homogenized composite,
called homogenized elastic constitutive tensor, meanwhile σ̄(x) and ε̄(x) are the homoge-
nized stress and strain tensors.

From Equation (3.39) it can be obviously established that the response of the composite
can be determined through the homogenized material constitutive tensor when a strain
deformation is applied on the composite; however, on the case of composites, obtaining the
homogenized material constitutive tensor is not a straightforward task when two or more
material components with different volumetric participations are part of the composite.
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One way to obtain this constitutive tensor is by applying a homogenized ε̄(x) deforma-
tion on the cell domain in order to compute the homogenized stress tensor σ̄(x). The
strain deformation can be applied in terms of small perturbations to the cell, in order to
activate the elastic properties of the composite. Then, the homogenized stresses in the
cell is computed for each strain deformation applied according to Equation (3.23). Once
this operation is performed, it may be possible to obtain the composite elastic constants
according to the following expression:

C̄(x) = [σ̄(x)] : [ε̄(x)]−1 (3.40)

However, since the homogenized elastic constitutive tensor C̄(x) is of fourth order tensor
and the homogenized stress and strain tensors σ̄(x) and ε̄(x) are tensors of second order,
the above equation has an infinite number of solutions. Nevertheless, if the condition of
orthotropy is considered and a system of equations with different perturbations is applied
in each of the principal directions, the homogeneous constitutive tensor can be obtained
component by component, making the problem to have a unique solution.

Perturbation method at the linear-elastic range

The method applied to obtain the elastic constants of the composite is associated to the
procedure followed by the theory of averages and by the asymptotic expansion theory. It
consist in applying small perturbations (small displacements) to the cell in each of the
principal directions separately in order to activate the different elastic constants of the
composite. For the case of bi-dimensional problems which are idealized as a plane stress
or plain strain problem, the homogenized elastic constitutive tensor can be expressed in
matrix for as:

C̄(x) =

 C̄xxxx C̄xxyy 0
C̄yyxx C̄yyyy 0

0 0 C̄xyxy

 (3.41)

If the perturbations are applied by means of the set of independent strains of Equations
(3.42-3.44) in each of the principle directions as:

ε̄1(x) = [ε̄xx, 0, 0] (3.42)

ε̄2(x) = [0, ε̄yy, 0] (3.43)

ε̄3(x) = [0, 0, 2ε̄xy] (3.44)
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A set of field stresses is obtained correlated to the strains applied independently for each
direction as expressed in Equations (3.45).

σ̄[ε̄1(x)] ; σ̄[ε̄2(x)] ; σ̄[ε̄3(x)] (3.45)

The coefficients of the homogenized tensor of Equation (3.41) are given by the following
set of equations:

C̄xxxx =
σ̄xxε̄1(x)

ε̄xx
(3.46)

C̄xxyy =
σ̄xxε̄2(x)

ε̄yy
(3.47)

C̄yyyy =
σ̄yyε̄2(x)

ε̄yy
(3.48)

C̄yyxx =
σ̄yyε̄1(x)

ε̄xx
(3.49)

C̄xyxy =
σ̄xyε̄3(x)

2ε̄xy
(3.50)

The technique used to obtain the coefficients of the homogenized constitutive tensor is
independent of the shape and type of strain that is applied to the cell. This means that
the homogenized constitutive tensor it will always be the same, even if another set of
distortions it is applied to the cell, as long as the cell properties remain within the elastic
range. The hypothesis of symmetry of the constitutive tensor has been expressed by
Suquet [110] assuming that the elastic homogenized constitutive tensor shows the classic
symmetries if the components of the composite have a periodic distribution. Therefore
if the condition to ensure the periodicity of the continuum is met, it can be stated that
the hypothesis of symmetry of the homogenized elastic constitutive tensor as expressed in
Equation (3.51) is satisfied.

C̄xxyy = C̄yyxx (3.51)

It must be noted that, as long as all the constituents of the composite remain at the linear
range of behavior, the constitutive tensor C̄(x) will remain without any modification.
Nevertheless, it must be taken into account that this factor changes when any of the
components of the composite enters into the nonlinear range; therefore the homogenized
constitutive tensor must be computed according to the state of charge endured by the
composite structure for every and each load step after any of the constituents that form
part of the composite goes beyond the linear range.
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3.5 Non-linear homogenized formulation in two scales

In the linear-elastic formulation presented in Section 3.4, the assumption of a linear-elastic
material is implied in the use of a constant stress-strain matrix for both scales and in the
assumption that the boundary conditions remain unchanged, since constant constraint re-
lations are considered in the computation of the global response. However, in the analysis
of solid and structural mechanics, when any of these assumptions is not meet, a non-linear
analysis must be performed instead.

The non-linearity of a problem is defined by several factors, since it may be caused by
material or kinematic effects. In a materially-nonlinear analysis, the non-linear effects lie
only on the stress-strain relation. However, there are other types of nonlinearities, such as
those in which the boundary conditions change during the motion of the body under con-
sideration. In the case of composite materials, the non-linear behavior can be originated
due to several causes: matrix and fiber non-linear constitutive behavior, microfailure ef-
fects (matrix microcracking, fiber-matrix debonding), and fiber failure (fiber buckling),
etc. In either case, the composite material behaves as a non-linear one, depending on the
local history of the constituent materials. In this research the non-linearity of the prob-
lem is defined by the non-linear effects given by the stress-strain relation. Other types of
nonlinearities lie out of the scope of this research and should be subject of further research.

In the nonlinear problem the geometric and kinematic expressions that were established
for the elastic problem remain valid. The local equilibrium equations, both at the macro
and micro scale presented in Sections 3.4.1 and 3.4.2, also remain valid; however, the
elastic behavior material laws, represented at Equations (3.23) and (3.29) have to be re-
placed by their non-linear counterparts in order to reproduce the inelastic behavior of each
component material on the micro-structure and of the entire composite at the global scale.

3.5.1 Basic concepts for the formulation of the non-linear equation

In classical Continuum Mechanics formulations, the linear and non-linear behavior of ma-
terials is established by using constitutive equations. These equations relate two physical
quantities that is specific to a material or substance, and approximate the response of
that material to a set of external forces. In the linear case is common to approximate
the constitutive equation by means of a simple proportionality parameter taken from the
properties of the material. This stress-strain constitutive relation is commonly known as
Hooke’s law. Nevertheless, in the non-linear case a much more elaborated formulation is
needed to account for the tensorial properties and the rate of response of the materials
expressed in Equation (3.52).

σ̇ = CTnl : ε̇ (3.52)

where CTnl represents the non-linear constitutive tangent tensor of a constituent material.
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Different mathematical equations have been established to represent the ideal phenomeno-
logical behavior of many homogeneous and isotropic materials. Several constitutive equa-
tions have been developed and are available at the literature on the topic reproducing the
behavior of different materials (elastic, plastic, viscous, with stiffness degradation, with
strength degradation etc.).

The deduction of the constitutive equations is usually performed starting from a potential
energy Φ and expressed in function of different variables (free variables, internal variables
and dependent variables). A generalization of this procedure can be expressed by the
following expressions:

a) Free energy of the material:

Φ = Φ(ε,α) (3.53)

b) Free variable. Strain tensor:

ε =
1

2

(
∂u

∂y
+
∂uT

∂y

)
(3.54)

c) Internal variables:

α = {αk} k = 1, ...., n (3.55)

d) Dependent variable. Stress tensor:

σ̇ = σ̇ (Φ, ε̇, α) (3.56)

The scheme presented in Equations (3.53-3.56) to obtain a constitutive equation is valid
only for the case of a component material. However, when dealing with composite mate-
rials or structures composed of two or more materials, each material that is part of the
composite will behave in a characteristic manner according to the physical and chemi-
cal properties that govern their behavior. Several attempts have been made to obtain
constitutive equations of composite materials by considering the composite material as a
homogeneous one; nevertheless this is a complicated process that not only depends on the
material properties of the components but also on the volumetric participation within the
composite and on the spatial configuration with respect to the whole specimen.

In this formulation, the homogenization method is applied in order to avoid this compli-
cated process, but above all to make it possible to analyze almost any composite material
configuration independently of the material behavior of its components and of the geo-
metric pattern in which they are arranged.

The non-linear formulation in this study is derived based on the field variables for each
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component at the micro-structural level. However, as Suquet [110] pointed it out, per-
forming a task such as this will depend on an infinite number of variables. In order to
avoid this inconvenient it is decided that the most appropriate way to obtain the non-
linear constitutive equation should be done through a formulation based on a numerical
algorithm implementation.

The numerical algorithm implementation is carried out through a reproduction of the
field variables of stress and strain at the micro-structural level, which are function of the
behavior and of the geometric form of the component materials. Therefore, the entire
field of internal variables of the components within the cell domain represents the internal
variables of the constitutive equation of the composite. Thus, in order to formulate a
constitutive equation for the composite (at the global level), there is no need to operate
directly with the constitutive equations of the components (at the local level), nor with
its geometry. Following a formulation like this, results in obtaining a method of general
character which can be applied in the solution of almost any type of composite material
or structural configuration.

3.5.2 Non-linear formulation at the macro scale

The non-linear formulation at the macro scale follows the same postulations as in the
linear-elastic case. The formulation considers the BVP of a domain Ω which represents a
composite material and which is delimited by a boundary ∂Ω where ∂Ωu is the part of the
boundary where the displacements are known (Dirichlet condition) and ∂Ωt is the part of
the boundary where the forces are known (Newman condition). Again, the internal struc-
ture of the composite is considered as prone of being divided into very small structural
units called cells or RVEs, whose domain is characterized by Ωc, in a way that the entire
domain Ω can be represented by an orderly repetition of these cells.

As in the linear case, the BVP at the macro scale level must satisfy the following set
of equations:

∂ σ̄(x)

∂x
+ b̄ = 0 equilibrium equation in Ω (3.57)

σ̄(x) =
1

Vc

∫
Vc

σ(x, y) dVc constitutive equation in Ω (3.58)

u(x) = ū(x) displacements in ∂Ωu (3.59)

σ̄(x) · n = t̄ (x) forces in ∂Ωt (3.60)

However, according to Equation (3.52) a constitutive relation of the composite at the non-
linear range needs to be established in an incremental way in order to satisfy Equation
(3.58) on the BVP expressed above, such as:

˙̄σ (x) = C̄
Tnl (x) : ˙̄ε (x) (3.61)
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where C̄
Tnl (x) represents the non-linear homogenized constitutive tangent tensor of the

composite structure.

3.5.3 Non-linear formulation at the micro scale

At the micro scale the non-linear problem considers a domain Ωc that represents the unit
cell or RVE of the composite, which is repeated periodically. At the microstructural scale
the problem consists in obtaining the displacement u(y) and stress σ(y) fields satisfying
the following set of equations on the BVP.

∂ σ(y)

∂y
= 0 equilibrium equation in Ωc (3.62)

σ̇(y) = C(y) : ε̇(y) constitutive equation in Ωc (3.63)

up+D − up = ε̄(x) ·D periodic displacements in ∂Ωcu (3.64)

tp+D = −tp periodic forces in ∂Ωct (3.65)

where C(y) is the constitutive tensor corresponding to the respective component material
at each point inside the domain which may represent any kind of mechanical behavior
(plasticity, damage, etc.). The problem at the micro scale is associated to the macro scale
through the strain tensor ε̄(x).

3.5.4 Formulation of the equilibrium equation of the composite in two
scales

The constitutive equation for the composite is formulated as an incremental algorithm
which controls the global strain deformation of the composite through an increment ˙̄ε(x)
on the instant of time ∆t. The response of the composite at the current time t + ∆t is
given by the homogenized stress tensor according to the following expression:

σ̄(x)t+∆t = σ̄(x)t + C̄
Tnl(x)∆t : ˙̄ε(x)∆t (3.66)

Expression (3.66) strictly agrees with Equation (3.14); therefore it can be expressed in
terms of the microscopic variables over the RVE or unit cell as:

σ̄(x)t+∆t =
1

VΩc

∫
VΩc

[
σt(Φ(y), ε̄(x)t,α(y)t) + σ̇∆t(Φ(y), ˙̄ε(x)∆t, α̇(y)∆t)

]
dVΩc

(3.67)

=
1

VΩc

∫
VΩc

σt+∆t(Φ(y), ε̄(x)t+∆t,α(y)t+∆t)dVΩc

where Φ(y) represents the potential energy and α(y) represents the internal variables
within the cell’s domain. The solution of Equation (3.67) represents the mechanical re-
sponse of the composite using the homogenization method in two scales.
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Now, assume a quasi-static behavior of a given composite material, where the geometric
data of the microstructure it is known (domain Ωc). Suppose that the variables problem
in a given time t are known, i.e. the stress σ̄(x)t and strain ε̄(x)t homogenized tensors
and the internal variables α(y)t at the composite domain Ω throughout the cell or RVE
domain. Consequently, since the composite is assumed in equilibrium, the residue rt is
approximately equal to zero. This is expressed as in a general form as:

rt =
∣∣R(σ̄)t − F (t̄ n)t

∣∣ ' 0 (3.68)

where R(σ̄) represent the forces inside the composite domain that are in function of
the internal homogenized stresses, meanwhile F (t̄ n) are the forces on the boundary of
the composite domain originated by the external traction forces. According to Equation
(3.66) the increment in the response of the composite for the time t+ ∆t, depends on the
homogenized strain rate increment ˙̄ε(x)∆t.

˙̄σ(x)∆t = C̄
Tnl(x)∆t : ˙̄ε(x)∆t

(3.69)

= σ̄(x)t+∆t − σ̄(x)t

with:

ε̄(x)t+∆t = ε̄(x)t + ˙̄ε(x)∆t (3.70)

The systems of equations presented in the expressions (3.57-3.60) and (3.62-3.65) represent
the balance of the BVP in each of the scales. The solution to this two BVP’s must be
performed as a coupled system as established in Equation (3.67). This implies an infinite
number of boundary value problems, one at the macro scale and the rest in the micro
scale (one for each integration point of the macro scale). Hence the difficulty of solving
non-linear problems by using the homogenization theory. A pivotal role on the coupled
solution is played by the non-linear homogenized constitutive tensor, since the rate of
convergence depends on it. Therefore, an appropriate strategy to obtain it is desired.

3.5.5 Formulation of the homogenized non-linear constitutive tensor

The homogenized constitutive tensor was successfully obtained in the linear range by
computing the homogenized stress tensor σ̄(x) when a small strain deformation ε̄(x) was
applied into the cell to activate the elastic properties of the composite as expressed in
Section 3.4.3. Nevertheless, if the same formulation is used to compute the homogenized
constitutive tensor on the non-linear range it may result in a rough approximation of the
composite response, since the stresses on the unit cell or RVE may vary considerably from
one element to another depending on the material and geometric configuration of the cell.
This may lead to numerical problems, especially in high stages of non-linear behavior.
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Obtaining the non-linear response of a composite material is a difficult task since the
homogenized non-linear constitutive tensor changes according to the applied load. This
process involves a huge computational cost. Several procedures have been developed in
order to obtain the non-linear homogenized constitutive tensor with the minimum com-
putational effort possible. These include, for example, the construction of a database
with the homogenized properties, performing sensitivity analysis, applying Fast Fourier
Transforms, using a characteristic deformation mode superposition method, etc. For a
thorough review of many of the methods developed so far, see Chapter 2. However in all
the procedures available so far, the only constant, is the enormous computational effort
required to compute the tensor when the composite structure lies within the nonlinear
range. Among the several methods found, the perturbation based methods appear to be
the most efficient procedures developed so far to compute the homogenized non-linear
tensor as suggested by Miehe [75]. In this formulation the perturbation-based method
presented by Badillo and Oller [4] is adopted to compute the non-linear tangent tensor of
the composite materials and structures presented in this study.

The method consists in applying a perturbation to obtain the non-linear tangent con-
stitutive tensor CTnl of each element of the unit cell that represents the composite. The
non-linear performance at the RVE or unit cell is implemented through the constitutive
models (developed a priori). The implementation of the periodicity conditions on the cell
domain also remain the same as in the linear range, thus at first glance no further assump-
tions have to be made to solve the problem at the local or microstructural level when the
RVE enters into the non-linear range.

Once that the tangent tensor is computed for each and every element of the unit cell
or RVE, it must be stored in order to calculate the homogenized non-linear tangent con-
stitutive tensor C̄

Tnl over the entire volume of the cell, in a way that will allow us to solve
the constitutive problem of the composite material expressed by Equation (3.61). The
homogenized tangent non-linear constitutive tensor is computed over the entire volume
of the unit cell or RVE following the classical definition given by the average method as
expressed in Equation (3.71).

C̄
Tnl(x) =

1

VΩc

∫
VΩc

CTnl
ij dVΩc (3.71)

The expression presented in Equation (3.71) is analogous to the one presented in Equation
(3.41) for the linear elastic case since both expressions would yield the same linear elastic
constitutive tensor. The difference among these two expressions is that in the Equation
(3.41) the homogenized constitutive tensor is computed directly from the homogenized
elastic stress and strains tensors of the cell, meanwhile that in Equation (3.71) the con-
stitutive tensor it is obtained from the integration over the volume of the cell’s domain of
the tangent constitutive tensors from each integration point. The perturbation method is
numerically explained in Section 4.4.2 in the Chapter 4.
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3.6 Formulation of the homogenization method following a
multi-domain decomposition approach

In this section, the concepts that were exposed in the paragraphs above, that form part of
the classical homogenization method, are further applied following a multi-domain decom-
position scheme. The objective of the micro-macro approach developed in this research is
to set the mathematical framework to take into account the decomposition of the struc-
ture into an assembly of substructures following a more practical approach than the ones
present in the few multi-domain decomposition schemes existing to date.

3.6.1 Previous studies on multi-domain decomposition

Several micro-macro approaches have been developed to obtain mathematically the re-
sponse of composite materials and structures using the classical homogenization method
of periodic or quasi-periodic arrangements. However very few attempts have been made
in order to fulfill the need to analyze multi-domain periodic arrangements when they are
required to be considered as a single structure at once by using the homogenization method.

Among the first works on this subject, Fish and Wagiman [29] presented a generalization
of the mathematical homogenization theory to account for locally non-periodic solutions.
The authors proposed dividing the problem in different sections. In the portion of the
problem domain where the material is formed by a spatial repetition of the base cell and
the macro scale solution is smooth, a double scale asymptotic expansion and solution peri-
odicity are assumed, and consequently, mathematical homogenization theory is employed
to uncouple the micro scale problem from the global solution. Meanwhile that for the rest
of the problem domain it is assumed that the periodic solution does not exist (cutouts,
cracks, free edges in composites, etc.) and the approximation space is decomposed into
global and local scale fields. The compatibility between the two regions is explicitly en-
forced throughout the solution process.

Later on, Fish and Belsky [28] proposed a multi-grid method for a periodic heteroge-
neous medium in multi-dimensions. Special intergrid transfer operators were developed to
simulate a low frequency response of the boundary value problem with oscillatory coeffi-
cients based on the classical homogenization method. An adaptive strategy was developed
to form a nearly optimal two-scale computational model consisting of the finite element
mesh entirely constructed on the microscale in the regions identified by the idealization
error indicators, while elsewhere, the modeling level is only sufficient to capture the re-
sponse of the homogenized medium.

On another work on the subject, Hami and Radi [48], developed two decomposition meth-
ods based on the partition of the structure in some substructures called the iterative
substructure method and the method based on the symmetry groups. The composite is
divided in certain number of identical subdomains or repetitive patterns having a repetitive
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geometry. Furthermore the structure is defined as mechanically repetitive if it possesses
incidental mechanical characteristics for each subdomain, where the operator of the struc-
ture is ‘equivariant’ under the action of the symmetry group.

Ladevèze and coworkers [63, 65, 81, 64] implemented a micro-macro computational strat-
egy for the analysis of structures which are described up to the micro level, such as
composite structures. The description of micro and macro quantities is performed on the
interface arising from the decomposition of the structure. The first step of the method
consists in the decomposition of the structure into an assembly of simple constituents:
substructures and interfaces as presented in Figure 3.7.

Figure 3.7: Decomposition of a structure into substructures and interfaces (taken from Ladevèze
et al. [63]).

For instance, a substructure may contain one or several cells of a composite structure.
Each of these components possesses its own variables and equations. An interface trans-
fers both a distribution of displacements and a distribution of forces. The unknowns
(displacements, forces, stresses and strains) are split into a set of macro scale quantities
and a corresponding micro scale complement.

The second step of this micro-macro strategy is the use of the so-called LATIN (large time
increment, Ladevèze [61]) method on the problem expressed as an assembly of substruc-
tures and interfaces to be solved. The LATIN method is conceived as a non-incremental
iterative computational strategy applied over the entire studied time interval. For ev-
ery computational iteration, a ‘macro’ problem, defined on the entire structure, has to
be solved, along with a family of problems associated to a substructure, called ‘micro’
problems, whereas the ‘macro’ problem is related to the entire homogenized structure.
This strategy involves numerical parameters that can be interpreted as interface stiff-
ness. A study of the influence of these numerical parameters on both the displacement-
and traction-based micro-macro computational strategies was presented. The resultant
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micro-macro strategy displays convergence for stable materials under standard assump-
tions. In [65] Ladevèze and Nouy introduced a third scale and use an approximation
technique for the macro-problem. This approximation is based on an analogy between
the macro-homogenized structure and a Cosserat-like solid. Furthermore a radial loading
approximation to solve the micro-problems was introduced. These improvements are no-
ticeably when one has to deal with a large number of composite cells and needs to calculate
a detailed solution in the time domain.

The multi-domain homogenization techniques described above, in some cases, offer im-
provements in the effectiveness and the robustness on the solution of multi-domain ho-
mogenization problems. However, despite this fact, the vast majority present some draw-
backs since most of them are formulated and validated for the linear elastic range only.
Furthermore, the level of complexity of the solutions proposed, make them impractical to
carry out since, in order to apply such solutions, the number of degrees of freedom, and
consequently the computational cost, is increased drastically. If it is taken into account
that the homogenization method is already an expensive computational method itself, the
application of such methods in the solution of large structures (composed by many unit
cells or RVE) render them unfeasible to apply in most of the cases.

Due to the aforementioned reasons, in this research a multi-domain homogenization ap-
proach based on the principles of the classical homogenization theory is proposed with the
purpose of avoid some of the limitations on the techniques existing on the subject that
take into account the decomposition of the structure into an assembly of substructures.
The method is valid on the linear on non-linear range of behavior taking into account
classic non-linear material behavior such as damage and plasticity.

