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Abstract

The present thesis aims at advancing an innovative computational methodology
that simulates steel and composite material fracture under cyclic loading fol-
lowing a phenomenological approach, with calibration from both small scale and
large scale testing. This work addresses fatigue processes ranging from High Cycle
to Ultra-Low-Cycle Fatigue. An assessment of the current state of the art is done
for all the different fatigue types. Following, for Ultra-Low Cycle Fatigue a new
constitutive law is proposed and validated with experimental results obtained
on small scale samples. Industrial applications are shown for a large diameter
straight pipe under monotonic loading conditions and for a bent pipe under cyc-
lic loading. Emphasis is made on the capacity of the model to represent different
failure modes depending on the loading conditions. The research regarding this
part has been used in the frame of the European Project: Ultra low cycle fatigue
of steel under cyclic high-strain loading conditions (ULCF).

Regarding High Cycle Fatigue, a classic damage model is presented in combin-
ation with an automatic load advancing strategy that saves computational time
when dealing with load histories of millions of cycles. Numerical examples are
shown in order to demonstrate the capabilities of the advancing strategy and a
validation of the model is done on small scale samples.

A new constitutive model is presented for Low Cycle Fatigue that uses the clas-
sic plasticity and damage theories and simultaneously integrates both processes
in the softening regime. The capabilities of the model are shown in numerical
examples.

Finally, the High Cycle Fatigue damage model is applied to the constituents of
a composite material and the structural behaviour is obtained by means of the
serial/parallel rule of mixtures. Validation of the constitutive formulation is done
on pultruded glass fiber reinforced polymer profiles.
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Resumen

La presente tesis propone una metodoloǵıa innovadora para la modelización
numérica de la rotura de materiales metálicos y compuestos sometidos a cargas
ćıclicas. El enfoque es fenomenológico y la formulación se calibra con resultados
experimentales obtenidos en espećımenes a pequeña escala y con experimentos a
gran escala. Este trabajo abarca procesos de fatiga desde alto número de ciclos
hasta muy bajo número de ciclos.

Una evaluación del estado del arte hasta el momento se ha llevado a cabo para los
diferentes tipos de fatiga. A continuación, se propone una nueva ley constitutiva
para la fatiga de muy bajo número de ciclos y se presenta la validación con
resultados experimentales obtenidos en espećımenes a escala pequeña. El mod-
elo constitutivo se ha probado en dos aplicaciones industriales: una tubeŕıa de
gran diámetro bajo condiciones de carga monótonas y una tubeŕıa doblada a un
ángulo de 90 grados sometida a cargas ćıclicas. Se ha enfatizado la capacidad
del modelo de reproducir diferentes modos de rotura dependiendo de las condi-
ciones de carga. El trabajo referente a este modelo se ha usado en el marco del
proyecto europeo: Fatiga de muy bajo número de ciclos del acero bajo grandes
deformaciones ćıclicas.

Respecto a la fatiga de alto número de ciclos, se presenta un modelo clásico
de daño combinado con una estrategia automatizada de avance en la carga por
número de ciclos. La estrategia conduce a un ahorro en tiempo de computación
cuando se aplican millones de ciclos de carga. Las capacidades y particularid-
ades de la estrategia de avance en la carga se enseñan en una serie de ejemplos
numéricos. El modelo se valida con resultados experimentales obtenidos en es-
pećımenes a pequeña escala.

Un nuevo modelo constitutivo se presenta para la fatiga de bajo número de
ciclos que se basa en las teoŕıas básicas de plasticidad y daño y que integra sim-
ultáneamente las ecuaciones de ambos procesos en el régimen de ablandamiento.
Las capacidades del modelo se enseñan a través de ejemplos numéricos.

v



Finalmente, se estudia la aplicación del modelo de daño para fatiga de alto
número de ciclos en los componentes de materiales compuestos. El comportami-
ento estructural del material compuesto se obtiene a través de la teoŕıa de mezclas
serie/paralelo. La formulación se valida con resultados experimentales obtenidos
en perfiles de GFRP.
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Chapter 1

Introduction, objectives and

motivation

1.1 Antecedents

The present thesis aims at advancing an innovative computational methodology
that simulates metal and composite material fracture under cyclic loading fol-
lowing a phenomenological approach, with calibration from both small scale and
large scale testing.

Time varying cyclic loads produce failure of structural parts for values of stress
lower than those obtained in static tests. This phenomenon is called fatigue and
it is defined more generally in the ASTM E1823 standard [32] as:

the process of permanent, progressive and localized structural change which occurs
to a material point subjected to strains and stresses of variable amplitudes which
produces cracks which lead to total failure after a certain number of cycles.

In this definition it is possible to include all fatigue ranges, from Ultra Low Cycle
Fatigue (ULCF), to Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF).
Generally it is considered that failures in the range of 106 to 108 cycles belong
to the HCF range, failures below 100 cycles belong to ULCF, and failures in
between these limits are atributed to LCF.

1
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One of the main drawbacks of most of the existing formulations to characterize
ULCF, LCF and HCF is that they require regular cycles to predict material
failure, or they couple the effects of non-regular cycles using the Miner rule,
which requires knowing the performance of the structure under regular cycles.
However, this regularity often does not exist. An example of an ULCF failure
due to an irregular cyclic load is found in the failure of structures subjected to
seismic loads, where the frequency varies along time and each cycle may have
different amplitudes.

A Continuum Damage Mechanics (CDM) based fatigue model has been previ-
ously derived at CIMNE to address low- and high-cycle fatigue [98] and the
present work is based on the thermodynamic framework adopted there. Given
the extensive experience of the workgroup in constitutive modelling of composite
materials, the application on long fiber composite materials of the formulation
developed is also studied.

1.2 Motivation

This work addresses fatigue processes ranging from high cycle to ultra-low-cycle
fatigue. While high cycle fatigue (HCF) in metals is a largely documented phe-
nomena, less is known about its ultra-low-cycle counterpart, a phenomena caused
by extreme loading conditions (e.g. earthquakes, hurricanes, support settlements)
characterized by large scale yielding and large deformations which lead to frac-
ture.

The issue of fracture is dealt with in a fundamental way in this thesis by examin-
ing the accuracy and validity of evolving approaches to characterize extreme
loading-induced fracture in steel structures. Finite element modelling is extens-
ively used to describe the stress and strain distribution and evolution during
specimen loading. An experimental program of large scale tests pertaining to the
European Project Ultra low cycle fatigue of steel under cyclic high-strain load-
ing conditions is also used to validate and demonstrate the constitutive models
proposed under monotonic and cyclic loadings.

Based on an evaluation of the current state of the art, three constitutive models
are proposed in this work, that derive from a common thermodynamical and
mechanical base. They make use of the basic theories of damage and plasticity in
order to simulate the behaviour of materials subjected to fatigue due to complex
loading scenarios. The nonlinear behaviour of the materials is reflected directly
in the constitutive equation without any need of additional fracture criteria. The
formulations have a wide range of applicability, both for monotonic and cyclic
loading.
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The effect of fatigue in composites is still an open issue not yet resolved. With
the increasing use of composite materials comes an increasing need to understand
their behaviour and design life. Many of the nowadays composite applications
encompass conditions that include repetitive loading cycles, thus demanding the
ability to understand and evaluate fatigue in composite structures.Following these
considerations, one of the formulations shown in this thesis is also applied to
composite materials with successful results, proving that the Continuum Damage
Mechanics approach can be used for these materials.

1.3 Objectives

The main objective of the thesis is advancing an innovative computational meth-
odology that simulates metal and composite material fracture under cyclic load-
ing following a phenomenological approach, with calibration from both small
scale and large scale testing.

The completion of this objective has been conditioned by the fulfillment of several
specific objectives that may be summarized as follows:

1. Development of constitutive laws for the description of the evolution of
plastic behaviour based on the observed micromechanisms and experimental
testing under ULCF conditions;

2. Development of constitutive laws for the description of damage evolution
based on the observed micromechanisms and experimental testing under
HCF conditions;

3. Development of a constitutive model for the description of plasticity and
damage evolution based on the observed micromechanisms and experi-
mental testing under LCF conditions;

4. Development of an automatic load-advancing strategy that reduces and
optimizes the computational time of a numerical simulation.

5. Development of constitutive laws for the description of damage evolution
under cyclic loading in composites using the serial/parallel mixing theory.

1.4 Outline of the thesis

The document begins with a short introduction on the general topic of fatigue
followed by a review of the state of the art on processes responsible for extreme
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loading conditions-induced fracture, and then applying the state of the art mi-
cromechanics models for explaining cyclic fracture and fatigue prediction, first
for steel members, extending the question further to composite materials.

The limitations of the existing approaches are described, knowledge gaps iden-
tified and issues regarding the implementation of these approaches are critically
assessed. There will be a particular emphasis placed on damage initiation and
spread due to extreme cyclic loading, known as ultra-low-cycle fatigue (number of
cycles to failure on the order of 102). A review of fatigue life prediction methods
in composites is then also presented.

In the following chapter a constitutive model is proposed for Ultra Low Cycle
Fatigue (ULCF) with two associated constitutive laws. Validation of the laws
is done on small scale samples. Industrial applications are shown for a large
diameter straight pipe under monotonic loading conditions and for a bent pipe
under cyclic loading. Emphasis is made on the capacity of the model to represent
different failure modes depending on the loading conditions.

Regarding High Cycle Fatigue (HCF), in chapter 4 a classic damage model is
presented in combination with an automatic load advancing strategy that saves
computational time when dealing with load histories of millions of cycles. Numer-
ical examples are shown in order to demonstrate the capabilities of the advancing
strategy and a validation of the model is done on small scale samples.

The following chapter refers to a plastic damage model valid for Low Cycle Fa-
tigue (LCF) that uses the classic plasticity and damage theories and simultan-
eously integrates both processes in the softening regime. An energy distribution
law between plasticity and damage is also proposed in the softening regime. The
capabilities of the model are shown in numerical examples.

In chapter 6, the High Cycle Fatigue damage model is applied to the constituents
of a composite material and the structural behaviour is obtained by means of the
serial/parallel rule of mixtures. This formulation is based on the composition of
the fatigue behaviour of each component. Validation of the constitutive formula-
tion is done on pultruded glass fiber reinforced polymer profiles. Special emphasis
is made on the comparison between the experimental and the numerical failure
mode.

The final chapter refers to conclusions that can be drawn from the work presen-
ted and future work to be done in this research line. The publications derived
from the thesis are also shown and the innovative contributions of this work are
emphasized.



Chapter 2

State of the art

Fatigue is known to be the main cause of failure on structural parts and ele-
ments in the aeronautics, naval and automotive industry as well as in some civil
engineering structures.

Steel fatigue has been extensively studied at microstructural level with a clear em-
phasis on its chemical and physical structure and on the influence that the latter
has on material behaviour and its failure. When looking at the phenomenon from
the microscale, it can be seen that a large amount of the material internal energy
is spent in a rearrangement of its internal structure to accommodate better the
cyclical load, followed by the gliding of the interatomic planes phase. Metal grains
suffer plastic slip and non-linear behaviour [53], and these irreversible processes
are responsible for crack initiation under cyclic loading.A phenomenological ex-
tension of this behaviour can be applied to composites, at each of the composite
components or at their interface.

The mechanical phenomenon known as fatigue consists in the loss of material
strength, and consequent failure, due to the effect of cyclic loads. Fatigue is
characterized, among other parameters, by the number of cycles, load amplitude
and reversion index [98]. Material failure is produced by an inelastic behaviour,
micro-cracking and crack coalescence, which lead to the final collapse of structural
parts.

While there is a general agreement that for failures in the range of 106 to 108

cycles the structure has failed in the High Cycle Fatigue range, there is not such
agreement in defining the limits for LCF and ULCF. Authors such as Kanvinde
and Deierlein [51] consider that LCF is found between 100ś and 1000ś cycles and

5
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that ULCF is in the range of 10 to 20 cycles; and other authors, such as Xue
[138], put these limits in 104 for LCF and 100 for ULCF. However, despite these
discrepancies, there is a general agreement that plastic behavior of the material
plays an important role in the failure due to LCF or ULCF [19].

2.1 Methods used for the simulation of failure in

steel structures

2.1.1 Strain-based design method

Given that ULCF is defined by cyclic loads which generate plastic effects, stress
based design criteria for structures which are subjected to extreme loads do
not yield good results. Therefore, advanced analysis and modelling of structures
or components subjected to extreme loads is presently done using strain-based
design criteria which are based on limit state design and displacement control
load, in the sense that there are a specific subset of limit states where displace-
ment controlled loads dominate the mechanical response of the structure.

Under the strain-based design framework, safety is established based on the vari-
ability associated with the strain demand given by design requirements on one
hand, and strain capacity (which is intrinsic to the structural steel) on the other
hand. To be specific, a limit state condition can be expressed as follows [141]:

• factored (increased) maximum tensile strain demand less than equal to the
factored (reduced) tensile strain capacity

• factored (increased) maximum compressive strain demand is less than equal
to the (reduced) compressive strain capacity

The primary areas where strain based design is expected to be applicable, taking
into account the current industrial application focus of the thesis, pipelines, are in
design of reeled laying of offshore pipelines, in thermal design of arctic pipelines, in
design of types of offshore pipe lay systems, in design and assessment of pipelines
in areas with significant expected ground movement, and in HT/HP pipeline
designs. Some pipelines may also have some applications of strain-based design
where cyclic loadings cause occasional peak stresses above the pipe yield strength.
Here, the cyclic lifetime assessment is improved by using strain ranges for the
cycles, instead of stress ranges. However, the cyclic lifetime assessment needs
further development and validation, mainly for LCF or ULCF load conditions.



2.1. Methods used for the simulation of failure in steel structures 7

Some important drawbacks can be pointed out to the current state-of-the-art
strain-based design [33]:

• The current use of strain-based design has many project-specific compon-
ents. This limits the ability of a cookbook approach where each step can
be laid out as part of common design sequence to apply to all areas of
pipe strain-based design. This situation would indicate that taking the cur-
rent state-of-the-art methods and creating a code or standard would be
ineffective at covering the range of needs for future pipeline designs.

• Past design practices have asked designers to determine whether a par-
ticular loading was load-controlled or displacement-controlled without any
other possible choices. Designers today need to recognize that there are a
range of intermediate cases between full-load control and full displacement
control. The behaviour of the pipe, particularly its buckling resistance, can
change significantly depending upon the designers choice of the appropri-
ate intermediate case for design. Guidance on local buckling compression
resistance of pipelines appears to be well founded when using the critical
strain. The additional strains that can be achieved under partly or fully dis-
placement controlled loading should be more thoroughly studied to allow
more specific guidance.

• The methods for assessing tensile failure resistance of pipelines by Engineer-
ing Critical Analysis (ECA) become fewer when the plastic strain exceeds
0.5% and fewer still as the strain increases to 2% or more. More validations
trials are needed in the open literature to support the use of the few existing
methods up to high axial strains.

• Further study is needed on the effects of prior strain history on the resist-
ance of pipeline materials to different failure modes.

• Methods of assessing cycles of loading that include plastic strain are avail-
able. But the limited number of tests on which they are based may mean
that these methods are conservative for many pipeline design situations
to which they might be applied. Additional testing and analysis of cyclic
behaviour of pipelines is needed to improve the methods currently available.

• Design of pipelines to resist ratcheting has become more important recently
because of thermal cycle effects on high-temperature pipelines and flow
lines. As for other types of cyclic loading, the current design methods are
relatively conservative, but have been shifting to allow more cycles of plastic
strain. Additional testing and assessment is needed in this area to improve
the current methods.

• Although some workable strain-based design methodology and the support-
ing engineering processes and models have been achieved and validated,
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some improvements and enhancements are needed, especially as we move
to high pressure, high strength pipe and large-diameter pipelines [68].

Under cyclic action, the initial loss of strength can be produced by plastic be-
haviour (or other non-linear phenomena) coupled with the loss of strength by
fatigue, which also conduces to the high reduction of the residual strength, caus-
ing a decrease of the residual life under very low number of cycles. The capturing
of this life reduction is possible by means of a new constitutive model based on the
residual strength of the solids under fatigue loads coupled with other nonlinear
models (ex: plasticity, ductile damage).

Plastic design is applied in two areas: for structures subjected to static loads and
for structures subjected to loads varying with time. Extreme transient loading
conditions involving widespread yielding may lead to monotonic ductile fractures
or to fatigue failures after a very short number of load fluctuations (Nf in the order
of 102 cycles). The latter failure mechanism is often called ULCF to distinguish
it from the well-known low-cycle fatigue process (Nf in the order of 103 cycles
or greater) since it involves distinct micromechanisms, not fully understood and
characterized until now.

2.1.2 Elastoplastic fracture mechanics and Engineering Crit-

ical Analysis methods

Conventional elastoplastic fracture mechanics (EPFM), using parameters such as
the J-Integral (also refered to as the Rice integral) or the Crack Opening Dis-
placement, has been very often applied to assess the ultimate failure loads under
plastic conditions. EPFM is the theory of ductile fracture, usually characterized
by stable crack growth in the case of ductile metals. The fracture process is ac-
companied by the formation of a large plastic zone at the crack tip and material
failure is determined by an energy criteria in conjunction with a yield criteria.
However, this approach shows very important limitations, namely:

• it requires the assumption of an initial flaw (cannot handle flaw-free details);

• EPFM assumes small-scale (limited) yielding;

• EPFM based approaches do not explicitly include effects of reversed cyclic
loading, thus cannot be conveniently applied to situations of ULCF.

Engineering Critical Analysis (ECA) is primarily used in strain-based design to
set the allowable flaw size for inspection or to check that the material toughness
is sufficient for a given flaw size. The methods are applied to both girth- and
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seam-welded areas based on the engineering understanding of brittle and ductile
fracture and plastic collapse. ECA for strain-based design must use a rather high
level of complexity. The assessment of flaws in areas of general plasticity was not
the original domain of any of the standard assessment techniques and these have
been extended to cover it by various modifications.

Damage mechanics is frequently proposed as an alternative approach to EPFM
to assess the macroscopic crack initiation. This thesis proposes developments of
the Continuum Damage Mechanics (CDM) based approach to predict the ULCF
under conditions of generalized plasticity.

2.2 ULCF and LCF models

2.2.1 Coffin − Manson law

According to the literature review made by Yao and Munse in [140], first at-
tempts to characterize LCF and ULCF can be attributed to Kommers who, in
1912, conducted several tests on a cantilever specimen subjected to cyclic bend-
ing. After these tests he reached the conclusion that the magnitude of deflection
plays an important role in low cycle fatigue. However, main efforts to characterize
the parameters driving LCF and ULCF are not found until 1950s, when numer-
ous experimental programs where carried out to calibrate the material constants
for various metals. A large amount of work is documented from this period. The
experimental data is usually plotted on a log − log scale with the abscissa rep-
resenting the number of life cycles and the ordinate the plastic strain amplitude.
This graph is known as the ∆εp−N curve. Following this approach, probably the
most known, and most widely used, procedure to predict material failure under
LCF and ULCF is the Coffin − Manson law [19], [124] and [60]:

∆εp ·Nα = C (2.1)

∆εp being the plastic strain range in the material, N the number of cycles that
can be applied before ULCF and LCF failure, and α and C material constants.

From this first equation proposed by Coffin and Manson, several authors have
provided their own law in order to improve the accuracy on the predicted cycles
before failure, especially in the ULCF regime. For instance, Xue [138] observed,
from experimental results, that the law did not fit well in the range of very low
life cycles, less than 100, so he proposed a new exponential damage rule that
improved this accuracy. Kuroda [60] also provided a modification on the original
Coffin − Manson law in order to predict the failure below 100 cycles. In this case
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the model is based on the accumulation of damage due to three different effects:
tensile straining, cyclic straining and crack propagation.

The approach used by Tateishi et al. [129] to simulate LCF failure is also inter-
esting. These authors use Miners rule to couple the effect of High Cycle Fatigue
with the effect of Low Cycle Fatigue, by adding a ductile damage term. This
last term depends on the yield strain of the material, the rupture strain and the
strain that is applied in a given cycle.

Current ULCF and LCF models may be broadly organized into two categories:
those that couple the fracture behaviour with constitutive behaviour and those
that do not. In the former, the effects of material damage are considered through
the constitutive model while in the latter, material damage is an independent
variable whose value has no direct effect on the constitutive model. Rather,
the material damage combined with a fracture condition can predict geomet-
ric changes (i.e., material separation) which, in turn, will affect the constitutive
response.

Since the constitutive response of coupled models is explicitly tied to the dam-
age/fracture model, coupled models can readily predict crack propagation rate
and direction, whereas uncoupled models must implement a separate material
separation criterion which often pre-determines the crack path. Despite this ad-
vantage, coupled models are generally more difficult to calibrate because of ad-
ditional parameters which may have loose physical meaning. Micromechanical-
based models have been given a major emphasis to predict ULCF fracture.
Among these models, the more relevant ones are:

• the Cyclic Void Growth Model (CVGM) proposed by Kanvinde and Deier-
lein [53];

• the Effective Damage Concept (EDC) developed by Ohata and Toyoda [90];

• the Leblond Model (usually called LPD model) [62] and

• the Continuum Damage Mechanics model proposed by Bonora [106].

While the first two models are uncoupled models, the latter two consider coupling
between damage and constitutive equations.

2.2.2 Cyclic Void Growth Model (CVGM)

Because the mechanism of ULCF is controlled by void growth and coalescence,
the CVGM proposed by Kanvinde and Deierlein [51], [53] and [52] extends upon
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the widely used void growth model (VGM), developed by Rice and Tracey [112],
Hancock and Mackenzie [43] and others for monotonic loading. The CVGM is
defined by two equations defining the fracture demands, imposed on a material
by ULCF loads, and the fracture toughness of a material, under ULCF loads. The
fracture condition (crack initiation) occurs when the fracture demand exceeds the
fracture toughness.

In order to account for the effects of void growth and coalescence that drive
the fracture of metallic materials, the authors propose a model that calculates
the void growth and compares it with a critical value to detect material failure.
This parameter is obtained experimentally. The initial formulation developed for
monotonic cases (Void Growth Model VGM [52]) is extended to cyclic loads by
differentiating the void growth obtained in the tensile and compressive regions
of the load cycle. Therefore, the void growth in the Cyclic Void Growth Model
(CVGM) can be obtained as [53]:

V GIcyclic =
∑

tensile cycles

C1 ·
∫ ε2

ε1

exp

(∣∣∣∣−1.5
σm
σe

∣∣∣∣) dεp−
−

∑
compressive cycles

C2 ·
∫ ε2

ε1

exp

(∣∣∣∣−1.5
σm
σe

∣∣∣∣) dεp < V GIcriticalcyclic (2.2)

Two assumptions are inherent to the fracture demands:

• Voids grow during tensile cycles, where tensile cycles are defined to occur
whenever triaxiality is positive;

• Voids shrink during compressive cycles, similarly defined as whenever the
triaxiality is negative. In the VGM, the critical void size varies only with
material; however with the CVGM the critical void size varies both with
material and with the extent of material damage, induced by the reversed
plasticity of the cyclic loading.