3.6.2 General framework and hypothesis of the multi-domain formula-
tion

In order to establish the framework and hypothesis of the multi-domain formulation, let’s
consider a two-dimensional highly heterogeneous medium material body Ω, which is com-
posed by two periodic domains Ω1 and Ω2, with different composite arrangements in each
one of them, as presented in Figure 3.8.
The two subdomains in which the composite structure is divided are considered as two
non-overlapping subdomains, such that:

Ω = Ω1 ∪ Ω2 (3.72)

The curve which dissects the region over the two subdomains in Figure 3.8 can be consid-
ered as a boundary interface which can be defined as:

ΓI − Γ
′
I = Ω1 ∩ Ω2 (3.73)
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Figure 3.8: Schematic representation of a composite domain Ω assembled by two different periodic
domains.

It is implied that the curve ΓI − Γ
′
I follows the element boundaries in which each of the

subdomains is divided according to the element type selected at the numerical formulation
(for example, a finite element formulation).

Now, let’s assume that the boundary interface ΓI − Γ
′
I acts like a new boundary con-

dition for each of the subdomains. By doing this then it can be considered that each of
the subdomains behaves independently from each other. The boundary condition that
represents the interface is expressed in terms of the forces and displacements on each side
of the interface. The forces and displacements act as a ‘virtual’ boundary condition since
they are equal on each side of the interface in order to preserve the equilibrium.

By applying the assumption mentioned above then the homogenization theory concepts
exposed in Sections 3.4 and 3.5 can be applied separately on each of the periodic sub-
domains in which the structure is divided, since each one of them can be represented by
a RVE or unit cell that perfectly characterizes the domain to which it is associated, as
represented in Figure 3.9. The mathematical formulation is expressed on the following
section.
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Figure 3.9: Schematic representation of the two different periodic domains divided by a Neumann-
like boundary condition.

3.6.3 Multi-domain homogenization formulation in two scales

On the general formulation of the problem using homogenized variables, the problem was
based on the relationship between the strains that arise on the macro scale with the
transformation suffered by the periodicity vectors that are contained on the microscale as
previously mentioned. Once this relationship was completed then the equation that dic-
tates the balance of the composite structure could be formulated and solved. In the case
of multi-domain homogenization, the balance equation must include all the subdomains
that form part of the composite.

Taking as an example the composite domain Ω presented in Figure 3.8 assembled by
two different periodic domains, the linear problem at the global scale can be character-
ized by a boundary value problem which consists of a highly heterogeneous composite
material domain Ω which can be represented by a set of non-overlapping subdomains Ωi

(in this case i=1,2) joined at an interface called ΓI − Γ
′
I . The internal structure of each

subdomain is arranged periodically, such that with respect to a macro scale x the material
corresponding to that that specific subdomain is considered as an homogeneous material.

If the composite domain Ω is characterized according to the different existing periodic
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configurations, represented by the subdomains Ωi, as depicted in Figure 3.9 then it can
be assumed that the boundary conditions can be expressed in terms of the subdomain in
which they are positioned or with respect to the whole domain Ω.

According to the aforementioned description, the composite is subjected to the follow-
ing boundary conditions: (a) a prescribed displacement (in terms of a fixed boundary
condition) on the left of the subdomain Ω1; (b) a prescribed traction force on the right of
the subdomain Ω2; and (c) a prescribed body force b over the entire composite domain
Ω. The boundary value problem at the global scale stays as follows:

∂ σ̄(x)

∂x
+ b̄ = 0 equilibrium equation in Ω (3.74)

σ̄(x)Ω1 =
1

VΩ1

∫
VΩ1

σ(x, y) dVΩ1 constitutive equation in Ω1 (3.75)

σ̄(x)Ω2 =
1

VΩ2

∫
VΩ2

σ(x, y) dVΩ2 constitutive equation in Ω2 (3.76)

u(x) = ū(x)Ω1 displacements in ∂Ω1(u) (3.77)

σ̄(x) · n = t̄(x)Ω2 forces in ∂Ω2(t) (3.78)

Additionally two ‘virtual’ boundary conditions are taken into account, since the displace-
ments and forces must be equal on both sides of the interface, this is expressed as:

u(x)∂Ω1 = −u(x)∂Ω2 displacements at interface ΓI − Γ
′
I (3.79)

t̄1−2(x)∂Ω1 = −t̄1−2(x)∂Ω2 forces at interface ΓI − Γ
′
I (3.80)

It is considered that the equilibrium of forces and displacements on each side of the in-
terface is enforced by the periodic conditions at the local scale. By expressing the multi-
domain homogenization formulation at the global scale as in Equations (3.74-3.80), the
problem can be solved in a similar manner as in the case of a single periodic domain.

This assumption however, may raise some uncertainties about the principles on which
the theory of homogenization is based upon, since in order to provide a rigorous deduction
of global and local behavior, the composite structure has to obey two mainly hypothesis:
(i) The microstructure has to be periodic, i.e., the composite material is locally formed by
the spatial repetition of very small microstructures (RVE’s or unit cells); and (ii) There
is uniformity of the macro scale fields within the unit cell domain, i.e., the global terms
are periodic with the same period as that of the microstructure. In the case of the region
defines boundary interface ΓI−Γ

′
I the coupled global-local effects of the two heterogeneous
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means Ω1 and Ω2 are not necessarily periodic in the sense of assumptions (i) and (ii).
Therefore, although both materials are periodic, the solution in the vicinity of ΓI − Γ

′
I is

not periodic, since there will exist a high presence of local effects. Consequently, according
to the exact mathematical definition, the use of asymptotic expansion for the purpose of
obtaining local distribution of stresses and strains at the micro scale level, will generally
yield poor approximations of the local fields.

Local fields effects

The influence of the local fields on the global response in the vicinity of the boundary
interface ΓI − Γ

′
I between two periodic arrangements expressed on the paragraphs above

presents a lot of similarities with the case of periodic media in the vicinity of free edges,
where only assumption (i) holds. Some solutions have been proposed to address the
problem in the vicinity of free edges, such as that proposed by Sanchez-Palencia [105], in
which an asymptotic expansion of the solution of ue(x) of different nature in the boundary
layer region is investigated by introducing the complementary term u1c under the form:

u ε(x) = u0(x) + ε
[
u1(x, y) + u1c(x, y)

]
+ O(ε2) (3.81)

The numerical solution of this problem showed that the effect of adding this complemen-
tary term is significant on points located near the boundary edge. Conversely, the gradient
in some generalized sense tends to zero, as the point where the solution is computed moves
away from the boundary edge.

The result obtained in [105] agrees with that obtained by Dumontet [24], in which an
approximation of the local stresses near a Neumann boundary for an elastic material with
a periodic structure is performed by means of a higher order formulation. This formula-
tion consists in adding boundary layers terms, which are supposed periodic parallel to the
boundary, to the classical terms of the expansion of the displacement and stresses of the
homogenization theory. The numerical results obtained proved that the boundary stresses
decrease exponentially according to the orthogonal variable to the free boundary.

Oller et al. [90] take this discussion further, pointing out that high gradients of the
macro scale variable fields at a certain structural point involves a perturbation of these
fields in the neighboring cells, which apparently contradicts the basic periodicity hypoth-
esis. However, the authors consider this hypothesis as an idealization of the variational
field problem, which in fact should be translated into a slow change on the macro scale
variables. The authors put as an example two points (A and B) on the macro scale on
which there is a high stress or strain gradient between them as presented in Figure 3.10.

Since the homogenization theory considers that the dimensions of the cell tend to zero
from a general scale point of view (assumption (i) on the paragraphs above), therefore
it is supposed that, the gradient (or rate change) between the cell represented by point
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A and the neighboring cell is very small. This pattern is repeated over a period d until
the cell represented by point B is reached. However, the real problem differs from this
idealization, since, due to the finite dimension of the cell, a finite number of them may
exist between both points. On the right-hand side of the same figure, the variation of the
micro scale fields is indicated. This variation is understood as the field variable error made
over the period d that in turn represents the length of the cell. The authors suggest that
by diminishing the size of the cell (understood as a reduction of the finite element at the
global scale) and assuming that the amplitude of the field variable stays constant a reduc-
tion on the error on the computed results is obtained. These assumptions are extrapolated
to the boundaries of the cell, since by diminishing the dimensions at the macrostructure,
the cell dimensions also diminish, making the periodicity error on the border of the macro
scale domain to tend to zero.

Figure 3.10: Schematic representation of the variational field problem of a quasi-periodic function.

In this study, the same assumptions and considerations made in [90] are applied to ana-
lyze the problem presented in Figures 3.8 and 3.9, for the case of a highly heterogeneous
composite domain assembled by several different periodic domains. Thus, the problem at
the local scale at the vicinity of the interface remains exactly the same as in the case of the
formulation presented in Sections 3.4 and 3.5 for the linear and non-linear homogenized
formulations in two scales for a single periodic domain.

It must be remarked that the convergence on the solution, in cases where high strain
gradients are present, greatly depends on the size of the finite element at the global scale.
Large finite elements at the global scale may render the local periodicity hypothesis to be
inappropriate or unsuitable to reach convergence in cases like when Dirichlet boundary
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conditions exist. By reducing the element size at critical areas, the concept of periodicity
(or cuasi-periodicty) is preserved, since the jump in the gradients decreases along with
the size of the elements. This concept is in total agreement to the ideas exposed in those
studies made by Sanchez-Palencia [105], Dumontet [24] and Oller et al. [90]. This method
is presented as an alternative to some of the existing solutions which make use of penalty
methods, error minimization algorithms or high order formulations, by following a more
practical approach.



Chapter 4

Numerical implementation

In this chapter the numerical formulation of the multi-domain homogenization approach is
implemented by means of a finite element code following the two scale approach developed
in Chapter 3. The weak formulation at the macroscopic or global level is expressed based
on considering different periodic subdomains within the composite structure. Meanwhile
that the solution at the local level is expressed through the mathematical formulation on
the cell or RVE domain taking into account the periodic boundary conditions. The nested
solution scheme of the finite element implementation is thoroughly described, including
the numerical implementation of the procedure to obtain the homogenized non-linear
constitutive tensor by means of a perturbation method and the description of the approach
used for the parallelization routine of the computational tool.

4.1 Introduction

In the state of the art presented in Chapter 2, several methods of analysis that make use of
the homogenization method were presented. In this study the multi-domain homogeniza-
tion method in two scales is developed under a finite element (FE) method formulation.
Although other methods may offer better advantages in the analysis of composites under
certain conditions, the FE method was selected over the rest of the methods analyzed
since it presents more advantages than drawbacks with respect to the others.

One of the most outstanding alternative methods found on the state of the art was the
formulation that employs the Voronoi cell method. This method appears to be highly ef-
fective for the study of composites with random distribution. The method is even capable
to represent a unit cell of a periodic continuum in some cases with a single Voronoi finite
element. This feature gives a great advantage since the method results computationally
relatively economical. However, the method presents some drawbacks in the sense that the
fields at the micro scale are given by a single Voronoi element, therefore the accuracy is
less than that obtained in a FE formulation by a unit cell with various elements (although
the overall average value of these fields is rough as well). Nevertheless, the main difficulty

95
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found in this method is that since this technique discretizes the domain into a network
of multisided convex Voronoi polygons formed by a matrix-like component and a second
phase inclusion at most.

On the other hand, the finite element formulation has the advantage that it can be imple-
mented over existing finite element codes may serve as starting platform for the numerical
implementation of the homogenization formulation. This FE codes generally have been
previously tested, meanwhile that if other formulations are selected they will have to be
built from scratch.

4.2 General concepts for the numerical implementation of
the finite element formulation

The numerical implementation of the multi-domain homogenization method is carried out
through of a nested solution scheme in two scales by means of two finite element programs,
one for each on the scales. The general framework of the solution consists in that for each
Gauss point of each finite element at the global scale, a finite element problem defined by
the RVE or unit cell has to be solved in order to obtain the response at the microstructure
that will give the averaged solution at the macroscale.

For the global scale the problem is expressed at the linear range by means of the bound-
ary value problem given by Equations (3.22)-(3.25), meanwhile that for the local scale
the BVP is expressed by Equations (3.28)-(3.31). For the case of the non-linear problem,
the local equilibrium equations of the linear range, both at the macro and micro scales
have to be represented by their non-linear counterparts, in order to reproduce the inelastic
behavior of each component material on the micro-structure and of the entire composite
at the global scale as expressed in Section 3.5.

The BVP at the local scale has to take into account the correct application of the bound-
ary conditions represented by the prescribed positions of the anchor nodes (i.e. the four
corner nodes on a rectangular cell or RVE) and the kinematic constraints on the oppo-
site boundaries in order to apply the periodicity conditions on the cell domain. On the
other hand, the BVP problem at the global scale has to carry out the particular task of
implementing a proper strategy to achieve convergence of the whole structure.

4.3 Linear-elastic finite element method formulation

In the differential formulation of the homogenized method presented in Section 3.4, the
equilibrium and constitutive requirements were established in terms of small displacements
following a linear-elastic formulation. In the resulting system of differential equations all
the compatibility requirements were already contained since the solution is a continuous
one. The system of equations was complemented by additional differential equations that
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impose the appropriate conditions on the state variables in order that all compatibility
requirements were satisfied. Furthermore, all boundary conditions were established to
fully complete the formulation of the problem. With all these assumptions, the finite
element equilibrium equations derived satisfy the following linear static formulation:

K · u = F (4.1)

Equation (4.1) correspond to a linear analysis of a structural problem because the dis-
placement response u is a linear functions of the applied load vector F . The fact that
the displacements are small is reflected into the evaluation of the matrix K and load
vector F because all integrations should be performed over the original volume of the
finite elements, and the strain-displacement matrix B of each element is assumed to be
constant and should be independent of the element displacements. The assumption of
a linear-elastic material is implied in the use of a constant stress-strain matrix for both
scales (C for the local and C̄ for the global scale).

Form the mathematical point of view, the differential formulation or ‘strong form’ solu-
tion of the partial differential equations (PDEs) that represent the problems expressed at
the paragraphs above in both scales represent the analytical exact solution; therefore this
problems require that the relationships that are described at the PDEs must be satisfied
at every mathematical point in the domain. From the numerical point of view, however,
finding a solution that is fully satisfied is a difficult task or even in some cases impossible
to accomplish. Nevertheless, an alternative solution to the BVPs can be achieved from a
numerical point of view by setting the PDEs following a ‘weak form’. The formulation of
finite element method can be considered as an extension of the weak formulation, since it
is based on the discretization over the domain of the BVP.

4.3.1 Weak formulation

The term ‘weak form’ is sometimes referred as variational form, or weighted residuals form
because the solution of the PDEs is approximated with the use of trial functions. The weak
formulation for the global and local scales that form part of the homogenization method
are described following the general formulation in the linear elastic range presented in
Section 3.4.

Weak formulation at the macro scale or global level

The differential Equation (3.22), which establishes the local equilibrium at the macroscopic
scale, can be rewritten as:

∇σ̄ (x) + ρ (x) b (x) = 0 (4.2)

where ∇σ̄ (x) is the divergence of the homogenized stress tensor and ρ (x) b (x) is the
value of the mass forces of the composite. Equation (4.2) must be zero at all points of the
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domain Ω and also must satisfy the boundary conditions imposed in Equation (3.25) in
the case that the composite is defined by one periodic domain only. In the case that more
than one periodic configuration exist in the composite domain, Equation (4.2) must satisfy
the boundary conditions imposed in all the subdomains Ωi of the structure. Following the
formulation presented in Section 3.6, in a multi-domain homogenization environment with
two subdomains the BVP represented by Equations (3.74-3.78) must be satisfied altogether
with the two additional ‘virtual’ BCs represented by Equations (3.79) and (3.80). For the
case that more subdomains existed a similar formulation should be followed depending on
the number of periodic subdomains Ωi existing on the composite domain.

Applying the weighted residual method on the described expression (for a detailed ex-
planation of the method, see [129]), we have that:

∫
Ωi

w · [∇σ̄ (x)]dΩi +

∫
Ωi

w · [ρ (x) b (x)]dΩi +

∫
∂Ωi

w · [t̄ (x)− σ̄ (x) · n ]d∂Ωi = 0 (4.3)

where i denotes the different periodic subdomains of the structure, w is an arbitrary
set of test functions associated with the displacement field, which satisfies the Dirichlet
boundary conditions on ∂Ωi, meanwhile t̄ (x) represents the forces, known also as traction
vector, imposed on the boundary ∂Ωi which satisfies the Neumann boundary conditions.
In this case t̄ (x) also includes the additional BC that represents the set of ‘virtual’ forces
at each of the interfaces ΓI −Γ

′
I present in the structure domain. Applying the divergence

theorem, the first term of Equation (4.3) can be expressed as:

∫
Ωi

w · [∆σ̄ (x)]dΩi ≡ −
∫

Ωi

∇w : σ̄ (x) dΩi +

∫
∂Ωi

w · [σ̄ (x) · n ]d∂Ωi (4.4)

Now, the weak form of the static balance equation at the macro scale can be rearranged
as follows:

−
∫

Ωi

∇w : σ̄ (x) dΩi +

∫
Ωi

w · [ρ (x) b (x)]dΩi +

∫
∂Ωi

w · t̄ (x)d∂Ωi = 0 (4.5)

To choose the weighting vector w the Galerking method is applied. This method makes
use if the principle of virtual displacements by choosing as weight vector a hypothetical
displacement field δu(x), which is not associated with any current system of external
loads and that also satisfies the geometric conditions of the boundaries ∂Ω. In this way,
the weak form of the equilibrium equation at the macroscopic scale can be written as an
expression of the principle of virtual work as:

∫
Ωi

δε(x) : σ̄(x)dΩi =

∫
Ωi

δu(x) · [ρ(x)b(x)] dΩi +

∫
∂Ωi

δu(x) · t̄(x)d∂Ωi (4.6)
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where δε(x) is the virtual strain field obtained from the virtual displacement field δu(x)
at the macroscopic scale x. The homogenized stress tensor is obtained from the material
elastic constants σ̄(x) = C̄(x) : ε̄(x) as expressed previously in Equation (3.39).

From Equation (4.6) it is inferred that the two scales that are involved in the homog-
enization method have been decoupled since this expression is described in terms that
involve only the macroscopic scale x. However, the homogenized elastic constitutive ten-
sor C̄(x) and the homogenized stress tensor σ̄(x) have to be determined by the interaction
of the constituents at the local scale.

The virtual work statement that expresses Equation (4.6) is precisely the weak form of
the equilibrium equations at the macroscopic scale, and it is valid for linear and non-linear
stress-strain relations as pointed out by Zienkiewicz and Taylor [129].

Weak formulation at the micro scale or local level

The solution of the boundary value problem at the macroscopic or local level is achieved
through the mathematical formulation on the cell or RVE domain presented in Section
3.4.2, where the local equilibrium equations at each point and the microstructure alto-
gether with the special boundary conditions are presented following a differential formu-
lation.

Using the method of weighted residuals as in the case of the macroscopic level and re-
calling that since the cell is relatively small the effect of mass forces is negligible then the
weak formulation at the micro scale level leads to the following expression:

−
∫

Ωc

∇w : σ(y)dΩc +

∫
∂Ωc

w · t(y)d∂Ωc = 0 (4.7)

And the weak form of the equilibrium equation at the micro scale written as an expression
of the principle of virtual work stays as:

∫
Ωc

δε(y) : σ(y)dΩc =

∫
∂Ωc

δu(y) · t(y)d∂Ωc (4.8)

where δε(y) is the virtual strain field obtained from the virtual displacement field δu(y)
at the micro scale y. The virtual displacement field is an admissible field that satisfies the
condition of displacements in the boundary of the cell, i.e. up+D − up = ε̄(x) ·D, while
the traction vector t(y) is generated on the boundary of the cell by periodicity of the force
field, i.e. tp+D = −tp. The periodicity of the continuum is implemented by applying the
Lagrange multipliers as presented in Equation (3.38).

Once the problem on the cell or RVE is solved, the elastic constants are easily obtained
and the homogenized stress σ̄(x) according to the process explained in Section 3.4.3.
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4.3.2 Finite element implementation

As it was explained on the preceding paragraphs, the numerical implementation of the
multi-domain homogenization method is carried out through of a nested solution scheme
of two finite element programs. A finite element problem represented by a RVE or unit
cell has to be solved to obtain the homogenized response for each Gauss point that forms
part of a finite element discretization at the global scale.

FE implementation at the macro scale or global level

The equilibrium formulation is discretized now into finite elements in which the body of
interest is subdivided into Nelem elements. In this case, since the macroscopic domain Ω
can be composed by several subdomains, then the discretization of the overall domain is
made by means of a set of χ non-overlapping subdomains, according to the multi-domain
formulation presented in Section 3.6, which are in turn discretized in a sequence of non-
overlapping elements Ω(e), such that:

Ω =

[
Nelem⋃
e=1

Ω1(e)

]
∪

[
Nelem⋃
e=1

Ω2(e)

]
∪ · · · ∪

[
Nelem⋃
e=1

Ωχ(e)

]
(4.9)

The global displacement field can be obtained through conventional spatial interpolation
as:

ū(x) =

nnode∑
i=1

Nui
(e) ū(x)i(e) = N u

(e) ū(x)(e) (4.10)

where N u
(e) =

[
Nu1

(e), N
u2

(e), · · · , N
un
(e)

]
are the interpolation functions of displacement of the

element (e) and ū(x)(e) are the nodal displacements at the global label.

Following a small strain formulation, the strain deformation as a function of the dis-
placement for each element is given by:

ε̄(x)(e) =
1

2

[(
∇N u

(e) ū(x)(e)

)
+
(
∇N u

(e) ū(x)(e)

)T]

=
1

2

[(
∇N u

(e)

)
+
(
∇N u

(e)

)T]
ū(x)(e) (4.11)

= B (e)ū(x)(e)

where the matrix B (e) is known as the matrix of derivatives of the shape functions and ∇ is
the divergence operator. Applying the method of weighted residuals, through the principle
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of virtual work following Equation (4.6), to any element (e) of the macrostructure, then
the equilibrium equation stays as:∫

Ω(e)

BT
(e)C̄(x)B (e)ū(x)(e)dΩ =

∫
Ω(e)

N u
(e) [ρ(x)b(x)] dΩ+

∫
∂Ω(e)

N u
(e)t̄(x)(e)d∂Ω (4.12)

where the member on the left side of Equation (4.12) represents the internal forces for
each element meanwhile that the expressions on the right side of the equation correspond
to the external forces applied to the same, as specified in the following equations.

f int(e)
=

[∫
Ω(e)

BT
(e)C̄(x)B (e)ū(x)(e)dΩ

]
ū(x)(e) = k (e)ū(x)(e) (4.13)

f ext(e)
=

∫
Ω(e)

N u
(e) [ρ(x)b(x)] dΩ+

∫
∂Ω(e)

N u
(e)t̄(x)(e)d∂Ω (4.14)

The total values of the internal (R [σ(x)]) and external (F [t(x)]) forces at the macrostruc-
ture result from the assemblage of the contributions of each element as:

R [σ(x)] = Anelem
e=1 f int(e)

(4.15)

= Anelem
e=1 k (e)ū(x)(e) = K ū(x)

F [t(x)] = Anelem
e=1 f ext(e)

= F (x) (4.16)

where A is the standard assembly operator of the finite element method (see e.g. [52]).
Naturally, the system must satisfy the equilibrium Equation (4.1), i.e. R [σ(x)] = F [t(x)].

Numerical integration at the macro scale

The numerical integration at the macro scale it is implemented by applying the finite
element method isoparametric formulation. The principal idea of this formulation is to
achieve the relationship between the element displacements at any point and the element
nodal point displacements directly through the use of interpolations functions. The spatial
area of the element it is transformed into an isoparametric space by using isoparametric el-
ements. For example the vector of internal forces expressed in Equation (4.13) is evaluated
by numerical integration (also known as numerical quadrature) as:

f int(e)
=

nint∑
l=1

BT
(e)C̄(x)B (e)ū(x)(e)

∣∣∣x=xl
(e)
wlj(e) (4.17)

where C̄(x) is the homogenized elastic constitutive tensor, which is obtained at the micro
or local scale, xl(e) represents each integration point of the macrostructure (xl(e) ∈ Ω(e)),

wl is the corresponding weight, j(e) is the Jacobian of the element, and nint is the number
of integration points for the element Ω(e).
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FE implementation at the micro scale or local level

In this case, the domain at the micro scale represented by the unit cell or RVE Ωc is
conformed by means of a sequence of non-overlapping elements Ωc(e)

, such that:

Ωc =

[
Nelem⋃
e=1

Ωc(e)

]
(4.18)

By using the conventional spatial interpolation, the displacement field is determined for
each of the nodes that are part of the cell domain Ωc(e)

as for the case of the global scale.

u(y) =

nnode∑
i=1

Nui
(e) u(y)i(e) = N u

(e) u(y)(e) (4.19)

where N u
(e) =

[
Nu1

(e), N
u2

(e), · · · , N
un
(e)

]
are the interpolation functions of displacement of the

element (e) and u(y)(e) are the nodal displacements of the unit cell or RVE at the local
label.

The strain deformation as a function of the displacement for each element is given by:

ε(y)(e) =
1

2

[(
∇N u

(e) u(y)(e)

)
+
(
∇N u

(e) u(y)(e)

)T]

=
1

2

[(
∇N u

(e)

)
+
(
∇N u

(e)

)T]
u(y)(e) (4.20)

= B (e)u(y)(e)

where the matrix B (e) is the matrix of derivatives of the shape functions and ∇ is the di-
vergence operator. The equilibrium equation presented at the weak formulation (Equation
4.7) applying the method of weighted residuals stays as:∫

Ωc(e)

BT
(e)C(y)B (e)u(y)(e)dΩc =

∫
∂Ωc(e)

N u
(e)t(y)(e)d∂Ωc (4.21)

where the member on the left side of Equation (4.21) represents the internal forces for
each element meanwhile that the expression on the right side corresponds to the external
forces applied to the same, as specified in the following equations.

f int(e)
=

[∫
Ωc(e)

BT
(e)C(y)B (e)u(y)(e)dΩc

]
u(y)(e) = k (e)u(y)(e) (4.22)

f ext(e)
=

∫
∂Ωc(e)

N u
(e)t(y)(e)d∂Ωc (4.23)
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The total values of the internal (R [σ(y)]) and external (F [t(y)]) forces at the microstruc-
ture result from the assemblage of the contributions of each element as in the case of
the macrostructure presented in Equation (4.1). The system must satisfy the equilibrium
Equation (4.1) of the internal and external forces R [σ(y)] = F [t(y)].

However, the system of equations that fully describe the equilibrium equation at the
local level following the homogenization method procedure described in Section 3.4, is
augmented by the Lagrange multipliers in order to ensure the displacement periodic field
according to Equation (3.38). The total size of the augmented system (size of the cell
stiffness matrix) that results from the application of the periodicity conditions is given in
Equation (4.24).

[(NFnodes ·NDof ) + (2 ·NPpairs ·NDof )]2 (4.24)

where NFnodes is the number of free nodes (i.e. nodes with no restrictions but that can be
periodic nodes as well) on the RVE or unit cell, NDof is the number of degrees of freedom
and NPpairs is the number of periodic nodes that are related on each of the periodic faces
of the RVE or unit cell.

Numerical integration at the micro scale

In the case of the micro scale or local level, the stiffness matrix K of the RVE evaluated
by numerical integration stays as:

K = Anelem
e=1

[
nint∑
l=1

BT
(e)C(y)B (e)

∣∣∣y=yl
(e)
wlj(e)

]
(4.25)

where C(y) is the elastic constitutive tensor associated to a material component, yl(e) rep-

resents each integration point of the microstructure (yl(e) ∈ Ωc(e)
), wl is the corresponding

weight, j(e) is the Jacobian of the element, and nint is the number of integration points for
the element Ω

c(e) and A is the standard assembly operator of the finite element method.
The strain and stress field of the RVE are obtained under the framework of the system of
equations following the periodicity restrictions as presented in Equation (3.38).

The homogenized macroscopic stress field σ̄(x) is obtained by computing the average
of the stress fields of each integration point of each element that forms part of the cell
or RVE as expressed in Equation (3.14). The numerical integration of the homogenized
stress field σ̄(x) stays as follows:

σ̄ij(x) =
1

nelem∑
i=1

(
nint∑
i=1

wlj(e)

) nelem∑
i=1

(
nint∑
i=1

σij(y
l
(e))w

lj(e)

)
(4.26)

The independent field stresses (σ̄ [ε̄1(x)] ,σ̄ [ε̄2(x)] ,σ̄ [ε̄3(x)]) needed to compute the linear-
elastic homogenized constitutive tensor as expressed in Equations (3.45)-(3.50) on Section
3.4.3 are obtained using the numerical integration form expressed above in Equation (4.26).
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4.4 Non-linear finite element method formulation

It is a widespread practice in engineering analysis that a non-linear analysis is always
preceded by a linear one, since the non-linear analysis is considered as a natural extension
of the complete analysis process beyond the assumptions made at the linear analysis. For
this reason, the weak formulation and the finite element implementation presented in Sec-
tions 4.3.1 and 4.3.2 for the case of the linear formulation are taken as the starting point
of the non-linear formulation presented in this section.

The expressions presented in the weak and the finite element formulations remain valid to
characterize the non-linear behavior of the composite at both, the global and local scales.
However, in the case of the non-linear analysis the constant relation among the stress and
strain variables is not constant anymore as in the linear case. The new relation among
these two variables is set by the non-linear constitutive tensor, which at the micro or local
scale is given by the constitutive law of each material component meanwhile that for the
whole composite is given by the homogenized non-linear constitutive tensor as described
in Section 3.5.5.

The basic problem in a general non-linear analysis is to find the state of equilibrium
of a body in function of the applied loads by using an incremental solution approach. The
solution of the equilibrium equation of the composite in terms of homogenized variables
is described in the following paragraphs.

4.4.1 Incremental solution of the equilibrium equation in two scales

Considering the solution of the non-linear response, it is recognized that the equilibrium
relation of the composite, defined in Equation (3.68), must be satisfied throughout the
complete history of load application. In the case of a static analysis, in which the time ef-
fect does not affect the equilibrium equations, the factor time is only a convenient variable
which denotes different intensities of load application and their corresponding response
configurations of the system for each load increment. In the case of a dynamic analysis
though, the time variable must be included for the proper modeling of the actual physical
situation of the system subject of analysis.

The non-linear response in the classical FE method is effectively carried out using a step-
by-step incremental solution in which the total applied load is divided into several number
of load steps. In the case of homogenization in two scales, to achieve the equilibrium of
the composite, two different problems have to be solved, one at the macro scale or global
level and another at the micro scale or local level. The response on each of the scales is ob-
tained following an approach similar to the incremental solution implemented in classical
FE (using a single scale) with slight variations. Both procedures are described below.
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Incremental solution at the macro scale

The basic approach of the incremental step-by-step solution is to assume that the solution
of the discrete time t is known and that the solution for the time t+ ∆t is required, where
t + ∆t is a suitable chosen time increment. Rearranging the equilibrium equation of the
composite expressed in (3.68) for the case of the time t+ ∆t, it stays as:

R(σ̄)t+∆t − F (t̄ n)t+∆t = 0 (4.27)

where R(σ̄) represent the forces inside the composite domain that are in function of the
internal homogenized stresses σ̄(x), meanwhile F (t̄ n) are the forces on the boundary of
the composite domain originated by the external traction forces t̄ n(x).

Since the solution it is known at time t and assuming that F (t̄ n)t+∆t is independent
of the strain deformations, then:

R(σ̄)t+∆t = R(σ̄)t +R(σ̄) (4.28)

where R(σ̄) is the increment in nodal point forces corresponding to the increment in
element displacements and stresses from time t to time t + ∆t. This vector can be ap-
proximated using a tangent stiffness matrix K̄

t
which corresponds to the geometric and

material conditions at time t.

R(σ̄)=̇K̄
t
ū(x) (4.29)

where ū(x) is a vector of incremental nodal point displacements. Now the tangent stiffness
matrix can be expressed as:

K̄
t

=
∂R(σ̄)t

∂ū(x)t
(4.30)

The tangent stiffness matrix as expressed in Equation (4.30) corresponds to the derivative
of the internal element nodal point forces R(σ̄)t with respect to the nodal point displace-
ments ū(x)t. Substituting Equations (4.28) and (4.29) into (4.27) it is obtained:

K̄
t
ū(x) = F (t̄ n)t+∆t −R(σ̄)t (4.31)

Solving for ū(x), an approximation of the displacements at time t+ ∆t can be computed
as:

ū(x)t+∆t =̇ ū(x)t + ū(x) (4.32)
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The exact displacements at time t+∆t would be those that correspond to the applied loads
F (K̄ n)t+∆t. Having evaluated an approximation to the displacements corresponding to
time t + ∆t, an approximation of the stresses and the corresponding nodal point forces
can be evaluated for the same instant in order to compute the solution at the next time
step. However, because of the assumption made in Equation (4.29), the solution obtained
may have significant errors or in some cases would be unstable. It is then that an iter-
ative process must be performed until the solution proposed in Equation (4.27) is achieved.

The widely used iteration methods in finite element analysis are based on the classical
Newton-Rhapson technique. The method basically is an extension of the expressions pre-
sented in Equation (4.31) and (4.32). That is, having calculated an increment in the
nodal point displacements, which defines a new total displacement vector, the incremental
solution presented above can be repeated using the currently known total displacements
instead of the displacements at time t. The equations used in the Newton-Rhapson pro-
cedure stay as follows:

(i−1)K̄
t+∆t (i)∆ū(x) = F (t̄ n)t+∆t −(i−1) R(σ̄)t+∆t (4.33)

(i)ū(x)t+∆t = (i−1)ū(x)t+∆t +(i) ∆ū(x) (4.34)

where the subscript i denotes the iteration number.

The out-of-balance load vector F (t̄ n)t+∆t−(i−1)R(σ̄)t+∆t in Equation (4.33) corresponds
to a load vector that is not yet balanced by element stresses, and therefore an increment
in the nodal point displacements is required. This updating of the nodal point displace-
ments in the iteration is continued until the out-of-balance loads and increments are small.

An important point on the iterative solution is that the correct calculation of (i−1)R(σ̄)t+∆t

from (i−1)ū(x)t+∆t is crucial. Any errors in this computation will, in general, result in
an incorrect response prediction. The correct evaluation of the tangent stiffness matrix
(i−1)K̄

t+∆t (i) is also important. However, it must be noted that in the assemblage of
the homogenized stiffness matrix, the homogenized constitutive tensor C̄(x) plays a direct
role. Therefore, in the non-linear case the proper computation of the non-linear homoge-
nized constitutive tensor C̄

Tnl
(x) is desired for an appropriate rate of convergence.

The importance of the non-linear homogenized constitutive tensor C̄
Tnl

(x) is highlighted
in Table 4.1, since it shows that it is used at two points of the solution process: the evalu-
ation of the stresses and the evaluation of the tangent stress-strain matrices. The stresses
are used in the computation of the nodal point force vectors and in the non-linear strain
stiffness matrices, meanwhile that the tangent stress-strain matrix is used to compute
the linear strain stiffness matrices. A full description of the numerical determination of
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the homogenized non-linear constitutive tensor is given in Section 4.4.2. The complete
non-linear incremental solution process at the macro scale is summarized in Table 4.1.

Accepted and known solution at time t: ◦ stresses σ̄(x)t

◦ strains ε̄(x)t

◦ internal material parameters α(x)1,α(x)2, ....

1. Known: • nodal point variables (i−1)ū(x)t+∆t and element strains (i−1)ε̄(x)t+∆t

2. Compute: • stresses (i−1)σ̄(x)t+∆t

• tangent stress-strain matrix , denoted as (i−1)C̄(x), corresponding

to (i−1)σ̄(x)t+∆t

• internal material parameters (i−1)ᾱ(x)1
t+∆t,(i−1) ᾱ(x)2

t+∆t, ....

a. In elastic analysis: the strains (i−1)ε̄(x)t+∆t directly give the

stresses (i−1)σ̄(x)t+∆t and the stress-strain matrix (i−1)C̄(x)

with: C̄(x) = [σ̄(x)] : [ε̄(x)]−1

b. In inelastic analysis: an integration process is performed for
the stresses according to:

(i−1)σ̄(x)t+∆t = σ̄(x)t +
∫ (i−1)t+∆t
t dσ̄(x)

and the tangent stress-strain matrix (i−1)C̄(x)Tnl corresponding to the
state t+ ∆t, end of iteration (i− 1), is evaluated consistent
with this integration process.

with: C̄
Tnl(x) = 1

VΩc

∫
VΩc

CTnl
ij dVΩc

3. Compute: • nodal point variables (i)∆ū(x) using:

(i−1)K̄t+∆t (i)∆ū(x) = F (t̄(x)n)t+∆t −(i−1) R(σ̄(x))t+∆t, [Equation(4.33)]

(i)ū(x)t+∆t =(i−1) ū(x)t+∆t +(i) ∆ū(x), [Equation(4.34)].

Repeat steps 1 and 3 until convergence

Table 4.1: Incremental solution process at the macro scale.
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Incremental solution at the micro scale

At the micro scale the solution of the problem is formulated following a similar procedure
than the one implemented at the macro scale with slight changes in the formulation with
respect to the procedure described in Table 4.1.

One of the main differences in the local scale formulation is that in this case the problem is
computed, iteratively until reaching convergence, for only one load increment correspond-
ing to the load state obtained from the homogenized strains. This approach may lead to
think that the solution at the micro scale is not an incremental solution as in the case
exposed at the macro scale. However, although the solution is computed only once for
each load increment, the solution it is an iterative procedure, since in order to compute
the response at the time t+ ∆t, the values of the stresses σ(y)t, strains ε(y)t and internal
material parameters α(y)t at the last converged step of the micro structure at time t must
be known. This fact makes the solution at the micro scale to be a fully iterative solution.

Nevertheless, storing and retrieving all this information is not an easy task, since the
values of σ(y)t, ε(y)t and α(y)t must be stored for each unit cell or RVE that represent
each integration point at the macro scale. Therefore, special attention must be given to
this fact on the implementation of the computational tool.

The other major difference with respect to the macro scale formulation is the use of
the linear and non-linear constitutive tensors C(y) and CTnl(y) obtained directly from
the constitutive models that reflect the actual behavior (plasticity, damage, etc.) of the
different material components instead of the homogenized ones C̄(x) and C̄(x)Tnl.

Another procedure that is implemented at the micro scale is the computation of the
homogenized non-linear constitutive tensor. The procedure is thoroughly explained in the
following section.

4.4.2 Numerical determination of the homogenized non-linear constitu-
tive tensor

The numerical determination of the homogenized non-linear constitutive tensor is based on
a perturbation method presented by Badillo and Oller [4]. The formulation takes knowl-
edge from a methodology proposed by Martinez et al. [71] in which the non-linear tangent
tensor of a homogeneous material is obtained by means of a perturbation method. This
formulation was adapted here to compute the non-linear tangent tensor for a composite
unit cell or RVE conformed by two or more material components. The idea is to compute
the homogenized non-linear constitutive tensor C̄(x)Tnl through the non-linear tangent
constitutive tensor CTnl of each element of the unit cell as explained in Section 3.5.5.

The perturbation method applied at the non-linear range is implemented as an exten-
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sion of the method at the linear range presented at Section 3.4.3. However, in this case
the homogenized nonlinear tensor is computed using a slightly different approach from the
one used to compute the linear tensor, as it is explained in the following paragraphs.

Perturbation method at the non-linear range

The method is implemented based on a finite element formulation framework. It consists
in identifying first if any Gauss (integration) point of any element of the unit cell has
entered in the non-linear range. If this is the case, the tangent constitutive tensor for
the element where that Gauss point lies has to be calculated. The procedure to obtain
the tangent constitutive tensor is based in performing a numerical derivation applying a
perturbation technique in way that it can be useful to compute the non-linear response of
any constitutive law.

The method is applied to obtain the non-linear tangent constitutive tensor CTnl of each
element of the unit cell that represents the composite. The non-linear tangent constitutive
tensor is obtained by solving numerically Equation (3.52). Using a matrix notation this
equation can be expressed as:

 σ̇1
...
σ̇n

 =

 CTnl
11 · · · CTnl

1n
...

. . .
...

CTnl
n1 · · · CTnl

nn


 ε̇1

...
ε̇n

 (4.35)

The stress vector rate of Equation (4.35) can be obtained as the sum of k stress vectors,
which are the product of the j component of the strain vector rate and the j column of
the tangent stiffness tensor. This can be expressed as follows:

σ̇ ≡
k∑
j=1

δ jσ =
k∑
j=1

CTnl
j · ε̇j (4.36)

where:

CTnl
j =

[
CTnl

1j CTnl
2j · · ·C

Tnl
k j

]T
(4.37)

Equation (4.37) is used to obtain the j column of the tangent constitutive tensor, which
is unknown:

CTnl
j =

jσ̇

ε̇j
≡ δ jσ

δεj
(4.38)
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The perturbation method consists in defining k small variations, or perturbations, of the
strain vector δεj , to obtain k stress vectors δ jσ that will be used in Equation (4.38) to
obtain the numerical expression of the tangent constitutive tensor. It must be noted that
in the numerical implementation of this procedure, the smaller the perturbation value that
is used the better the computation of the tangent tensor will be. However if perturbation
values close to zero are used in the computation of the tangent tensor, they may lead to
an indeterminate solution. Therefore a restriction in the lower value of the perturbation
condition must be given in order to avoid this problem.

The perturbation value defined for each component of the strain tensor is obtained tak-
ing into account that the smaller the perturbation value the better the approximation of
the tangent constitutive tensor will be. Following this premise the strain perturbation is
obtained according to the following rule:

if εj 6= 0 → δεj = εj · 10−5

(4.39)

if εj = 0 → δεj = min {εk} · 10−5 ∀k = 1, n

By choosing the value of the perturbation according to expression (4.39) it is ensured
that the strain increment is always small enough to ensure that the stress variation is
close to the stress value computed on the actual load step analysis. However, there is
the case when the strain values are close to zero, for which the previous procedure will
produce perturbation values close to zero. These values may cause an indetermination in
the solution of Equation (4.38). To prevent this situation, in order to avoid values close
to zero, an extra condition is implemented on the procedure to obtain the perturbation
values. The extra condition stays as:

δεj > max {εk} · 10−10 ∀k = 1, n (4.40)

Table 4.2 summarizes the complete perturbation process to compute the nonlinear tan-
gent constitutive tensor. The procedure described is suitable for the computation of any
constitutive law and for any yield surface used.

Numerical integration of the homogenized tangent constitutive tensor

Once that the tangent tensor is computed for each and every element of the unit cell or
RVE following the procedure described on Table 4.2, then it must be stored in order to
calculate the homogenized non-linear tangent constitutive tensor C̄

Tnl . This will allow us
to solve the constitutive problem of the composite material expressed by Equation (3.61).

The homogenized tangent non-linear constitutive tensor C̄
Tnl is computed over the en-

tire volume of the unit cell or RVE following the classical definition given by the average
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Accepted and known solution using constitutive ◦ stresses σ
laws for a continuum in equilibrium: ◦ strains ε

◦ internal material parameters α

1. Define: • strain perturbation δεj according to Equations (4.39) and (4.40)

2. Compute: • perturbed strain state vector as function of j:

ε∗ = ε+ jε

where jε = [0 . . . δεj . . . 0]T

• perturbed stress state vector: σ∗ (ε∗,α∗) using constitutive law

• stress increment: δ jσ = σ∗ − σ

3. Compute: • column j in tangent stiffness matrix: CTnl
j =

δ jσ

δεj

Repeat steps from j = 1, n, where n is the number of tensorial components

Table 4.2: Numerical algorithm to obtain the tangent constitutive tensor by means of a pertur-
bation method at the micro scale.

method as expressed in Equation (3.71). The numerical integration of the homogenized
tangent constitutive tensor stays as follows:

C̄
Tnl(x) =

1
nelem∑
i=1

(
nint∑
i=1

wlj(e)

) nelem∑
i=1

(
nint∑
i=1

CTnl
ij (yl(e))w

lj(e)

)
(4.41)

where CTnl is the tangent constitutive tensor associated to a material component, yl(e) rep-

resents each integration point of the microstructure (yl(e) ∈ Ωc(e)
), wl is the corresponding

weight, j(e) is the Jacobian of the element, nelem is the total number of elements in the
cell domain Ωc and nint is the number of integration points for the element Ω

c(e).