2.2.3 Effective Damage Concept (EDC)

The Effective Damage Concept (EDC), like the CVGM, is valid for arbitrary
ULCF loading and controlled by the growth and coalescence of voids. The CVGM
and EDC are conceptually similar. Both are based on the mechanism of void
growth and coalescence with accompanying material damage induced by reversed
plasticity and both are based on extensions of the VGM. Despite these similarit-
ies, there are several important differences. The EDC explicitly depends on the
back stress, a second order tensor that defines the center of a materials yield sur-
face in multiaxial stress space. The back stress quantifies the kinematic hardening
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of a material. The key assumption of the EDC is that material damage accumu-
lates only when the back stress exceeds the maximum value obtained during prior
load cycles.

In implementation, the EDC is summarized by two concepts:

• Applied equivalent plastic strain, during which the back stress does not
exceed the previous maximum back stress, does not contribute to material
damage. Rather, only the effective equivalent plastic strain, contributes to
material damage. The effective equivalent plastic strain, for a given load
cycle, is defined as the portion of the total equivalent plastic strain for
which the back stress equals or exceeds all prior values;

• The initiation of ductile fracture occurs when an instantaneous combination
of effective equivalent plastic strain and triaxiality equals the failure curve.

2.2.4 The Leblond model

The formulation of the Leblond model extends upon the GNT porous metal
constitutive model. The proposed modification replaces the Cauchy stress tensor,
in the equation of the yield surface, with the difference between the Cauchy
stress tensor and the back stress tensor and, thus, accounts for the kinematic
hardening associated with cyclic loads. The proposed modification advanced by
Leblond allows the prediction of the constitutive response and point of ductile
fracture initiation under ULCF loads. Ductile fracture initiation occurs when
the void volume fraction exceeds a material dependent critical value and the
load-carrying capacity of the material reduces to zero.

2.2.5 The Pirondi and Bonora model

Pirondi and Bonora [106], inspired on works of Lemaitre [64] and Chaboche [22]
proposed a CDM model in which the constitutive behaviour under ULCF is
coupled with the damage state.

The main features of the CDM model are:

• Material damage is a non-linear function of the equivalent plastic strain;

• The modulus of the elasticity depends on the damage, where increases in
the material damage result in decreases in the modulus of elasticity;
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• Damage accumulates and its effects are active only when the mean stress
is positive (i.e., the elastic stiffness is reduced only when the mean stress is
positive). As such, any equivalent plastic strain that is accumulated when
the mean stress is negative does not contribute to the damage nor does
it alter the constitutive equations. Ductile fracture initiation is predicted
when the material loses its load-carrying capacity.

2.2.6 The EVICD model

An interesting approach to characterize low cycle fatigue accounting for non-
regular cycles is the one proposed by Jiang et al.[48], which defines an independent
continuous cumulative damage function (EVICD) based on the accumulation of
plastic strain energy. This formulation is based on the previous models of EVICD
[48],[88] and [100] and states that the total damage can be computed as:

D =

∫
dD with dD = ζ · dW p (2.3)

BeingD the fatigue damage,W p the plastic strain energy density and ζ a function
determined experimentally based on the fatigue response of the material. With
this approach the authors obtain an evolution of the fatigue damage parameter
as the simulation evolves and the material failure is obtained when D = 1. In
[48], the model is tested for fatigue ranges between 103 to 107 cycles, which
corresponds to low and high cycle fatigue.

This formulation, as well as the formulation proposed by Kanvinde and Deierlein
[53], are capable to account for regular and non-regular cycles, as both formula-
tions are based on the addition of certain quantities while the material increases
its plastic strain. However, they both have the drawback of being based on a
failure criterion that is completely independent of the plastic model (uncoupled
approaches): it is calculated as the simulation advances and, when it reaches a
certain level, the criterion tells the code that the material has failed.

The simulation of LCF and ULCF has also been approached using non-linear
constitutive laws. This is the case of Saanouni and Abdul-Latif [113] and [2],
who propose the use of a representative volume element (RVE), and a non-linear
law based on the slip theory, to account for the dislocation movement of metallic
grains. Instead of a RVE, Naderi et al. [86] proposed simulating the progressive
failure of a given structural element by applying random properties to the dif-
ferent finite elements in which it is discretized. The constitutive model used to
characterize LCF failure is the one defined by Lemaitre and Chaboche in [65].
The use of a stochastic approach is also the approach used by Warhadpande
et al. [136], who applied random properties to a Voronoi cell. In most of these
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models the damage variable is also calculated independently of the non-linear
constitutive law used to simulate the material performance.

2.3 HCF models

Regarding the high cycle fatigue (HCF) phenomenon, it is known that the type of
fracture involved at macroscale level occurs with little or no plastic deformation.
Therefore, HCF does not introduce macroscopic plastic strain, but it introduces
porosity [117]. These are the reasons that have led to describe this failure mode by
means of damage models. These can be categorized into five groups: damage curve
approach, crack growth- based approach, life curve modification approach, energy
based damage theories and continuum damage mechanics (CDM) approaches [34].
However, in spite of the great number of models proposed in the HCF field, there
is not yet a universally accepted one.

In particular, the CDM approach is based on the original concepts of Kachanov
[50], [49] for treating creep damage problems. The posterior work of Chaboche
[21], [20], Chaboche and Lemaitre [66], [65], Wang [134], Wang and Lou [135], Li et
al. [67] and Oller et al. [98] established the CDM framework as a valid alternative
to the fracture mechanics formulations in order to assess in a unified way both
crack initiation and propagation. Furthermore, they enhanced the study of fatigue
problems by recognizing that the theoretical structure of continuum mechanics,
such as damage, is suitable for the study of nonlinear fatigue problems and that
the mechanical effect known as fatigue produces a loss of material strength as a
function of the number of cycles, load amplitude, reversion index, etc.

Regarding fatigue life prediction, many different approaches have been proposed
such as the early methods of stress-life approach and strain-life approach [46].
One of the most used models is based on the Palmgren-Miner linear damage law
[101], [85]. However, such models do not recognize the effects of prior history
of loading, or the load sequence on the subsequent life. Strain-life models, on
the other hand, account for the local plasticity effects at stress concentrations
regions [133]. Information is abundant in literature as there are many different
crack initiation models [40], with a large number of empirical models proposed for
the long crack growth prediction [45]. Despite the abundant information existent
on fatigue constitutive models, no attention is given to load advancing strategies
utilized in numerical simulations, where one of the objectives of this work resides.
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2.3.1 Continuum Damage Mechanics method

The CDM is an alternative to the Fracture Mechanics Approach, with important
advantages, namely that it handles, in a unified way, both crack initiation and
crack propagation.

Failure in metals and alloys is a multiscale phenomenon, in general. Macroscopic
rupture is the result of the irreversible processes that occur at smaller material
length-scales. Both pre-existing and load generated micro/mesoscale flaws may
grow reducing the nominal material resistance. Consequently, the conditions un-
der which failure can occur should be evaluated based on meso/micromechanics
considerations. In metals, all failure modes can be ascribed only to five micro-
mechanisms and their combinations: cleavage, ductile fracture, creep, fatigue, and
corrosion. For all of them, the reduction of the material load carrying capability
is always associated to the appearance of irreversible strain, which may be either
highly localized in the microstructure, as for cleavage, or spread across the entire
geometry volume, as for ductile rupture or creep.

In addition to global theories, such as fracture mechanics concepts, in the last
two decades, micromechanical modelling has been proved to be a powerful ap-
proach to understand and predict failure in materials. The real advantage of
micromechanics relies on the assumption that the model parameters are only
material characteristics and do not depend on the geometry. Damage resulting
from plastic deformation is mainly due to the formation of micro voids which
initiate either as a result of fracturing or debonding from the ductile matrix, of
inclusions such as carbides and sulphides. In pure metals, micro voids are nuc-
leated at the grain triple points and along the grain boundary as a result of the
incapacity of the microstructure to accommodate, in a congruent manner, the
imposed displacement field. The growth of micro voids, under increasing strain
level, progressively reduces the material capability to carry loads up to complete
failure. A proper modelling of this micro mechanism at the mesoscale is the basis
for the prediction of ductile failure in real life components and structures (i.e.,
the macroscale).

Damage models can be grouped in three main categories:

• Abrupt failure criteria

• Porous solid plasticity

• Continuum damage mechanics (CDM).

In abrupt failure criteria, failure is predicted to occur when one external variable,
that is uncoupled from other internal variables, reaches its critical value (e.g. Rice
and Tracy critical cavity growth criterion).
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In porous solid plasticity, the effect of ductile damage (Gurson [39], Needleman
and Tvergaard [87], hereafter GTN) is accounted for in the yield condition by
a porosity term that progressively shrinks the yield surface. The GTN model,
although extensively used is known to suffer from a number of limitations:

• A large number of material parameters which makes difficult to evaluate
possible mutual influence;

• The material parameters are not physically based and cannot be directly
measured for a material;

• A poor geometry transferability of damage parameters which often requires
a posteriori adjustments;

• Damage softening introduces a length scale dependency, (mesh effect) [4].

In the last category, damage is assumed to be one of the internal constitutive vari-
ables that accounts for the effects on the material constitutive response induced
by the irreversible processes that occurs in the material microstructure.

Starting from the early work of Kachanov [49], the CDM framework for ductile
damage was later developed by Lemaitre [64] and Chaboche [22]. In the last two
decades, a number of CDM based formulations have been proposed. Also, these
models show a number of limitations:

• The proposed choice for the damage dissipation potential is, in many cases,
specific of the particular material;

• Damage evolution laws are often validated only with experimental data
obtained under uniaxial stress. Therefore, the transferability of parameters
to multiaxial stresses is not always demonstrated;

• Similarly to the porosity models, also the CDM formulations are affected
by mesh size effect due to damage softening.

More recently CDM formulations have been proposed [17] which try to over-
come the above limitations: the damage variable is uncoupled from plasticity, so
avoiding mesh size influence, and the damage evolution law take into account for
nonlinear accumulation effects. All the cited approaches are based on the void
growth and coalescence descriptions which, as already stated, strongly depend
on stress triaxiality. Anyway, in the final phase of the fracture process two differ-
ent mechanisms may compete, the internal necking of ligaments between voids,
which is mainly influenced by medium-high values of the stress triaxiality, and
the shear failure which is evident at low stress triaxiality, as described by Bao
and Wierzbicki [8].
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Experimental evidences of a different fracture behaviour at similar triaxiality
level, but obtained from different geometrical conditions were early found by
Clausing [26]. McClintock [84] also found that for many materials the equival-
ent plastic strain at failure is lower in torsion than in tension, even if the stress
triaxiality in torsion is zero, which is not consistent with any of the hydrostatic
pressure dependence (i.e. triaxiality) models described. A step forward with re-
spect to the classical damage theories was proposed by Wierzbicki et al. [137] by
introducing another normalized parameter - the deviatoric parameter, based on
the third invariant of the stress tensor, beside the stress triaxiality, to capture
the strain to fracture dependence from the stress state, thus covering both the
hydrostatic and the shear type failure modes. The sensitivity of a material to the
third invariant has as consequence the non-uniqueness of the relation between
triaxiality and fracture strain, which is bound between two distinct limits (upper
and lower). These evidences have also been confirmed in recent works by Barsoum
[14] and Coppola [29].

In contrast to monotonic ductile failures and low/high-cycle fatigue, models are
less well developed for ULCF. The fundamental physical processes responsible
for this type of fracture cannot be modelled using traditional fracture mechanics
and fatigue models. ULCF is often accompanied by large-scale yielding, which
may invalidate stress intensity-based K- or J-type approaches. It is well known
that Coffin-Manson approach used in Low-cycle fatigue tends to over-predict the
cyclic life under extremely low cycle fatigue conditions [138]. Like monotonic
ductile fracture, ULCF is ultimately controlled by the growth and coalescence of
microscopic voids. However, the reversed plasticity induced by the severe cyclic
loading degrades the fracture resistance, or toughness, due to the accumulation
of material damage.

This degradation mechanism is similar, in concept, to that of low cycle fatigue.
Thus, ULCF is more accurately conceptualized as an interaction between ductile
fracture and fatigue.

2.4 Fatigue in composite materials

The need to apply continuum damage mechanics (CDM) based models to com-
posite materials has been widely recognized. Efforts to conduct fatigue analysis of
large structures have been hindered by excess computational time and the inabil-
ity to separate differences in constitutive behaviour exhibited by each constituent
of the composite. Historically, only micromechanical models have been able to
treat the constituent separately. Thus, handling component material failure at a
large-scale structural level was nearly impossible.
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In general, the lack of understanding regarding composite structural fatigue is
a significant setback for many industries. Fatigue failures represent the greatest
uncertainty with regard to the long term service lifetime of the major structural
components of a wind turbine [99].

One of the failure modes that is addressed in this thesis is the life prediction
of composites when they are subjected to cyclic loads. The effect of fatigue in
composites is a controverted issue due to the fact that fatigue is a concept asso-
ciated to the crystalline structure. From a phenomenological point of view, if we
understand fatigue as damage accumulation due to an increase in the number of
loading cycles, the concept can be extended to composite materials. However, the
loss of strength that is typically caused by fatigue cannot be so easily addressed
when dealing with composites.

There are three commonly used approaches when assessing life duration for a
composite material [47]:

• Strength reduction models

• Stiffness reduction models

• Effective damage models

Assuming that the strains and stresses at constituent level can be determined
either by a micromodel or by simplifying theories (among which mixing theory
can be considered), strength reduction models require a large number of exper-
imental failure tests. Even so they are traditionally the most commonly used
methods [47].

Stiffness reduction models have the advantage that, although a large number of
experimental data is still needed, the testing can be done without fracturing the
samples.

Effective damage models have been explained previously when assessing the prob-
lematic for metals. They are developed starting from the early work of Kachanov
[49] under the CDM framework for ductile damage.

In a composite material, fatigue damage can take the form of any or all of the
following: delamination, matrix cracking, matrix crazing, fiber/matrix debonding
and void growth [47].

There are numerous studies, most of them experimental, that address this prob-
lem showing that the life prediction varies depending on the composite constitu-
ents (there is a difference between using glass or carbon fibers [24]); as well as
it also varies depending on the composite configuration, such as fiber orientation
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[24], or in case of ply-drops [118]. This variability proves that the life predic-
tion of composites subjected to cyclic loads cannot be addressed just with an
S/N curve but it requires a detailed simulation capable to take into account all
dependencies.

To meet the needs of composite structural evaluation, an effective solution to
accurately model composite fatigue should [28]:

• Consider fatigue damage to a particular constituent material within the
composite, not damage to the homogenized composite.

• Require a minimal input data set for characterization of fatigue behaviour.

• Apply to multiple types of loading and load histories.

• Apply to any composite laminate layup.

Early studies in predicting composite fatigue [44] relied on macroscopic composite
strengths. This approach requires a minimal data set, but satisfies none of the
other requirements.

Microstructural modeling of a composite can yield high-fidelity constituent stresses
and strains but is too computationally intensive for large-scale structural ana-
lyses. The different micromechanical damage modes that appear in composites
after fatigue loading are considered in this approach. A first but practically un-
realistic attempt considering dominant crack propagation has been presented by
Halpin [41]. Reifsnider [108], [110], [42], [109] and [89] developed a model based
on critical and subcritical elements in the laminate, investigated by researchers
like Song and Otani [125], trying to correlate critical strengths of the compos-
ite with various microdamage mechanisms, while the Charewicz and Daniel [23]
approach in predicting residual strength uses an unidentified damage function.
An interesting experimental study suggesting a possible correlation of damage
mechanisms with load sequence effects and their impact on lifetime prediction
was presented by Gamstedt and Sjgren [36].

The microstructural models claim to offer a long-term promise; to be applicable
to a wide variety of materials, lay-ups and loadings with a minimal amount of ex-
perimentally obtained input. At present however, they are either in their infancy
or have been applied to simple fatigue loading or else include micromechanical
parameters which are difficult to obtain in structural engineering reality [105].

More complex macroscopic approaches, such as calculating residual strength or
residual stiffness, have also been used, with the drawback that they require much
more experimental data and still apply only to a particular laminate. The res-
ults suggest that some of the models are able to describe in several cases the
phenomenon of strength degradation, while others fail to provide consistently a
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good prediction of this behaviour, i.e. for the various tested life fractions of the
coupons under different loading conditions and for all the laminate cases studied.

For instance, the linear strength degradation model of Broutman and Sahu [18],
modified to account for material non-linear degradation behaviour by introducing
an additional parameter as shown in [105] and the deterministic model by Harris
and co−workers [3], also enhanced with statistical features models, in most cases
predict satisfactorily the residual strength of the materials considered. However,
they require a considerable experimental effort for implementation and do not
consistently produce safe predictions. From the point of view of the designer,
the approach of the linear model of Broutman and Sahu [18] appears as a strong
candidate for either glass/epoxy or carbon/epoxy laminates, at least when tensile
fatigue is considered.

It is important to note that it seems that no residual strength model can be
safely used universally. This is mainly due to the large scatter of the residual
strength data and the simultaneous initiation and propagation of several damage
mechanisms in the composite under fatigue loading.

Moreover, nearly all of these techniques require a large amount of experimental
data to characterize the material. Most predictive theories pertain to a specific
load history at a specific temperature and are not easily generalized to capture
multiaxial load states or variable amplitude loading. In addition, any general
solution must be able to be implemented into finite element codes, with compu-
tational efficiency.

The chosen approach for the present thesis is a strength reduction model at
constituent constitutive level based on the formulation adopted for metals under
cyclic loading condition. The stresses and strains of the composite constituents
are calculated using the serial/parallel mixing theory (SP RoM) [77], which allows
different constitutive behaviour for each of the composite components and can
accurately model delamination effects which are expected to be a consequence of
fatigue damage. This work fits in a research line previously explored by Mayugo in
[83] where a methodology for the analysis of the fatigue degradation in composite
laminates is presented. The basis for the stepwise load advancing strategy is also
set there, as well as the use of a strength reduction function and generalized
S − N curves, even though the expressions of the aforementioned functions are
different from the ones used in this work.
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2.5 Necessity of the present approach

Based on the advantages of CDM models exposed previously and on the previ-
ous experience in the work group (a CDM based fatigue model was derived at
CIMNE to address low- and high-cycle fatigue [98]) this constitutive formula-
tion has been chosen as the base of the developments shown in this thesis. This
decision has been made recognizing that the theoretical structure of continuum
mechanics, such as plasticity and damage is suitable for the study of nonlinear
fatigue problems and that the mechanical effect known as fatigue produces a loss
of material strength as a function of the number of cycles, reversion index, load
amplitude, etc. This loss of strength induces the material to inelastic behaviour,
which may be interpreted as micro-cracking followed by crack coalescence, leading
to the final collapse of structural parts. Particularly, the proposed constitutive
models establish the relationship between this residual strength and the yield
surface, controlled by the standard internal variables plus a new internal variable
of fatigue that incorporates the influence of the cyclic loads.
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Chapter 3

Constitutive modelling of

Ultra Low Cycle Fatigue

3.1 Introduction

ULCF can occur in the metallic materials of modern steel devices that are de-
signed to absorb seismic energy by sustaining large inelastic deformations under
cyclic loads. Also, pipelines installed in seismic or permafrost regions must have
sufficient strength against buckling or fracture caused by large ground deforma-
tion.

ULCF can be defined as a failure that occurs at a relatively small number on
the repeated stress or strain cycles. The upper limit in ultra low cycle life has
generally been selected arbitrarily by different researchers to lie in the range of 103

to 104 cycles. On the other hand, the lower limit of life is the static test which has
been represented by various investigators as 1/4, 1/2, 3/4 or even one cycle ([140],
[27]). For ductile metals under periodic plastic loading, materials often fail within
a reduced number of life cycles. Within this regime, the failure mechanism is
governed by the plastic and damage (or sometimes called ductile damage), which
is characterized by micro structure deterioration such as micro void nucleation,
growth and coalescence and micro crack initiation and propagation [138]. So, this
process is governed by void growth and coalescence-type mechanisms, which are
associated, typically, with ductile fracture phenomenon driven by Bauschinger

23
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plasticity non-linear mechanical processes, depending of the plastic strain [5].

While previous studies (e.g., Kuwamura and K. Yamamoto [61]) have identified
this issue, models and mechanisms to characterize ULCF are not well estab-
lished. Prediction models for the cyclic life of materials are thus often based on
the alternating plastic and damage strain amplitude. The most commonly used
relationship between the alternating damage and plastic strain and the life cycles
is the so-called uniaxial Manson–Coffin law ([27], [74]), based on small uniaxial
strains formulation. This law is essentially a two parameter power law curve and
can be plotted in a log–log scale as a straight line where the slope of the curve
depicts the exponent of the power law relationship.

The ULCF mechanical processes cannot be modelled using traditional fracture
mechanics and fatigue models. Primarily, ULCF is often accompanied by large
inelastic strain (damage and/or plasticity), which may invalidate stress intensity-
based ∆K or ∆J approaches [103]. Second, the induced loading histories are
extremely random with very few cycles, making them difficult to adapt to con-
ventional cycle counting techniques such as rain flow analysis ([85], [130]) or
strain life approaches. Finally, ∆K or ∆J methods, require an initial sharp crack
or flaw, which is absent in many structural details. These limitations, coupled
with the large strain advanced finite-element formulation methods, create the
need for an improved understanding of the underlying ULCF process and the
development of models to predict it.

Since 1950s, numerous experimental programs have been carried out to calibrate
the material constants for different steels and a large amount of information is
available . The experimental data is usually plotted on a log–log scale with the
abscissa the number of life cycles and the coordinate the plastic strain amplitude,
which is known as the ∆εp−Ncurve. From the experimental results, it is observed
that the Manson–Coffin law does not fit well in the range of very low life cycles, i.e.
about less than 100 cycles [138]. ULCF damage is bounded by monotonic ductile
failure and low-cycle fatigue (LCF). Typically, models for ULCF are extensions
of LCF models. However, it is recognized in the literature that LCF models are
not fully adequate without any kind of correction.

In this context, the use of a plastic damage model to simulate ULCF is proposed,
and a new isotropic hardening law is presented. The model is the well-known
Barcelona plastic damage model, proposed by Lubliner et al. [71],[96], [97] and
[63]. An innovative application is given to this formulation by considering it
for the cyclic loading case and incorporating a Friederick-Armstrong kinematic
hardening law that allows the description of phenomena like cyclic ratcheting
(under stress control conditions) or cyclic stress relaxation (under strain control
or elastically constrained conditions). A new isotropic hardening law is developed
especially for steel materials, designed to reproduce their hardening and soften-
ing performance under monotonic and cyclic loading conditions. The complete
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nonlinear constitutive model is an extension of a given plasticity model to incor-
porate the damage effects due to cyclic action. It is an energetic based approach
that accounts for the energy dissipated during the plastic action and compares
it with a fracture energy that has to be calibrated by experiments. The model
considers that complete failure is obtained when all the fracture energy of the
material is dissipated. A first preliminary description of the procedure used by
the proposed model has been presented in [79] and the results shown in this
chapter have been published in [80] and [9].