Furthermore, this process is adapted in order to explore the application of the method at
the macro scale following the same concepts presented above.
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4.5 Implementation of the multi-domain decomposition ho-
mogenization method

In practical analysis and design the most important steps of an analysis process are the
correct idealization of the real problem, the formulation and solution of the force balance
equations and the computation of the internal element stress distributions which are com-
plemented by the proper interpretation and representation of the obtained results.

In the case of the multi-domain homogenization method, other aspects should be con-
sidered besides of the steps mentioned above, in order to achieve suitable coupling and
computational efficiency at the double-scale method. The solution requires an efficient
computational approach in order to take into account the enormous demands that the
method requires in terms of computing resources (memory and speed), which are natu-
rally linked to the size and complexity of the problem to be analyzed.

4.5.1 Computational complexity of the problem

The implementation of the multi-domain decomposition homogenization method repre-
sents a very complex problem, especially in the non-linear case. At the linear case the
problem could be approached using only one cell (one cell per each subdomain) for all the
integration points at the macro scale since the stresses and the homogenized constitutive
tensor can be directly evaluated for a given strain state without the need to store the
history of any variable. At the non-linear case tough, the problem becomes much more
difficult to compute, since the integration process is needed from the state at time t to
the current strain state, therefore the history of the variables that determine the material
behavior (stresses, strains and internal variables at time t) must be stored separately for
each unit cell that represent each integration point at the macro scale.

Furthermore, the implementation of the perturbation method presented in Section 4.4.2 to
compute the homogenized non-linear tangent tensor for each unit cell or RVE that enters
into the non-linear range also requires to store the variables that determine the material
behavior at the current strain state in order to compute the non-linear tensor following
the perturbation method procedure explained previously.

Moreover, an appropriate assembly of the computing codes at each of the two scales
is needed since constant information transferring is performed through the whole compu-
tational process. The assemblage process requires a substantial organization effort due to
the voluminous amount of information that is generated. Therefore, in order to achieve
computational efficiency in the implementation of the multi-domain homogenization ap-
proach a convenient parallelization strategy is needed.

All the aforementioned reasons make the multi-domain homogenization approach to be
a very demanding problem that requires an efficient computational strategy.
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4.5.2 Nested solution set-up

The organization of the nested solution scheme of the double-scale multi-domain program
is summarized in the following paragraphs. In this formulation, the finite element code
PLCd is used as starting platform to apply the numerical implementation of the homog-
enization technique. The PLCd program can solve classic constitutive equations, such as
damage, plasticity, visco-elasticity, damage-plasticity, etc. and uses several yield surfaces
such as Von-Misses, Mohr-Coulomb, etc. For a thorough description of the code see [19].

The multi-domain decomposition homogenization technique consists first in dividing the
problem in two scales; therefore the numerical implementation has to be developed in
two different programs, one that deals with the macroscopic or global scale (called global
program) and another one that deals with the micro or local scale (local program) .

The program at the global scale deals with the geometry of the problem, the boundary
conditions and with the forces applied in the structure. The macro-structure is discretized
into finite elements. Each macroscopic element is linked to a representative periodic do-
main that will be solved at the local program. Consequently, each integration point of
the macro-structure is linked to a unique microstructural RVE or unit cell. The program
assembles the stiffness matrix with the homogenized constitutive tensor given by the local
program and applies the load increments. Once the system of equations is assembled and
solved, the global program sends a set of homogenized strains to the local program and in
return the local program gives a set of homogenized stresses. The global program looks for
convergence iteratively and the whole process is repeated for each load step of the analysis.

Meanwhile, the program at the local scale, deals with the properties of the constituents
of the composite by taking into account the constitutive equations of each one of them.
The local program assembles the stiffness matrix of the elements of the cell with the cor-
responding constitutive tensor of the constituent. It transforms the field of strains given
by the global program into a field of displacements that take into account the periodic
conditions that result in a set of applied forces into the cell domain. The program assem-
bles and solves the system of equations and calculates the residual forces considering each
constitutive model of the constituents. The local program sends one set of homogenized
stresses for each cell corresponding to each Gauss point of the global program in return
to the set of homogenized strains given. The program looks for convergence iteratively.

The local program computes the linear elastic homogenized tensor in a first instance by
applying a perturbation in order to activate the elastic components of the constituents of
the composite. It computes the inelastic (tangent) non-linear homogenized tensor when
one of the Gauss points of any of the elements of the cell lie within the inelastic range,
following the procedure explained previously in Section 4.4.2, and sends the tensor to the
global scale. A schematic representation of the implementation of the code involving the
two scales of the homogenization technique proposed is presented in Figure 4.1.
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Figure 4.1: Schematic representation of the nested incremental-iterative solution for the multi-
domain decomposition homogenization method.
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4.5.3 Parallelization process

The nature of the nested incremental-iterative solution for the multi-domain decomposition
homogenization method represents a huge computational effort, since as it was mentioned
earlier each integration point at the macroscale becomes a finite element problem at the
local scale, therefore a large amount of generated information and data exchange is ex-
pected during the whole computational process.

A significant aspect of the problem is that at the same macroscopic iteration, each of
the problems represented at the local level by a RVE or a unit cell do not share any data
among them, which makes them independent from each other. Due to this reason the
computation of the problems at the local scale can be performed simultaneously or in
parallel. Using a parallelized approach will reduce the computing time and will increase
the capacity of the method to solve more complex problems with respect to those that
can be solved with a single CPU processor.

Concurrent programming languages, libraries, application programming interfaces, and
parallel programming models (such as algorithmic skeletons) have been created for pro-
gramming parallel computers. These can generally be divided into classes based on the
assumptions they make about the underlying memory architecture-shared memory, dis-
tributed memory, or shared distributed memory. In the implementation of the paral-
lelization process in this research the application programming interface OpenMP (Open
Multi-Processing) was employed. This application supports multi platform shared memory
multiprocessing programming in C, C++, and Fortran on many architectures, including
Unix and Microsoft Windows platforms. It consists of a set of compiler directives, library
routines, and environment variables that influence run-time behavior. OpenMP is an im-
plementation of multi-threading, a method of parallelization whereby the master ‘thread’
(a series of instructions executed consecutively) ‘forks’ a specified number of slave ‘threads’
and a task is divided among them. The threads then run concurrently, with the runtime
environment allocating threads to different processors.

The section of code that is meant to run in parallel is marked accordingly, with a prepro-
cessor directive that will cause the threads to form before the section is executed. Each
thread has an ‘id’ attached to it which is an integer. The master thread has an id of ‘0’.
After the execution of the parallelized code, the threads ‘join’ back into the master thread,
which continues onward to the end of the program.

By default, each thread executes the parallelized section of code independently. ‘Work-
sharing constructs’ can be used to divide a task among the threads so that each thread
executes its allocated part of the code. The runtime environment allocates threads to
processors depending on usage, machine load and other factors. The number of threads
can be assigned by the runtime environment based on environment variables or in code
using functions.
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Load balancing

The equal division of work among threads in parallelization is known as load balancing.
This issue is among the most important attributes for parallel application performance,
because it ensures that the processors are fully operational most of the time. Without a
correct balanced load, some threads may finish significantly before others, leaving proces-
sor resources idle reducing performance efficiency.

Poor load balancing is usually caused by variations in compute time among loop iter-
ations. It is usually simple to determine the variability of loop iteration computing time
by examining the source code. In most cases, you will see that loop iterations consume a
uniform amount of time. OpenMP, by default, assumes that all loop iterations consume
the same amount of time. This assumption leads OpenMP to distribute the iterations of
the loop among the threads in roughly equal amounts and in such a way as to minimize the
chances of memory conflicts due to false sharing. This is possible because loops generally
touch memory sequentially, so splitting up the loop in large parts like the first half and
second half when using two threads-will result in the least chance for overlapping memory.
While this may be the best choice for memory issues, it may be bad for load balancing.
However, the inverse situation is also true; what may be best for load balancing may be
bad for memory performance. Therefore, a balance between optimal memory usage and
optimal load balancing should be attempted by measuring the performance of the case in
question.

In the case of the multi-domain decomposition method presented in this thesis, the scheme
followed to obtain a proper load balance was made by treating each periodic subdomain
that forms part of the whole structure separately. This is done following the premise that
each subdomain may behave differently from each other since one specific subdomain may
have more non-linear properties than another one. The total number of processors avail-
able for the problem computation are all used in solving one periodic subdomain at the
time and once that all the unit cells or RVEs belonging to that subdomain are analyzed
and their results are stored then the program starts the process again for the next subdo-
main.

The micro-macro program organization for the multi-domain decomposition method fol-
lows the classical master-slave program approach. At the global program, the different
periodic subdomains Ωci are identified first and then the master program starts the paral-
lelization process for each subdomain sequentially. The master program obtains from the
macrostructure analysis the strain gradients for each integration point ε̄i(x) and starts the
RVE or unit cell computations on each available processor by means of the slave programs
(local programs).

Each local program analyzes one set of RVEs or unit cells based of the number of in-
tegration points present on each subdomain Ωci and the number of processors N available
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for computation. Therefore the strain gradients are grouped according to this definition
in a vector group of strain gradients ε̄i(x)n (where n = 1, . . . , N) and they are delivered to
the corresponding local program. Once the local analysis have been completed, the global
program collects data from the local programs spawned (averaged stress tensors σ̄i(x),

non-linear constitutive tensors C̄
i
(x) and average internal variables ᾱi(x)) as illustrated

in Figure 4.2 where the scheme of the parallelization approach is presented.
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Figure 4.2: Schematic representation of the parallelization approach for the multi-domain de-
composition homogenization method.

The algorithm to obtain the exact number of RVEs that each processor analyzes is pre-
sented in Figure 4.3. The algorithm starts by computing the nearest integer number NPGI

that results from dividing the number of integration points present NPGT on each sub-
domain and the number of processors N available for computation (where ‖‖ stands for
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the function which returns the nearest integer number of a real number). Then the result
RPGT obtained from multiplying NPGI by the number of processors N , is compared with
the total number of integration points. If the result is equal, then the number of RVEs or
unit cells per processor is equal to NPGI . In the opposite case, this number is augmented
or reduced according to Diff , the absolute value of the difference between NPGT and
RPGT , as depicted in Figure 4.3.
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Figure 4.3: Algorithm for the load distribution of the parallelization scheme.

The parallelization scheme implemented in this study represents a very simple and straight-
forward process. If a thoroughly optimized parallelization process is desired, a more com-
prehensive algorithm should be implemented. Nevertheless, this task alone represents itself
an extensive and complex topic which lies out of the scope and main objectives of this
thesis and should be subject of further study. Despite this fact, the efficiency of the basic
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parallelization process presented in the previous paragraphs is explored in one example
presented in Section 6.1.3 with illustrative purposes.
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Chapter 5

Effect of softening in
homogenization analysis

In this chapter the effect of softening in two-scale homogenization is investigated following
a smeared cracked approach (using plastic and damage models). Although this problem
was not among the main objectives of this research it has been studied in order to solve the
problem of objectivity in the non-linear response when using multiple-scale finite element
when softening appears. Mesh objectivity is discussed first within the FE formulation and
then the concepts exposed are extrapolated into the two-scale homogenization framework.
The importance of the element characteristic length in a multi-scale analysis is highlighted
in the computation of the specific dissipated energy when strain-softening occurs.

5.1 Introduction

Some materials that are subjected to inelastic processes caused by the action of imposed
displacements exhibit, after a certain limit, a phenomenon called softening. During a pro-
cess of uniaxial quasi-static loading, this softening appears physically as a reduction of
the magnitude of the stresses accompanied by an increment of the strains. In continuum
mechanics, it is known that the inclusion of strain-softening leads to the increment of
strains in narrow strips. This phenomenon is known as strain-localization.

Several attempts have been made in order to properly model this phenomenon in dif-
ferent constitutive models that present strain softening, such as in the case of damage and
plasticity. Within the context of the finite element method, the so-called ‘local models’
are implemented at the integration points of the model, since each point represents a fi-
nite space of the domain. Each integration point characterizes the behavior of the infinite
number of material points that lie within its area of influence. At this scale, it is admitted
by several authors that considering the softening behavior as a phenomenon dependent
on the material and on the size of area of influence of the point on a discrete space is
completely appropriate (see for example [6, 87]).

121
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In this chapter the effect of softening in two-scale homogenization is investigated follow-
ing a smeared cracked approach. The objective of this section is to find objectivity in
the response when softening appears regardless of the mesh size in both scales. Mesh
objectivity is discussed first within the FE formulation and then the concepts exposed are
extrapolated into the two-scale homogenization framework.

5.2 Objectivity of the classical one-scale FE formulation re-
sponse with strain-softening

An essential aspect in numerical modeling is objectivity, in particular the requirement
that the results must be independent of the mesh choice. This aspect is especially note-
worthy in the response of models which consider softening in the constitutive formulation.
The problem that poses a continuum which exhibits strain-softening can be stated from
assuming that the strain localization defines a nonlinear behavior zone, where energy is
dissipated according to the size of this zone, while outside of it an elastic unloading process
is developed.

The numerical implementation of the damage continuum formulation into the framework
of the FE method requires a transformation of the involved variables into a discrete for-
mulation. In order to better explain this transformation, let us consider a 2D beam of
length l, which is fixed on the left side and is axially loaded outwards on the right side.
Moreover, lets consider a strong discontinuity (for example a jump in the displacement
field) takes place at a certain cross-section S of the beam as depicted in Figure 5.1.

Figure 5.1: Schematic representation 2D beam with strong discontinuity.

The classical fracture mechanics classifies the fracture energy per unit areaGf as a material
property which is defined as the amount of energy required to dissipate to open a crack
of unit area. Following a simple formulation based on a uniaxial behavior, the fracture
energy per unit area can be expressed as:

Gf =
Wf

Af
(5.1)

where Wf is the energy dissipated by the fracture at the end of quasi-static process, and
Af is the total area of the crack. The fracture energy is adopted as the binding parameter
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between fracture mechanics and the constitutive model based on classical mechanics, which
is formulated to represent the macroscopic behavior of a fissured solid material. The
coupling of both theories is given by the following dissipation condition:

Wf = GfAf =

∫
V
gf dV (5.2)

where gf is the maximum specific energy dissipated by a continuum model in pure traction.
The schematic representation of the relation between fracture mechanics and classical
mechanics is depicted in Figure 5.2.
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Figure 5.2: Schematic representation of damage.

From Equation (5.2) the objective relationship that should exist between the fracture
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energy per unit area Gf , which is a material parameter, and the total energy per unit
volume gf is obtained. This is expressed as:

Gf =
Wf

Af
=

∫
V

gf
Af

dV (5.3)

Since the volume where the fracture process is allocated is defined as V = lp Af then
Equation (5.3) becomes:

Gf =
Wf

Af
= lf gf ⇒ gf =

Gf
lf

=
Wf

lf Af
(5.4)

where lf is the length of the area where the non-linear behavior will occur.

In the context of the FEM the state variables are computed at the integration points
in terms of local strain and stresses. Thus, the length of the area where the non-linear
behavior occurs is related to the volume (or area) of each finite element. Under this
premise and considering the uniaxial case of Figure 5.1, the area where the dissipation
process occurs on the FE formulation corresponds to only one strip of finite elements
across the model mesh. Since the dissipation of the total energy on the loading process
is proportional to the size of the finite elements, the energy dissipated would diminish as
the elements become smaller upon mesh refinement. This problem represents a lack of
objectivity in the response since different responses would be obtained depending on the
mesh size.

This problem can be addressed by modifying the softening law as proposed by Bazant
and Oh [6]. The authors remark that in a finite element method framework, the concept
of strain softening should not be considered as a characteristic of the material only, since
this aspect is related to the fracture energy Gf and to the size of the finite element where
the energy dissipation process occurs. In each element, the computational width of the
fracture zone is computed depending on the geometric dimensions of the elements. This
width is known as the element characteristic length lch [83]. The specific dissipated energy
D is then scaled for each element as expressed in Equation (5.5).

D lch = Gf (5.5)

This equation is analogous to Equation (5.4) where the maximum specific energy dissi-
pated by a continuum model is obtained (gf lf = Gf ).

In Figure 5.3a the schematic representation of the displacement and strain fields of the
mode I fracture phenomenon of the beam of Figure 5.1 is presented in the context of con-
tinuum mechanics, meanwhile Figure 5.3b presents the approximation of the phenomenon
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following a fracture distribution in a finite dimension zone. In these figures it is observed
that in order to make compatible the discrete model with the continuum one, the strain
evolution of the discrete model has to be normalized with respect to the element length h.
On Figure 5.3b, the normalization appears only at the zone where the strong discontinu-
ity exist for illustration purposes, however this normalization must be implemented at the
whole structure since the whole structure could present this kind of phenomenon. This
is done in order to make the softening modulus HS , which defines the softening response
dependent on the element size.

(a) continuum model

(b) discrete model

Figure 5.3: Schematic representation of the displacement and strain fields of the mode I fracture
phenomenon.
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Several studies have been done to provide objectivity on the results independently of
the size of the finite element mesh (see Oliver [83], Oller [87] Oliver et al. [85], Cervera
and Chiumenti [16], among others). Different values of the characteristic length have
been proposed in some of those studies. For example, Bazant and Oh [6] associate the
characteristic length to a crack band that has a zig-zag shape for the general case of a
fracture that is not parallel to the mesh lines. This formulation restricts the use of 2D
square elements and the characteristic length is given by:

lch =
h

cos α
(5.6)

where h is the length of each of the sides of the element and α is the angle of the mesh along
which the crack band advances with |α| < 45o. In the case where the crack propagation
is parallel to the mesh lines, the characteristic length will be equal to the length of the
element lch = h. Meanwhile, Cervera and Chiumenti [16] define the characteristic length
as the representative size of the element, lch = h for linear simplex elements and for 2D
triangular elements, as:

lch =

√
4√
3
Ae (5.7)

being Ae the area of the element assuming that the triangular elements are equilateral.

5.2.1 Numerical example of damage constitutive model analysis using
the classical one-scale FEM

To carry out the objectivity analysis in 2D with quadrilateral elements a test is performed
of a plate fixed on the left side and loaded outwards on the opposite (right) side in order
to simulate an ideal uniaxial tensile test as the one presented in Figure 5.4.

72.0

36.0

Figure 5.4: Schematic representation of axially loaded plate (units in cm).
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The plate consists of a matrix-like material with a length and height equal to 0.72 m and
0.36 m respectively and with a thickness equal to 0.01 m. The behavior of the matrix-like
material is expressed by the continuum damage model with exponential softening. The
formulation of the constitutive model is fully described in Appendix A. The material pa-
rameters used to represent the behavior of the plate are: Young modulus E=3.5E4 MPa,
Poisson modulus ν= 0.2, internal friction 30o, compression strength σyc=20 MPa, tensile
strength σyt=2.0 MPa, fracture energy Gf=0.25 kN/m and compression energy Gc=26.0
kN/m.

The specimen was modeled using different mesh arrangements in order to perform the
objectivity analysis. The meshes are conformed by: a) square elements (P-2x4 and P-
6x12); b) rectangular elements with the longest side of the element perpendicular to the
loading direction (P-2x8 and P-4x16); and c) rectangular elements with the longest side
of the element parallel to the loading direction (P-4x4 and P-8x8). The different mesh
specimens are depicted in Figure 5.5.

Figure 5.5: Mesh arrangements for the softening objectivity analysis using classical one-scale
FEM.

Three different values of the characteristic length were assigned for each mesh element for
comparative purposes: 1) equal to the square root of the area of the element lch =

√
Ae;

2) equal to the length of an integration point in the load direction lch = hgp; and 3) equal
to the full length of the element in the load direction lch = he.

The results obtained using the classical one-scale FEM in terms of capacity curves for
the different mesh models and for the different values of the characteristic length assigned
are presented in Figures 5.6-5.8. These values are compared with the response of the plate
obtained by modeling it with one single finite element, which is considered as the reference
solution.
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Figure 5.6: Classical one-scale FEM response with characteristic length equal to the square root
of the area of the element lch =

√
Ae.

Figure 5.7: Classical one-scale FEM response with characteristic length equal to the length of an
integration point in the load direction lch = hgp.
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Figure 5.8: Classical one-scale FEM response with characteristic length equal to the length of
the element in the load direction lch = he.

From the results presented in Figure 5.6, it is observed that for the FEM response with
characteristic length equal to the square root of the area of the element lch =

√
Ae, the

models with square elements compute the response of the plate well in agreement with the
reference solution; on the other hand the rectangular elements with the longest side of the
element perpendicular to the loading direction underestimate the response meanwhile that
rectangular elements with the longest side of the element parallel to the loading direction
overestimate the response.

For the case of the response with characteristic length equal to the length of an inte-
gration point in the load direction lch = hgp presented in Figure 5.7, there is uniformity
on the responses obtained, however all of them overestimate the response with respect to
the reference solution.

From the results presented in Figure 5.8 is demonstrated that the value of the character-
istic length that gives objectivity in the response and that matches the reference solution
is the value equal to the length of the element in the load direction lch = he for the case
of pure uniaxial testing. By using this characteristic length it is ensured that the global
response of the structure will be always the same independently of the mesh size that is
being used.

However it must be noted that the use of a fracture length dependent on the size of the
mesh elements will give different evolution of stresses during the analysis process, since
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the constitutive law in the inelastic range depends on the total energy per unit volume.
For example, for large elements (hence with large fracture lengths) the fracture energy
per unit of volume is lower, therefore the stress field will be lower in comparison than
in the case with a mesh with smaller elements as it is exposed in Figure 5.9, where the
stress-strain evolution for the different mesh sizes is plotted.

Figure 5.9: Stress-strain evolution for the different mesh arrangements using the classical one-
scale FEM.

Some ambiguity existed regarding which characteristic length value should be used in
order to obtain objectivity in the strain-softening response since the constitutive model
is solved at each integration point of the structure. Therefore, it may be thought that
the length to be used would be the corresponding to an integration point; however, the
full solution is integrated over the volume of the finite element. Thus, in order to achieve
objectivity and a proper structure response, the full length of the element should be used,
as it was demonstrated in the previous example.

5.3 Objectivity in two-scale homogenization response with
strain-softening

The objectivity aspect becomes more difficult to envision in the case of homogenization,
since the estimation of the response is based on a two-scale formulation where each of the
integration points of the global scale are associated in the local scale to a unit cell. In order
to understand the problem using the homogenization method, let us consider the 2D beam
with strong discontinuity as presented in Figure 5.1. Let us assume also that the beam is
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composed by an homogeneous material which has damage behavior with strain-softening.
The structure is represented by a macroscopic model and a microstructural unit cell as
depicted in Figure 5.10.