This work proves that the proposed model it capable of simulating material failure
due to ULCF by its own, without the need of any other damage variable computed
independently of the plastic formulation. Besides, the proposed approach is not
only capable of predicting material failure for regular and non-regular cyclic loads,
but it is also capable of coupling cyclic loads with monotonic loads, which allows
predicting that the structure will fail sooner if the monotonic load is applied after
several hysteresis cycles, than if these cycles are not applied. This capability
is obtained as a consequence of the fact that the material failure is predicted
by the plastic non-linear constitutive equation itself. Another advantage of the
formulation proposed is that it is capable of using any yield and potential surfaces
to characterize the material, which increases its applicability to different steel
alloys.

In Section 3.2 an outline of the constitutive model is made and in sections 3.3
and 3.4 of this chapter the new isotropic hardening law is presented in two differ-
ent versions. In Section 3.4.3 the complete calibration procedure on small scale
samples is presented step by step. Section 3.5 illustrates the results made on
a 16-inch 90◦ elbow subjected to a variable in-plane displacement and internal
pressure. In Section 3.6 results are shown for a large diameter straight pipe under
monotonic combined loading: uniaxial displacement and internal pressure. Two
different loading histories are taken into account that exhibit different failure
modes. Finally, the advantages of the constitutive model proposed are emphas-
ized in Section 3.7.

3.2 Plastic damage model

The inelastic theory of plasticity can simulate the material behaviour beyond
the elastic range, taking into account the change in the strength of the mater-
ial through the movement of the yield surface, isotropic and kinematic. It is
assumed that each point of the solid follows a thermo-elasto-plastic constitutive
law (hardening/softening) ([71], [72] and [93]) with the stress evolution depending
on the free strain variable and plastic internal variables.
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3.2.1 Plastic Model

Since this work is guided to mechanical problems with small elastic strains and
large inelastic strains, the free energy additivity hypothesis is accepted ψ =
ψe + ψp ([69], [70]). The elastic ψe and plastic ψp parts of the free energy are
written, in the reference configuration for a given entropy η and temperature θ
field, as the elastic Green strains Ee

ij = Eij − Ep
ij − Eθ

ij ; the two last variables
operate as free field variables ([72], [70] and [37]). The free energy is thus written
as,

ψ = ψe(Ee
ij , θ) + ψp(γp, θ) =

{
1

2m

[
Ee

ij · Cijkl · Ee
kl

]
+ ψp(γp, θ)

}
− θ · η (3.1)

Considering the second thermodynamic law (Clausius-Duhem inequality, [69],
[73] and [82]), the thermo mechanical dissipation can be obtained as [70]:

Ξ =
SijĖ

p
ij

m
− ∂ψ

∂γp
γ̇p − 1

θm
qi∇θ ≥ 0 (3.2)

The accomplishment of this dissipation condition, equation 3.2, demands that the
expression of the stress and the entropy should be defined as (Coleman method;
see [82]);

Sij = m
∂ψe

∂Ee
ij

= Cijkl · Ee
kl; η = −∂ψ

∂θ
(3.3)

From the last expression is possible to obtain the general expression of the tangent
constitutive tensor,

Ct
ijkl =

∂Sij

∂Ee
ij

= m
∂2ψe

∂Ee
ij ∂E

e
kl

(3.4)

where m is the material density, Eij , E
e
ij , E

p
ij are the total, elastic and plastic

strain tensors, respectively, Sij is the stress tensor for a single material point,
Cijkl and Ct

ijkl are the initial and tangent constitutive tensors, and γp are the
plastic internal variables.
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3.2.2 Yield plastic functions

The yield function F accounts for the residual strength of the material, which
depends on the current stress state, the temperature and the plastic internal
variables. This F function and the plastic potential G have the following form,
taking into account isotropic and kinematic plastic hardening (Bauschinger effect;
[65], [25] and [56]),

F (Sij , α
p, θ) = f(Sij − αij)−K(Sij , κ

p, θ) ≤ 0
G(Sij , α

p, θ) = g(Sij − αij) = cte
(3.5)

where f(Sij−αij) and g(Sij−αij) are the uniaxial equivalent stress functions de-
pending of the current value of the stresses Sij , αij the kinematic plastic harden-
ing internal variable, K(Sij , κ

p, θ) is the plastic strength threshold, κp is the
plastic isotropic hardening internal variable, and θ is the temperature at current
time t ([71],[72] and [93]).

The evolution law for the plastic strain obtained from the evolution of the plastic
potential as,

Ėp
ij = λ̇

∂Gp

∂Sij
(3.6)

Being λ̇ the plastic consistency parameter. We will talk of associated plasticity
when the plastic potential is the same as the plastic yield function.

3.2.3 Kinematic Hardening

Kinematic hardening accounts for a translation of the yield function and allows
the representation of the Bauschinger effect in the case of cyclic loading. A two
dimensional representation of this movement in the plane S1 − S2 is shown in
figure 3.1:

This translation is driven by the kinematic hardening internal variable αij which,
in a general case, varies proportionally to the plastic strain of the material point
([65], [94]). There are several laws that define the evolution of this parameter.
Current work uses a non-linear kinematic hardening law, which can be written
as:

α̇ij = ckĖ
P
ij − dkαij ṗ (3.7)
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Figure 3.1: Translation of the yield surface result of kinematic hardening

Where ck and dk are material constants, Ep
ij is the plastic strain, and ṗ is

the increment of accumulative plastic strain, which can be computed as: ṗ =√
2/3 · Ėp

ij : Ė
p
kl. Note that the 2/3 is valid in case of using Von-Mises as the

actual yield surface. In other cases, this value should be modified.

3.2.4 Isotropic Hardening

Isotropic hardening provides an expansion or a contraction of the yield surface.
The expansion corresponds to hardening and the contraction to a softening be-
haviour. In figure 3.2 a two dimensional representation of this effect in the plane
S1 − S2 is depicted:

Figure 3.2: Expansion of the yield surface result of isotropic hardening

The evolution of isotropic hardening is controlled by the evolution of the plastic
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hardening function K, which is often defined by an internal variable κp. The rate
equation for these two functions may be defined, respectively:

K̇ = λ̇ ·Hk = hk · κ̇p
κ̇p = λ̇ ·Hk = λ̇ ·

[
hk : ∂G

∂S

]
= hk · Ėp (3.8)

where k denotes scalar and k states for a tensor function. Depending on the func-
tions defined to characterize these two parameters different solid performances
can be obtained. Two new functions valid for characterizing metallic materials
are proposed in this work and described in sections 3.3 and 3.4 of this document.

3.2.5 Stress-strain relation and consistency factor

Once the material has exceeded its yield threshold, the stress-strain relation is
defined by the tangent stiffness matrix. The expression of this matrix, as well
as the expression of the plastic consistency parameter can be obtained from the
plastic yield criterion and the Prager consistency condition [94]:

F (Sij , α
p, θ) = f(Sij − αij)−K(Sij , κ

p, θ) = 0

Ḟ = ∂F
∂S Ṡ + ∂F

∂α α̇+ ∂F
∂K K̇ = 0

 ∂F

∂S
Ṡ +

∂F

∂α
α̇− K̇ = 0

(3.9)

Using previous expressions, it is possible to rewrite equation 3.9 as:

∂F

∂S
: C :

(
Ė − Ėp

)
+
∂F

∂α
:
(
ckĖ

P
ij − dkαij ṗ

)
− hk

(
hk : Ėp

)
= 0 (3.10)

From this expression it is possible to obtain the consistency factor using equation
3.6.

∂F

∂S
: C : Ė− ∂F

∂α
: (dkαij ṗ)−λ̇·

[
∂F

∂S
: C :

∂G

∂S
− ck

∂F

∂α
:
∂G

∂S
+ hk · hk :

∂G

∂S

]
= 0

(3.11)

Therefore:
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λ̇ =
∂F
∂S : C : Ė − ∂F

∂α : (dkαij ṗ)
∂F
∂S : C : ∂G

∂S − ck
∂F
∂α : ∂G

∂S + hk · hk : ∂G
∂S

(3.12)

The tangent stiffness tensor relates the total strain rate to the stress rate:

Ṡ = CT : Ė (3.13)

Finally, the expression of the tangent stiffness matrix can be obtained from the
consistency factor:

Ct = C −
[
C : ∂G

∂S

]
⊗
[
∂F
∂S : C

]
∂F
∂S : C : ∂G

∂S − ck
∂F
∂α : ∂G

∂S + hk · hk : ∂G
∂S

(3.14)

It has to be noted that expression 3.14 has been obtained disregarding the non-
linear term of kinematic hardening. Despite having a first approximation of the
analytical expression that provides the tangent stiffness tensor, in many occasions
the calculation of the partial derivatives of the yield and potential functions is
not straightforward. In those cases, a numerical derivation can be performed.
This procedure, although expensive, provides an accurate approximation that
improves the global convergence of the problem. An efficient procedure to conduct
this numerical derivation, as well as the advantages obtained with it, are shown
in [81]. A detailed description of the integration procedure of the constitutive
equations can be found in references [70] and [94].

3.3 New isotropic hardening law

Equation 3.8 allow the incorporation of different hardening laws to describe the
material performance. In the Barcelona model defined in [71], the laws defined
are driven by the fracture energy of the material. This work presents a new
law, specially developed for steel materials, that has been designed to reproduce
their hardening and softening performance under monotonic and cyclic loading
conditions. This law also depends on the fracture energy of the material.

3.3.1 Fracture Energy

Classical fracture mechanics defines the fracture energy of a material as the energy
that has to be dissipated to open a fracture in a unitary area of the material.
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This energy is defined as:

Gf =
Wf

Af
(3.15)

where Wf is the energy dissipated by the fracture at the end of the process, and
Af is the area of the surface fractured. The total fracture energy dissipated, Wf ,
in the fracture process can be used to define a fracture energy by unit volume,
gf , required in a continuum mechanics formulation:

Wf = Gf ·Af ≡
∫
Vf

gfdV (3.16)

This last equation allows establishing the relation between the fracture energy
defined as a material property, Gf , and the maximum energy per unit volume:

gf =
Wf

Vf
=

Wf

Af · lf
=
Gf

lf
(3.17)

Thus, the fracture energy per unit volume is obtained as the fracture energy of the
material divided by the fracture length. This fracture length corresponds to the
distance, perpendicular to the fracture area, in which this fracture propagates.

In a real section, this length tends to be infinitesimal. However, in a finite element
simulation, in which continuum mechanics is applied to a discrete medium, this
length corresponds to the smallest value in which the structure is discretized: the
length represented by a gauss point.

Therefore, in order to have a finite element formulation consistent and mesh
independent, it is necessary to define the hardening law in function of the fracture
energy per unit volume ([71], [93], [78]). This value is obtained from the fracture
energy of the material,Gf , and the size of the finite element in which the structure
is discretized.

3.3.2 Hardening Function and Hardening Internal Variable

The hardening function defines the stress of the material when it is in the non-
linear range. There are many possible definitions that can be used for this function
fulfilling equation 3.8. Among them, the use of a function that describes the
evolution of an equivalent uniaxial stress state, like the one shown in figure 3.3,
is proposed here.
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This equivalent stress state shown in figure 3.3 has been defined to match the
uniaxial stress evolution described by most metallic materials. After reaching the
yield stress, the curve is divided in two different regions. The first region is defined
by curve fitting from a given set of equivalent stress-equivalent strain points. The
curve used to fit the points is a polynomial of any given order defined using the
least squares method. The data given to define this region is expected to provide
an increasing function, in order to obtain a good performance of the formulation
when conducting a cyclic analysis.

Figure 3.3: Evolution of the equivalent stress

The second region is defined with an exponential function to simulate softening.
The function starts with a null slope that becomes negative as the equivalent
plastic strains increase. The exact geometry of this last region depends on the
fracture energy of the material. The adjustment of this exponential softening
to experimental results is usually very difficult, as the stress drop is very fast
and experimental tests cannot capture it. Therefore, its definition will be done
just to obtain a more or less steep slope. The selection of an exponential function
instead of a straight line or a polynomial is made because the exponential function
provides a response that facilitates the numerical convergence.

It has to be noted that the initial plateau that is usually found in monotonic
stress-strain graphs of carbon steels is not represented in the stress evolution
proposed in this model and, therefore, it is not shown in figure 3.3. This is because
the definition of this region will lead to inaccurate results when performing cyclic
simulations of the material.

The hardening internal variable, κp, accounts for the evolution of the plastic
hardening function, K. In current formulation κp is defined as a normalized
scalar parameter that takes into account the amount of volumetric fracture energy
dissipated by the material in the actual strain-stress state. This is:
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κp =
1

gf

∫ t

t=0

S : Ėpdt (3.18)

Figure 3.4 shows shaded in green the volumetric fracture energy required by a
uniaxial material, for a given plastic strain Ep. The hardening internal variable
defined in 3.18 is calculated normalizing this fracture energy by the total fracture
energy of the system, gf , which corresponds to the total area below the curve
Seq(Ep), shaded with grey lines.

Figure 3.4: Representation of the volumetric fracture energy of a metallic material

Using the definition of the hardening internal variable defined in equation 3.18,
it is possible to define the expression of the hardening function as:

K = Seq(κp) (3.19)

It can be easily proven that the hardening function and internal variable defined
in equations 3.18 and 3.19 fulfill the rate equations 3.8. The hk and hk functions
defined in expression 3.8 become:

hk = ∂Seq

∂κp

hk = S
gt

(3.20)

3.3.3 Expressions of the hardening function

In this section the exact numerical expressions used to define the new hardening
law presented in this work are provided. This law is characterized with two dif-
ferent functions, each one defining the evolution of the equivalent stress in each
region in which the equivalent stress performance is divided (see figure 3.3).
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Region 1: Curve fitting with polynomial

The first region is characterized with a polynomial defined by curve fitting from a
given experimental data. Among the different available methods that can be used
to define this polynomial, here the use of the least squares method is proposed
due to its simplicity, computational cost, and good performance provided. The
resulting relation between the stress and plastic strain in this region is:

Seq(Ep) = a0 +
N∑
i=1

ai · (Ep)
i

(3.21)

with N the order of the polynomial.

The volume fracture energy that is dissipated in this region can be obtained
calculating the area below the Seq −Ep graph. This provides the following value:

gt1 =

N+1∑
i=1

ai
i

(
(Ep

2 )
i − (Ep

1 )
i
)

(3.22)

being Ep
1 and Ep

2 the initial and final plastic strain values, respectively, that
delimit the polynomial function region.

Although the equivalent plastic stress should depend on the plastic internal vari-
able κp, in a cyclic simulation with isotropic hardening this approach will produce
hysteresis loops with increasing stress amplitude (for a fixed strain amplitude).
For this reason, current formulation calculates the equivalent plastic stress using
the value of the equivalent plastic strain, which is obtained as:

Ep
eq =

S : Ep

f(S)
(3.23)

with f(S) defined by the yield surface used to simulate the material, as it is
shown in equation 3.5.

Finally, the derivative of the hardening function can be calculated with the fol-
lowing expression:

dSeq

dκp
=
dSeq

dEp
· dE

p

dκp
= gt ·

∑N
i=1(i− 1) · ai−1 (E

p)
i−2∑N

i=1 ai−1 (Ep)
i−1

(3.24)
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Expression 3.24 is valid for values of κp that are comprehended between κp1 = 0
and κp2 = gt1/gt. The value of the upper limit of the internal variable shows that
it is necessary to define a value for the volumetric fracture energy of the material
larger than gt1. If the value defined is lower, the material will not be able to
reach its ultimate stress as this will imply having a fracture internal variable
larger than 1.0.

Region 2: Exponential softening

When the plastic internal variable reaches the volumetric plastic energy available
for the first region, κp = κp2, exponential softening starts in region two. The
function that defines this new region is defined with the following parameters:

1. The initial equivalent stress value is defined by the equivalent stress reached
in the first region (Seq

2 ). This value can be the one defined in the material
characterization or can be a lower value if there has been some plastic
energy dissipation in a cyclic process. In this last case, the stress value has
to be obtained from previous region.

2. The initial slope of the function is zero.

3. The volumetric fracture energy dissipated in this region is the remaining
energy in the material:

gt2 = gt − gt1

With these considerations in mind, the resultant equation that relates the equi-
valent stress with the plastic strain is:

Seq(Ep) = Seq
2 ·

[
2 · e−b·(Ep−Ep

2 ) − e−2b·(Ep−Ep
2 )
]

(3.25)

where b =
3·Seq

2

2·gt2

The expression of the equivalent stress as a function of the hardening variable is
obtained combining equations 3.25 and 3.18, resulting:

Seq(κp) = Seq
2 · χ · (2− χ) (3.26)

being, χ =
√

(κp−κp
2)·2b·gt

Seq
2

+ 1

And the derivative of the hardening function is:
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dSeq

dκp
= 2b · gt ·

(
1

χ
− 1

)
(3.27)

3.3.4 Validation of the proposed formulation

In the following, the results obtained from several simulations conducted to val-
idate the formulation previously presented are included. This validation has been
done comparing the numerical results with some of the experimental results ob-
tained in the framework of the Ultra Low Cycle Fatigue Project [104].

3.3.4.1 Description of the experimental tests

Monotonic and cyclic tests were performed in a close-loop servo-hydraulic ma-
chine, INSTRON 8801, rated to 100 kN. The tests were performed at room-
temperature in air. The fatigue tests were conducted under constant strain amp-
litudes and with a frequency adjusted to result an average strain rate of 0.008s−1.
The longitudinal strain was measured using a clip gauge with limit displacements
of ±2.5 mm with a gauge length of 12.5 mm (INSTRON 2620-602). This extens-
ometer was also used in two monotonic tensile tests allowing the registration of
the longitudinal strains until approximately 17%.

All tested specimens were machined according the longitudinal direction of 6
inch pipes made of X52 steel. The dimensions of the specimens are in accordance
with the ASTM E606 standard, as illustrated in figure 3.5. The shown specimen
corresponds to the SP series. The side faces of the specimens were milled and
finished in order to remove the circumferential pipe curvature as well as surface
imperfections. In order to achieve larger strain values in the specimen some of
them where machined in order to reduce their section in their middle. This is
the case of the OH specimen, shown in figure 3.6, in which the geometry is
modified with an oval hole in its center. The experimental results obtained for
this specimen have been also used to validate the model performance.

3.3.4.2 Description of the numerical models

Two different numerical models have been defined, one for each experimental
specimen. Figure 3.7 shows the meshes of both models. The SP model is made
with 1608 quadratic hexahedral elements and 8839 nodes. It has three elements
along its thickness and 563 elements in the face shown in figure 3.7 (YZ). The
OH model has 3080 quadratic hexahedral elements and 15460 nodes. It has five
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Figure 3.5: Dimensions, in millimeters, of the SP specimen

Figure 3.6: Dimensions, in millimeters, of the OH specimen

elements along the thickness and 616 elements in the YZ face. This second model
requires nearly double the number of elements because the element size has to
be significantly smaller around the hole for its correct simulation.

Regarding boundary conditions, the left border of the model has the displacement
fixed to zero in all its directions, while the right border is moved with an imposed
displacement in the longitudinal direction of the sample. The reaction force is
obtained as a result of the numerical analysis.

All samples analyzed are defined with the same plastic material, defined with
an associated plasticity and Von-Mises as yield law. The material properties are
obtained with the calibration process that is described in the following section.

Figure 3.7: Mesh defined for the SP and OH numerical models. The SP model has

marked, with red dots, the points used to calculate the equivalent strain applied.
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Young Modulus 180 GPa

Poisson Ratio 0.30

Yield Stress (σeq
Y ) 240 MPa

Plastic Strain threshold (Ep
2 ) 13 %

c1 kinematic hardening param. 60 GPa

d1 kinematic hardening param. 280

Fracture Energy (Gf ) 1.9 MN * m/m2

Table 3.1: Mechanical properties of steel X52

All the material properties required by the model are displayed in table 3.1.
A parameter of this table that may seem surprising is the value of the yield
stress, which is lower than the one expected for an X52 steel. This value is
required because, if the yield stress is defined with a higher value, the kinematic
hardening parameters lead to stress values too high in the hysteresis cycles. As
the purpose of the model is the simulation of ULCF, which requires large plastic
strain values, the requirement of defining a lower yield stress is not considered a
major drawback.

The hardening region is defined with a polynomial of order five which is com-
puted with the least squares method using the available experimental data. The
constants of this polynomial, following the notation shown in equation 3.21, are
shown in table 3.2. In order to define the polynomial constants, it has been ne-
cessary to take into account that the effects of the kinematic and the isotropic
hardening laws are coupled. This implies that the definition of the first region
of isotropic hardening cannot be obtained from the experimental curve straight-
forward, as this curve does not take into account the displacement of the yield
surface due to the kinematic hardening law.

3.3.4.3 Calibration of the numerical model

The material data previously exposed has been obtained by model calibration.
This is, adjusting the different parameters required by the model to obtain a
good fitting with one of the experimental results available. For the current case,
the experimental results considered are those of the specimen loaded with an
imposed strain range of 2.75%.
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a0 2.4000E+08

a1 8.0084E+07

a2 -1.1143E+08

a3 8.7400E+07

a4 -3.0507E+07

a5 3.9073E+06

Table 3.2: Polynomial constants used to describe the hardening region of X52 material

The results used to conduct the material calibration are the equivalent stress-
equivalent strain graphs obtained from the experimental test. The stress is com-
puted as the total force applied to the specimen divided by the area of the cross
section. The strains are computed dividing the measured displacement of the
clipped gauge by the length of the gauge. In the numerical model these two
parameters were calculated following the same procedure, using the red nodes
depicted in figure 3.7.

The initial material parameters used in the calibration process are ones com-
monly found in literature and the polynomial constants correspond to the ones
obtained by curve fitting of the experimental results, ignoring the effect of kin-
ematic hardening. Based on the strain-stress graph obtained with these first val-
ues, the different parameters shown in table 3.1 and table 3.2 have been modified
until obtaining a numerical result that fits the experimental results.

Figure 3.8 shows the stress-strain graph provided by the two experimental samples
tested and by the numerical model, which uses the material parameters obtained
from the calibration process and described in table 3.1 and in table 3.2. As it can
be seen, the agreement in the cyclic behaviour of the numerical and experimental
samples is rather good. This agreement is not achieved in the first loading cycle,
as the model developed is not prepared to reproduce the initial plateau defined
by the material. However, this disagreement is not considered relevant, as the
model has been developed thinking of the cyclic behaviour and the evolution of
plastic response for larger plastic strain values, found beyond this initial plateau.
The fitting of the stress-strain graph allows defining all material parameters ex-
cept the fracture energy of the material and the equivalent plastic strain value
at which softening is expected to start (Ep

2 ). These two parameters have been
defined to match the number of cycles that can be applied to the specimen be-
fore it fails. In the experimental campaign, the first specimen failed after 150
cycles, and the second specimen failed after 103 cycles. With these results, an
initial value of Ep

2 = 13%, as the maximum hardening strain has been defined.



40 Chapter 3. Constitutive modelling of Ultra Low Cycle Fatigue

-5e+008

-4e+008

-3e+008

-2e+008

-1e+008

 0

 1e+008

 2e+008

 3e+008

 4e+008

 5e+008

-0.015 -0.01 -0.005  0  0.005  0.01  0.015

E
qu

iv
al

en
t S

tr
es

s 
[P

a]

Equivalent Strain

’Experimental 1’
’Experimental 2’

’Numerical’

Figure 3.8: Stress-strain graphs for the SP sample with an applied deformation range of

2.75%

Afterwards, the parameter of the material fracture energy, Gf , is modified until
finding a value that predicts the failure of the numerical test after 128 cycles.
These values are shown in table 3.1 and used in the numerical simulations. Ma-
terial failure is found when some gauss points reach a plastic damage value close
to one. At this stage the numerical analysis cannot reach convergence and the
specimen can be considered to be completely broken. In current simulation, the
convergence is lost for a κp value close to 0.9, as it is shown in figure 3.9, where the
value of plastic damage is represented in the last tensile and compressive stages.
The mechanical performance of the numerical specimen along the simulation is
shown in figure 3.10, where the stress-strain loops for different cycles are repres-
ented. This picture shows that the effect of material softening in the specimen
consists of a reduction of the equivalent stress obtained as the number of cycles
applied to the specimen increase. The figure shows that softening has already
started in cycle 60, although the difference between the first loop and loop 60 is
very small. In further cycles the effect of softening becomes more visible, until
material failure in cycle 128, where the reduction of equivalent stress is close to a
20%. Figure 3.10 also shows that the strain amplitude increases with the number
of cycles applied to the specimen. This increase is obtained because equivalent
strain is calculated as the relative displacement of two given nodes (red dots in
figure 3.7), divided by the original length between both nodes, and does not take
into account that it is modified due to the plastic deformations existing in the
whole specimen.
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Figure 3.9: Values of κp for the SP sample with an applied deformation range of 2.75%,

when applying the maximum tensile and compression strain before ULCF failure. De-

formation is magnified by 20.
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Figure 3.10: Evolution of the stress strain graph for different cycles of the SP numerical

analysis
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The results shown for the calibration test prove that the constitutive law proposed
can be adjusted to any given stress-strain law by adjusting properly the material
parameters. The calibration model has also been used to show the numerical and
mechanical performance of the formulation developed. The prediction capacity of
the model will be shown in further simulations, in which the material parameters
are fixed and are used to analyze different specimens and load cases.

3.3.4.4 Validation of the developed theory

After having calibrated the material parameters, the rest of experimental tests
available have been simulated in order to compare the ULCF failure prediction
made by the numerical model with the results obtained from the experimental
campaign. The constitutive model proposed in this work will succeed if it is
capable of representing accurately the equivalent stress-strain graphs for the dif-
ferent deformation ranges tested experimentally and, even more important, if it
is capable of predicting the number of cycles that can be applied to the specimen
before its failure.

Figure 3.11 shows the stress-strain graph corresponding to the experimental and
numerical sample with an applied equivalent strain of 4%. In order to achieve this
strain value, and to avoid the buckling of the specimen, the experimental test is
conducted only on the positive strain region and with an antibuckling device. As
can be seen, the experimental and the numerical results are in good agreement of
the cyclic region of the curve. So, with this example it is proved that the model
is capable of reproducing large strain values and non-symmetric cyclic patterns.

Finally, figure 3.12 compares the stress-strain experimental-numerical results ob-
tained for one of the OH samples. The stress value for the OH samples is com-
puted with the same procedure used for the SP samples, dividing the total force
applied by the area of the cross section where the notch is found; and the strain
value is obtained dividing with the gauge length described in section 3.3.4.1.

In this case, the numerical result prediction falls a bit shorter in terms of equival-
ent stress when compared to the experimental test. However, a closer look to the
experimental curve shows that in the first loading branch the experimental and
numerical tests match perfectly, and it is in further cycles that the experimental
test provides larger equivalent stress values. This difference between cycles in
the experimental test may be due to some sort of hardening around the notch,
which cannot be captured by the proposed model. Despite this difference, results
are considered similar enough to validate the material parameters defined in the
numerical model calibration.

Once having proved that the developed formulation is capable of reproducing
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Figure 3.11: Stress-strain graphs for the SP sample with an applied deformation range

of 4.00%
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Figure 3.13: ULCF failure prediction for SP samples

quite accurately the mechanical response obtained with the experimental samples,
the following step is to verify if the formulation is capable of predicting the fail-
ure of the specimens due to ULCF. This validation is performed counting the
number of cycles that can be applied to the numerical model before its failure.
The numerical model is considered to have failed when the convergence of the
analysis is lost. This occurs when some gauss points reach a κp value close to
1,0. The number of cycles applied to the numerical model are compared with the
cycles obtained in the experimental campaign.

Figure 3.13 shows the results obtained for the SP samples. Results with reversion
strain factor of –1 and of 0 are plotted together because the reversion factor does
not play a significant role in the material response to ULCF. This figure shows
that the number of cycles to failure predicted by the numerical simulation are
in very good agreement with the number of cycles obtained in the experimental
campaign. The only value that is not contained between the experimental results
is the one corresponding to an applied strain range of 3.5%. However, the value
provided by the numerical simulation looks more coherent than the one obtained
with the experimental test, as the number of cycles obtained in the experimental
test is larger than the one obtained for an applied strain range of 2.75%.

The results obtained for the OH samples are shown in figure 3.14. For these
samples the experimental test was conducted in just one specimen for each strain
value, therefore there is no possibility to know the scatter expected in the ex-
perimental tests. However, the number of cycles predicted by the formulation
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Figure 3.14: ULCF failure prediction for OH samples

is, for all strains, in the same order of magnitude than the experimental results
obtained. Therefore, it can be concluded that the formulation is, again, capable
of predicting accurately the ULCF failure of the OH specimens.

It is important to remark that the material properties used for all numerical
simulations are exactly the same. Therefore, the variation in the prediction of
the number of cycles that can be applied to any of the specimens considered is
the result of the energy dissipated in each case. The agreement obtained in all
cases, independently of the reversion factor or the stress concentrations due to the
existing hole (OH sample) allows considering the approach used to characterize
ULCF failure an excellent option. Moreover the formulation allows conducting
simulations in which the cycles can be non-regular, with varying amplitude and
frequency, in which there can be sustained monotonic loads between cycles or,
in general, in which the load applied is not a regular one. This capability is not
offered by any other formulation available.
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Figure 3.15: Evolution of the equivalent plastic stress

3.4 Extension of the new isotropic hardening law

for large problems

3.4.1 Hardening Function and Hardening Internal Variable

The constitutive law presented in section 3.3 has been modified in order to en-
sure faster convergence in the numerical model and therefore make feasible the
application of the model on large problems.

The equivalent stress state shown in figure 3.15 is different from the one presented
in section 3.3 in the sense that the region obtained thru curve fitting is divided
into two: a smaller region that is still dependent on curve fitting of experimental
points and a linear region, with slope and extension defined by user. That helps
ensure a fast integration of the stresses in the constitutive model by converging
to the same numerical tolerance in less iterations. The first region is, therefore,
defined by curve fitting from a given set of equivalent stress-equivalent strain
points. The curve used to fit the points is a polynomial of any user given order,
defined using the least squares method. The data given to define this region is
expected to provide an increasing function, in order to obtain a good performance
of the formulation when performing cyclic analysis.

The second region, as mentioned above, is defined as a linear curve. This region
is incorporated to facilitate the convergence of the problem. If region 1 and 2
were to be simulated with just one polynomial, the difference in slope between
the beginning of the curve and the end of it would make it very difficult to ensure
that the slope of the polynomial is always positive so that the solution does not
converge to a local minimum. Generally speaking, in the case of ULCF and LCF
nearly 80% or more of the internal energy of the material is spent between regions
1 and 2.
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Figure 3.16: Representation of the volumetric fracture energy of a metallic material

The third region is defined with the same exponential function to simulate soften-
ing as in section 3.3. The function starts with a null slope that becomes negative
as the equivalent plastic strains increase. The exact geometry of this last region
depends on the fracture energy of the material (figure 3.16).

3.4.2 Expressions of the hardening function

In this section, the exact numerical expressions used to define the new hardening
law are discussed. This law is an evolved version of the one presented in section
3.3, as said before. The region described by curve fitting in the above reference
has been divided into two different regions (Region 1 and Region 2 in figure 3.15).
This has been done in order to optimize the constitutive law for converging to the
same tolerance in fewer iterations and making feasible the large scale simulations
presented in sections 3.5 and 3.6 of this chapter. The length of the curve fitting
region has been limited to a user defined value and past this value of the plastic
strain a linear curve has been defined with a user defined slope.

Region 1: Curve fitting with polynomial

The first region is characterized with a polynomial defined by curved fitting from
a given experimental data. The exact mathematical definition for this region can
be found in 3.3.3 .

Expression 3.24 is valid for values of κp that are comprehended between 0 and
κp1 = gt1/gt.

Region 2: Linear curve

When the equivalent plastic strain, as calculated with equation 3.23, equals the
value of equivalent plastic strain at which region 2 is to begin,Ep

eq = Ep
1 , where
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Ep
1 is user defined, the threshold function is obtained taking into account the

following considerations:

1. The initial equivalent stress value is defined by the equivalent stress reached
at the end of the first region (Seq

1 (Ep
1 ) = a0 +

∑N
i=1 ai · (E

p
1 )

i
).

2. The slope of the function is user defined: u =
Seq
2 −Seq

1

Ep
2−Ep

1
.

3. The volumetric fracture energy dissipated in this region is gt2 = (Seq
1 +

Seq
2 ) · (Ep

2 − Ep
1 ) · 0.5.

With these considerations in mind, the resulting equation that relates the equi-
valent stress with the plastic strain is:

Seq(Ep) = Seq
1 + u · (Ep − Ep

1 ) (3.28)

The expression of the equivalent stress as a function of the hardening variable is
obtained combining equation 3.28 and 3.18:

Seq(κp) =

√
(Seq

1 )
2
+ 2 · u · gt · (κp − κp1) (3.29)

Expression 3.29 is valid for values of κp that are comprehended between κp1 =
gt1/gt and κ

p
2 = (gt1 + gt2)/gt. The value of the upper limit of the internal vari-

able shows that it is necessary define a value for the volumetric fracture energy
of the material larger than gt1 + gt2. If the value defined is lower, the material
will not be able to reach its ultimate stress as this will imply having a fracture
internal variable larger than 1.0.

Region 3: Exponential softening

When the plastic internal variable reaches the volumetric plastic energy available
in the first two regions: κp = κp2. At this point, isotropic hardening is defined by
region three. Its function is obtained with the following parameters:

1. The initial equivalent stress value is defined by the equivalent stress reached
at the end of the second region (Seq

2 ).

2. The initial slope of the function is zero.

3. The volumetric fracture energy dissipated in this region is the remaining
energy in the material: gt3 = gt − gt1 − gt2
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With these considerations in mind, the governing equations are the same as
in 3.3. The constitutive model described in Sections 3.2, 3.3 and 3.4 has been
implemented in the in-house code PLCd [111]. The code was programmed to
allow OpenMP parallelization, which greatly reduced the computational cost of
the large scale FE simulations, and makes use of the load advancing strategy
proposed in [10] and [12] and shown later on in this thesis in chapter 4.

3.4.3 Material calibration

The material characteristics for the numerical simulations will be obtained by
conducting a calibration analysis on small scale specimens. The hardening -
softening law presented in section 3.4 requires of the following material para-
meters:

1. εp – σp points obtained from uniaxial monotonic tensile tests necessary
for curve fitting. They are important for a correct representation of the
tendency of the monotonic curve.

2. Kinematic coefficients in accordance with the type of hardening chosen.
They are important for the exact adjustment of the monotonic curve and
for an accurate description of the hysteresis loop.

3. Equivalent plastic deformation, Ep
1 , at which the linear region starts. This

parameter is important both in the monotonic curve and in the overall
cyclic behaviour as it ensures a stable behaviour throughout the fatigue
life.

4. Equivalent plastic deformation, Ep
2 , at which softening starts.

5. Fracture energy Gf required in the monotonic curve for adjusting the slope
of the softening behaviour and in the cyclic behaviour for correctly calib-
rating the fatigue life of the specimen. When the entire energy is spent the
specimen is considered completely fractured.

For the industrial applications shown in this work two different materials have
been calibrated, X52 and X60, for the second law, presented in 3.4. The step by
step calibration process is presented for the X60 material. Another calibration
process has been shown in section 3.3 for the X52 steel using the first version of
the constitutive law.

In order to exemplify the calibration process, a smooth X60 specimen was chosen
from the experimental program ran by Pereira et al. [104]. This experimental
program includes monotonic tests and cyclic tests in the LCF and in the ULCF
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Figure 3.17: Geometry of the specimen used for calibration

regime. LCF tests have been conducted both with a reversion factor of -1 and
0, while all the ULCF tests have a reversion factor equal to 0. The geometric
characteristics of the specimen are shown in figure 3.17. This material will be
posteriorly used for the large scale simulation of the bent pipe under cyclic loading
shown in section 3.5.

The specimen was meshed into 3456 quadratic hexahedral elements with 20 nodes
each and 27 integration points, adding to a total of 17165 mesh nodes.

The procedure for the correct calibration of the material starts from the determ-
ination of the elastic modulus and of the elastic limit. These two parameters
are determined statistically from the force – displacement recordings of both
the monotonic and the cyclic tests by monitoring where the linear relation is lost
between them. For this simulation an elastic modulus of E = 1.95×1011N/m2and
an elastic limit of σy = 3.80× 108N/m2were chosen.

The εp – σset of points chosen for this simulation are presented in figure 3.18 as
compared to the stress-strain curve of the small specimen chosen. At this point
in the calibration procedure the series of chosen points have to follow the general
tendency of the monotonic curve without reaching the same level of stress. The
density of the points is recommended to be constant and quite high so that the
polynomial interpolation can be effective. For this simulation the points were
interpolated by a 5th order polynomial function.

The Armstrong- Frederick kinematic hardening function was used for this sim-
ulation. The kinematic coefficients chosen were k1 = 6 × 1010 and k2 = 400. In
figure 3.19 the effect of the kinematic hardening on the monotonic curve can be
observed. In order to obtain this behaviour a value of 0.1 was used for the Ep

1

parameter.

It can be seen that taking into account the kinematic hardening causes the result-
ing stress-strain curve to elevate until it reaches the experimental monotonic one.
Also, the exact shape of the transition zone from linear to nonlinear is determined
by the kinematic coefficients.
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Figure 3.18: Comparison between the stress strain curve for the uniaxial monotonic

tensile test and the points chosen for the numerical model
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Figure 3.19: Monotonic stress- strain curve. Numerical vs. experimental.
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Figure 3.20: Stress-strain hysteresis loop for ∆ε=8%. Numerical vs. experimental.
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Figure 3.21: Stress-strain hysteresis loop for ∆ε=5%. Numerical vs. experimental.
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Figure 3.22: Stress-strain hysteresis loop for ∆ε=2%. Numerical vs. experimental.

In figure 3.21 the numerical hysteresis loop is compared to the experimental one
for the ∆ε=5% case. In choosing the kinematic coefficients a compromise must
be made between the accuracy of the monotonic behaviour and of the cyclical
one.

Once the kinematic coefficients have been established the next step in the calib-
ration of the material is establishing the equivalent plastic deformation at which
softening begins, Ep

2 , and the facture energy.

An experimental result has been chosen for the calibration, the ∆ε=5% case,
that had an experimental fatigue life of 100 cycles. With a value of 13 for the
Ep

2 and a fracture energy of 2.7 x 106Nm/m2 a total fatigue life of 100.35 cycles
has been obtained from the numerical simulation. With these values, softening
started in the 86th cycle, close to the end of the experimental life and a very low
amount of energy was left for the softening branch so that it could be spent in a
reduced number of cycles.

In figure 3.23 the distribution of the plastic internal variable κp can be seen on the
deformed shape of the specimen in the last step of the analysis for the calibration
case. The null value for the plastic internal variable represents an elastic state in
the material, while κp = 1 means the entire fracture energy of the material has
been dissipated at that material point. It can be seen that the lateral necking is
in accordance to standard metal fracture under uniaxial cyclic loading.

After the adjustment of the ∆ε=5% case, simulations were ran with the exact
same material parameters and with strain amplitudes of 8%(figure 3.20) and 2%
(figure 3.22). It can be seen that the considered material parameters offer a good



54 Chapter 3. Constitutive modelling of Ultra Low Cycle Fatigue

Figure 3.23: Distribution of the normalized plastic dissipation at total fracture

aproximation of the hysteresis loop for these strain amplitudes also. The results
in terms of life prediction can be seen in figure 3.24.
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strain amplitudes when calibrating with ∆ε=5%

3.5 Large scale validation on a bent pipe under

variable cyclic loading

This section presents the results of finite element simulations made on a bent
pipe subjected to an in-plane variable cyclic displacement combined with in-
ternal pressure. Special emphasis is put on the capacity of the model to illustrate
different failure modes depending on the internal pressure applied on the pipe.
The results of the numerical analyses will be compared to experimental ones.

3.5.1 Geometry of the model

Following the validation of the constitutive model made on small scale specimens,
the model is to be applied to large scale numerical simulations of a bent pipe.
The geometry of the model, boundary conditions and the sequence of loading are
in accordance to the experiment made by Schaffrath et al. [116].

The specimens consist of a bended middle section (elbow pipe) and a straight
pipe section at each end of the elbow. The fillet radius of the elbow pipe is three
times the pipe diameter (R=3 x D). For the length of both straight pipe sections
a value of five times the diameter (L=5 x D) was used, whereby the influence of
the load introduction can be neglected.
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Figure 3.25: Overview of the general dimensions of the specimen

Figure 3.26: Specimen SP1-SP2 (X60, 90◦)

Figure 3.25 shows the general dimensions of the specimen as a function of the
diameter of the pipe, while in figure 3.26 the geometry of the specimen after
manufacturing can be observed. For the numerical simulation, a specimen made
of X60 steel has been chosen from the experimental program, with a diameter of
406.4 mm and a wall thickness of 9.5 mm. The pipe has an elbow angle of 90◦.

Figure 3.27 shows the model used for the numerical simulation as generated with
the pre-postprocessor GiD. Following, in figure 3.28 a view of the mesh is shown.
For this simulation quadratic hexahedral elements were used, each with 20 nodes
and 27 integration points. The mesh consisted of 42853 elements and 213415
nodes. Three elements were considered in the pipe thickness.
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Figure 3.27: Model geometry

Figure 3.28: Mesh of hexahedral quadratic elements
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Step Amplitude Number of cycles

1 0.25 ey 1

2 0.50 ey 1

3 0.75 ey 1

4 1.00 ey 1

5 1.50 ey 3

6 2.00 ey 3

7 2.50 ey 3

8 3.00 ey 3

9 3.50 ey 3

10 4.00 ey 3

11 4.40 ey 27

Table 3.3: Loading sequence for SP2 specimen

3.5.2 Loading history

The loading history is based on the actual load history of the experimental test
done by Schaffrath et al. [116]. The loading scheme was decided by the authors in
accordance with the ECCS procedure ECCS-Nr. 45-1986 Recommended Testing
Procedure for Assessing the Behavior of Structural Steel Elements under Cyclic
Loads [1]. For practical reasons it was decided to neglect the mostly small dif-
ference between the compressive and tensile yield strain by choosing an average
value ey = (e+y + e−y )/2 as the reference amplitude. In table 3.3 the experimental
loading sequence is described as a function of ey.The value adopted for this para-
meter was set by [116] at ±82mm.

The entire loading sequence is comprised of 49 cycles with increasing amplitude,
44 of which have amplitudes in the plastic range. The reversion factor of the
applied displacement is -1 (figure 3.29). The pipe is also submitted to internal
pressure. First, the pipe is loaded until a level of internal pressure equal to 20
bars. Afterwards, it is submitted to the varying cyclic displacement presented
in table 3.3. The experimental test has shown that the internal pressure also
oscillates when the cyclic displacement is applied.
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Figure 3.29: Evolution of the applied displacement in the experiment

The boundary conditions of the model were chosen in accordance with the setting
of the experiment. One end of the model has its displacement blocked in the x,
y and z direction while in the other end the cyclic displacement is applied in the
z in-plane direction, as shown in figure 3.30.

In the numerical simulation the loads have been applied in two stages. First,
the internal pressure was applied and, in this stage, one end of the pipe was
clamped and on the other end the pipe was only allowed in-plane gliding. The
variable displacement was applied in the second stage on the deformed geometry
obtained from applying the internal pressure. The movement was restrained in
the two directions perpendicular to the in-plane one.

3.5.3 Material characteristics

The exact calibration procedure for the X60 material can be seen in Section 3.4.3.
In table 3.4 and table 3.5 a summary of the material properties as resulting from
the calibration can be seen. A polynomial of the 5th degree was chosen for the
curve fitting zone of the hardening function.

3.5.4 Results and discussion

In figure 3.31 the comparison between the experimental force- displacement curve
and the numerical one can be seen. The numerical curve is in very good agreement
with the experimental one taking into consideration that the material calibration
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Figure 3.30: Boundary condition for the large scale model

Coefficient no. 1 a0 380000000,00

Coefficient no. 2 a1 326947332,25

Coefficient no. 3 a2 -861244568,93

Coefficient no. 4 a3 1103673406,83

Coefficient no. 5 a4 -657861660,66

Coefficient no. 6 a5 147925577,48

Table 3.4: Polynomial coefficients for the X60 material as obtained from curve fitting
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Young Modulus 1.95 105 MPa

Poisson Modulus 0.30

Elastic Stress (σeq
Y ) 380 MPa

Plastic Strain Limit for region 1(Ep
1 ) 10 %

Plastic Strain Softening (Ep
2 ) 1300 %

c1 kinematic hardening 6.0 104 MPa

d1 kinematic hardening 400

Fracture Energy 2.7 MN * m/m2

Table 3.5: Material parameters for the numerical model for an X60 steel

was done on small scale specimens with different experimental results.