Figure 5.10: Schematic representation of the 2D beam with strong discontinuity. FE meshes at
the macro scale and at the micro scale.

In the case of the classical one-scale FE formulation, the state variables are computed
at the integration points in terms of local strain and stresses making the area where the
non-linear behavior occurs to be related to the finite element volume, as it was demon-
strated in the previous section. The problem of objectivity is addressed by modifying the
softening law normalizing it with respect to the element length h, making the softening
modulus HS dependent on the element size as expressed in Equation (5.5).

For the case of the homogenization method in two scales, the non-linear behavior of the
composite is defined by the constitutive model implemented at the micro scale; however
the dissipation process occurs at the macro scale in the area defined by the size of the finite
element (at the global level). Therefore, in order to ensure that the same energy is being
dissipated at the macro structural point and at the corresponding unit cell, the energy
dissipation process that occurs at the micro scale has to be ‘normalized’ with respect to
the macroscopic zone where the dissipation process (i.e. the non-linear behavior) actually
happens.

In first-order homogenization the size of the cell is commonly considered as irrelevant,
since the state variables are obtained assuming uniformity of the macroscopic deformation
over the entire microstructural cell. However, this assumption is completely valid only in
the linear-elastic and in the perfectly plastic cases and partially valid in the case where
strain-softening occurs.

When strain-softening occurs, the characteristic length of the element plays an impor-
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tant role since to reproduce the energy dissipation process that occurs at the macroscale,
the softening constitutive law implemented at the micro scale has to be normalized with
respect to the fracture length corresponding to the finite element at the macroscale where
the integration point lies within. Otherwise, the dissipation process would be biased de-
pending on the size of the RVE.

The correlation among both scales is given by Equation (5.8), where the softening modu-
lus HS(micro) implemented at the microstructure is dependent on the element size at the
macrostructure h

(macro)
.

HS(micro)
= f

(
h

(macro)

)
(5.8)

A numerical example similar to the one performed for the classical one-scale FEM response
is presented to demonstrate the usefulness of the normalization process described above
in order to achieve objectivity in the homogenized response when softening appears.

5.3.1 Numerical example of damage constitutive model analysis using
the homogenization theory

The specimen analyzed in Section 5.2.1 using the classical one-scale FEM is analyzed here
using the 2D two-scale homogenization method. In this case the response of the plate
is given by the interaction among the macro structure at the global level and the micro
structure at the local level. The plate dimensions and the boundary conditions are defined
at the global level meanwhile that the constitutive law of the matrix-like material is defined
at the local scale over a representative volume element (RVE) of the plate. An schematic
representation of the 2D two-scale homogenization analysis is presented in Figure 5.11.

72.0

36.0

1.0

1.0

Figure 5.11: Schematic representation of axially loaded plate. Global and local scales (units in
cm).
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The plate dimensions and boundary conditions are the same than those described in the
example analyzed in Section 5.2.1. Meanwhile at the micro scale, the unit cell was con-
sidered as a squared model with length and height equal to 0.01 m with a thickness equal
to 0.01 m. The behavior of the matrix-like material by which the RVE is modeled is
expressed by the continuum damage model with exponential softening using the same
material parameters that in the aforementioned example.

The specimen at the macro scale was modeled using the same mesh arrangements depicted
in Figure 5.5 used in the example modeled with the classical one-scale FEM. Meanwhile,
the FE mesh model of the RVE consisted on 16 squared elements with 25 elements as
depicted in Figure 5.12.

Figure 5.12: Mesh of the RVE model used on the homogenization analysis.

In the case of the classical one-scale FEM example presented in the previous section the
mesh objectivity was reached for the case when the characteristic length of the element lch
was equal to the length of the finite element in the load direction. Therefore in this case,
this situation will be intended to be reproduced by using the two-scale homogenization
method. In order to achieve this, the characteristic length of the finite elements of the
unit cell mesh at the micro scale lch(micro)

are normalized with respect to the size of the
finite elements of the global scale mesh model h

(macro)
. Furthermore the same analysis is

performed on the different models for the case when no normalization is made (i.e. the
characteristic length of the unit cell is obtained from the inner dimensions of the cell itself)
for comparison purposes.

The homogenized response of the plates using square elements (P-2x4 and P-6x12), rectan-
gular elements with the longest side of the element perpendicular to the loading direction
(P-2x8 and P-4x16) and with rectangular elements with the longest side of the element
parallel to the loading direction (P-4x4 and P-8x8) are presented in Figure 5.13 for the
case when the characteristic length of the unit cell is obtained from the inner dimensions
of the cell itself. In Figure 5.14 the same information is presented for the case when
the normalization process is applied, i.e. when the characteristic length of the unit cell
is normalized with respect to the full length of the macrostructural element where the
integration point corresponding to that unit cell is located lch(micro)

= h
(macro)

.
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Figure 5.13: Homogenized response with characteristic length of the unit cell elements obtained
from the inner dimensions of the cell.

Figure 5.14: Homogenized response with characteristic length of the unit cell elements equal to
the length of the element at the macrostructure lch(micro)

= h
(macro)

.
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In Figure 5.13 is observed that when the characteristic length of the unit cell is obtained
from the inner dimensions of the unit cell, the response is completely overestimated with
respect to the reference solution. According to the definition of given at Equation (5.4),
the total energy per unit volume gf is defined by the fracture energy per unit area Gf
and by a plastic length lf equal to the zone where the non-linear process occurs. Since
in two-scale homogenization the constitutive behavior is implemented at the microscale,
then the non-linear process occurs at a strip of finite elements corresponding to the unit
cell. Since by definition the dimensions of the unit cell are much smaller with respect to
those of the global scale, then this strip is much smaller than the one at the macroscale
where the actual dissipation process occurs. Therefore, the total energy per unit volume
gf is completely overestimated since the plastic length is obtained directly from the inner
dimensions of the unit cell without normalizing it with respect to the characteristic length
of the global scale.

Meanwhile, in the case when the normalization with respect to the characteristic length
of the global scale is made, the responses presented in Figure 5.14 are in well agreement
with the reference solution and are equal for all the mesh arrangements, i.e. they present
objectivity in the response. Figures 5.13 and 5.14 highlight the importance that the ele-
ment characteristic length has in the energy dissipation process when using a first-order
homogenization method as analysis tool when strain-softening occurs.

Figure 5.15: Stress-strain evolution for the different mesh arrangements with strain-softening
using the FEM.

For the case of the stress-strain evolution presented in Figure 5.15 for the different mesh
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sizes, the same behavior is obtained as in the case of the finite element method. Again,
for large elements, the density fracture energy per unit of volume is lower, and the stress
field is lower in comparison than in the case with a mesh with smaller elements due to the
effect of using the fracture length of the macroscale on the constitutive law solved at the
microscale.

It is important to highlight that this study was made based on uniaxial tension and
the results obtained here are adequate for the 2D case when the case when the energy
dissipation process occurs such that the fracture length corresponds to the element length
in the load direction. However, in most of the structural analysis process, this condition
is not met due the different existing boundary conditions and to the interaction among
the different components of the structure. Therefore, the damage dissipation process may
form along any of the element boundaries, which in the case of irregular elements may
cause inadequate results. In order to avoid this inconvenient, it is recommended to the
extent of the possibilities, to use square or equilateral triangular elements where all the
sides of them are equal and where the fracture length will be equal, independently of the
direction of the energy dissipation process. It can be said that by following the formula-
tion presented in this section, the microscopic scale is related to the macroscopic scale in
a simpler way than in the high order formulations for the case when strain-softening is
present in one or more of the model constituents.



Chapter 6

Homogenization method applied
to the analysis of composite
materials and structures

The application of the homogenization method in the analysis of composite materials and
structures is performed in this chapter in order to evaluate and explore the capabilities
of the computational approach presented in this research. Comparative analysis between
the two-scale homogenization method proposed and the classical one-scale FE method are
carried out in various examples. Several aspects have been studied, such as analyzing dif-
ferent composite arrangements that include different types of materials, composites that
present softening after the yield point is reached (e.g. damage and plasticity) in compos-
ites with one and with several periodic domains using different unit cell configurations.
Furthermore, the effectiveness of the method proposed to compute the non-linear tangent
tensor of the composite as well as the efficiency of the parallelization process are exposed
in one of the examples presented.

6.1 Homogenization method applied to composites with one
periodic domain

In this section the examples shown in the following paragraphs are presented to demon-
strate the applicability of the homogenization method proposed when applied to the anal-
ysis of composite structures with one periodic domain. Various factors were taken into
account to perform the analysis of the composite structures in order to verify the applica-
bility of the proposed methodology such as modifying the mesh density, analyzing zones
where high gradients may appear in critical regions and using different load conditions.
The composites are analyzed first by means of the classical one-scale FE method by us-
ing the finite element program PLCd [19] and then by using the two-scale homogenized
method proposed in this research in order to compare results.

137
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6.1.1 Composite with long fibers subjected to tension and bending

The example consists of a rectangular plate composed by two materials, matrix and fibers,
acting under plane stress conditions. The height and length of the plate are equal to 2.0 m
and 1.0 m respectively, the thickness is equal to 0.01 m. The fibers have a width of 0.01 m
and are placed vertically along the height of the plate (acting as long fibers). Fibers occupy
20% with respect to the total volume of the composite. The geometrical distribution of
the fibers over the composite is presented in Figure 6.1.

100.0

200.0

Fibers

Matrix

2.53.05.03.05.03.0

Figure 6.1: Schematic representation of the geometry of the composite plate (units in cm).

The plate is fixed at the bottom, meanwhile that at the top of the plate two types of
prescribed boundary conditions are applied. The first consisted in pure axial (uniformly
distributed) vertical load applied in terms of controlled displacements, meanwhile that
the second consisted in axial load with a trapezoidal distribution. The load varies with a
trapezoidal distribution with a scale factor from 1 at the right top corner to 10 at the left
top corner. The boundary conditions and the two load conditions applied for the analysis
of the composite plate are presented in Figure 6.2.

The matrix material is modeled assuming damage behavior meanwhile that for the fibers
a perfect elasto-plastic model is used. Both constitutive models are described in Appendix
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A and B, respectively. The constituent’s material properties are specified in Table 6.1.

(a) Uniform load displacement (b) Trapezoidal load distribution

Figure 6.2: Schematic representation of the boundary and load conditions applied for the analysis
of the composite plate.

Material Matrix Fiber

Young Modulus 3.5E4 MPa 2.1E5 MPa
Poisson Modulus 0.2 0.3
Internal Friction 30o 0.0o

Compression Strength 20 MPa 200 MPa
Tensile Strength 2.0 MPa 200 MPa
Fracture Energy Gf/Gc 0.25 / 26.0 kN/m - -

Table 6.1: Material properties of the plate components.
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The composite plate is analyzed first by means of the classical one-scale FEM in order
to use it as the reference solution and then by using the two-scale homogenized method
implemented in this study.

Analytical models at the classical one-scale FEM and at the two-scale homog-
enization method

The classical one-scale FEM model of the composite plate was created using rectangular
elements. The axial load was applied in terms of controlled displacements at the top nodes
according with the two load distributions presented in Figure 6.2. The classical one-scale
FEM model consisted on 8000 elements with 8181 nodes. Figure 6.3 presents the finite
element mesh model for the composite plate.

Figure 6.3: Classical one-scale finite element mesh of the composite plate.

For the case of the two-scale homogenized solution, two FE models are needed, one for
macro structure and another for the micro structure. The first model represents the struc-
ture at the global scale level in which all the boundary conditions are applied. The second
model represents the unit cell or RVE that characterizes the periodic internal structure of
the composite and that takes into account the constitutive laws of each of the constituents.

At the macro structure or global level, two mesh densities were considered. Both macro
models were created using quadrilateral elements. The first mesh model consisted on 200
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elements with 231 nodes represented in Figure 6.4a referred as fine mesh, meanwhile that
the second mesh model consisted on 72 elements with 91 nodes represented in Figure 6.4b
referred as coarse mesh. The load was applied the same way as in the classical one-scale
FE model in terms of controlled displacements of the nodes located on the top of the plate.

(a) Fine mesh (b) Coarse mesh

Figure 6.4: Meshes used at the global scale in the homogenization method.

The unit cell or RVE that represents the internal structure of the composite (from herein
called local scale) it is defined as the smallest structure of a composite material whose
properties are representative of the entire microstructure in an average sense with respect
the whole structure, as it was mentioned in Section 2.5.1. The unit cell is assembled taking
into account the geometric arrangement, the volumetric relationship of the materials and
the constitutive behavior of the materials that form part of the composite.

A representation of the division of the internal structure of the composite plate through
quadrilateral unit cells is presented in Figure 6.5. In this example, two different sizes
of unit cells were considered in order to study the influence of the absolute size of the
microstructure in the homogenization process. The large unit cell has a length and height
equal to 0.1 m, meanwhile that for the small cell were equal to 0.02 m. In both cases the
thickness was equal to 0.01 m. The unit cell FE models consisted on 40 elements with 54
nodes.
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Fibers

Matrix
10.0

10.0

2.0

2.0

(a) Large cell

(b) Small cell

Figure 6.5: Representation of the division of the internal structure of the composite plate by
means of quadrilateral unit cells and FE mesh discretization of the two unit cells used at the local
level: (a) Large cell; and (b) Small cell (units in cm).

Results

Classical one-scale FE method and two-scale homogenization method computations were
carried out for the two load cases, the uniformly distributed axial load and the trapezoidal
load distribution. Figure 6.6 presents the capacity curve (force applied versus displace-
ment) for the first load case for the classical one-scale FEM and the homogenized analysis
for the two mesh densities used at the global scale (coarse and fine mesh) and for the two
unit cell sizes considered (large and small cell). Figure 6.7 presents the same information
for the second load case. Figures 6.8 and 6.9 present the same information than Figures
6.6 and 6.7 respectively in terms of displacement field distributions (at the two-scale ho-
mogenized solution only the global scale is depicted).

From the information presented in Figures 6.6-6.9, it can be stated that the global re-
sponse of the composite computed with the homogenized models perfectly matches the
solution computed obtained with the classical one-scale FEM for both load cases. The
mesh refinement at the global scale in the homogenized model does not affect the solution
since similar results are obtained for both mesh densities. Also the change of the size of
the unit cell does not affect significantly the response in terms of the capacity curves or
in the displacement field distribution. Figures 6.10-6.13 present the one-scale FE and the
two-scale homogenized response in terms of stress and damage index distribution.



6.1. HOMOGENIZATION METHOD APPLIED TO COMPOSITES WITH ONE PERIODIC DOMAIN 143

Figure 6.6: Capacity curves for the classical one-scale FE and the two-scale homogenized method.
Pure axial traction load.

Figure 6.7: Capacity curves for the classical one-scale FE and the two-scale homogenized method.
Trapezoidal traction load.
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(a) one-scale FEM (b) HOM (fine mesh) (c) HOM (coarse mesh)

Figure 6.8: Displacement field distribution obtained with the classical one-scale FE method
(FEM) and the two-scale homogenized method (HOM). Pure axial traction load (cm).

(a) one-scale FEM (b) HOM (fine mesh) (c) HOM (coarse mesh)

Figure 6.9: Displacement field distribution obtained with the classical one-scale FE method
(FEM) and the two-scale homogenized method (HOM). Trapezoidal traction load (cm).



6.1. HOMOGENIZATION METHOD APPLIED TO COMPOSITES WITH ONE PERIODIC DOMAIN 145

(a) one-scale FEM (b) global scale (c) local scale

Figure 6.10: Stress distribution obtained with the classical one-scale FE and the two-scale ho-
mogenized method (coarse mesh). Pure axial traction load (MPa).

(a) one-scale FEM (b) global scale (c) local scale

Figure 6.11: Stress distribution obtained with the classical one-scale FE and the two-scale ho-
mogenized method (coarse mesh). Trapezoidal traction load (MPa).
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(a) one-scale FEM (b) global scale (c) local scale

Figure 6.12: Damage distribution obtained with the classical one-scale FE and the two-scale
homogenized method (coarse mesh). Pure axial traction load.

(a) one-scale FEM (b) global scale (c) local scale

Figure 6.13: Damage distribution obtained with the classical one-scale FE and the two-scale
homogenized method (coarse mesh). Trapezoidal traction load.
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In Figure 6.10, the stress distribution obtained with both methods is presented for the case
of pure axial load. On the left of the figure the information is presented for the classical
one-scale FE method in Figure 6.10a, meanwhile that for the case of the two-scale ho-
mogenization method this information is presented at both scales: the macro (global) and
the micro (local) scale in Figure 6.10b and c respectively. On the homogenized response,
this information is presented at the macro scale for the case of the coarse mesh only. On
the other hand, at the micro scale the information is presented for the case of the large
unit cell only. In both cases this decision was made for practical purposes, since similar
results were found at the macro scale for the case of the fine mesh and at the micro scale
for the case of the small unit cell. On the one-scale FE model, it is observed that the
highest stress concentration is found at the fibers since they take most of the displacement
load once the matrix material reached its yield threshold stress. At the macro scale, the
stresses are obtained as the equivalent to the average of the volumetric participation of
the constituents of the composite obtained at the local scale solution. Since the axial load
distribution is uniform, the homogenized stresses are constant over the entire volume of
the plate. These results agree well with respect to the classical definition of the average
method implemented in the homogenization procedure of this study. Meanwhile, at the
micro scale, the stress distribution at the unit cell perfectly matches the results obtained
with the one-scale FE model for the entire load history.

Figure 6.11 presents the stress distribution obtained with the trapezoidal traction load.
For the classical one-scale FE model presented in Figure 6.11a the maximum stress con-
centration is found on the fibers of the left side due to the trapezoidal loading conditions
applied. At the macro scale on the homogenized model presented in 6.11b, the averaged
stresses are higher on the elements of the left side of the plate, while a lower averaged
stress concentration is found on the right side of the plate. At the micro scale, two unit
cells are depicted on Figure 6.11c. On the lower part of the figure the stress distribution at
a unit cell corresponding to an integration point at the left side of the plate is presented,
meanwhile that at the upper part, the same information is presented for an integration
point located on the right side of the plate, as illustrated on the figure. In this case the
scale vector corresponding to unit cells was modified with respect to the classical one-scale
FEM results in order to compare the response of both methods graphically. The depicted
unit cells perfectly match the results obtained with the classical one-scale FE model for
the entire load history.

Analogous results to those presented in Figures 6.10 and 6.11 for the case of distribution
of stresses, are presented in Figures 6.12 and 6.13 for the case of damage index distri-
bution. For the case of pure axial traction load presented in Figure 6.12, it is observed
on the classical one-scale FE model that the damage concentration is found, naturally, at
the matrix material strips of the plate. Meanwhile at the macro scale, the homogenized
damage index is constant over the entire volume of the plate. On the other hand, at the
micro scale, the damage index distribution at the unit cell perfectly matches the results
obtained with the classical one-scale FE model for the entire load history.
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For the case of the trapezoidal traction load presented in Figure 6.13, at the classical one-
scale FE model the maximum damage index concentration is found at the matrix material
located at the left side of the plate due to the trapezoidal loading conditions applied. At
the macro scale, on the homogenized model, the averaged damage index is higher on the
elements of the left side of the plate, while a lower averaged damage index concentration
is found on the right side of the plate. At the micro scale, the damage index distribution
perfectly matched the results obtained with the classical one-scale FE model for the entire
load history. The scale of the cells was also modified with respect to the classical one-scale
FE results for comparison purposes.

It is important to highlight that the homogenized damage index is computed as the average
over the volume of the material that presents this type of behavior only (the volume of the
material corresponding to the fibers is not contemplated). In the case that another type
of material existed, where the parameter of an internal variable should be computed (such
as viscoelastic or plastic strain index etc.) the same procedure should be applied (in this
case the plastic model used, is considered as perfectly plastic, as a result no plastic strain
index is computed). Therefore, in this study the homogenized value of this type of indexes
are computed over the volume of the materials that contains them. This assumption is
made in order to give a general assessment of the global state of the structure in terms of
homogenized results.

Computational effort comparison among the classical one-scale FE method and
the two-scale homogenization method of the composite with long fibers

Although it is well documented on the literature review that the computational procedure
performed in multi-scale homogenization is a rather expensive process there are no ex-
plicit comparisons of the computational effort required at the multi-scale homogenization
method with any other traditional method of analysis (such as the classical one-scale FE
method). Such comparisons were rarely found in the existing literature or not found at
all; however such comparisons give an idea of the enormous computational effort that a
multi-scale homogenization analysis process requires.

In this example, a comparison of the computational effort among the classical one-scale
FE method and the two-scale homogenization method is presented in Figure 6.14 for the
case of the uniform axial load and in Figure 6.15 for the case of the trapezoidal load
configuration. In both cases the two different meshes used at the global scale on the ho-
mogenization method are presented.

The results presented in Figures 6.14 and 6.15 were computed in the homogenized solution
using a total of 6 processors in parallel. Also, in the solution process the homogenized
non-linear tangent tensor was computed according to the method described in Sections
3.5.5 and 4.4.2. To represent the internal structure of the composite only the large cell
was considered.
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Figure 6.14: Convergence time for each load step for the classical one-scale FE method and the
two-scale homogenization method. Pure axial traction load.

Figure 6.15: Convergence time for each load step for the classical one-scale FE method and the
two-scale homogenization method. Trapezoidal traction load.
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For the case of the uniform axial load presented in Figure 6.14 it was calculated that the
total computing time (the accumulated time along the computing process) of the classical
one-scale FE method (FEM) is faster 14 times than the two-scale homogenized solution
with the fine mesh at the global scale (HOM-Fine mesh) and 5.3 times faster for the case
of the coarse mesh (HOM-Coarse mesh).

On the other hand for the case of the trapezoidal traction load presented in Figure 6.15 it
was calculated that the total computing time of the classical one-scale FE method (FEM is
faster 8.7 times than the two-scale homogenized solution with the fine mesh at the global
scale (HOM-Fine mesh) and 3.4 times faster for the case of the coarse mesh (HOM-Coarse
mesh).

From the results presented for both load cases it is also observed that the homogenized
results provide a much faster response when the structural response lays within the linear
domain (up to step 21 of analysis); however this trend is reversed in the non-linear range
and that such difference increases exponentially.