It can be seen how in compression the constitutive equation tends to underestim-
ate the maximum force level, while in traction the opposite tendency is present.
Furthermore, this tendency is more obvious as the displacement increases. This is
due to the existence of oscillations of the internal pressure applied in the experi-
ment, caused by applying the cyclic displacement. This oscillation of the internal
pressure has not been taken into account in the numerical simulation.

Regarding the fatigue life, the simulation lasted a total of 41.75 plastic cycles as
compared to the experimental life of 44 complete cycles. This result also shows
a good agreement between the experiment and the numerical simulation.

Figure 3.32 illustrates the deformed shape of the geometry in the last step of
the analysis and presents the distribution of the plastic internal variable of the
model. The deformed shape is represented with a scale factor of 2 in order to
better reflect the general tendency. Only the central zone of the elbow is shown,
as this is the zone where nonlinear effects appear. It can be seen that the failure
mode resulting from the numerical simulation is by cross-sectional ovalization
with a crack opening in the longitudinal direction of the elbow, at its flank.

In figure 3.33 the total strain distribution can be seen in the last step of the
analysis in the three model axes. The distribution is also plotted on the deformed
shape of the model, where the cross-sectional ovalization is clearly visible.

It can be seen that strain accumulation occurs in all three directions in the critical
area where the normalized dissipation parameter, κp, accumulates.
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Figure 3.31: Force-displacement curve. Experimental vs. numerical

Figure 3.32: Distribution of the plastic internal variable of the model on the deformed

shape (x2)
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Figure 3.33: Distribution of the total strain in the three model axes on the deformed

shape of the model (x2)

The comparison of the failure mode obtained with the numerical simulation with
the failure mode obtained in the experimental test (figure 3.34) shows that the
model has been able to capture the number of cycles to failure but has not been
able to capture the failure mode shown in the experiment.

Under extreme loading conditions, such as the high repeated incursions in the
nonlinear zone that the imposed displacement in this case causes, elbows exhibit
two different failure modes. These are either significant cross-sectional ovalization
or local buckling, as reported by the experimental work described in Sobel and
Newman [122], [123], Dhalla [31] and Greenstreet [38], Tan et al. [128], Shalaby
and Younan [119] and Suzuki and Nasu [127] for monotonic bending moments
and Yahiaoui et al. [139], Slagis [121]and Fujiwaka et al. [35] for cyclic loading,
and from the work of Karamanos et al. [54], [55], Pappa et al. [102], Varelis et
al. [132], [131].

An important conclusion can be drawn from the work above mentioned. The first
failure mode can be generally found when the elbow internal pressure is relatively
low compared to the yield pressure, as is the case in the numerical simulation
presented above.

The second failure mode, occurring due to local buckling is habitual in the cases
where internal pressure is significantly higher. This is the failure mode yielded
by the experiment made by Schaffrath et al. [116] as it can be seen in figure 3.34.

For the case considered, the internal pressure applied to the elbow is 20 bars,
which leads to a stress value, according to Barlow’s formula: σ = pD/2t =
42.77Mpa. This is less than 10% of the yield strength for an X60 steel and,
consequently, the pressure applied is less than 10% of the internal yield pressure.
This puts us in the first yield mode, according to previous results found in liter-
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Figure 3.34: Experimental failure (Schaffrath et al. [116])

ature. The failure due to local buckling obtained for a low value of the internal
pressure by Schaffrath et al. [116] can, however, be a consequence of residual
stresses generated in the bending process of the pipe combined with local defects
that favored the formation of the buckle in the area shown by the experiment
and with the effects generated by the oscillation of the internal pressure.

Summarizing, the number of cycles the simulation lasted and the force displace-
ment curve are in good accordance between the numerical model and the exper-
iment and the numerical failure mode is different from the experimental one but
justifiable given the low internal pressure imposed in the model.

3.5.5 Considerations regarding the failure mode

In order to assess the capability of the constitutive model to represent both failure
modes, a different numerical simulation was done where the internal pressure
applied was increased to 220 bars, in order to approximately reach the yield
stress. Afterwards, the elbow was subjected to a monotonically increasing in-
plane closing displacement.

The model used for this simulation is shown in figure 3.35. Given the fact that
this problem is highly nonlinear and the failure mode expected is achieved thru
a local instability (local buckle), in order to achieve convergence when applying
the displacement, an initial buckle was imposed on the model. This ensures that,
when the internal pressure is sufficiently high, the plastic strain accumulation is
directed toward this zone thus enabling model convergence.

The final applied displacement up until which the problem converged was 2.69m,
nearly 65% of the total in-plane geometry opening. In figure 3.36 the distribution
of the plastic internal variable is shown in the last converged analysis step on
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Figure 3.35: Geometry of the model with the initially imposed buckle

Figure 3.36: Distribution of the plastic internal variable of the model on the deformed

shape
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Figure 3.37: Evolution of the maximum dissipation in the two areas of interest

the deformed shape of the model with a scale factor of 1, and, as expected, it
exhibits a concentration in the imposed buckle zone.

The purpose of this second simulation was to assess the capability of the nu-
merical formulation to illustrate both failure modes in accordance to the level of
internal pressure applied.

From the above numerical simulations it is clear that the failure mode obtained
with the formulation is highly dependent on the level of internal pressure ap-
plied. Taking this into account, a series of six monotonic simulations have been
run varying the internal pressure applied initially and applying afterward an in-
plane closing displacement. The maximum dissipation zone was assessed when
the applied displacement reached the maximum one imposed in the cyclic large
scale initial experiment (see table 3.3).

In figure 3.37 the evolution of the maximum dissipation in the geometry is presen-
ted in the two areas that are specific to each failure mode: elbow flanks for
the ovalization mode (zone A in table 3.6 and figure 3.37) and internal elbow
curvature for the local buckling (zone B in table 3.6 and figure 3.37).

From both table 3.6 and figure 3.37 it can be seen that the switch from the
ovalization failure mode to the local buckling occurs between 30 and 35% of
the yield internal pressure, since for the 30% case the maximum dissipation is
recorded in the elbow flanks and for the 35% case it is present in the buckled
area.
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Table 3.6: Distribution of the maximum dissipation normalized to the fracture energy

on the deformed shape of the model (x5)
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3.6 Large diameter straight pipe loaded mono-

tonically

In order to analyze the capabilities of the constitutive model presented in previous
sections, large scale numerical simulations of a straight pipe OD 168.3 x 4.78mm,
X52 grade, will be conducted. The geometry of the model, boundary conditions
and sequence of loading are established by the experiment made by Coppola et
al. [30]. The specimen drawing can be seen in figure 3.38.

3.6.1 Geometry of the model

The specimen consists of a straight pipe, with three differentiated sections. The
central one is mechanized with a reduced thickness, as seen in figure 3.39 and
table 3.7.

In the numerical model the variation in thickness throughout the central zone
has been accounted for, as well as the thickness variation throughout the same
cross-section. A view of the model geometry in the pre-postprocessor GiD can be
seen in figure 3.40. Following, in figure 3.41 a view of the mesh is shown. For this
simulation quadratic hexahedral elements were used, each with 20 nodes and 27
integration points. The mesh consisted of 8162 elements and 45865 nodes.

Regarding boundary conditions, shown in figure 3.42, one capped end of the pipe
has its displacement restricted in all directions, while on the other capped end
either force or displacement is applied as required by the loading history. When
applying internal pressure, one end remains fixed while on the other one the
displacement in the longitudinal axis of the pipe is allowed (z-z axis in figure
3.41) and restrained in the other two directions. The material of the mechanized
part is an X52 steel. The outer parts have an elastic material, with the same
Young modulus as X52. The pipe caps have been defined as a rigid material in
agreement with the setup of the experiment (see figure 3.38).

3.6.2 Loading history

For this simulation two load combinations were made. In the first case (SPEC1)
a traction force was applied on one of the caps in the longitudinal pipe axis until
a level of 400KN. Afterwards, an internal pressure was applied and gradually
increased up to burst. Pipe failure occurred at 270 bars with an associated total
axial load of 940KN.
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Figure 3.38: Specimen drawing for X52 full scale testing

Figure 3.39: Sections of interest in the mechanization of the straight pipe
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Wall Thickness

[mm]
Outer Diameter [mm]

OD 0◦ 164,2 163,88 164,04

Ref. sec 1:

A

sec 2:

B

sec 3:

C

OD 45◦ 168,3 168,5 168,42

0◦ 4,24 4,18 4,36 OD 90◦ 170,57 170,65 170,34

45◦ 3,85 4,19 3,99 OD 135◦ 166,89 166,64 166,04

90◦ 4,01 3,91 3,77

135◦ 4,24 4,05 4,10 WT Avg

[mm]

4,14 4,14 4,08

180◦ 4,16 4,17 4,16 WT Min

[mm]

3,85 3,91 3,77

225◦ 4,15 4,19 4,13 OD Avg

[mm]

167,49 167,42 167,21

270◦ 4,02 4,06 4,00 ID Avg

[mm]

159,22 159,14 159,04

315◦ 4,41 4,37 4,16 Aw [mm2,

WT Avg,

OD Avg]

2122,06 2123,62 2092,82

Ki (WT

Avg, OD

Avg)

19,765 19,732 19,985

Table 3.7: Wall thickness and outer diameter at different points of each section of the

pipe
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Figure 3.40: Model geometry in GiD

Figure 3.41: Mesh of hexahedral quadratic elements

Figure 3.42: Boundary conditions for the straight pipe
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Figure 3.43: Loading scenarios for the straight pipe

In the second case, the test has been done with internal pressure followed by
tension. The internal pressure in the first step is 200 bars. Afterwards, the load
was increased up to failure which occurred at 884KN mechanical load (1284KN
total axial load). Pressure in the second step was maintained constant at 200
bars. In figure 3.43 the two loading scenarios are presented.

3.6.3 Material characteristics

The material parameters for the X52 steel have been obtained by undergoing the
calibration process described in section 3.4.3 of this document. A polynomial of
the 5th degree was chosen for the curve fitting zone of the hardening function.
The polynomial coefficients as given by the least squares method are shown in
table 3.8.

The remaining material parameters are shown in table 3.9.These material para-
meters were obtained by conducting a calibration process on small scale smooth
sample specimens. The geometry of the samples and some calibration results for
the cyclic case are presented in section 3.3.

In figure 3.44, the monotonic stress strain curve can be seen as obtained with
the material parameters presented before. The comparison with the experimental
monotonic curves for the X52 steel as obtained from Pereira et al. [104] can also
be seen.

Figure 3.45 exhibits the comparison between the numerical hysteresis loop shape
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Coefficient no. 1 a0 240000000,00

Coefficient no. 2 a1 596993435,99

Coefficient no. 3 a2 -1019807849,94

Coefficient no. 4 a3 776714259,60

Coefficient no. 5 a4 -265797084,38

Coefficient no. 6 a5 33562252,72

Table 3.8: Polynomial coefficients for the X52 material as obtained from curve fitting

Young Modulus 1.8 105 MPa

Poisson Modulus 0.30

Elastic Stress (σeq
Y ) 240 MPa

Plastic Strain Limit for region

1(Ep
1 )

15 %

Plastic Strain Softening (Ep
2 ) 50 %

c1 kinematic hardening 6.0 104 MPa

d1 kinematic hardening 280

Fracture Energy 0.4 MN * m/m2

Table 3.9: Material parameters for the numerical model for an X52 steel
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Figure 3.44: Stress-strain curves for the monotonic case
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Figure 3.45: Stress-strain hysteresis loop for ∆ε=4%. Numerical vs. experimental.

and the experimental one. Although the straight pipe is loaded monotonically,
when conducting the calibration analysis for the material, the shape of the hyster-
esis was one of the factors taken into account as the model is prepared to conduct
monotonic and cyclic tests. The calibration process for a monotonic analysis fol-
lows the same guidelines as that of a cyclic analysis. The main difference resides
in the plastic strain chosen as threshold for the softening behaviour and in the
fracture energy assigned to the material.

3.6.4 Results and discussion

Case no. 1 - Tension followed by pressure
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Figure 3.46: Comparison between the numerical and experimental results for the SPEC

1 case

In figure 3.46, the comparison between the experimental and the numerical force-
pressure measurements can be seen. The total reaction recorded by the numerical
simulation reached a level of 948KN in the last converged increment, correspond-
ing to an applied internal pressure of 278.1bars.

For this increment, the deformed shape of the specimen is shown in figure 3.47,
where the distribution of the hardening internal variable κp can also be seen.
This variable is of relevance in showing the level of dissipated energy at material
point level and, in this sense, gives a measure of the level of degradation suffered.
Consequently, for κp = 0 the material is in an elastic state, while for κp = 1 the
material has reached total failure at that material point.

From the deformed shape it can be seen that the pipe failure is oriented following
the direction of least resistance represented by the minimum thickness area. This
is in agreement with the experimental localization of the failure as can be seen
in figure 3.48.

Also, there is good agreement of the failure mode between the experiment and
the numerical simulation with a final burst opening oriented in the longitudinal
direction. In the numerical model the burst area is represented by the localized
plastic strain accumulation reflected in the distribution of the normalized dissip-
ation parameter.

Figure 3.49 shows the evolution of the hardening internal variable κp at the
most damaged integration point in the material. Its exact location is indicated in
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Figure 3.47: View of the deformed shape at the end of the analysis with an indication

of the most damaged material point in the geometry

Figure 3.48: View of the pipe burst as recorded by the experiment for the SPEC1 test
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Figure 3.49: Evolution of the κp variable when applying internal pressure in constant

steps of 2.7 bars

figure 3.47. As it can be seen from figure 3.49, the simulation converged up until a
maximum value of the κp internal variable of 0.7. Given that the internal pressure
has been applied in constant increments of 2.7 bars per analysis step, it can be
seen that the evolution of the κp parameter exhibits an exponential curve. Taking
into account this tendency and extrapolating on the last converged increment that
had a value of 0.7, loss of convergence seems to have occurred when the plastic
internal variable reached a value very close to 1, corresponding to an open crack
generated at the material points where the entire fracture energy of the material
has been spent. However, this value is not visible in figure 3.49 since convergence
was not reached for this increment.

Case no. 2 – Internal pressure followed by tension

In figure 3.50 the comparison between the experimental and the numerical force-
pressure measurements can be seen for this case.

The total reaction recorded by the numerical simulation reached a level of 1167KN
in the last converged step, corresponding to a total applied displacement of
1.375m. The experimental failure occurred at a total axial load level of 1284kN.

As specified before, during the applied displacement stage the internal pressure
was maintained constant at a level of 200 bars. For the last step of the simula-
tion the deformed shape is shown in figure 3.51, where the distribution of the
hardening internal variable κp can also be seen.

The localization of the failure zone corresponds to the behaviour shown in the
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2 case

Figure 3.51: View of the deformed shape for the SPEC 2 case
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Figure 3.52: View of the pipe burst as recorded by the experiment for the SPEC2 test

experiment, presented in figure 3.52. When considering the pipe cross section
where the maximum dissipation is present, the most stressed area is directed
towards the smallest thickness in that particular circumference, corresponding
with the data recorded by the experimental campaign and taking into account
the orientation of the numerical model with respect to that of the experimental
setting. The failure mode is a tensile one, in agreement to the applied sequence
of loading.

3.7 Advantages of the approach proposed

Previous results have shown that the proposed constitutive model is capable
of predicting material failure after applying several cycles to the material.The
formulation is also capable of predicting the structural failure under monotonic
loads. However, this prediction capability do not present a major advantage com-
pared to other approaches such as the Coffin-Manson rule, or any other analytical
expression capable of defining the maximum number of cycles that can be applied
for a given plastic strain.

The main advantage of the proposed approach is that the prediction of ULCF
failure does not depend on the applied plastic strain, but on the energy dissipated
during the cyclic process. Therefore, it is possible to vary the plastic strain in the
cycles applied to the structure and the constitutive model will be still capable of
predicting the material failure.

This is proved in the following example, where an irregular load, in frequency
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Figure 3.53: Seismic-type load applied

and amplitude, is applied to the SP sample defined in section 3.3 and used to
validate the formulation. The load defined is depicted in figure 3.53.

This load is applied as a fixed displacement following the same procedure used
for the SP sample. The stress strain graph obtained from the numerical model
is plotted in figure 3.54. As it can be seen, the applied load produces several
hysteresis loops, each one with a different plastic strain.

The model is capable of capturing the energy dissipated in each one of these
loops and, therefore, to evaluate the energy available in the material after having
applied the load, which is equivalent to the residual strength of the material. It
is also possible to repeat several times the irregular load, as shown in figure 3.53,
to study the number of repetitions that are required to reach material failure.
Figure 3.56 shows the stress-strain response of the material after 10 cycles (figure
3.55). At this point there are some points in the model that have lost most of
their fracture strength and specimen failure occurs. As occurred with the SP
model, this simulation also shows some lateral displacement on the equivalent
strains due to the plastic strains suffered by the whole specimen.
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Chapter 4

Constitutive modelling of

High Cycle Fatigue

4.1 Introduction

A stepwise load-advancing strategy for cyclic loading will be presented in this
chapter that yields convergence in reasonable computational time for highly non-
linear behaviour occurring past the S-N curve. The algorithm is also effective
when dealing with combinations of cyclical loads. The strategy is coupled to a
continuum damage model for mechanical fatigue analysis. An overview of the
constitutive model is also presented. The capabilities of the proposed procedure
are shown in several numerical examples. The model is validated by comparison
to experimental results.

The basis of the HCF constitutive model used was initially developed by Oller
et al. [98]. The model establishes a relationship between the residual material
strength and the damage threshold evolution, controlled by the material internal
variables and by a new state variable of fatigue that incorporates the influence of
the cyclic load. A brief overview of the constitutive formulation for the HCF case
is provided in order to clarify the material behaviour exhibited in the numerical
examples. Several model assumptions are to be made. Defect concentration on
the microscale occurs during the whole period of cyclic loading. This is reflected
in the model in a continuous reduction of the material strength, occurring even in

83
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the elastic stage. Stiffness degradation occurs only in the post critical stage, once
the S − N curve has been passed and, therefore, only in the final stage before
failure. The damage parameter has a phenomenological significance indicating
the irreversibility of the fatigue process.

Depending on the size of the domain chosen for a fatigue numerical simulation,
computational time for a numerical analysis can vary considerably. Nowadays,
running simulations at macroscale level (mechanical part, structural element)
continues to be a challenge, especially if the high level of structural complexity
attained at the microscale needs to be taken into account to some extent at other
scales. This work offers a stepwise load-advancing strategy that allows a saving
of computational time and can help push the barrier of what if possible in terms
of numerical simulation one step further.

The strategy can be especially effective when dealing with HCF where material
lives are in the range of 106 – 107 cycles. If a single loading cycle is described by
n loading steps and the structure fails at 107 cycles, then the number of loading
steps required to complete a HCF analysis would be in the order of 107 x n.
Furthermore, if the mechanical piece has a complex geometry and a high level
of discretization is required at finite element level, then at each of the 107 x
n load steps a large number of constitutive operations need to be computed for
each integration point. The above serve as a clear example of why load-advancing
strategies are of the utmost importance in HCF simulations.

Furthermore, increasingly more attention has been given to material behaviour
in the very high cycle regime from an experimental point of view. The general
belief that steel experiences no alteration in its properties after reaching its fa-
tigue limit at 107 cycles has been invalidated [15], [16], [75]. In this context, this
work provides a tool for rapid automatized time-advance that allows taking nu-
merical simulations beyond the limit of 107 cycles in reasonable computational
time with the added benefit of being able to predict fatigue failure when dealing
with combinations of different cyclical loads and also of being able to evaluate
the residual strength of the material once a cyclical load has finished.

4.2 HCF damage model

A description of the constitutive model is offered in this section. The fundament-
als of a fatigue continuum damage model are presented with a clear emphasis on
the dependence of the model on the S-N curves. An exhaustive description of the
formulation used can be found in Oller et al. [98], where the complete thermo-
mechanical constitutive model for the prediction of fatigue effects in structures
is formulated. The model is capable of taking into account the effect of the mean
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stress. The treatment of the highly complex processes generated by fatigue is
made from a phenomenological point of view.

4.2.1 Mechanical damage formulation

The free Helmholtz energy is formulated in the reference configuration for elastic
Green strains, Eij = Ee

ij , as [70]:

Ψ = Ψ(Eij , d) = (1− d)
1

2m0
(EijC

0
ijklEkl) (4.1)

where m0 is the material density, Eij = Ee
ij is the total strain tensor, 0 ≤ d ≤ 1

is the internal damage variable taking values between its initial value 0 and its
maximum value 1 and C0

ijkl is the initial constitutive tensor.

Considering the second thermodynamic law (Clausius-Duhem inequality – [73]
[69] [82]), the mechanical dissipation can be obtained as [70]

Ξ = −∂Ψ
∂d

ḋ ≥ 0 (4.2)

The accomplishment of this dissipation condition (Equation 4.2) demands that
the expression of the stress should be defined as (Coleman method; see [82])

Sij = m0 ∂Ψ

∂Eij
= (1− d)C0

ijklEkl (4.3)

Also, from the last expressions, the secant constitutive tensor Cs
ijkl can be ob-

tained as:

Cs
ijkl(d) =

∂Sij

∂Eij
= m0 ∂2Ψ

∂Eij∂Ekl
= (1− d)C0

ijkl (4.4)

where Sij is the stress tensor for a single material point.
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4.2.2 Threshold damage function oriented to fatigue ana-

lysis. Phenomenological approach

The effects caused by applying an increasing number of loading cycles are taken
into account by means of a proposed fred(N,Smax, R) function. This function is
introduced in the above formulation in the expression of the damage threshold
surface, FD(Sij , d), proposed by [82], [120] and [91]. The number of cycles N can
then be incorporated as a new variable. This enables the classical constitutive
damage formulation to account for fatigue phenomena by translating the accumu-
lation of number of cycles into a readjustment of the damage threshold function.

The non-linear behaviour caused by fatigue is introduced in this procedure impli-
citly, by incorporating a fatigue state variable, fred(N,Smax, R), that is irrevers-
ible and depends on the number of cycles, the maximum value of the equivalent
stress in the material, Smax, and on the factor of reversion of the equivalent
stress, R = Smin/Smax. This new variable affects the residual strength of the
material by modifying the damage threshold, FD(Sij , d,N), either on the equi-
valent stress function fD(Sij) (equation 4.5), or on the damage strength threshold
K̄D(Sij , d)(equation 4.6) [98].

FD′
(Sij , d,N) =

fD(Sij)

fred(N,Smax, R)︸ ︷︷ ︸
fD′ (Sij ,N,R)

−K̄D(Sij , d) ≤ 0 (4.5)

FD′′
(Sij , d,N) = fD(Sij)− K̄D(Sij , d) · fred(N,Smax, R)︸ ︷︷ ︸

KD′ (Sij ,d,N)

≤ 0 (4.6)

In the above, fD
′
= fD/fred(N,Smax, R), is the reduced equivalent stress func-

tion in the undamaged space, KD′
(Sij , d,N) is the fatigue damage strength

threshold, and d =
∫ t

0
ḋdt the damage internal variable. In the following, the

form in equation 4.5 has been used for the damage threshold criterion.

The evolution of the damage variable is defined as:

ḋ = µ̇
∂FD

∂fD
(4.7)

being µ the consistency damage factor, which is equivalent to the consistency
plastic factor defined in [70]. Consequently, for the isotropic damage case,
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ḋ =
µ̇

fred
(4.8)

4.2.3 Particularization of the damage threshold function

for exponential softening

The type of softening to be defined in the general damage criterion depends
on the problem to be solved. The scalar function defining the evolution of the
damage threshold must be monotonous and with a value ranging from 0 to 1. In
various publications about the scalar damage problem, the stress behaviour with
softening is represented in a variety of forms. Particularly, in Oliver et al. [91]
the following function is proposed,

G
[
K̄D(d)

]
= 1− K̄Dmax

K̄D(d)
e
A

(
1− K̄D(d)

K̄D max

)
with 0 ≤ K̄Dmax ≤ K̄D(d) (4.9)

This function can also be expressed as,

G
[
fD

′
(S0, N)

]
= 1− fD

′

0 (S0, N)

fD′(S0, N)
e
A

(
1− fD′

(S0,N)

fD′
0 (S0,N)

)
with fD

′

0 (S0, N) = K̄Dmax

(4.10)

where A is a parameter that depends on the fracture energy of the material
and fD

′
(S0, N) = fD(S0)/fred(Smax, N,R). The value of fD

′

0 (S0, N) = K̄Dmax

is obtained from the fulfilment of the damage criterion for the first threshold

of degradation. This complies with G
[
fD

′

0 (S0, N)
]
− G

[
K̄Dmax

]
= 0 , and

G
[
fD

′

0 (S0, N)
]
= G

[
K̄Dmax

]
≡ 0.

The A parameter is calculated from the dissipation expression shown in equa-
tion Ξ = Ψ0 ḋ ≥ 0, particularized for a uniaxial process subjected to a growing
monotonic load. The parameter deduction can be obtained from [94] and has the
following expression for exponential softening:

A =
1

C0 gf
(τ0)2

− 1
2

(4.11)
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Figure 4.1: a: Stress evolution at a single point; b: S −N (Wöhler’s) Curves

4.2.4 Function of residual strength reduction for fatigue –

Wöhler curve definition

Wöhler or ”Stress-Number of cycles” (S-N ) curves (figure 4.1) are experimentally
obtained by subjecting identical smooth specimens to cyclic harmonic stresses
and establishing their life span measured in number of cycles. The curves depend
on the level of the maximum applied stress and the ratio between the lowest and
the highest stresses (R=Smin/Smax). In figure 4.1b Slim is the endurance limit
for a reversion factor of -1 and S0

f is the material elastic limit. In figure 4.1a
the instantaneous stress level is depicted, while in figure 4.1b the cyclic stress
is represented only by the maximum value it reaches in every cycle. Usually, S-
N curves are obtained for fully reversed stress (R=Smin/Smax=-1 ) by rotating
bending fatigue tests.

S − N curves are, therefore, fatigue life estimators for a material point with a
fixed maximum stress and a given ratio R. If, after a number of cycles lower
than the cycles to failure, the cyclic load stops, a change in the elastic threshold
of the material is expected due to accumulation of fatigue cycles. Furthermore,
if the number of cycles exceeds Nf, being Nf the fatigue life as resulting from
figure 4.2, the material will fail with the consequent reduction of strength and
stiffness. The change in strength is quantified by the strength reduction function,
fred(N,Smax, R), while the change in stiffness is taken into account by means
of the damage parameter. In figure 4.2, Sth is the endurance limit for any given
reversion factor and Su is the elastic threshold limit.

In the case of a cyclic load with constant Smax and R throughout the entire life of
a material, the S−N curve is sufficient for determining fatigue life. However, when
dealing with different load interactions the main focus resides on the residual
strength curve. The curve quantifies the loss of strength in the material as the
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Figure 4.2: Schematic representation of the evolution of the residual strength with the

applied load and number of cycles

number of cycles accumulates and as load characteristics change.

All fatigue numerical simulations are based on the Wöhler curves obtained ex-
perimentally. These curves are described in an analytical form with the help of
material parameters. Their expression, as well as the analytical definition of the
strength reduction function, is connected to the experimental curve and, there-
fore, subjected to change if the material changes. Different analytical definitions
can be found in [114], [126] and [95], as well as in [98].

Here the analytical fomulation presented in [98] is shown.

Based on the actual value of the R ratio and a basic value of the endurance
stress Se (for R = −1) the proposed model postulates a threshold stress Sth.
The meaning of Sth is that of an endurance stress limit for a given value of
R=Smin/Smax.

if |R| ≤ 1

Sth(R) = Se + (Su − Se) ∗ (0.5 + 0.5 ∗R)STHR1

else

Sth(R) = Se + (Su − Se) ∗ (0.5 + 0.5/R)
STHR2

end

(4.12)

If the actual value of R is R = −1 then, Sth = Se. The effect of the number
of load cycles Nc on the ultimate stress Su for a given value of R is taken into
account by an exponential function,

S(R,Nc) = Sth(R) + (Su − Sth(R)) ∗ e−ALFAT (R)∗log10 Nc
BETAF

(4.13)
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The value of ALFAT (R) is given by the function,

if |R| ≤ 1
ALFAT (R) = ALFAF + (0.5 + 0.5 ∗R) ∗AUXR1
else
ALFAT (R) = ALFAF − (0.5 + 0.5/R) ∗AUXR2
end

(4.14)

where ALFAF,BETAF, STHR1, STHR2, AUXR1 and AUXR2 are material
parameters that need to be adjusted according to experimental tests. Figure 4.3
shows an example of application of these functions. Parameters were chosen as
follows: Se = 0.5 ∗ Su, ALFAF = 0.0068, BETAF = 3.35, STHR1 = 0.7,
STHR2 = 0.5, AUXR1 = 0.0133 and AUXR2 = 0.0068.

Figure 4.3: Proposed S −N curves for different values of R = (Smin/Smax). [98]

The proposed S −N curves, equations 4.12 - 4.14, are fatigue life estimators for
a material point with a fixed maximum stress and a given ratio R. If, after a
number of cycles lower than the cycles to failure, the constant amplitude cyclic
load with a maximum stress Smax (and ratio R) is removed, a change in Su is
expected due to the accumulation of fatigue cycles. In order to describe that
variation of Su the following function is proposed:

fred(R,Nc) = e−B0∗(log10 Nc)
BETAF∗BETAF

(4.15)
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where BETAF is one of the parameters of equation 4.13 and B0 is obtained as
a function of the ratio Smax/Su and the number of cycles to failure Nf , by:

B0 = − ln (Smax/Su)

(log10Nf )
BETAF∗BETAF

(4.16)

The value of Nf can be obtained from equation 4.13:

Nf = 10
−

1

BETAF

1

ALFAT (R)
ln

Smax − Sth(R)

Su − Sth(R)


(4.17)

Some important observations have to be made regarding the fatigue strength
reduction function. Habitually, fatigue models are limited to correctly describing
the S −N curves and, based on the level of stress applied, estimate the fatigue
life. The S − N curve is generally interpreted as a life prediction tool, meaning
that when, for a certain level of stress, the Nc corresponding to the Wöhler curve
has been reached the respective Gauss point has suffered complete degradation.
However, the present model utilizes the respective Nc = Nf point as the starting
point for damage accumulation and the nonlinear zone, for that particular Gauss
point. This event mirrors the initiation point for a microcrack. Posterior dam-
age accumulation is an indicator of a rearrangement of the internal structure of
the material followed by micro-fisuration and a completely degraded Gauss point
(dGP = 1) represents the formation of a macro-crack in the volume associated
to the integration point. At macroscale level, a tracking of the damage propaga-
tion throughout the continuum is an indicator of a crack propagation and total
structural rupture is considered to have occurred when the crack has propagated
thru the entire cross-sectional area.

The analytical formulation mentioned above has been coupled with a signal pro-
cessing routine so that random cyclical loading can be decomposed into different
load sections, each described by its characteristics: amplitude, reversion factor,
number of cycles, period. The residual strength curve quantifies the reduction
in material strength due to the application of each loading section in a particu-
lar order, as will be shown in the numerical examples presented later on in this
chapter.
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4.3 Stepwise load advancing strategy

4.3.1 Introduction

The stepwise load-advancing strategy proposed in this chapter uses the formu-
lation described previously and consists of two different phases. The first one is
defined by load-advance being conducted by small time increments, with the con-
sequent load variation following a cyclic path. The second phase is characterized
by load-advance being done with large increments of number of cycles.

Even though Oller et al. [98] described the possibility of advancing thru large
increments of number of cycles, the process was not automatic. This implied
that it could not be used in real life simulations where an in-depth tracking of
the material’s progressive degradation was desired, or where the loading history
was comprised of several different cyclical loads.

This work proposes an algorithm that automatically switches from one phase to
the other, going repeatedly back and forth between both in accordance with the
loading input and the damage increase rate.

4.3.2 Load-tracking phase

This phase is characterized by the load being applied in small increments. The
purpose is to determine and save the characteristics of the cyclical load. The tags
Ai referenced in the following can be seen in the flow chart for this phase, on the
left side of figure 4.4.

Each load cycle will be divided into m small steps, a value that is user defined.
At the beginning of each increment being conducted in this phase, both the load
factor and the number of cycles will be updated (A1). Based on the multiaxial
stress state, the equivalent stress will be computed according to the damage
criterion chosen (von Mises, Mohr-Coulomb, Tresca, Drucker-Prager). After that,
the difference between the equivalent stress fD(Sij) of current increment k and
previous increment k-1 will be compared to the difference between the equivalent
stress in k-1 with respect to k-2 (A2)(See figure 4.4). When the sign of these two
quantities is different, either a maximum or a minimum has been recorded in
increment k-1 (A3). After having detected both the maximum and the minimum
equivalent stress for each integration point, the reversion factor is computed,
R=Smin/Smax. After each new cycle i+1 is described, the reversion factor is
compared to its value in the previous cycle i. The normalized variation of the
reversion factor is evaluated for each integration point GP and the sum of all the
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variations detected is computed into a stabilization norm η as shown in equation
4.18 (A4).

η =
∑
GP

∣∣∣∣Ri+1
GP −Ri

GP

Ri+1
GP

∣∣∣∣ ≤ toler. (4.18)

A new value for fred(N,Smax, R) is computed and the equivalent stress is then
affected by it and compared to the damage strength threshold in the current
increment (A5). The check for global convergence is made and, if this is achieved,
then the stabilization norm is compared to a user defined tolerance. When this
norm is below a given tolerance, it can be said that the reversion factor has a
stable value throughout the solid (A6). A flag is then activated indicating that
in the next increment the large phase algorithm should be followed. If the value
of η is not below the tolerance, several more cycles are then analysed applying
small increments.

This phase is necessary at the beginning of each different cyclical load in order to
determine the parameters that define the cyclic behaviour at each Gauss point
of the structure (R and Smax). Therefore, in case of modifying the cyclic load, a
new activation is necessary.

4.3.3 Large increments phase

After the stress parameters, R and Smax, stabilize throughout the solid from one
cycle to the other, there is no need to keep applying small increments as there
will be no change in the stress state unless either the elastic threshold is reached
or the applied cyclical load changes. Therefore, the load level can be maintained
at its maximum value and large increments of number of cycles can be applied.
The tags Bi referenced in the following can be seen in the flow chart for this
phase, on the right side of figure 4.4.

In this phase the variable is not the level of the load, kept constant at its maximum
value, but the number of cycles, which, in each increment, is updated with a
new large Nc step (B1). After obtaining the equivalent stress, a new value for
fred(N,Smax, R) is computed directly with the current number of cycles and the
previously stored values for R and Smax (B2).The equivalent stress affected by
fred(N,Smax, R) is then compared with the current damage strength threshold.
If nonlinear behaviour occurs at at least one integration point a flag is activated
(B3). When global convergence of the problem has been obtained in the current
increment and the flag has been activated inside the constitutive loop, the next
increment will be conducted with the load-tracking algorithm (B4).If convergence
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has been reached but the flag was not activated, in the next increment another
large step will be applied.

4.3.4 Automatic load-tracking phase activation

The stepwise advancing strategy has the following implications:

When applying a single cyclical load, load advance will be done by passing ini-
tially thru the load-tracking phase until R stabilizes and η is lower than the
defined tolerance. Afterwards, the advancing scheme will be by number of cycles
until reaching the elastic threshold. This happens when the material has been
subjected to the number of cycles indicated by the S-N curve. At this stage, the
internal forces of the structure are modified in order to reach a new equilibrium
configuration. This situation leads to a variation of the reversion factor and,
therefore, of the stress state at integration point level. The load-tracking phase
is automatically activated. Furthermore, it will be activated at each step where
damage increases (ḋ > 0) due to the change in internal forces.

The algorithm can be optimized if, after evaluating the Wöhler’s Nf (marked
dot in figure 4.2) corresponding to each equivalent stress level at the beginning
of the analysis, a search is made to find the minimum fatigue life throughout the
solid. The resulting number of cycles can be used as the first step of the large
increments phase ensuring that the entire span of number of cycles before the
damage process initiates is done in one step (B1)(See figure 4.4). The nonlinear
processes occurring past the point damage initiates in the first Gauss point will
be simulated with a user-defined Nc step in the case of displacement controlled
simulations where the material can continue bearing the cyclical load after having
reached the fatigue life given by the S-N curve. This is possible due to a progress-
ive loss of stiffness that ensures that, for the same applied cyclical displacement
and having reached the S-N curve, stress in the material progressively relaxes as
it suffers damage until total rupture.

In the case of applying different cyclic loads, damage can appear either due to
fatigue or due to a new load being applied that leads to stress values that surpass
the elastic threshold. In both cases the model will jump automatically from the
large increments phase to the load-tracking phase. Even if the different cyclic
loads applied induce stress levels below the elastic threshold, when passing from
one cyclic load to another one of different characteristics an activation of the
load-tracking is required. This is necessary regardless of the elastic regime due
to the fact that, by applying a new load, the maximum equivalent stress induced
and/or the reversion factor has changed and, consequently, the fatigue parameters
calculated for the first load are no longer valid.
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Figure 4.4: Flow chart for the stepwise advancing algorithm
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The flow chart presented in figure 4.4 shows the operations conducted in both
phases, as well as the conditions required to jump from load-tracking to large
increments. These jumps are indicated with hyphenated arrows.

The algorithm is user controlled by means of two parameters. The first one is
the tolerance at which the reversion factor norm (defined in equation 4.18) is
considered to have converged. If, for instance, a numerical tolerance of 10−10

is used, time advance runs the risk of being continually conducted in the load-
tracking phase. This would lead to a dramatic increase in computational time. On
the other hand, if the tolerance is set too high the model may no longer capture
changes in the cyclical load applied, leading to an incorrect life prediction. The
tolerance used for the calculation of the numerical examples presented in section
4 was 10−4 and the author recommends this value for future use of the strategy.

The second parameter that allows the user to control the developed stepwise
load advancing algorithm is the number of cycles chosen as time step for the
large increments phase. The influence it has is in accordance with the level of
nonlinearity of the problem. While a too low number of cycles used as step im-
plies an increase in computational time, a too big one can lead to loss of solution
convergence. A calibration analysis consisting of a study of the solution conver-
gence depending on the number of cycles used as a step is highly recommended.
The analysis should begin by using large steps. Then the Nc used as a step should
be progressively lowered until convergence is reached, as this would ensure the
lowest computational time.

4.4 Numerical examples

The capabilities of the stepwise load-advancing strategy, together with the fatigue
constitutive model presented, will be shown with several simulations made over a
hexahedral finite element subjected to cyclic loads. These examples will illustrate
the fatigue behaviour under a single cyclical load and under load interaction of
two different cyclic loads. Also, the material behaviour is shown when combining
a cyclical load with a monotonic one. After that, the model is validated comparing
the results obtained from the numerical simulation with the results provided by
the experiment presented in Marines et al. [76].

All the examples presented in this section have been calculated with the PLCd
finite element code [111], where the formulation presented here has been imple-
mented.

In order to understand the capabilities of the stepwise load advancing strategy,
a test case of one linear hexahedral element with 8 integration points will be
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presented. A single element was chosen for the simulation due to its reduced
computational cost and due to the fact that it suffices for accurately showing
material behaviour as described by the formulation presented.

4.4.1 Problem definition. Geometry, material and bound-

ary conditions.

The element has one of its faces subjected to a cyclical displacement while the
opposite face has boundary conditions that fix its longitudinal displacement,
allowing transversal expansion and contraction.

Geometry dimensions are 10 ∗ 10 ∗ 10mm. The material used has the following
characteristics: Young modulus = 2.01 x 105 MPa ; Poisson ratio = 0.3 ; Static
elastic threshold is Su = 838.9MPa and the material fracture energy has a value
of Gt = Gc = 20 kN*m/m2 . The damage model used has exponential softening
and a Von Mises failure surface. The S −N curve for this material was obtained
using the analytical formulation described in [126]. The parameters required in
order to correctly describe the curve are Su, Smax and R.

One of the model’s particularities is the progressive loss of resistance leading to
the initiation of damage, represented in the strength reduction curve. In order for
it to be clearly differentiated from the Wöhler curve, a direct jump to the point
where damage initiates was not done. Rather, an approximation of the damage
initiation point was made by choosing a suitable number of cycles as the time
step.

The first two numerical simulations presented exhibit a load history composed
of a single cyclical load, while the last two simulations consist of applying both
cyclical loads in different order.

The characteristics of the cyclical loads taken into account are: for the first one,
S1, a reversion factor of 0.3, a minimum displacement of 0.0114mm and a max-
imum displacement of 0.038mm; in the second case, S2, the first load applied has
a null reversion factor, a maximum displacement of 0.035mm and a null minimum
displacement. The number of cycles adopted as a step for the large increments
phase in the both cases is 106 cycles.

For the combination cases the load applied is the first one, S1, and, after 106

cycles, this load is replaced by S2. The number of cycles used as a step for the
large increments phase in this case is 105 cycles. In the second combination case
the order of loads applied has been changed. First, load 2 is applied 106 cycles
and afterwards the material continues to be loaded with load 1 until total failure.
The number of cycles adopted as a step for the large increments phase in this
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(normalized with threshold

limit)

Case

code

Reversion

factor

Max.

Stress PG

Min.

Stress PG

Med.

Stress PG

Nc when dam-

age initiates

S1 0,3 0,91 0,273 0,59 4,90E+06

Table 4.1: Characterization of the tensional state induced by the single load S1

case is also 105 cycles.

4.4.2 Single cyclical load

Table 4.1 shows the stresses obtained at each integration point by the imposed
displacement presented in figure 4.5, as well as the fatigue life provided by the
FEM model.

The stresses induced by the cyclic displacement applied lead to a fatigue life,
according to the material Wöhler curve, of 4,9 x 106 cycles. This number of
cycles marks the beginning of the nonlinear process and, therefore, of the energy
dissipation.

In figure 4.6, the stress in the specimen, the material Wöhler curve, the residual
strength variable and the material damage value are presented. It can be seen
that, while the residual strength curve is above the Wohler fatigue life curve,
there is no stress alteration or damage accumulation.

The stress level shown refers to the instantaneous stress divided by the initial
elastic threshold. It can be seen that at the beginning an initial load-tracking
stage is necessary for recording the characteristics of the stress evolution: rever-
sion factor, maximum stress value and stress amplitude in every cycle. When the
cyclic stress characteristics do not change from one loading cycle to the other
(at every Gauss point) large increments start to be applied, where the load is
maintained at the maximum value reached in previous cycles and only the num-
ber of cycles variable increases. At this point the material is considered to be in
an elastic state but the evolution of the S-N and of the residual strength curves
continues to be monitored.

Once the number of cycles applied reaches the fatigue life defined by the Wöhler
curve for that level of maximum stress, event marked by the stress curve in-
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Figure 4.5: Applied displacement for load case S1

tersecting the Wöhler curve, it also intersects the residual strength curve. After
this point, the stress in the material is higher than the residual strength and a
softening process begins with the consequent increase of the damage variable.
As soon as this event occurs at the first Gauss point a load-tracking stage is
automatically activated for the entire finite element model. This is necessary as
the onset of the degradation process leads to a change in the internal forces and
a new equilibrium configuration is reached. When this equilibrium configuration
has stabilized under small increments, the stress characteristics from one cycle
to the other remain constant. This enables the application of a large increment,
maintaining the load at the maximum level reached in previous stable cycles.
However, when applying this large increment the equilibrium is lost again as
the structure is pushed further in the nonlinear zone with a consequent damage
accumulation and stiffness loss. This effect can be seen in the stress relaxation
occurring at the end of each large scale increment (figure 4.6 and figure 4.7).

From that point forward, after each large increment where ḋ > 0, the load-
tracking phase is automatically activated so that damage evolution can be mon-
itored from cycle to cycle. If, after describing several cycles with small increments,
the stress state throughout the solid has stabilized, a new large increment can be
applied. This process is repeated automatically until the material reaches a state
of complete degradation.

Figure 4.7 zooms the end part of figure 4.6 to show more clearly the material
performance described. The load-tracking phase is represented by the vertical
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Figure 4.6: Parameters of interest for the fatigue analysis under load S1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4.2e+006 8.4e+006 1.7e+007 3.4e+007S
tr

es
s 

no
rm

al
iz

ed
 w

ith
 e

la
st

ic
 th

re
sh

ol
d 

/ D
am

ag
e 

(-
)

No. cycles (-) (log.scale)

Instantaneous stress level
Fatigue life

Residual strength
Damage internal variable

Figure 4.7: Parameters of interest for the fatigue analysis under load S1 in the nonlinear

zone



4.4. Numerical examples 101

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.0005  0.001  0.0015  0.002  0.0025  0.003  0.0035  0.004

S
tr

es
s 

no
rm

al
iz

ed
 w

ith
 e

la
st

ic
 li

m
it 

(-
)

Strain (-)

Load-tracking phase
Large increments phase

Figure 4.8: Stress-Strain at integration point for load S1

lines. The large increments phase is represented by the in between segments.
Both figure 4.6 and figure 4.7 have a logarithmical scale along the horizontal
axis.

In figure 4.8, the effects of material degradation are shown in the stress-strain
curve. The vertical axis refers to the instantaneous stress level divided by the ma-
terial elastic limit. The large increments phase occurs only when the displacement
is maintained at its maximum value and ε = εmax. Therefore, it is represented
in this figure by the vertical lines descending from the point of maximum stress.
The stress interval represented by each jump in the stress level quantifies the
stress softening caused by a single, large number of cycles, interval. Each of these
stress-softening intervals is followed by a few unloading (until minimum displace-
ment) - loading cycles. These mark the load-tracking phase where a clear change
in material stiffness is visible.