6.1.2 Validation of the method to obtain the homogenized tangent con-
stitutive tensor

In this section, the method to obtain the homogenized tangent constitutive tensor pre-
sented in Sections 3.5.5 and 4.4.2 is presented for analysis and validation. This method
was developed to compute the response for the next load increment at the time t+∆t when
the structure enters into the non-linear range. The method was originally implemented to
obtain the non-linear tangent constitutive tensor CTnl of each element of the unit cell that
represents the composite. Once the procedure is applied over each element on the unit
cell that express some type of nonlinearity, the homogenized non-linear tangent tensor is
obtained by computing the average solution over the entire volume of the unit cell or RVE
as previously expressed Section 3.5.5. The homogenized non-linear constitutive tensor is
computed as expressed in Equation (6.1).

C̄
Tnl(x) =

1

VΩc

∫
VΩc

CTnl
ij dVΩc (6.1)

where VΩc is the RVE or unit cell’s volume. Two other methods of computing the non-
linear constitutive tensor of the composite were explored in the developing process to
obtain a reliable and effective way to compute the homogenized tangent constitutive tensor:
1) a perturbation method at the global scale; and 2) a simple average method of the
constitutive tensors at the actual time t. The perturbation method is explained in the
section below and the average method is explained at the numerical example presented.
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Perturbation method at the global scale

An analogous process to the one presented in Chapter 4 in Section 4.4.2 is implemented
at the global scale in order to explore the application of the method by applying the
perturbation process at the integration points of the macrostructure. The procedure is
implemented following the same steps than when the perturbation is applied at the inte-
gration points of the microstructure. The general concepts presented in Table 4.2 remain
identical, just with a significant change on the variables used. Instead of the variables
commonly used at the level of the components (stresses σ, strains ε and internal material
parameters α), homogenized variables (homogenized stresses σ̄, homogenized strains ε̄
and homogenized internal material parameters ᾱ) are employed in this implementation
process. Then, by following an analogous process to the one presented in Table 4.2 by
employing homogenized variables, the j column of the non-linear homogenized tangent
tensor computed at the global scale, stay as:

C̄
Tnl
j (x) =

j ˙̄σ(x)
˙̄εj(x)

≡ δ jσ̄(x)

δε̄j(x)
(6.2)

where the homogenized stresses σ̄(x) and the homogenized strains ε̄(x) are computed
according to the average theory definitions implemented at the RVEs or unit cells as
described in Chapter 3.

Numerical comparison

The specimen used as example to demonstrate the viability of the numerical method to
obtain the non-linear homogenized tangent constitutive tensor presented in this research
corresponds to a numerical example presented in Section 6.1.1. The specimen corresponds
to the coarse mesh configuration at the macroscale and represented by the large unit cell
at the microscale. The results presented here are focused only on the validation and com-
parison of the method to obtain the homogenized tangent constitutive tensor.

The specimen is solved in three different ways: 1) by applying the perturbation method
at the microscale (PMicro); 2) by applying the perturbation method at the macroscale
(PMacro); and 3) by solving it with the homogenized tensor computed at the instant of
time t (Nopert), obtained as the average of the constitutive tensors Cij (linear or non-
linear) over the volume of the cell at time t, as expressed in Equation (6.3).

C̄(x) =
1

VΩc

∫
VΩc

CijdVΩc (6.3)

where VΩc is the RVE or unit cell’s volume. Figures 6.16 and 6.17 present the capacity
curves for the three different methods to obtain the response of the homogenized solutions
under pure axial and trapezoidal traction load respectively. Figures 6.18 and 6.19 present
the convergence time for each load step for both load cases. A total of 6 processors were
used in the solution of the example.
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Figure 6.16: Capacity curves for the three different methods to obtain the response of the
homogenized solutions. Pure axial traction load.

Figure 6.17: Capacity curves for the three different methods to obtain the response of the
homogenized solutions. Trapezoidal traction load.
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Figure 6.18: Convergence time for each load step for the three different methods to obtain the
response of the homogenized solutions. Pure axial traction load.

Figure 6.19: Convergence time for each load step for the three different methods to obtain the
response of the homogenized solutions. Trapezoidal traction load.
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From the Figures 6.16 and 6.17 presented above, it can be observed that the same response
is obtained with the three methods in terms of the capacity curves. Meanwhile Figures
6.18 and 6.19 present the convergence time for each load step for both load cases. In these
figures it can be observed that the method where no perturbation at all was used (Nopert)
is slightly faster than the method where the perturbation is applied at the microstructure
(PMicro) at the linear range and at the first stages of non-linear behavior. However, as the
structure presents more nonlinearities, this trend is reversed. This effect is more evident
on Figure 6.19 since in this case the structure presents a non-linear behavior much stronger
than in the case when uniform traction load was applied. On the other hand, the method
most expensive computationally in both, the linear and non-linear ranges, is where the
perturbation is applied at the integration points of the macrostructure (PMacro).

For all the aforementioned reasons, the formulation where the perturbation is applied
at the microstructure (PMicro), is the method that is used on all the analysis presented
in this research.

6.1.3 Validation of the efficiency of the parallelization method

This section presents a performance evaluation of the parallelization method described
previously in section 4.5.3. Although it is known that the performance of a parallel sys-
tem remarkably varies for each application, the results shown here in this evaluation are
presented with illustrative purposes.

In evaluating a parallel system, two performance measures of particular interest are
speedup S(p) and efficiency E(p) [25]. Speedup is defined for each number of proces-
sors p as the ratio of the elapsed time when executing a program on a single processor (the
single processor execution time) to the execution time when p processors are available.
This is expressed as:

S(p) =
T1

Tp
(6.4)

Efficiency is defined as the average utilization of the p allocated processors. Ignoring I/O,
the efficiency of a single processor system is 1. Speedup in this case is of course 1. In
general, the relationship between efficiency and speedup is given by:

E(p) =
S(p)

p
=

T1

p Tp
(6.5)

where p is the number of processors, T1 is the execution time of the sequential algorithm,
Tp is the execution time of the parallel algorithm with p processors.

However, along with an increase in speedup comes a decrease in efficiency: as more pro-
cessors are devoted to the execution of a software system, the total amount of processor
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idle time can be expected to increase, due to factors such as contention, communica-
tion, and software structure. The efficiency is a value, typically between zero and one,
which estimates how well-utilized the processors are in solving a problem compared to how
much effort is wasted between communication and synchronization of the different algo-
rithms used in the computation process. Therefore, in this research besides measuring the
speedup, the efficiency of the basic parallelization scheme proposed, is explored in order
to give a general assessment of the use of the computing resources by the method proposed.

A common mistake made, when measuring the efficiency of any parallelized algorithm,
is the use of the execution time of a one-thread of the parallel implementation as the time
of a sequential execution. The execution time of the one-thread parallel implementation
is typically larger than that of the original sequential implementation. Therefore, in order
to provide a proper estimation of the parallel efficiency, the performance of the original se-
quential code as a baseline should be used, otherwise the value of parallelization efficiency
will be overestimated. The results presented in the following example were computed
under this premise.

Numerical comparison

Again, the specimen presented in Section 6.1.1 on Chapter 6, corresponding to the coarse
mesh configuration at the macroscale and represented by the large unit cell at the mi-
croscale, serves as example to demonstrate the efficiency of the parallelization method
presented in this research. The specimen is solved using different number of processors for
the two load cases used in the example as well as by using a sequential run of the program.
Figures 6.20 and 6.21 present the speedup and efficiency profiles respectively for both load
cases.

From the results presented in Figure 6.20 it is observed that the speedup scales ade-
quately when adding more processors to the computing process. This trend is maintained
even in for the trapezoidal load case in which most of the nonlinearities are concentrated
on the left side of the plate. However, from the results presented in Figure 6.21, it is
observed that the parallelization scheme has an efficiency of 50% approximately in both
load cases. Also, it is observed that the efficiency decreases as the non-linear phase of the
structure increases (starting around load step 21).

The efficiency values obtained seem reasonable according to the straightforwardness of
the parallelization scheme implemented and to the several non-parallelizable (sequential)
parts that the two-scale code has at the global scale. The efficiency obtained is consid-
ered adequate for the practical purposes of this investigation. Nevertheless, it is remarked
again that if a thoroughly optimized parallelization process is desired, a more comprehen-
sive algorithm should be investigated as the main subject of study in a different research
project.
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(a) Pure axial traction load

(b) Trapezoidal traction load

Figure 6.20: Speedup profiles for the two load cases used.
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(a) Pure axial traction load

(b) Trapezoidal traction load

Figure 6.21: Efficiency profiles for the two load cases used.
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6.1.4 Notched composite with long fibers subjected to tension

Several factors may affect the periodicity condition in which the homogenization method
is based upon due to the appearance of high strain gradients. High strain gradients may
be originated by several factors and usually are present in critical regions like free edges,
interfaces, material discontinuities, in areas surrounding concentrated loads and in regions
of evolving damage; therefore these critical conditions must be studied to verify the ap-
plicability of the method.

In this example, a rectangular notched composite with long fibers subjected to tension
composed by two materials, matrix and fibers, acting under plane stress conditions is
studied. This example is carried out in order to analyze the influence of including a zone
where high strain gradients are present in the multi-scale homogenization analysis. The
height and length of the plate are equal to 60 mm and 12 mm respectively with a notch
in the middle of the plate of 0.5 mm of width and 3 mm of height. The thickness of the
plate is equal to 1.0 mm. The fibers have a width of 0.25 mm and are placed horizontally
along the length of the plate (acting as long fibers). Fibers occupy one third of the total
volume of the composite. An schematic representation of the notched plate is depicted in
Figure 6.22.
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(a) Notched plate dimensions
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(b) Notch detail and matrix-fibers distribution

Figure 6.22: Schematic representation of the notched plate (dimensions in mm).
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The matrix material is modeled assuming damage behavior meanwhile that the fibers
are modeled using a perfect elasto-plastic model. The formulation of both constitutive
models are fully described in Appendix A and B, respectively. The material properties of
the constituents of the notched specimen are the same than those used in the example of
Section 6.1.1 presented previously in Table 6.1. The plate is fixed at the left side and at
the right side axially loaded with a tension force with uniform distribution. The boundary
conditions applied for the analysis of the notched plate are presented in Figure 6.23.

Figure 6.23: Schematic representation of the boundary and load conditions applied in the analysis
of the notched plate.

The composite plate is analyzed first by means of the classical one-scale FEM and then
by using the two-scale homogenized method implemented in this study.

Analytical models at the classical one-scale FEM and at the two-scale homog-
enization method

The classical one-scale FEM model of the composite plate was created using rectangular
elements. The axial load was applied in terms of controlled displacements at the right
nodes. The classical one-scale FEM model consisted on 11496 elements with 11797 nodes.
Figure 6.24 presents the finite element mesh model for the composite plate.

Figure 6.24: Classical one-scale finite element mesh of the notched plate.

For the case of the two-scale homogenized solution at the global level two mesh densities
were considered. Both macro models were created using quadrilateral elements. The first
mesh model consisted on 131 elements with 170 nodes represented in Figure 6.25a referred
as coarse mesh, meanwhile that the second one consisted on 358 elements with 408 nodes
represented in Figure 6.25b referred as fine mesh. The load was applied the same way as
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in the finite element model, in terms of controlled displacements on the nodes located at
the right side of the plate.

(a) Coarse mesh

(b) Fine mesh

Figure 6.25: Meshes used at the global scale in the homogenization method.

On the other hand, for the case of the unit cell or RVE that represents the internal
structure of the composite, two mesh densities were considered. The first mesh consisted
on 36 elements with 49 nodes represented in Figure 6.26a referred as coarse mesh (or C1),
meanwhile that the second one consisted on 144 elements with 169 nodes represented in
Figure 6.26b referred as fine mesh (or C2). Both cells have the same length and height
equal to 1.5 mm and a thickness equal to 1.0 mm. The fiber-matrix relationship on the
unit cells follows the same ratio as in the one-scale FE model; thus fibers occupy one third
of the total volume of the composite.

(a) Coarse mesh (C1) (b) Fine mesh (C2)

Figure 6.26: Meshes of the unit cells used at the local scale on the homogenized notched specimen.
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Results

Figure 6.27 presents the capacity curve (force applied versus displacement) for the classical
one-scale FE model used as reference solution and for the two-scale homogenized analysis
for the two meshes at the global scale (coarse and fine mesh) and the two meshes used
on the unit cells (coarse mesh-C1 and fine mesh-C2). Figure 6.28 presents the same
information than Figure 6.27 in terms of displacement field distributions (at the two-scale
homogenized solution only the global scale is depicted).

Figure 6.27: Capacity curves for the FE and homogenized methods of notched specimen.

From the information presented in Figures 6.27 and 6.28 it can be observed that the mesh
refinement at the global scale affects the response in the two-scale homogenized model. A
better approximation is obtained with the refined mesh than with the coarse mesh at the
macro scale with respect to the reference one-scale FEM solution. This phenomenon may
be overdue to the high strain gradients that are concentrated at the notched area, since as it
has been discussed earlier, in Chapter 3, a significant gradient of the macroscopic variable
fields at a certain structural point involves a perturbation of these fields in the neighboring
cells. By making the refinement on the global mesh, the rapidly changing variational field
is translated into a slower change of the macroscopic variables, diminishing the error with
respect to the reference solution. Furthermore, the refinement on the global scale mesh
reproduces better the kinematics of the deformation around the notch with respect to the
one-scale FEM solution. On the other hand, the mesh refinement at the RVE (mesh C2)
did not represent any major changes in the response with respect to those obtained with
a coarser mesh at the RVE (mesh C1).
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(a) One-scale FEM

(b) Two-scale homogenization. Coarse mesh at global scale and coarse mesh at local scale (C1)

(c) Two-scale homogenization. Fine mesh at global scale and coarse mesh at local scale (C1)

(d) Two-scale homogenization. Coarse mesh at global scale and fine mesh at local scale (C2)

(e) Two-scale homogenization. Fine mesh at global scale and fine mesh at local scale (C2)

Figure 6.28: Displacement field distribution obtained with the classical one-scale FEM and the
two-scale homogenization method (cm). Deformed geometry (x200).
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Figure 6.29 presents the stress distribution obtained with the classical one-scale FEM
and the two-scale homogenization method using the fine mesh at the global scale and the
coarse mesh at the micro scale (mesh C1). For the case of the homogenized model, the
responses of three unit cells around the notched area are presented as well. The three cells
correspond to integration points located at the left, underneath and right of the notch
as indicated in Figure 6.29b. The geometries of the models presented in the figure are
magnified to show the kinematics of the deformed models. The one-scale FE and the
homogenized models at the global scale are magnified 200 times (x200) meanwhile that
the unit cells are magnified using a factor of 50 (x50).

(a) One-scale FEM stress distribution (MPa). Deformed geometry (x200).

(b) Global and local scale stress distribution (MPa). Deformed geometry of global scale (x200) and local
scale (x50).

Figure 6.29: Stress distribution obtained with the classical one-scale FEM and the two-scale
homogenization method (fine mesh at the global scale and coarse mesh at the local scale).

Figure 6.30 presents the same information than Figure 6.29 for the case of the damage
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index distribution.

(a) One-scale FEM damage index distribution. Deformed geometry (x200).

(b) Global and local scale damage index distribution. Deformed geometry of global scale (x200) and local
scale (x50).

Figure 6.30: Damage index distribution obtained with the classical one-scale FEM and the two-
scale homogenization method (fine mesh at the global scale and coarse mesh at the local scale).

From the results presented in Figure 6.29a, it is observed that on the classical one-scale
FE model, the stress concentration is found on most of the fibers of the composite. The
areas with the highest stress concentration are two: 1) the fiber located right below the
notch, excepting the areas next to the extreme boundaries; and 2) the fibers situated at
the areas located at the corners at the bottom of the plate. On the other hand, the fibers
located along the height of the notch do not present any stress concentration, since these
fibers do not take almost any of the of the axial displacement load. On the homogenized
model at the macro scale, presented in the upper part of Figure 6.29b, the stresses ob-
tained as the equivalent to the average of the volumetric participation of the constituents
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of the composite obtained at the local scale solution, reproduce in an averaged sense the
behavior found at the one-scale FE model. The two high stress concentration areas are
located below the notch and at the bottom corners of the plate. Also the areas located
at the same height of the notch do not present any high stress concentration in the ho-
mogenized model. However, a transition zone is found among the highest and lowest
concentration areas which corresponds to the strip located at the bottom of the notch
in which a mean stress concentration is found due to the nature of the homogenization
method. On the other hand, at the local scale it is found that the stress distribution at
the unit cell located underneath the notch perfectly matches the results obtained with
the classical one-scale FE model at the matrix and fibers. In the case at the unit cells lo-
cated at the left and right of the notch, they reproduce the behavior of the transition zone.

For the case of damage index presented in Figure 6.30, the highest value found on the
one-scale FE model is located on the strip of matrix material located at the bottom of
the notch, almost on the entire length of the strip excepting the areas next to the ex-
treme boundaries. Meanwhile, on the two-scale homogenized model at the macro scale,
the damage index matches in an averaged sense the behavior found at the one-scale FEM
model and gives an accurate description of the global state of the structure in terms of
the damage criteria. At the micro scale, the damage index of the three unit cells depicted
corresponding to the integration points around the notch perfectly match the results ob-
tained with the one-scale FE model. Furthermore, the unit cells perfectly reproduce the
kinematics of the notch deformation for the entire load history.

Computational effort comparison among the classical one-scale FE method and
the two-scale homogenization method in the analysis of the notched composite
plate

As in the previous example, a comparison of the computational effort among the classical
one-scale FE method and the two-scale homogenization method is presented for this ex-
ample in Figure 6.31.

The comparison is made taking into account the two different meshes used at the global
scale and the two mesh densities used at the local scale (meshes C1 and C2) on the
two-scale homogenization method. The results presented for the case of the two-scale
homogenized solution were computed using a total of 8 processors in parallel. Also, in the
solution process the homogenized non-linear tangent tensor was computed according to
the method described in Sections 3.5.5 and 4.4.2.

From the results presented it was calculated that the total computing time (the accu-
mulated time along the computing process) of the classical one-scale FE method (FEM)
all along the calculation process is faster 1.4 times than the two-scale homogenized solu-
tion with the fine mesh at the global level and coarse mesh at the local level (HOM-Fine
mesh-C1). In contrast, the two-scale homogenized solution for the case of the coarse mesh
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at the global scale and coarse mesh at the local level (HOM-Coarse mesh-C1) is 4.7 times
faster than the classical one-scale FE solution (FEM).

On the other hand, for the case of mesh refinement at the local scale it was calculated
that the total computing time of the classical one-scale FE method (FEM) is faster 8.5
times than the two-scale homogenized solution with the fine mesh at the global scale and
the fine mesh at the local level (HOM-Fine mesh-C2). On the contrary, the two-scale
homogenized solution for the case of the coarse mesh at the global scale and fine mesh at
the local level (HOM-Coarse mesh-C2) is 5.6 times faster than the classical one-scale FE
solution (FEM).

Figure 6.31: Convergence time for each load step for the classical one-scale FE method and the
two-scale homogenization method for the notched composite plate analysis.

In this example it is observed that the mesh refinement in the two-scale homogenization
method has a great impact on the computational effort when performed at any of the
two scales. However, it must be remarked that the mesh refinement performed at the
micro scale on the unit cells of this example has little impact on the overall response of
the composite, in contrast to the case when the refinement is made at the macro scale,
which gives a better approximation with respect to the reference one-scale FEM solution
according to the information previously presented in Figure 6.27. Therefore in order
to maintain a practical computational effort (time), unnecessary mesh refinement at the
micro scale must be avoided when possible.
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6.2 Homogenization method applied to composites with sev-
eral periodic domains

The examples shown in the following paragraphs are presented to demonstrate the appli-
cability of the two-scale homogenization method proposed when applied to the analysis of
composite structures with several periodic domains. In the first example the composite
structure is analyzed first by means of the classical one-scale FEM by using the program
PLCd [19] and then by using the multi-domain (multi-cell) homogenization formulation
in two scales proposed in this research. On the second example presented in this sec-
tion, the same structure of the first example is strengthened by using only the two-scale
multi-domain homogenization formulation.

6.2.1 Analysis of a reinforced concrete frame

The example consists of a reinforced concrete (RC) frame composed by concrete and
steel, acting under the action of a lateral load P. The geometry dimensions and the steel
reinforcement details of the RC frame are presented in Figure 6.32.

3.0

5.0

0.3

0.4

41cm
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Figure 6.32: Schematic representation of the geometry and boundary conditions of the RC frame
(units in m).

The entire frame has a cross section of 0.4 m. The concrete material is modeled assuming
damage behavior meanwhile that for the reinforcement steel bars a perfect elasto-plastic
model is used. Both constitutive models are described in Appendix A and B, respectively.
The constituents material properties are the same than those specified in Table 6.1 used
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at the example presented in Section 6.1.1 with a different value of the energy of fracture.
The actual values are, Gf = 0.025mN/m for the energy in tension and Gc = 2.6mN/m
for the corresponding compression value.

The frame is clamped at the bottom of the columns, and the horizontal load is applied
on the left side of the frame at 2.9 m from the bottom of the column. The RC frame is
analyzed first by means of the classical one-scale FEM in order to use it as the reference
solution and then by using the multi-domain homogenized method in two scales proposed
in this study. In both cases the RC frame model was created taking advantage of the sym-
metry of the structure, since only the symmetric left part of the frame is analyzed. The
aim of this example is to apply the multi-domain homogenization formulation presented
in this thesis to analyze a structure commonly found on the field of structural analysis.

Analytical models at the classical one-scale FEM and at the multi-domain
homogenization method in two scales

The classical one-scale FE model mesh of the RC frame was created using rectangular
elements. The load was applied in terms of a lateral force applied on the left side of the
frame at a node located at 2.9 m from the bottom of the column. The classical one-scale FE
of the RC frame consisted on 1239 elements with 1367 nodes. A schematic representation
of the one-scale FE model mesh is presented in Figure 6.33.

Figure 6.33: Classical one-scale FE model mesh of the RC frame.

On the other hand, the multi-domain homogenized solution has to take into account the
different periodic arrangements that conform the structure. Therefore, the first step in
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the multi-domain homogenization process is to identify these periodic subdomains, since
each one of them will be represented by a different unit cell. The schematic representation
made in Figure 6.34 presents the different periodic zones (or periodic subdomains) found
within the RC frame. A total of three different periodic subdomains where identified on
the structure. The first periodic subdomain corresponds to the column, the second one to
the beam-column union and the third one to the horizontal beam.

Periodic 
zone 1

Periodic 
zone 3

Periodic 
zone 2

Unit 
cell 1

Unit 
cell 2

Unit 
cell 3

Figure 6.34: Division of the RC frame in periodic subdomains.