It can be seen that, as the material progressively suffers loss of stiffness, for the
same large step there is less stress softening.

Furthermore, in order to demonstrate the good accuracy of the method, this
simulation has been done with four different sizes for the large increments phase.
Figure 4.9 presents the evolution of the damage internal variable (as resulting
from equation 4.8) with the number of cycles in all four cases. It can be seen that,
even though the simulation is done by using different steps in the large increments
phase: 50.000, 100.000, 1 x 106 and 5 x 106 cycles, the damage variable has the
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Figure 4.9: Evolution of the damage internal variable with the number of cycles

No. of cycles considered

as step

50.000 100.000 1 x 106 5 x 106

CPU time 0h: 8’:42” 0h: 4’: 8” 0h: 0’:30” 0h: 0’:10”

Table 4.2: Computational time for case S1 depending on the number of cycles chosen

as step

same evolution.

As indicated in Section 4.3.4 the number of cycles used as a step in the large
increments phase is a key parameter for the load-advancing algorithm. In table
4.2 the computational time obtained for the different Nc steps is presented. It
can be seen that, even though the simulation is made on a single linear element,
computational time can vary considerably depending on the number of cycles
chosen as time step.

A comparison was made between the computational time required when using
the proposed load-advancing strategy and the computational time needed if in
the nonlinear stage only load-tracking were to be used. As it can be seen from
table 4.2, the CPU time needed in the case of a step of 1 x 106 cycles was 30
seconds for a total analysis of 53.5 x 106 cycles, out of which 4.9 x 106 cycles
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(normalized with threshold

limit)

Case

code

Reversion

factor

Max.

Stress PG

Min.

Stress PG

Med.

Stress PG

Nc when dam-

age initiates

S2 0 0,839 0 0,42 3,46E+06

Table 4.3: Characterization of the tensional state induced by the single load S2

consisted of elastic behaviour. When advancing only by load-tracking after the
4.9 x 106 elastic cycles, in 10 hours of computational time only 84.000 cycles
were computed, with a correspondant damage level at the end of the 84.000
cycles of 0.018. Taking into account this rate of advance, if the entire analysis
of 53.5 x 106 cycles were to be conducted under load-tracking, a computational
time of 265 days would be needed. This study was carried out on only one linear
element. In real-life simulations, the dimensions of the problem are much larger
and load history is more complex and this demonstrates that it is of the upmost
importance having a load-saving advancing strategy.

An important feature of the constititutive model coupled with the load-advancing
strategy is the ability to account for the order in which different loads are applied
within a determined load history. In order to demonstrate this, a different regular
cyclic load will be shown and, in the next section, the combination of the two
loads, S1 and S2 will be analysed.

The characteristics of the tensional state induced by the load S2 are shown in
table 4.3. In figure 4.10, the stress evolution at the integration point, the material
Wöhler curve, the residual strength variable and the material damage value are
presented, and in figure 4.11 the effects of material degradation are shown in the
stress-strain curve.

4.4.3 Load history with two different cyclical loads

In table 4.4 the stresses generated at integration point level by the imposed
maximum and minimum displacements are included. These are displayed for the
two cyclical loads applied, S1 and S2, as well as the fatigue life resulting from
the FEM model if only one of the loads, be it S1 or S2, were to be applied until
fracture. Table 4.4 also includes the number of cycles at which damage starts
when applying both S1 and S2.
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Figure 4.10: Parameters of interest for the fatigue analysis under load S2
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Figure 4.11: Stress-Strain at integration point for load S2
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(normalized with threshold

limit)

Case

code

Reversion

factor

Max.

Stress PG

Min.

Stress PG

Med.

Stress PG

Nc when dam-

age initiates

S1 0,3 0,91 0,273 0,59 4,90E+06

S2 0 0,839 0 0,42 3,46E+06

S1+S2 3,62E+06

S2+S1 1,22E+06

Table 4.4: Fatigue life for loads S1 and S2 and their combination

The simulation of the load combination was made by first imposing the S1 load
during 106cycles, followed by load S2 being applied from 106 cycles to 108 cycles.
By applying first load S1, followed by load S2, the resulting life for the material is
3,62 x 106 cycles, less than if only load S1 were applied, but more than if only S2

were applied. This shows that the formulation is capable of taking into account
the effect of a cyclical load even if it is applied for a number of cycles that does
not lead to failure. This is achieved by quantifying the strength reduction caused
by each event in the load history and by dynamically describing the S−N curve
according to changes in load characteristics.

In figure 4.12 it can be seen how the slope of both curves, residual strength and
S−N curve, changes as a different load starts being applied. This is possible due
to the load-tracking phase being automatically activated once a change in the load
is detected, as can be seen from the vertical line dividing the two maximum stress
levels exhibited. The intermediate load-tracking phase appears as a straight line
due to the fact that a logarithmical scale has been used for the horizontal axis.
The characteristics of the new load are consequently determined, maximum stress
level and reversion factor, and with these parameters the S − N and reduction
curve readjust themselves.

Figure 4.13 shows the stress – strain curve where the stiffness reduction can be
seen at each automatic unloading. The vertical axis refers to the instantaneous
stress divided by the elastic limit. The trigger for the load-tracking stage is ḋ > 0
in an increment i. When this happens, the load factor for increment i+1 will be
correspondent to the load-tracking phase and unloading will have begun. Each
cycle will be described by small increments until the stress state is stable again
from one cycle to the other. The curve is in accordance with figure 4.12, showing
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Figure 4.12: Parameters of interest for the fatigue analysis under loads S1+S2

that the material is in the elastic state while load S1 is applied and the equivalent
stress is taken to its maximum value: 0.91 of the elastic limit. Load S2 is then
applied and takes the material to its fatigue life as indicated by the dynamically
updated Wöhler curve. All the stiffness reduction occurs after this point. As
seen in the previous case, a higher stiffness reduction can be seen in the first
stages of the nonlinear process. Each one of the vertical segments depicting stress
relaxation in figure 4.13 corresponds to a large increments phase that occurs only
when ε = εS2

max = 0.0035 . The inclined lines mark the posterior load-tracking
phase with material loading-unloading.

Another case is shown in figures 4.14 and 4.15 where the order of the loads is
inverted. First, 106 cycles of load S2 are applied, with its consequent strength
reduction. After that, the load changes to S1 and, in the first cycle it is applied,
the maximum stress induced in the material is higher than the updated fatigue
life curve. However, the updated material strength is above this value and the
damage threshold in the constitutive model will not be crossed yet. When the
stress state stabilizes under load S1 a large increment is applied, and, due to
this change in Nc, the strength threshold is reduced below the maximum stress
level material and the damage accumulation process starts. The switch is made
back and forth between load-tracking and large increments until all the fracture
energy of the material is dissipated.



4.4. Numerical examples 107

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.0005  0.001  0.0015  0.002  0.0025  0.003  0.0035  0.004

S
tr

es
s 

no
rm

al
iz

ed
 w

ith
 e

la
st

ic
 li

m
it 

(-
)

Strain (-)

Load-tracking phase
Large increments phase

Figure 4.13: Stress-Strain at integration point for loads S1+S2
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Figure 4.14: Parameters of interest for the fatigue analysis under loads S2+S1
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Figure 4.15: Stress-Strain at integration point for loads S2+S1

4.4.4 Load history with cyclic and monotonic loads

Following, several loading scenarios have been analysed that include a cyclical
load and a monotonic one. A comparison is made between the material behaviour
when failure occurs due to monotonic loading exclusively, due to cyclic loading
exclusively or due to combinations of the two. Specifically, in the first case ana-
lysed the cyclic loading S2 is applied 106 cycles and then the material is taken to
complete failure by monotonic loading. In the second case the same cyclic load
is maintained 6,42 x 106 cycles and a monotonic load is applied after that, until
total failure.

The constitutive model quantifies the energy dissipation only after the S − N
curve has been crossed and the updated damage threshold surpassed. A question
is raised then on whether dissipation occurs also before this point, in the span of
Nc when the initial elastic limit starts to be reduced, but the damage threshold
has not been crossed yet.

This reduction in strength corresponds, from a physical point of view, to a re-
arrangement of the internal structure of the material, slip of metal grains and
potential nucleation of voids. The dissipative cost of this process can be quanti-
fied indirectly by comparing the behaviour of the material taken to failure by a
monotonic load, by a cyclical load and by different combinations of the two.
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Case no. Type of load Nc applied

1 cyclic + monotonic 106

2 cyclic + monotonic 6.42 x 106

3 cyclic 34 x 106

4 monotonic 0

Table 4.5: Characterization of the combination cases analysed (monotonic and cyclic)

As said before, four different cases have been analysed, as shown in table 4.5.
A different visual representation of the results has been chosen for these com-
binations in order to better differentiate cyclic from monotonic effects in a more
graphical way.

Figures 4.16, 4.17 and 4.18 show the parameters of interest for the fatigue damage
model in a three-dimensional space. In the following, the X axis refers to the
number of cycles axis where a logarithmical scale is used. On the Y axis the
damage internal variable is portrayed, and in the Z axis the stress is quantified,
scaled with the value of the initial elastic limit. While damage accumulation has
not started, the curves of interest are contained in the XZ plane, same as the
plots shown in previous cases. However, when the damage threshold is crossed
the stress curve is taken outside of this plane by representing its evolution with
the help of the Y axis where the damage variable is quantified.

Put in different words, all the YZ planes perpendicular to the fatigue curves in
plane XZ show the dissipation for a monotonic loading applied at the Nc where
the plane intersects the X axis.

For instance in figure 4.16 the curves of interest are shown for case 1 in table 4.5.
While the cyclic load is being applied the variables of interest are found in the
XZ plane, where the strength reduction and the fatigue life are depicted. After
106 cycles the cyclic load is stopped and is then increased monotonically until
failure (d = 1). When the load starts to be applied monotonically the material is
still in the elastic state, but its elastic limit has been reduced. Therefore, damage
starts earlier than if the cyclic load would not have been applied. The entire
evolution of the stress curve after damage initiates in the model is contained in
the plane perpendicular to the Nc axis. On the same chart, the evolution of the
stress is plotted for the monotonic case (Case 4 in table 4.5). In order to be able
to represent both curves on the same chart the monotonic stress curve has been
plotted in the plane with an abscissa of 1, even though the load was exclusively
monotonic.
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Figure 4.16: Parameters of interest for the fatigue analysis under load combination 1

in 3d representation
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Figure 4.17: Parameters of interest for the fatigue analysis under load combination 2

in 3d representation
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Figure 4.18: Parameters of interest for the fatigue analysis under load S2 in 3d repres-

entation

The same variables are shown in figure 4.17 for case 2 in table 4.5 and in figure
4.18 for case 3 in table 4.5. All the figures include the evolution of the monotonic
stress curve for reference. It can be seen that as damage starts to accumulate
due to cyclic loading the stress curve is no longer contained in a YZ plane but
rather it describes a curvilinear trajectory in space, as can be seen clearly for
case 3 in figure 4.18. The intersection of this curvilinear trajectory with a given
YZ plane marks the beginning of the dissipation if the load were monotonic after
that given Nc. An example of the above is figure 4.17 for case 2 in table 4.5 where
after 6.42 x 106 cycles the load is increased monotonically until failure and the
remaining energy is dissipated in the corresponding YZ plane (with an abscissa
of 6.42 x 106 cycles).

In figure 4.19 the dissipative cost of the strength reduction occurring in the
elastic zone can be seen by comparing the stress-strain curve for the monotonic
case and for the other cases. The maximum energy dissipation cost (maximum
area difference with respect to the monotonic curve) is visible for the case with
only cyclic loading applied (case 3 in table 4.5).

For a final overview on the different stress histories used in this analysis, figure
4.20 can be consulted. The stress due to monotonic loads has been marked for
each case analysed.
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Figure 4.19: Comparison between the stress-strain curves at the integration point for
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Figure 4.20: Comparison between the stress evolution at the integration point for differ-

ent load combinations in 3d representation
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4.5 Validation of the formulation proposed

4.5.1 Problem definition. Geometry and material.

The experiment undertaken by Marines et al. [76] has been chosen to validate
the stepwise load advancing strategy presented in this work, together with the
continuum damage model for fatigue described in section 4.2. In table 4.6, the
material characteristics given by the aforementioned authors are presented along
with the shape and dimensions of the fatigue specimen adopted in the experiment.
The experimental results obtained with a loading frequency of 20 kHz and a
reversion factor R = −1 have been taken into account for the comparison with
numerical results.

4.5.2 Finite element model

The fatigue specimen presented in figure 4.21 has been reproduced by means of
a finite element model. Due to the symmetrical nature of the geometry, loading
and boundary conditions, only half of the specimen has been modelled in order
to minimize computational time.

The semi-cylindrical volume has been meshed with linear hexahedral elements as
shown in figure 4.22. The mesh has 2666 nodes and 1920 elements. Each finite
element is described with eight integration points.

The boundary conditions applied are shown in figure 4.23. The specimen is re-
strained at one end and subjected to a cyclical displacement at the other end.
The entire base is defined with a symmetry condition.

The analytical formulation for the S − N curve used by the numerical model
was the one presented in [126]. The parameters used for the adjustment of the
curve to the experimental one proposed by Marines et al. [76] are Su= 608Mpa,
Slim=325Mpa, α = β =1.3; a correction factor of 1.23 was applied when calcu-

Ed(10kHz)

(GPa)

Ed(20kHz)

(GPa)

σy(0.2%)

(MPa)

UTS

(MPa)

A

(%)

ρ

(kg/m3)

208.3 211.5 608 878 20 7850

Table 4.6: Material properties of HSLA steel, D38MSV5S
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Figure 4.21: Shape and dimension of ultrasonic fatigue specimen as given by Marines

et al.[76]

Figure 4.22: Finite element mesh of linear hexahedral elements
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Figure 4.23: Boundary and loading conditions for the analysed geometry

lating the auxiliary term AUX = 1/1.26 +R/3.3.

4.5.3 Results and discussion

In figure 4.24, the results obtained by Marines et al. [76] are presented. As expec-
ted, a scatter of test results can be seen both for 20 kHz resonating material and
for the 30 kHz one. Since the material characteristics taken into account for the
numerical analysis are that of the 20 kHz one, simulations have been run only
with the maximum stress levels exhibited for this particular testing frequency.
The experimental results showed that, even though the geometry and loading
conditions are axisymmetric, the failure mode is not symmetric [76].

4.5.3.1 Validation of the results obtained with the numerical simula-

tion

The expression for the S−N curve proposed in figure 4.24 by Marines et al. [76]
has been compared to the numerical results obtained from the described finite
element model. The comparison can be seen in figure 4.25. Since the model has a
deterministic nature, no scatter can be seen in numerical results. The numerical
data depicted in figure 4.25 is in accordance with table 4.7 where the information
on the exact characteristics of each simulation case is given.
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Figure 4.24: Fatigue S-N curve of HSLA steel D38MSV5S with R = -1, 20 kHz and

30kHz [76]

Case

code

Reversion

factor

Max. Stress

GP (MPa)

Nc at which damage

initiates

BA1 -1 435 0,17 * 106

BA2 -1 400 1,50 * 106

BA3 -1 380 5,30 * 106

BA4 -1 360 20,03 * 106

BA5 -1 350 39,50 * 106

BA6 -1 340 78,50 * 106

BA7 -1 330 160,00 * 106

BA8 -1 320 1E9 (run-out)

Table 4.7: Fatigue life as resulting from the numerical simulation. Same stress levels

and reversion factor as [76]. (20 kHz)
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Figure 4.25: S −N curve for HSLA steel D38MSV5S. Experimental vs. numerical.

Some observations are to be made, however, in order to better understand the
results presented in figure 4.25. The points signalled as results obtained with
the proposed formulation, mark the start of the stiffness reduction. In a force
controlled test, when the force level is taken to the following maximum after the
fatigue life depicted in figure 4.25, abrupt failure occurs. However, as the numer-
ical model has been defined with displacement controlled boundary conditions,
when the next maximum displacement is reached after arriving at the fatigue
life given in table 4.7, a reduction of the stress level occurs and the material can
continue to be cyclically loaded. If an unloading would be made at this point a
stiffness reduction in proportion to the stress relaxation would be observed. For a
better understanding of this effect a detailed description of the fatigue behaviour
is shown in the next section for one of the cases ran for the validation.

Summarizing, the fatigue life charted in figure 4.25 represents the number of
cycles up until which the maximum stress induced by the applied cyclical displace-
ment remains unaltered. Once this point is surpassed, stress relaxation occurs
along with damage accumulation, stiffness reduction and a subsequent change in
internal forces. If the test is force controlled, the specimen fractures abruptly.
If the test is displacement controlled, the material is taken to complete fracture
progressively.
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4.5.3.2 Analysis of the performance of the material model. In-depth

analysis of stiffness reduction at integration point

In this section an in-depth analysis of the behaviour of the material is made for
a maximum induced stress level of 350 MPa. The results are similar for all the
other simulations ran.

The experimental tests have shown that fracture initiates on the surface of the
specimen. This is due to defects present in the microstructure that lead to void
nucleation and microcrack initiation and propagation. Fracture initiation is not
symmetric and, furthermore, in the last stages of the nonlinear process, due to
microstructural imperfections and defects, fracture propagation leads to non-
symmetrical behaviour.

In the numerical simulation, same as in the experiment, fracture initiation is not
symmetrical, but a large part of the propagation process occurs under symmetry
to the y-y axis. However, in the last stages, before complete rupture (third image
in figure 4.28), due to numerical round off the solution loses symmetry.

A monitoring of model parameters has been made at the first integration point
that shows complete degradation. In figure 4.26 are depicted: the evolution of
the residual strength, Wöhler fatigue life, equivalent stress and damage internal
variable with a logarithmical scale along the horizontal axis. It can be seen that
the stress state suffers no alteration until it intersects the S −N curve, same as
in the numerical examples shown so far.

Figure 4.27 shows a zoom on the evolution of the variables in the non-linear zone
(past the intersection with the S − N curve). Here the succession between the
large increments phase and the load-tracking phase can be better seen. Also, it
can be observed how 90% of the degradation is concentrated in the last two large
steps with nearly 80% in the last one. For this case, 0.5 x 106 cycles has been
adopted as step for the large increments phase. Therefore, although the specimen
is subjected to approximately 53.5 x 106 cycles until it fractures completely, 80%
of the stiffness reduction occurs in the last 500000 cycles, deeming the fracture a
”brittle” type one.

Figure 4.28 shows a view of the specimen from above and a view of the cross
section at different number of cycles (analysis steps). Each one of the steps rep-
resented is marked in figure 4.27 chronologically with a black dot.

The images show the damage evolution in the specimen, both on the surface and
in depth, as the number of cycles increases. Damage initiates on the surface of the
specimen in the area with the smallest cross-sectional diameter, as expected, after
39.5 x 106 cycles. Afterwards it propagates symmetrically until approximately 53
x 106 cycles (third image in figure 4.28), when it localizes in one side of the
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Figure 4.26: Parameters of interest for the fatigue analysis of D38MSV5S specimen at

the first integration point that fractures completely

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

3.7e+007 5.6e+007S
tr

es
s 

no
rm

al
iz

ed
 w

ith
 e

la
st

ic
 th

re
sh

ol
d 

/ D
am

ag
e 

(-
)

No. cycles (-) (log. scale)

Instantaneous stress level
Fatigue life

Residual strength
Damage internal variable

Figure 4.27: Zoom on fatigue parameters of interest in the nonlinear zone (post S −N

curve).Dots indicate the analysis steps at which damage evolution is presented in figure

4.28



120 Chapter 4. Constitutive modelling of High Cycle Fatigue

Figure 4.28: Damage evolution for a maximum induced stress of 350MPa and R = -1

specimen. This is believed to be due to a numerical round off that directs the
posterior damage accumulation to the right side of the specimen, as can be seen
in figure 4.28.

The upper image in figure 4.29 presents the deformed shape of the specimen
when the last maximum displacement before total fracture is applied. A necking
can be seen in the central region although the specimen is not yet completely
fractured. From that point in the analysis, the applied displacement is taken
from its maximum value to its minimum one, when the specimen is subjected to
compression. That eventually causes the rupture into two parts (lower image in
figure 4.29).
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Figure 4.29: Deformed shape (x 200) at the last maximum stress before rupture and at

the last minimum stress, when rupture occurs
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Chapter 5

Constitutive modelling of

Low Cycle Fatigue

This chapter presents a coupled plastic damage constitutive model valid for ma-
terials subjected to LCF. The model is applied in the softening regime leading to
an improvement in material life prediction as compared to plasticity models. The
energy participation factors for damage and plasticity are dependent on the num-
ber of cycles of loading the material has been previously subjected to. Numerical
examples are presented to illustrate the behaviour and capabilities of the model in
softening behaviour under monotonic load, and hardening - softening behaviour
under cyclic load incorporating both kinematic and isotropic hardening.

5.1 Introduction

Natural hazards, such as earthquakes and landslides, have in most cases a dev-
astating impact on civil infrastructures, as they lead to important material and
economic loses. Among the elements most affected are pipelines and pipeline
systems (water, oil, gas, etc.), that can be substantially damaged, and whose
reparation cost can be extremely large. For example, according to the data re-
ported by Kimishima et al. [59] , the number of water pipes that broke during
the 2007 Niigata-Ken Chuetsu-Oki earthquake exceeded 550.

123
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Under seismic loads pipelines suffer large cyclic deformations that can lead to
their failure or that can undermine their strength capacity for their future use.
In these cases, material failure is frequently driven by Low and Ultra-Low Cycle
Fatigue phenomena (LCF and ULCF, respectively). Thus, in order to minimize
the effect of these loads on pipelines and pipeline systems, and to assess the vul-
nerability of existing infrastructures, it is necessary to have appropriate analysis
tools to simulate the failure mode of steel under ULCF and LCF.

Current work presents a new constitutive model especially developed for the pre-
diction of material failure produced by LCF and ULCF. The agreement obtained
between experimental and numerical results allow considering the proposed law
an excellent tool for the simulation of pipelines under seismic conditions, as it
allows predicting the strength capacity of a pipeline under any given seismic load
or assessing the residual strength of the pipeline once the seismic load has already
been applied.

Material failure due to LCF and ULCF will be simulated using a material non-
linear model. This approach will allow the simulation of regular and non-regular
cycles, as well as obtaining the post-critical response of the structure when the
material has failed.

A material non-linear model is defined by the thermodynamic law that drives the
material performance and a yield criterion defining the stress level that triggers
the non-linear behaviour ([70], [94]). The constitutive law proposed herein is
characterized by the combination of plasticity and damage. These two material
laws have been already coupled by several authors proposing different models.
These models vary in their complexity, versatility and accuracy. Some of them
are those of Simo and Ju [120], Lubliner et al. [71], Luccioni et al. [72] and, more
recently, Armero and Oller [6].