The multi-domain homogenized mesh model at the global scale was created using quadri-
lateral elements with the three different periodic subdomains identified previously in Figure
6.34. The mesh model consisted on 360 elements with 427 nodes. The load was applied
the same way as in the one-scale FE model in terms of a lateral force on the left side of
the frame at the node located at 2.9 m from the bottom of the column. The different
subdomains are identified using different colors on the global mesh model as depicted in
Figure 6.35.

In order to represent the internal structure of the RC frame by means of the multi-domain
homogenization method, one unit cell is needed to represent each of the periodic subdo-
mains in which the frame is divided. The mesh models of the unit cells consisted on 36
elements with 49 nodes. However, each cell has a different configuration in the arrange-
ment of the material components that conforms them. Figures 6.36a, b and c represent
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Periodic 
subdomain 3

Periodic 
subdomain 1

Periodic 
subdomain 2

Figure 6.35: Model mesh for the homogenization method global scale with different periodic
subdomains.

the internal structure of the periodic subdomains 1, 2 and 3 respectively. The three cells
have the same length and height equal to 0.1 m and a thickness equal to 0.4 m.

(a) unit cell 1 (b) unit cell 2 (c) unit cell 3

Figure 6.36: FE meshes of the unit cells of the three periodic subdomains of the RC frame
homogenized model

Results

One-scale FEM and two-scale homogenization method computations were carried out
on the RC frame model for the force described on the paragraphs above. Figure 6.37
presents the capacity curve (force applied versus displacement) for the classical one-scale
FE method (FEM) and the multi-domain homogenization analysis in two scales (HOM).



6.2. HOMOGENIZATION METHOD APPLIED TO COMPOSITES WITH SEVERAL PERIODIC DOMAINS 171

Figure 6.38 presents the same information than Figure 6.37 in terms of displacement field
distributions (at the two-scale homogenized solution only the global scale is depicted).

Figure 6.37: Capacity curves of the RC frame for the classical one-scale FEM and the multi-
domain homogenization analysis in two scales.

From the information presented in Figures 6.37 and 6.38 it can be stated that the global
response of the RC frame computed with the multi-domain homogenized model in two
scales matches with great approximation the reference solution obtained with the one-
scale FE method in terms of the capacity curves and the displacement field distributions.

The information presented in Figure 6.39 corresponds to the one-scale FEM and the
multi-domain homogenized response in terms of stresses in the X-direction. Figure 6.39a
presents the information obtained with the classical one-scale FE method for the entire
frame and zoomed details of two zones of the structure: 1) the union of the beam and
column (P1); and 2) the bottom of the beam, at the end of the beam-column reinforce-
ment (P2). Meanwhile on Figure 6.39b, presents the homogenized values for the entire
structure at the global scale and the response obtained with the unit cells at the local
scale at the same two points of interest (P1 and P2) mentioned at the one-scale FE case.
Two different scale vectors are depicted on Figure 6.39b: a) one that corresponds to the
homogenized values of the entire structure at the global scale (HOM); and b) another
scale that corresponds to the unit cells stress values (RVE) at the local scale. Figure 6.40
presents the same information than Figure 6.39 for the case of the Y-direction. In this
case the two points of interest where details are presented are: 1) the union of the beam
and column (P1); and 2) the bottom left side of the column (P3).
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(a) One-scale FEM

(b) Two-scale homogenization

Figure 6.38: Displacement field distribution obtained with the classical one-scale FEM and the
multi-domain homogenization method in two scales on the X-direction. Deformed geometry of the
one-scale FEM and global scale of the homogenization method (x50)). Units (cm).
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(P1) (P2)

(a) One-scale FEM

- RVE - HOM

(P1) (P2)

(b) Two-scale homogenization

Figure 6.39: Stress distribution obtained with the classical one-scale FEM and the multi-domain
homogenization method in two scales on the X-direction. Deformed geometry of the one-scale
FEM and global scale of the homogenization method (x50); local scale (x200). Units (MPa).
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(P1)

(P3)

(a) One-scale FEM

- RVE - HOM

(P1)

(P3)

(b) Two-scale homogenization

Figure 6.40: Stress distribution obtained with the classical one-scale FEM and the multi-domain
homogenization method in two scales on the Y-direction. Deformed geometry of the one-scale
FEM and global scale of the homogenization method (x50); local scale (x200). Units (MPa).
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From the results presented in Figure 6.39 for the case of stress distribution at the X-
direction, it is observed on the one-scale FE model that the highest tensional stress is
found at the lower horizontal steel bar around the beam-column union, meanwhile that
for the case in compression it is located at the upper steel bar. On the other hand, on the
two-scale homogenized model, at the macro scale, both high stress zones, in tension and
compression, are well identified in terms of average stress values. Meanwhile on the micro
scale, the stress distribution on the two unit cells that represent the two points of interest
(P1) located at the union of the beam and the column and (P2) located at the bottom of
the beam at the end of the beam-column reinforcement, match with great approximation
the results obtained with the one-scale FE model.

For the case of the stress distribution at the Y-direction presented in Figure 6.40, the
highest tensional stress at the one-scale FE model is found at the left steel bar at the
bottom of the column, meanwhile that for the case in compression it is located at the
right steel bar also at the bottom of the column. Again, at the macro scale on the two-
scale homogenized model, the two high stress zones in tension and compression, are well
identified in terms of average stress values. On the micro scale, the stress distribution on
the two unit cells that represent the two points of interest (P1) located at the union of the
beam and column and (P3) located at the bottom left side of the column also reproduce
with great accuracy the results obtained with the classical one-scale FE model.

Figure 6.41 presents the classical one-scale FEM and the two-scale homogenized response
in terms of damage index following the same pattern than in Figures 6.39 and 6.40. In this
case, three points of interest are depicted, which correspond to: 1) the union of the beam
and column (P1); 2) the bottom of the beam at the end of the beam-column reinforce-
ment (P2); and 3) the bottom left side of the column (P3). On the other hand Figure 6.42
presents the index damage evolution for the same three points of interest for both methods.

For the case of damage index presented in Figure 6.41, the highest value found on the
classical one-scale FE model is located on the bottom of the column at the left side and
on the union of the beam and column (node of the frame). On the two-scale homogenized
model at the macro scale, the damage index perfectly matches the results obtained with
the classical one-scale FEM model and gives an accurate description of the global state
of the structure in terms of the damage criteria, demonstrating the effectiveness of the
method proposed to compute the homogenized internal variables. At the micro scale,
the damage index of the three unit cells depicted corresponding to the points of interest
(P1),(P2) and (P3) matches perfectly the results obtained with the classical one-scale
FEM model.

Moreover, the evolution of the index damage of the three points of interest (P1),(P2)
and (P3) presented on Figure 6.42 demonstrates that the homogenized response repro-
duces with great accuracy the results used as reference solution obtained with the classical
one-scale FE method throughout the loading process.
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(a) One-scale FEM
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(P3)

(P2)

(b) Two-scale homogenization

Figure 6.41: Damage distribution obtained with the classical one-scale FEM and the multi-
domain homogenization method in two scales. Deformed geometry of the one-scale FEM and
global scale of the homogenization method (x50); local scale (x200).



6.2. HOMOGENIZATION METHOD APPLIED TO COMPOSITES WITH SEVERAL PERIODIC DOMAINS 177

(a) Union of the beam and column (P1)

(b) Bottom of the beam at the end of the beam-column reinforcement (P2)

(c) Bottom left side of the column (P3)

Figure 6.42: Damage evolution obtained with the classical one-scale FE and the two-scale ho-
mogenization method.
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The results obtained in this example demonstrated that the proposed multi-domain ho-
mogenization method in two-scales reproduces the one-scale FEM results at the global level
with great approximation in terms of capacity curves and damage index. Even more, at
the local level the results show with great detail the contribution of each of the components
on the structural response in terms of stresses and damage distribution. The outcome ob-
tained demonstrates the advantages of the multi-domain homogenization method in two
scales to model and compute the response of structures commonly found in engineering
that can be represented by different periodic subdomains.

Computational effort comparison among the classical one-scale FE method and
the multi-domain homogenization method in two scales in the analysis of the
RC frame

The comparison of the computational effort among the classical one-scale FE method
(FEM) and the multi-domain homogenization method in two scales (HOM) is presented
for this example in Figure 6.43. The results presented for the case of the two-scale ho-
mogenized solution were computed using a total of 8 processors in parallel. Also, in the
solution process the homogenized non-linear tangent tensor was computed according to
the method described in Sections 3.5.5 and 4.4.2.

Figure 6.43: Convergence time for each load step for the classical one-scale FE method and the
two-scale homogenization method for the RC frame analysis.

From the results obtained it was calculated that the total computing time (the accumulated
time along the computing process) of the classical one-scale FEM all along the calculation
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process is faster almost 24 times than the two-scale homogenized solution. This example
shows a considerable difference in the computational effort to obtain the solution of the
RC frame by using the multi-domain homogenization method in two scales with respect
to the classical one-scale FE method.

Nevertheless, it must be remarked that the homogenization procedure proposed in this
research does not arise with the purpose of improving the speed in the solution process
with respect to the traditional methods of analysis, but rather as an alternative procedure
in cases when those methods can not be applied in the solution of problems in composite
materials and structures because of their characteristics and configuration. Therefore,
the computational procedure performed using the multi-scale homogenization technique it
is expected to be more expensive in computational terms (computational time, memory,
etc.), especially for the case when the structure is composed by several periodic subdo-
mains.

6.2.2 Strengthening of the RC frame

In the previous section it was demonstrated the usefulness of the multi-domain homoge-
nization method in the analysis of structures commonly found on the engineering practice
such as it was the case of the RC frame. In this section, the method will be applied to
strengthening the frame with the purpose of improving its performance acting under the
same load applied of the previous example.

Let us assume that, since the damage index on the RC frame presented in the previous
section can compromise the structural integrity of the same, it is desired to retrofit the
frame in order to diminish the damage and the structural response in general. The frame
is strengthened on the beam-column union and on the bottom of the column according to
a traditional structural analysis design, in order to reduce the structural damage in these
areas. High stress and damage concentration in these areas it is undesirable since they
could result in the total loss of the structural capacity in the case of severe load forces or
in damage that is not suitable for retrofitting in the case of less severe actions, being both
consequences undesirable from the structural point of view. Therefore, a review of the
proposed design should be made be means of a structural analysis method. In this case
the method proposed to perform this task is the multi-domain homogenization method
presented in this research.

Analytical model on the homogenization method

As part of the RC frame strengthening, the separation between the steel bars at the beam-
column union is reduced to a distance of 0.05m. The same steel reinforcement is placed at
the bottom of the column up to a height of 0.3m. The rest of the steel reinforcements are
maintained as in the original RC frame configuration. Therefore, the periodic subdomains
1 and 3 remain without change, meanwhile that the periodic zone 2 reflects the proposed
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structural changes. The modifications on the strengthened RC frame and the division of
the RC frame in periodic subdomains are depicted on the schematic representation made
in Figure 6.44. In this figure only the new unit cell employed to represent the periodic
subdomain 2 is depicted. The unit cells that represent the periodic subdomains 1 and 3
are the same than those used on the example presented in Section 6.2.1. The material
properties remain without change as in the mentioned example.

30

Periodic 
zone 1

Periodic 
zone 3

Periodic 
zone 2

Unit 
cell 2

Periodic 
zone 2 0.3

1c1cm@0.05m

Figure 6.44: Division of the strengthened RC frame in periodic subdomains.

The homogenized model at the global level was created using the same mesh model as
in the example presented in Section 6.2.1 with the three different periodic subdomains
identified previously in Figure 6.44. The difference in the assignation of the periodic sub-
domains with the previous example is that in this case the structural configuration of
the bottom of the column corresponds to the periodic subdomain 2 (corresponding to the
strengthened subdomain). The mesh model consisted on 360 elements with 427 nodes.
The load was applied the same way as in the previous example by means of a lateral force
on the left side of the frame at the node located at 2.9 m from the bottom of the column.

The different periodic subdomains are identified using different colors on the global mesh
of the homogenized model as depicted in Figure 6.45.
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Periodic 
subdomain 3

Periodic 
subdomain 1

Periodic 
subdomain 2

(strengthened)

Figure 6.45: Mesh used in the homogenization method with different periodic subdomains.

Figure 6.46 depicts the mesh model of the unit cell that represents the internal structure
of the periodic subdomain 2. The mesh model of the unit cell consisted on 100 elements
with 121 nodes. The cell has the same length and height equal to 0.1 m and a thickness
equal to 0.4 m. The other two cells corresponding to the periodic subdomains 1 and 3
remained without change from those used in the example of Section 6.2.1, as mentioned
previously.

Figure 6.46: FE mesh of the unit cells corresponding to the periodic subdomain 2 of the strength-
ened RC frame homogenized model
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Results

Figure 6.47 presents the capacity curves for the RC frame presented in the previous exam-
ple in Section 6.2.1 and the strengthened frame, as described in the previous paragraphs,
obtained with the multi-domain homogenized method in two scales.

Figure 6.47: Capacity curves of the strengthened and original RC frame obtained with the multi-
domain homogenized method in two scales.

Based on the information presented in Figure 6.47 it can be observed that the modifications
made on the strengthened RC frame reduce the global response in a 23% approximately
with respect to the original RC frame response according to the capacity curves obtained
with the multi-domain homogenized method in two scales presented in this figure.

The information presented in Figure 6.48 corresponds to homogenized response in terms
of stresses in the X and Y-direction of the strengthened RC frame. The figure presents the
homogenized values for the entire structure and the response obtained at the local scale
with the unit cells at the same 3 points of interest mentioned on the previous example
presented in Section 6.2.1 (the union of the beam and column (P1), the bottom of the
beam at the end of the beam-column reinforcement (P2) and the bottom left side of the
column (P3)). In this case the two different scale vectors depicted on the figure corre-
sponds to: a) the homogenized values of the entire structure obtained on this analysis
(HOM) and b) the scale that corresponds to the unit cells stress values (RVE) presented
at the previous example on the original RC frame. This scale modification is established
here for comparative purposes.
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- HOM- RVE

(P1) (P2)

(a) X-direction

- RVE - HOM

(P1)

(P3)

(b) Y-direction

Figure 6.48: Stress distribution obtained with the multi-domain homogenization method in two
scales. Deformed geometry of the global scale of the homogenization method (x50); local scale
(x200). Units (MPa).
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Figure 6.49 presents the homogenized response in terms of damage index. In this case
two scale vectors presented correspond to the scale values of the homogenized structure
established on the previous example (HOM) and the other scale corresponds to the damage
index values of unit cells (RVE) also established at the previous example. The modification
on the scale values with respect to the RC frame without strengthening was performed
in order to compare the response of both frame configurations. Figure 6.50 presents the
damage index evolution for the three interest points of interest (P1), (P2) and (P3) of the
frame for the case of the strengthened RC frame and the original configuration obtained
with the multi-domain homogenization method.

- RVE - HOM

(P1)

(P3)

(P2)

Figure 6.49: Damage distribution obtained with the multi-domain homogenization method in
two scales. Deformed geometry of the global scale of the homogenization method (x50); local scale
(x200).

From the results presented in Figure 6.48 for the case of stress distribution at the X-
direction, it is observed that on the unit cell that represents the union of the beam and
column (P1), the stress has diminish with respect to the original RC frame configuration,
meanwhile that for the case of the cell that represents the point at the beam (P2) it does
not present any major changes apparently on the stress distribution. For the case at the
Y-direction, it is observed that the stress distribution has diminished with respect to the
original RC frame configuration at the unit cell that represents the union of the beam and
column (P1), meanwhile that for the cell with strengthened configuration that represents
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(a) Union of the beam and column (P1)

(b) Bottom of the beam at the end of the beam-column reinforcement (P2)

(c) Bottom left side of the column (P3)

Figure 6.50: Damage evolution obtained with the multi-domain homogenization method in two
scales for the strengthened RC frame and the original design.
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the point at the bottom left side of the column (P3), the stress distribution has diminished
considerably with respect to the cell in the original configuration presented in Figure 6.40b.

For the case of the damage index presented in Figure 6.49 the homogenized values show a
reduction on the union of the beam and column of the RC frame (P1) and on the bottom of
the column (P3). The damage on the structure appears to be shifted away from these two
critical structural areas, which is desirable from the structural point of view. In this case,
according to the homogenized damage index, the largest damage concentration appears on
the beam at the end of the beam-column reinforcement (P2) and at the column where the
strengthened area ends as well. The unit cells that represent the three points of interest
(P1), (P2) and (P3) of the RC strengthened frame present a minor damage distribution
with respect to the cells corresponding to the original RC frame configuration, however
on the colored scale response is difficult to give an proper assessment of this reduction
factor. To verify this reduction, a numerical comparison of the damage index is presented
in Figure 6.50.

According to the curves presented in Figure 6.50 it is observed that the RC frame strength-
ened configuration clearly reduces damage index for the three points of interest with re-
spect to the original configuration. The damage index is reduced in a 15% approximately
with respect to the original configuration.

The results obtained in this example demonstrate the usefulness that the multi-domain
homogenization method in two scales has in computing the response in cases of structures
that can be represented by several subperiodic means. In the case of this example, this
advantage is demonstrated since no re-meshing at the global scale was needed in order
to perform the strengthening of the RC frame. This is a major advantage with respect
to a conventional one-scale FEM analysis in which any modification at the geometry or
arrangement of the components requires a mesh modification.

Furthermore, the method is capable of dealing adequately with the strain gradients that
may appear at the interfaces between the different subperiodic means. Therefore, it can
be affirmed that the method represents a convenient and a practical tool to compute the
response of structures commonly used on the engineering practice that are composed by
different periodic subdomains.



Chapter 7

Conclusions and final remarks

In this chapter the main findings of this study are given in terms of a brief summary and
in terms of recommendations and conclusions. Future lines of study and future develop-
ments are suggested based on the work presented and on the main difficulties found while
developing this research.

7.1 Summary

A multi-domain homogenization method has been proposed and developed in this thesis
based on a two-scale technique. The method is capable of analyzing composite structures
with several periodic distributions by partitioning the entire domain of the composite into
substructures making use of the classical homogenization theory following a first-order
standard continuum mechanics formulation. The need to develop the multi-domain ho-
mogenization method arose because current homogenization methods are based on the
assumption that the entire domain of the composite is represented by one periodic or
quasi-periodic distribution. However, in some cases the structure or composite may be
formed by more than one type of periodic domain distribution, making the existing ho-
mogenization techniques not suitable to analyze this type of cases in which more than one
recurrent configuration appears.

The decision of following a first-order computational scheme over using a high-order ap-
proximation was adopted based on the fact that high-order methods generally involve
elements that make use of a larger number of nodes, degrees of freedom and boundary
conditions, which may result in an increment of the computational effort with respect to
the first-order formulation. Furthermore, the selection of higher-order boundary condi-
tions is rather an arbitrary task, giving a solution not fully consistent in all cases, since
this selection is a matter of choice.

The theoretical principles used in the multi-domain homogenization method were ap-
plied to assemble a computational tool based on two nested boundary value problems

187
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represented by a finite element code in two scales: a) one global scale, which treats the
composite as an homogeneous material and deals with the boundary conditions, the loads
applied and the different periodic (or quasi-periodic) subdomains that may exist in the
composite; and b) one local scale, which obtains the homogenized response of the repre-
sentative volume element or unit cell, that deals with the geometry distribution and with
the material properties of the constituents.

The method is based on the local periodicity hypothesis arising from the periodicity of
the internal structure of the composite. The numerical implementation of the restrictions
on the displacements and forces corresponding to the degrees of freedom of the domain’s
boundary derived from the periodicity requirement (i.e. the periodic boundary conditions)
was performed by means of the Lagrange multipliers method.

The formulation included a method to compute the homogenized non-linear tangent consti-
tutive tensor once the threshold of nonlinearity of any of the unit cells has been surpassed.
The procedure is based in performing a numerical derivation applying a perturbation
technique. The tangent constitutive tensor is computed for each load increment and for
each iteration of the analysis once the structure has entered in the non-linear range. The
perturbation method was applied at the global and local scales in order to analyze the
performance of the method at both scales. A simple average method of the constitutive
tensors of the elements of the cell was also explored for comparison purposes.

A parallelization process was implemented on the multi-domain homogenization method
in order to speed-up the computational process due to the huge computational cost that
the nested incremental-iterative solution embraces. The parallelization scheme was im-
plemented following a very simple and straightforward approach using a programming
interface for parallelization (OpenMP).

The effect of softening in two-scale homogenization was investigated following a smeared
cracked approach. Mesh objectivity was discussed first within the classical one-scale FE
formulation and then the concepts exposed were extrapolated into the two-scale homoge-
nization framework. The importance of the element characteristic length in a multi-scale
analysis was highlighted in the computation of the specific dissipated energy when strain-
softening occurs.

Various examples were presented to evaluate and explore the capabilities of the com-
putational approach developed in this research. Several aspects were studied, such as
analyzing different composite arrangements that include different types of materials, com-
posites that present softening after the yield point is reached (e.g. damage and plasticity)
and composites with zones that present high strain gradients. The examples were carried
out in composites with one and with several periodic domains using different unit cell
configurations. The examples are compared to benchmark solutions obtained with the
classical one-scale FE method.
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7.2 Conclusions

The following conclusions and recommendations are given based on the assessment of the
performance of the multi-domain homogenization method presented in this research.

• In first-order homogenization the size of the cell is commonly considered as irrelevant,
since the state variables are obtained assuming uniformity of the macroscopic defor-
mation over the entire microstructural cell. However, this assumption is completely
valid only in the linear-elastic or in cases where no strain-softening occurs. In order
to ensure that the same energy is being dissipated at the macro structural point and
at the corresponding unit cell or RVE in the case where strain-softening occurs, the
energy dissipation process that occurs at the microscale has to be ‘normalized’ with
respect to the macroscopic zone where the non-linear behavior actually happens (i.e.
the element length at the macroscale in the load direction in a 2D uniaxial case).

• It was demonstrated that the method to obtain the homogenized tangent constitutive
tensor applying a perturbation technique at the micro scale was more efficient than
a simple average method of the constitutive tensors of the elements of the unit cell or
RVE, especially for elevated stages of nonlinearity. Despite that the application of the
perturbation method at the macrostructure gave correct results, it was considered
not suitable from the point of view of computational cost.

• From the evaluation of the parallelization method presented it was shown that the
scheme scaled adequately the speedup values when adding more processors to the
computing process. On the other hand, the efficiency values obtained seem reason-
able according to the straightforwardness of the parallelization scheme implemented
and to the several non-parallelizable (sequential) parts that the two-scale code has
at the global and local scales.

• In all the examples presented, the stress and damage distribution at the unit cells
representative of the periodic continuum reproduced the behavior accurately of the
models developed with the classical one-scale FE method. Furthermore, the unit cells
reproduced the kinematics of the deformed geometries obtained with the one-scale
FE models in all cases.

• The effectiveness of the method proposed to reproduce the internal variables, such
as the damage index, by means of the two-scale homogenization method was demon-
strated with great success, even in terms of homogenized values at the global scale.

• For the case of a structure perfectly periodic, the global response computed with the
two-scale homogenized method, perfectly matches the reference solution obtained
with the classical one-scale FEM. The mesh refinement at the global scale in the
two-scale homogenized model does not affect the solution, since similar results are
obtained with different mesh densities in the case of stress or damage distribution
along the periodic continuum. The change of the size of the unit cell does not affect
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the response in terms of the capacity curves at the global scale nor in the case of
stress or damage distribution in the global and local scale.

• In the case where high strain gradient appears on the periodic continuum it was
observed that the mesh modification at the global scale in the homogenized model
does affect the response, since a better approximation to the reference one-scale FEM
solution is obtained with a refined mesh. The refinement on the global mesh mod-
ified the rapidly changing variational field into a slower change of the macroscopic
variables, diminishing the error with respect to the reference solution.

• From the response obtained with the homogenization method applied to the analysis
of composite structures with several periodic domains it was demonstrated that
method reproduces the global response of the RC frame with great approximation
to the reference solution obtained with the classical one-scale FE method. The zones
where high stress concentration was present were well identified in terms of average
stress values on the homogenized model. Moreover, on the microscale the stress
distribution on the unit cells that represented all the points of interest selected,
reproduced with great accuracy the results obtained with the classical one-scale FE
model. On the other hand, the homogenized damage index perfectly matched the
results obtained with the one-scale FE model and gave an accurate description of the
global state of the structure in terms of the damage criteria. At the microscale, the
damage index of the unit cells that represented the interest points of the structure
matched perfectly the results obtained with the classical one-scale FE model.

• The computational effort required when using the multi-scale homogenization tech-
nique is more expensive than the classical one-scale FEM in computational terms
(computational time, memory, etc.), especially for the case when the structure is
composed by several periodic subdomains. Nevertheless, it must be remarked that
the homogenization procedure proposed in this research does not arise with the pur-
pose of improving the speed in the solution process with respect to the traditional
methods of analysis, but rather as an alternative procedure in cases when those
methods can not be applied in the solution of problems in composite materials and
structures because of their characteristics and configuration.

• The application of the multi-domain homogenization method in two scales as anal-
ysis tool to compute the structural response in cases like the one presented in the
strengthened RC frame example, demonstrates one of the main advantages this tech-
nique, since no remeshing of the whole structure had to be performed to compute
the strengthened response of the RC frame.

• The examples presented demonstrated the usefulness of the multi-domain homoge-
nization method to be used as a practical tool to obtain the response of structures
commonly used on the engineering practice that can be represented by different
periodic subdomains.
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7.3 Future work and future lines of study

The multi-domain homogenization method presented in this research investigation re-
quired the conjunction of several formulations. Some of these formulations involved in the
developing process of the method still have, naturally, some room for improvement since
this approach represents one of the first attempts to represent structures with multiple
periodic domains by means of the homogenization method. Among these improvements,
the author considers the following ones the most important:

• Extend the formulation into a tridimensional environment since most of the struc-
tural arrangements found on the common practice are better represented and de-
scribed in 3D. This would explode even more the capabilities of the method, since
mores structures could be represented by the multi-domain homogenization method
than the ones that can be found in 2D. However, in order to expand the formulation,
a modification of the Lagrange multipliers method should be made, or a different
formulation should be investigated to impose the periodicity conditions, in order to
reduce the number of extra degrees of freedom that may be produced on the stiffness
matrix of the unit cell representative of the tridimensional volume.

• Improve the efficiency of the parallelization process in order to get a fully optimized
formulation. A more comprehensive algorithm should be investigated as the main
subject of study in a different research project.

• Perform a parametrization study of the relationship between the two scales in order
to investigate if there are limits among the dimensions of the global continuum
(characteristic wavelength of the macroscopic problem) and the dimension of the
unit cell (period of the characteristic wavelength in the microstructure) when the
‘normalization’ process is performed at the microscale when strain-softening occurs.

• Investigate the possibility of using a high-order instead of the first-order formulation
in order to simulate microstructural effects. However, some improvements on the
number of degrees of freedom should be made in order to reduced them, since first-
order multi-scale homogenization is already an expensive computational process.
Another improvement before using the high-order formulation should be made on
the selection of the boundary conditions imposed.

• Investigate the possibility of implementing a large strain formulation approach in
multiple scale problems.

• Investigate the use of a model reduction method in multi-scale analysis in order to
alleviate the complexity of the problem and to reduce significantly the computational
effort.
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Appendix A

Damage constitutive model

The continuum damage mechanics theory [106, 86, 84] is based on the definition of the
effective stress σ̄, which can be computed in terms of the total strain tensor ε as:

σ̄ = C : ε (A.1)

where C is the usual (fourth order) isotropic linear-elastic constitutive tensor, and (:)
denotes the double contraction. The constitutive equation for the damage model is defined
as:

σ = (1− d) σ̄ = (1− d) C : ε (A.2)

where d is the damage index, whose definition and evolution is given below.

The complete definition of the constitutive equation requires of the following requirements:

1. Definition of the variables of the problem:

• free variable: ε

• internal variable: d

2. Establishment of a potential, in this case the free energy is defined as:

Ψ (ε, d) = (1− d) Ψ0 (ε) ; Ψ0 (ε) =
1

2
εijCijklεkl (A.3)

3. Determination of thermo-mechanical requirements. This is done using the inequality
of Clasius-Planck, valid for thermo-mechanical problems decoupled, as:

D =

(
σij −

∂Ψ

∂εij

)
ε̇ij −

∂Ψ

∂d
ḋ ≥ 0 (A.4)
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with:

σij =
∂Ψ

∂εkl
= (1− d)Cijklεkl (A.5)

D =
∂Ψ

∂d
ḋ ≥ 0 (A.6)

Since ∂Ψ/∂d = −Ψ0, then the dissipation stays as:

D = Ψ0ḋ (A.7)

4. The definition of the norm τ of the strain tensor ε or alternatively of the undamaged
stress tensor σ0. This norm is also called equivalent deformation and is used to
compare different stages of the material. Therefore, it is possible to distinguish the
loading and unloading process. Different alternatives to characterize the material
behavior are given:

• Symmetric elastic model: The norm is defined in terms of elastic energy Ψ0.
The elastic domain is represented by an ellipsoid centered at the origin in the
space of strains or stresses.

τ =
√

2Ψ0 =
√
ε : C : ε =

√
σ : C : σ =

√
σ : ε (A.8)

• Model subjected to simple traction: This model is useful when the damage
criterion occurs only by traction. The norm is determined by the ramp func-
tion (expressed by the Macaulay brackets 〈.〉). Therefore it takes only positive
values, which corresponds to the principal stresses.

τ =
√
σ : 〈ε〉 (A.9)

• Not symmetric model: Used to represent materials in which the elastic domain
in tension differs from the compression one. This domain is characterized as
follows.

τ =

(
ς +

1− ς
n

)√
σ : ε (A.10)

where n is the ratio of the strength in compression and the strength in tension
and ς is a weight function that depends on the stress state σ0. This function
is defined as:

ς =

3∑
i=1
〈σi〉

|σi|
(A.11)

where i denotes each of the stress principal directions.
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5. Damage criterion. Introduced as:

Φ (τ, r) = τ − r ≤ 0 (A.12)

where r is an internal stress-like variable representing the current damage threshold,
as its value controls the size of the (monotonically) expanding damage surface. The
initial value of the damage threshold is r0 = σ0, where σ0 is the initial uniaxial
damage stress.

The expansion of the damage bounding surface for loading, unloading and reloading
conditions is controlled by the KuhnTucker relations and the damage consistency
condition, which are:

ṙ ≥ 0; Φ (τ, r) ≤ 0; ṙΦ (τ, r) = 0 (A.13)

Which leads to the loading condition:

ṙ = τ̇ (A.14)

Which in turn, leads to the explicit definition of the current values of the internal
variable r in the form:

r = max {r0,max (τ)} (A.15)

This equation allows to compute the current values for r in terms of the current
value of τ , which depends explicitly on the current total strains.

Finally, the damage index d = d(r) is explicitly defined in terms of the correspond-
ing current value of the damage threshold, so that it is a monotonically increasing
function such that 0 ≤ d ≤ 1.

In this work, the following functions are used:

• Linear softening

d(r) =

{
(1 +HS)

(
1− r0

r

)
; r0 ≤ r ≤ ru = r0

(
1− 1

HS

)
1; r ≤ ru

(A.16)

• Exponential softening

d(r) = 1− r0

r
exp

{
−2HS

(
r − r0

r0

)}
; r0 ≤ r (A.17)

where HS is softening modulus
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6. Mechanical dissipation. The mechanical free energy term for the damage model is
defined in the form:

W = (1− d)W e(ε) = (1− d)

[
1

2
ε : C : ε

]
≥ 0 (A.18)

Thus, the rate of mechanical dissipation can be expressed as:

Ḋ = W eḋ ≥ 0 (A.19)

Provided that the damage index increases monotonically, ḋ ≥ 0.

7. Strain-softening and fracture energy release. The specific dissipated energy D is
scaled in order to avoid lack of objectivity of the response independently of the
element size. This is done as follows:

D lch = Gf (A.20)

where lch is the element characteristic length, Gf is the mode I fracture energy of
the material, regarded to be a material property. This makes the softening modulus
HS , which defines the softening response, dependent on the element size. It also sets
a maximum size for the elements that can be used in the analysis.

The procedure is as follows: consider an ideal uniaxial tensile experiment in which
the tensile strain increases monotonically and quasi-statically from an initial un-
stressed state to another in which full degradation takes place. The specific energy
dissipated in the process is:

D =

∫ t=∞

t=0
Ḋdt =

∫ t=∞

t=0
W eḋdt =

1

2E

∫ r=∞

r=r0

r2d′dr (A.21)

where E is the Youngs modulus and the rate of damage has been expressed as
ḋ = d′ṙ. The expressions for the linear and exponential softening stays as:

• Linear softening. Using Equation (A.16), d′ = (1 +HS)r0/r
2, for r0 ≤ r ≤ ru,

with ru = r0(1 + 1/HS), and d′ = 0, otherwise. Recalling that r0 = σ0 and
integrating:

D =

(
1 +

1

HS

)
σ2

0

2E
(A.22)

and equating D = Gf/lch, we have:

HS =
H̄S lch

1− H̄S lch
≥ 0 (A.23)

where HS = σ2
0/(2EGf ) depends only on the material properties, as Gf is the

mode I fracture energy per unit area, σ0 is the uniaxial strength and E is the
Youngs modulus.
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• Exponential softening. Using Equation (A.17), d′ = (r0+2HSr) exp
{
−2HS

(
r−r0
r0

)}
/r2,

for r0 ≤ r ≤ ∞. Recalling that r0 = σ0 and integrating, the same expression
as the one in Equation (A.22) is obtained.

8. Tangent operator. The tangent constitutive tensor Ctan can be obtained explicitly.
The stress increment is given by:

σ̇ = Ctan : ε

= (1− d)C : ε̇− ḋC : ε (A.24)

= (1− d)C : ε̇− ḋσ

In the elastic regime, the stress rate is expressed as:

σ̇ = (1− d)C : ε̇ ; ḋ = 0 (A.25)

Recalling that the rate of the damage index has been expressed as ḋ = d′ṙ and that
in the loading direction ṙ = τ̇ , then the stress increment can be expressed as:

σ̇ = (1− d)C : ε̇− d′

τ
σ ⊗ σ : ε̇ (A.26)

σ̇ =

[
(1− d)C− d′

τ
σ ⊗ σ

]
ε̇ (A.27)

And the tangent constitutive tensor stays as:

Ctan = (1− d)C− d′

τ
σ ⊗ σ (A.28)
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Appendix B

Plasticity

The equations of classical rate-independent plasticity within the classical framework of
response functions formulated in stress space are presented in this Appendix following the
formulation presented in [107].

B.1 General formulation

The stress-space governing equations are set as follows.

1. Additive decomposition of the strain tensor. One assumes that the strain tensor ε can
be decomposed into an elastic and plastic part, denoted by εe and εp, respectively,
according to the relationship:

ε = εe + εp (B.1)

Since ε is regarded as an independent variable and the evolution of εp is defined
through the flow rule, Equation (B.1) should be viewed as a definition of the elastic
strain tensor as εe := ε− εp.

2. Elastic stress response. The stress tensor σ is related to the elastic strain εe by
means of a stored-energy function W : B × S → R according to the (hyperelastic)
relationship:

σ (x, t) =
∂W [x, εe(x, t)]

∂εe
(B.2)

For linearized elasticity, W is a quadratic form in the elastic strain, i.e., W = 1
2ε

e :
C : εe, where C is the tensor of elastic moduli which is assumed constant. Then
Equations (B.1) and (B.2) imply that:

σ = C : [εp − ε] (B.3)
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We observe that Equations (B.2)-(B.3) and the decomposition (B.1) are local. There-
fore, although the total strain is the (symmetric) gradient of the displacement field,
the elastic strain is not in general the gradient of an elastic displacement field. Note
further that εp and, consequently, εe are assumed to be symmetric at the outset,
i.e., εp ∈ S . Thus, the notion of a plastic spin plays no role in classical plasticity.

3. Elastic domain and yield condition.We define a function f : S× Rm → R called the
yield criterion and constrain the admissible states {σ, q} ∈ S × Rm in stress space
to lie in the set Eσ defined as:

Eσ = {(σ, q) ∈ S× Rm|(σ, q) ≤ 0} (B.4)

One refers to the interior of Eσ, denoted by int(Eσ) and given by:

int(Eσ) := {(σ, q) ∈ S× Rm|(σ, q)0} (B.5)

as the elastic domain; whereas the boundary of Eσ, denoted by ∂Eσ and defined as:

∂Eσ := {(σ, q) ∈ S× Rm|(σ, q) = 0} (B.6)

is called the yield surface in stress space. As in the one-dimensional case ∂Eσ =
int(Eσ)

⋃
∂Eσ . Note that states (σ, q) outside Eσ are nonadmissible and are ruled

out in classical plasticity.

4. Flow rule and hardening law. Loading/unloading conditions. Now we introduce the
notion of irreversibility of plastic flow by the following (nonsmooth) equations of
evolution for {εp, q}, called flow rule and hardening law, respectively;

ε̇p = γr(σ, q)

q̇ = −γh(σ, q) (B.7)

Here r : S × Rm → S and h : S × Rm → Rm are prescribed functions which define
the direction of plastic flow and the type of hardening. The parameter γ ≥ 0 is a
nonnegative function, called the consistency parameter, which is assumed to obey
the following Kuhn-Tucker complementarity conditions:

γ ≥ 0, σ(σ, q) ≤ 0

γf(σ, q) = 0 (B.8)

In addition to conditions B.8 γ ≥ 0 satisfies the consistency requirement:

γḟ(σ, q) = 0 (B.9)
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In the classical literature, conditions B.8 and B.9 go by the names loading/un-loading
and consistency conditions, respectively.

5. Consistency condition and elastoplastic tangent moduli. To exploit condition B.9,
we start out by evaluating the time derivative of f at (σ, q) ∈ Eσ. Using the chain
rule, along with the rate forms of the stress-strain relationship B.4, the flow rule,
and the hardening law in B.7, we find that:

ḟ = ∂σf : σ̇ + ∂qf · q̇
= ∂σf : C : [ε̇− ε̇p] + ∂qf · q̇ (B.10)

= ∂σf : C : ε̇− γ [∂σf : C : r + ∂qf · h] ≤ 0

Assuming that for associative perfect plasticity:

ḟ = 0⇔ γ =
〈∂σf : C : ε̇〉

∂σf : C : r + ∂qf · h
(B.11)

where the norm is determined by the ramp function (expressed by the Macaulay
brackets 〈.〉).

Finally, according to Equations (B.4) and (B.7):

σ̇ = C : [ε̇− ε̇p] = C : [ε̇− γr] (B.12)

Then substituting (B.11) in (B.12) then yields the rate of change of σ in terms of
the total strain rate ε̇ as:

σ̇ = Ctan : ε̇ (B.13)

where Ctan is the so-called tensor of tangent elastoplastic moduli given by the ex-
pression:

Ctan =

 C if γ = 0

C− C : r ⊗C : ∂σf

∂σf : C : r + ∂qf · h
if γ > 0

(B.14)

Note that Ctan is generally nonsymmetric for arbitrary r(σ, q), except in the case
for which:

r(σ, q) = ∂σf(σ, q) (B.15)

which has special significance and is called an associative flow rule.
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B.2 J2 Flow theory with isotropic/kinematic hardening

A choice of internal plastic variables which is typically of metal plasticity is q :=
{α, β}. Here, α is the equivalent plastic strain that defines isotropic hardening of
the von Mises yield surface, and β defines the center of the von Mises yield surface
in stress deviator space. The resulting J2-plasticity model has the following yield
condition flow rule and hardening law:

η : = dev [σ]− β̄, tr
[
β̄
]

:= 0 (B.16)

f(σ, q) = ‖η‖ −
√

2

3
K (α) (B.17)

ε̇p = γ
η

‖η‖
(B.18)

˙̄β = γ
2

3
H ′ (α)

η

‖η‖
(B.19)

α̇ = γ

√
2

3
(B.20)

The functions K ′ (α) and H ′ (α) are called the isotropic and kinematic hardening
modulus, respectively. Since ‖ε̇p‖, relationship (B.20) implies that:

α(t) :=

∫ t

0

√
2

3
‖ε̇p(τ)‖ dτ (B.21)

which agrees with the usual definition of equivalent plastic strain.

Now, the plastic consistency parameter given by (B.11) in the general case takes
the explicit form:

γ =
〈n : ε̇〉

1 + H′+K′

3µ

(B.22)

where:

n =
η

‖η‖
(B.23)

Note that since tr[n] = 0, it follows that n : ε̇ ≡ n : dev [ε̇]. Finally, for 〈γ〉 = γ0,
i.e., for plastic loading, the elastoplastic tangent moduli are obtained from (B.14)
as:

Ctan = κ1⊗ 1 + 2µ

[
I − 1

3
1⊗ 1− n⊗ n

1 + H′+K′

3µ

]
, for γ > 0 (B.24)
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[65] Ladevèze, P., and Nouy, A. On a multiscale computational strategy with time
and space homogenization for structural mechanics. Computer Methods in Applied
Mechanics and Engineering 192, 28-30 (2003), 3061 – 3087. Multiscale Computa-
tional Mechanics for Materials and Structures.

[66] Lahellec, N., and Suquet, P. On the effective behavior of nonlinear inelas-
tic composites: I. incremental variational principles. Journal of the Mechanics and
Physics of Solids 55, 9 (2007), 1932 – 1963.

[67] Lahellec, N., and Suquet, P. On the effective behavior of nonlinear inelastic
composites: Ii: A second-order procedure. Journal of the Mechanics and Physics of
Solids 55, 9 (2007), 1964 – 1992.

[68] Lee, J. A., Almond, D. P., and Harris, B. The use of neural networks for
the prediction of fatigue lives of composite materials. Composites Part A: Applied
Science and Manufacturing 30, 10 (1999), 1159 – 1169.

[69] Lee, K., Moorthy, S., and Ghosh, S. Multiple scale computational model for
damage in composite materials. Computer Methods in Applied Mechanics and En-
gineering 172, 1-4 (1999), 175 – 201.

[70] Lefik, M., Boso, D., and Schrefler, B. Artificial neural networks in numerical
modelling of composites. Computer Methods in Applied Mechanics and Engineering
198, 21-26 (2009), 1785 – 1804. Advances in Simulation-Based Engineering Sciences
- Honoring J. Tinsley Oden.

[71] Martinez, X., Oller, S., Rastellini, F., and Barbat, A. H. A numerical
procedure simulating rc structures reinforced with frp using the serial/parallel mixing
theory. Computers & Structures 86, 15-16 (2008), 1604 – 1618.

[72] Mercier, S., Jacques, N., and Molinari, A. Validation of an interaction law
for the eshelby inclusion problem in elasto-viscoplasticity. International Journal of
Solids and Structures 42, 7 (2005), 1923 – 1941.



REFERENCES 209

[73] Mercier, S., and Molinari, A. Homogenization of elastic-viscoplastic heteroge-
neous materials: Self-consistent and mori-tanaka schemes. International Journal of
Plasticity 25, 6 (2009), 1024 – 1048.

[74] Michel, J., Moulinec, H., and Suquet, P. Effective properties of composite
materials with periodic microstructure: a computational approach. Computer Meth-
ods in Applied Mechanics and Engineering 172, 1-4 (1999), 109 – 143.

[75] Miehe, C. Numerical computation of algorithmic (consistent) tangent moduli in
large-strain computational inelasticity. Computer Methods in Applied Mechanics and
Engineering 134, 3-4 (Aug. 1996), 223–240.

[76] Molinari, A. Averaging models for heterogeneous viscoplastic and elastic viscoplas-
tic materials. Journal of Engineering Materials and Technology 124, 1 (2002), 62–70.

[77] Mori, T., and Tanaka, K. Average stress in matrix and average elastic energy of
materials with misfitting inclusions. Acta Metallurgica 21, 5 (1973), 571 – 574.

[78] Moulinec, H., and Suquet, P. A fast numerical method for computing the linear
and nonlinear properties of composites. C.R. Acad. SC. II-318 (1994), 1417–1423.

[79] Moulinec, H., and Suquet, P. A fftbased numerical method for computing
the mechanical properties of composites from images of their microstructure. In
Microstructure-Property Interactions in Composite Materials, R. Pyrz, Ed. Kluwer
Academic, 1995, pp. 235–246.

[80] Moulinec, H., and Suquet, P. A numerical method for computing the overall
response of nonlinear composites with complex microstructure. Computer Methods
in Applied Mechanics and Engineering 157, 1-2 (1998), 69 – 94.
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