The necessity of combining these two laws is based on the following assump-
tion: The plastic phenomenon leads to the distortion of metal voids and their
coalescence. This effect is responsible of the permanent deformations obtained
after steel yielding, characteristic of plasticity. However, this process does not
account for the formation or nucleation of new voids, which may reduce the ma-
terial stiffness [7]. In order to include this effect in the material behaviour, a
new law complementing plasticity is necessary. An increment of the voids in the
microstructure of the material leads to a reduction of the effective area, resulting
also in a reduction on the material stiffness. This effect will be simulated with a
damage law.

The validity of this assumption is proved by a recent experimental campaign
conducted in order to characterize the response of several steels for pipes (X52,
X60 and X65) under ULCF and LCF loadings [104]. These tests showed that
while the material is in the hardening region, its performance is fully defined by
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plasticity. This is proved by the fact that successive hysteresis loops lay one over
the other. However, when the hysteresis loop shrinks due to material softening,
the material also loses some stiffness, effect noticed in the change in slope of the
stress-strain curve when unloading. This behaviour corresponds to damage.

Therefore, in order to predict accurately the response of pipe steel under ULCF
and LCF loads, the model must couple plasticity and damage in different stages.
Initially, the material hardening behaviour will be associated with plasticity. Af-
terwards, the material softening behaviour will be associated to both damage and
plasticity. The evolution of plastic strains is taken into account by the plasticity
model and at the same time the void formation and their subsequent coalescence
is quantified phenomenologically by the damage model. Finally, failure will take
place when all the fracture energy of the material has been dissipated.

The initial plastic model used for the hardening region of steel is the one decribed
in chapter 3 of the current document and already published in [80] and [9]. This
plasticity model is coupled with an isotropic damage model using the approach
proposed in the work of Luccioni et al. [72] for monotonic loads. The coupling
of these two models is made measuring, in every hysteresis cycle, the internal
energy required by each model, as well as the available remaining energy of the
material [11].

In the following section the formulation resulting from coupling the plasticity
with the damage model is described in detail. Afterwards, section 5.3 presents
the procedure defined to simulate LCF with the proposed constitutive law. Fi-
nally, section 5.4 compares the numerical results obtained with the proposed
formulation with those obtained from the experimental campaign conducted by
[104].

5.2 Plastic damage model formulation

5.2.1 Elasto-plastic damage model. Mechanical formulation.

The theories of plasticity and/or damage can simulate the material behaviour
beyond the elastic range, taking into account the change in the strength of the
material through the movement of the yield and/or damage surface (isotropic
and kinematic) due to the inelastic behaviour (plasticity and damage) of each
point of the solid. However they are not sensitive to cyclic load effects. In this
work the standard inelastic theories are modified to introduce the fatigue effect
coupled with non-fatigue material behaviour.
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It is assumed that each point of the solid follows a damage-elasto-plastic con-
stitutive law (stiffness hardening/softening) ([72], [71] and [92]) with the stress
evolution depending on the free strain variable and plastic and damage internal
variables. The formulation proposed herein studies the phenomenon of stiffness
degradation and irreversible strain accumulation through the combined effect of
damage and plasticity.

Since this work is oriented towards mechanical problems with small elastic strains
and large inelastic strains, the free energy additively hypothesis is accepted Ψ =
Ψe + Ψp ([70][69]). The elastic Ψe and plastic Ψp parts of the free energy are
written in the reference configuration for elastic Green strains Ee

ij = Eij − Ep
ij ;

the last variable operates as a free field variable [120], [98]. The free energy is
thus written as

Ψ = Ψe(Ee
ij , d) + Ψp(αp) = (1− d)

1

2mo

[
Ee

ijC
o
ijklE

e
kl

]
+Ψp(αp) (5.1)

Considering the second thermodynamic law (Clausius-Duhem inequality – [69],
[73] and [82]), the mechanical dissipation can be obtained as [70]:

Ξ =
Sij Ė

p
ij

mo
− ∂Ψ

∂αp
α̇− ∂Ψ

∂d
ḋ ≥ 0 (5.2)

The fulfilment of this dissipation condition (Equation 5.2) demands that the
expression of the stress should be defined as (Coleman method; see [82])

Sij = mo ∂Ψ

∂Eij

= (1− d) Co
ijkl (Ekl) (5.3)

Also, from the last expressions, the secant constitutive tensor can be obtained
as:

Cs
ijkl (d) =

∂Sij

∂Ee
kl

= mo ∂2Ψe

∂Ee
ij∂E

e
kl

= (1− d) Co
ijkl (5.4)

where mo is the material density, Ee
ij , Eij , E

p
ij are the elastic, total and plastic

strain tensors, dini ≤ d ≤ 1 is the internal damage variable enclosed between its
initial value dini and its maximum value 1, αp is a plastic internal variable, C0

ijkl

and CS
ijkl are the original and secant constitutive tensors and Sij is the stress

tensor for a single material point.



5.2. Plastic damage model formulation 127

5.2.2 Yield and potential plastic functions

The yield function FP accounts for the residual strength of the material, which
depends on the current stress state and the plastic internal variables and, in
the formulation proposed herein, it is sensitive to the fatigue phenomenon. This
FP function has the following form, taking into account isotropic and kinematic
plastic hardening (Bauschinger effect [65]):

FP (Sij , α
p) = fP (Sij − ηij)−KP (Sij , κ

p, N) ≤ 0 (5.5)

where fP (Sij − ηij) is the uniaxial equivalent stress function depending of the
current value of the stresses Sij , ηij is the kinematic plastic hardening internal
variable, KP

(
Sij , κ

p, N
)
is the plastic strength threshold and κp is the plastic

isotropic hardening internal variable ([72], [71], and [92]). N is the number of
cycles of the stress in the point of the solid and αp is a symbolic notation for all
the plastic variables involved in the process.

Equation 5.5 incorporates the number of cycles as an internal variable that affects
the strength threshold by lowering it as the number of cycles accumulates. This
enables the model to also account for strength reduction due to high cycle fatigue
effects ([98], [10] and [12]) and this in turn shows the potential of the formulation
to adjust by itself to the type of fatigue involved.

The evolution law for the plastic strain is ĖP
ij = λ̇∂GP

∂Sij
, being λ the consistency

plastic factor and GP the plastic potential.

Kinematic hardening accounts for a translation of the yield function and allows
the representation of the Bauschinger effect in the case of cyclic loading. This
translation is driven by the kinematic hardening internal variable ηij which, in
a general case, varies proportionally to the plastic strain of the material point.
One of the laws that define the evolution of this parameter is

η̇ij = ckĖ
P
ij , with ck =

2

3
bk for Von Mises (5.6)

where bk is a material property to be determined by particular tests for the
Prager and Melan kinematic hardening [70]. The evolution of isotropic hardening
is controlled by the evolution of the plastic hardening function KP , which is often
defined by an internal variable κp. The rate equation for these two functions may
be defined, respectively, by
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K̇p = λ̇ ·Hp
k = hpk · κ̇p

κ̇p = λ̇ ·Hp
k = λ̇ ·

[
hpk : ∂G

∂S

]
= hpk · Ėp (5.7)

where k denotes scalar and k stands for a tensor function. Depending on the func-
tions defined to characterize these two parameters, different solid performances
are obtained.

5.2.3 Threshold damage function

Onset of damage depends on the current stress state, the internal damage variable
and, with the current formulation, it also depends on the number of cycles. The
threshold damage function is defined as (see [82] and [120])

FD(Sij , d) = fD(Sij)−KD(Sij , d,N) ≤ 0
GD(Sij , d) = gD(Sij) = cte.

(5.8)

where fD(Sij) is the equivalent stress function in the undamaged space, the

damage strength threshold is KD(Sij , d,N), and d =
∫ t

0
ḋ dt the damage internal

variable.

The evolution of the damage strength threshold is analogous to that of the plastic
strength threshold, depending on the internal degradation variable κd

K̇D = hdk · κ̇d
κ̇d = hdk · ḋ

(5.9)

In equation 5.9, hdk is a scalar function with scalar arguments and hdk is a scalar
function with tensorial arguments as shown by [72], [80], and [11].

5.2.4 Coupled plastic-damaged response and tangent con-

stitutive law

From the simultaneous consistency conditions for the plastic (ḞP = 0) and dam-
age (ḞD = 0) problems, the evolution of the plastic strain and damage variables
can be obtained. The secant constitutive law and the stress rate are



5.2. Plastic damage model formulation 129

Sij = (1− d) Co
ijkl(Ekl − Ep

kl) (5.10)

Ṡij =
∂

∂t

[
(1− d)Co

ijkl (Ekl − Ep
kl)

]
= Ce

ijklĖkl − Cp
ijklĖ

p
kl (5.11)

Ce
ijkl = Cs

ijkl −
1

(1− d)

∂GD

∂gD

[(
∂gD

∂S0
rs

)
Co

rsij

]
Skl (5.12)

Considering the stress rate as Ṡij = Cep
ijklĖkl, the analytical expression of the

tangent constitutive tensor is

Cep
ijkl = Ce

ijkl −
Cs

ijrs

∂GP

∂Srs

∂FP

∂Smn

Ce
mnkl

−ck
∂FP

∂ηtu
:
∂GP

∂Stu

− ∂FP

∂αp
r
(hr)tu

∂GP

∂Stu

+
∂FP

∂Smn

Cs
mnrs

∂GP

∂Srs

(5.13)

5.2.5 Algorithm for the numerical implementation of the

plastic-damaged model

For this model, plasticity and damage equation must be integrated simultan-
eously. This is done with the following Euler-backward algorithm. Between two-
equilibrium configurations t and t−∆t the formulation is updated as follows:

(
Ep

ij

)
t
=

(
Ep

ij

)
t−∆t

+∆λ ·
(
∂GP

∂Sij

)
t

(5.14)

(αp)t = (αp)t−∆t +∆λ · (H(Sij , α
p))t (5.15)(

ηij
)
t
=

(
ηij

)
t−∆t

+∆λ · ck ·
(
∂GP

∂Sij

)
t

(5.16)

(d)t = (d)t−∆t +∆dt (5.17)

The stress state is updated according to the secant constitutive law shown in
equation 5.11 and its reduction to the damage and plastic yield surfaces is done
simultaneously, leading to the following non-linear system of equations:
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HP (∆λt,∆dt) = FP (Sij , α
p) = fP (Sij − ηij)−KP (Sij , κ

p, N) = 0 (5.18)

HD(∆λt,∆dt) = FD(Sij , d) = fD(Sij)−KD(Sij , d,N) = 0 (5.19)

This system of equations can be solved by the Newton-Raphson procedure [142]

{
∆λt
∆dt

}
k

=

{
∆λt
∆dt

}
k−1

−

 (
∂HP

∂∆λ

)
t

(
∂HP

∂∆d

)
t(

∂HD

∂∆λ

)
t

(
∂HD

∂∆d

)
t

−1

k−1

{
HP (∆λt,∆dt)
HD(∆λt,∆dt)

}
k−1

(5.20)

Despite having the analytical expression of the tangent constitutive tensor, equa-
tion 5.13, the calculation of this tensor is extremely costly and, depending on
the yield and damage functions used, its approximation does not provide correct
results. To overcome this drawback this tensor is calculated numerically by a
perturbation method. This is obtained as

Cep
ijab =

δṠij

δĖab

(5.21)

with δĖab an infinitesimal perturbation applied to the mechanical strain tensor,
and δṠij the stress variation produced by the strain perturbation. With this pro-
cedure, it is necessary to apply twice a×b perturbations to obtain the complete
tangent tensor. However, despite the computational cost, it provides an accurate
approximation that improves the global convergence of the problem [81].

5.3 Plastic damage model oriented to fatigue ana-

lysis

The effects of a cyclic load on the constitutive behaviour of a material range
from the accumulation of plastic strain in the case of ULCF to the reduction
of material stiffness when dealing with high cycle fatigue. LCF induces changes
in the material that are a combination of the aforementioned phenomena. In
the following the methodology and motivation for taking into account the effects
generated by the cyclical load will be presented.
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Figure 5.1: Evolution of the equivalent stress

5.3.1 Ultra-low cycle fatigue

The model is able to account for ULCF effects by incorporating a new law,
especially developed for steel structures, that has been designed to reproduce
their hardening and softening performance under monotonic and cyclic loading
conditions (figure 5.1). This law depends on the fracture energy of the material.

The equivalent stress state shown in figure 5.1 has been defined to match the
uniaxial stress evolution shown by most metallic materials. This curve is divided
in two different regions. The first region is defined by fitting a curve to a given
set of equivalent stress-equivalent strain points. This curve is a polynomial of any
given order and is fitted by using the least squares method. The data given to
define this region is expected to provide an increasing function, in order to obtain
a good performance of the formulation for cyclic analysis.

The second region is defined with an exponential function to simulate softening.
The function starts with a null slope that becomes negative as the equivalent
plastic strains increase. The exact geometry of this last region depends on the
fracture energy of the material. The exact formulation of the constitutive law can
be found in Martinez et al. [80],[11] and has been presented in detail in chapter
3.

Characteristic of this type of fatigue is the Bauschinger effect that is taken into ac-
count in the constitutive model by combining isotropic hardening with kinematic
hardening. The energy dissipated in each hysteresis loop is monitored and failure
under cyclical loads is reached when the total available fracture energy of the
material is spent.

The plastic damage formulation presented in this paper can be used to improve
result accuracy when simulating the softening behaviour under ULCF loads.
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Figure 5.2: Experimental stress-strain curve for X52 steel [104]

5.3.2 Low cycle fatigue

The behaviour of a material subjected to cyclical loads that induce LCF exhibits
both accumulation of plastic strain and a reduction of stiffness (Figure 5.2).
While ULCF can be described exclusively by plastic models and HCF by damage
models, LCF should be modelled with coupled plastic damage models. It is often
difficult to predict at which moment in the material life the stiffness reduction
begins, since the boundaries between these types of fatigue are rather arbitrary.
Stiffness reduction is understood as the change in slope when unloading occurs in
a cycle of loading, and is generally present only when softening has begun. The
model this work proposes aims at making a contribution in correctly assessing
the fatigue life for materials subjected to ULCF and LCF and is particularly
effective for the transition zone between these two phenomena.

In the context of the hardening law proposed for ULCF, the plastic damage model
presented in this work activates itself in the softening region. This is justified by
the physical implications behind the damage phenomenon, as damage induces
porosity that leads to stress relaxation. This implies that regions 1 and 2 in figure
5.1 are governed by plasticity ensuring that only the cyclical loads that last a
long enough number of cycles get to experience damage effects. This is important
as the formulation is meant to guarantee that, for a material life clearly in the
ULCF range (dozens of cycles or less), the constitutive equations governing are
those of plasticity. By regulating the extension of regions 1+2 with respect to
region 3 discrimination is made between materials that exhibit more sensitivity
to ULCF with respect to LCF or the opposite.



5.3. Plastic damage model oriented to fatigue analysis 133

5.3.3 Energy distribution law

The hardening law proposed in figure 5.1 marks as the onset of softening, the
level of equivalent plastic strain inputted by user [80]. This is the triggering point
for the plastic damage model to activate itself. At this point the total energy
dissipated by the plasticity model has been quantified and, by subtracting it
from the total fracture energy of the material, the energy available for the plastic
damage model is obtained.

This work proposes an energy distribution law that determines how much energy
goes to the plasticity model and how much goes to the damage model. The
following law is proposed in order to assess this issue, where N is the number
of cycles the material has been subjected to, up until the first increment when
softening begins, limULCF is the limit between the ULCF domain and the LCF
one and limHCF is the limit between the LCF domain and the HCF one (figure
5.3):

p%dam =
(N − limULCF )

(limHCF − limULCF )
× 100 (5.22)

The percentage of energy allocated to plasticity is the complementary part,
p%plast = 100 − p%dam. By multiplying these percentages to the energy avail-

able for the softening process, Gsoft
f = Gf −Ghard

f , the nominal energy for each

process is obtained: Gsoft,plast
f = Gsoft

f ×p%plast and G
soft,dam
f = Gsoft

f ×p%dam.

If at the onset of softening the number of cycles recorded is lower than the
limULCF , then the p%dam = 0 and p%plast = 1, thus marking the behaviour as
completely governed by plasticity. When the number of cycles is greater than the
limit between LCF and HCF then the entire energy available for the softening
part goes to damage.

Although the energy distribution law is formulated in a straightforward and
simple manner, the main difficulty lies in correctly assessing the number of cycles
considered as a limit in between ULCF and LCF, and LCF and HCF. These lim-
its can be derived statistically if an experimental program is available for small
scale specimens. The statistical analysis has to be made taking into account the
loading cycle when softening begins.

These limits are material dependent, as each material exhibits a different be-
haviour in terms of the vulnerability to ULCF or HCF conditions. Consider for
instance two materials that exhibit the same total fatigue life (hardening + soften-
ing) for a certain straining amplitude, but have different onsets for the softening
process. The stress-strain hysteresis loop for the entire load history is different
and a more accurate monitoring of the exact onset of softening leads to a finer
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Figure 5.3: Schematic representation of the energy distribution law in softening over the

entire fatigue domain (X axis not scaled)

tuning in terms of strain based design.
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5.4 Performance of the formulation

In the following the results obtained for several simulations, conducted to illus-
trate the performance of the formulation presented, are included. These simu-
lations prove the ability of the formulation to characterize mechanical softening
behaviour, under monotonic and cyclic loading conditions. The main aim of all
these simulations is to show the response obtained with the proposed constitutive
model. Therefore, for the sake of simplicity, and to reduce the computational cost
of the simulations, all of them have been conducted on a single hexahedral finite
element. The element is fixed in one of its faces and the load is applied to the
opposite face as an imposed displacement.

5.4.1 Mechanical performance under monotonic loads with

softening constitutive behaviour

The first simulation presents the capabilities of the formulation when dealing
with materials that exhibit softening behaviour. The material characteristics are
given in table 5.1 and belong to a hypothetic material.

Figure 5.4 shows the evolution of the stress for the plastic damage model as
compared with the same simulation conducted with a classic plasticity model
and with a classical scalar damage model such as that proposed by Kachanov
[49].

Three different simulations were made with the coupled model. The first one
assumes equal distribution of energy between the two interconnected phenomena:
50% for damage and 50% for plasticity. A different one was made with 10% for
damage and 90% for plasticity and the last one allotted 90% for damage and 10%
for plasticity. Unloading was made at approximately the middle of the loading
history in order to observe better the material behaviour. For the numerical

Young Modulus 2.01 * 105 MPa

Poisson Ratio 0.30

Yield Stress (σY ) 838.9 MPa

Fracture Energy 0.1 MN * m/m2

Table 5.1: Material characteristics
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Figure 5.4: Stress evolution for the plastic damage model as compared to the classical

plasticity and damage models

simulations using the two uncoupled models, the entire available fracture energy
was used (100%).

It can be seen in figure 5.4 that, unless the material is unloaded, the behaviour is
the same in all the simulations ran. When unloading, the loss of stiffness and the
accumulated plastic strain are in accordance with the percentage of energy given
to each one of the models. For instance, for the simulation performed with 50%
of the energy in damage and 50% in plasticity, when the material is completely
unloaded the plastic strain corresponding to the coupled model is 50% of the
plastic strain of the uncoupled plastic model. Also, the stiffness reduction is only
50% of the stiffness loss corresponding to the uncoupled damage model.

Both internal variables of the model, κp and d, reach a unitary value at the end
of the simulation. This states that the energy available for each process has been
spent and that, on the whole, all the available internal energy of the material has
been dissipated

Gf = (100− p%) ·Gf︸ ︷︷ ︸
GP

f

+ p% ·Gf︸ ︷︷ ︸
GD

f

1 = d · p%
100 + κp ·

(
1− p%

100

)
,

with 0 ≤ d ≤ 1 and 0 ≤ κp ≤ 1

(5.23)

where p% is the participation factor for the damage process.
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Young Modulus 1.95 * 105 MPa

Poisson Ratio 0.30

Yield Stress (σY ) 380 MPa

Plastic Strain Softening

(Ep
2 )

50 %

C1 kinematic hardening 6.0 * 104 MPa

C2 kinematic hardening 400

Fracture Energy 15.0 MN * m/m2

Table 5.2: Mechanical properties of steel

5.4.2 Mechanical performance under cyclic loads with

hardening - softening constitutive behaviour

In this section, the material behaviour will be simulated with the hardening-
softening law described in [80] and [11]. Both kinematic and isotropic hardening
is taken into account. The hardening region will make use of the plasticity for-
mulation described in chapter 3, while the softening region will be described with
the plastic damage formulation presented in this chapter. The transition from one
constitutive formulation to the other is done automatically at the material points
that have reached softening. In table 5.2 the material properties used for this sim-
ulation are presented. An X60 steel has been used as material for this simulation.
The experimental behaviour presented below is obtained from an experimental
campaign conducted on smooth specimens by FEUP under the framework of the
ULCF European Project ”Ultra low cycle fatigue of steel under cyclic high-strain
loading conditions”. The properties displayed in table 5.2 have been obtained as
result of a calibration analysis with the above mentioned experimental campaign.

The fracture energy available for the coupled model is inherited as output from
the plastic model. The input is the total available fracture energy along with all
the other characteristics of the material, kinematic coefficients and the equivalent
plastic deformation at which softening starts in the uniaxial experimental stress-
strain curve. The model is highly sensible to the fracture energy available to the
damage model.

For this simulation, the Friederick – Armstrong non-linear kinematic hardening
was used. The limit between ULCF- LCF was chosen statistically from the ex-
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Figure 5.5: Stress – strain curve obtained with the plastic damage model

perimental program made by Pereira et al. [104] as limULCF = 45cycles. The
limit between LCF and HCF was chosen empirically as 104 cycles.

Figure 5.5 shows the stress-strain curve for a cyclic load with strain amplitude
of 5% and a reversion factor equal to 0, when using the proposed plastic damage
model in softening. Using the energy distribution law proposed in section 5.3.3,
the participation factor for the damage process was p%dam = 0.15 of the fracture
energy available for the softening stage. The evolution of the stress-strain curve
has been plotted at every 10 cycles after softening has begun, in order for the
progressive loss of stiffness to be better seen.

In figure 5.6 the evolution of the internal variables of the model can be seen. The
vertical axis is scaled from 0 to 1 both for the damage internal variable and for the
plastic internal variable. The meaning of this plastic internal variable is that of
the plastic dissipation divided by the fracture energy available for plasticity. It can
be seen that the damage process is activated at the beginning of softening (60th

cycle). At this point, the integration scheme changes to simultaneous integration
of both damage and plasticity equations. From the total facture energy of the
material the part spent in hardening is subtracted and the remaining quantity is
split between damage and plasticity using the law presented in section 5.3.3.

In figures 5.7 - 5.11 a series of five snapshots are shown that compare the ex-
perimental stress-strain result with the numerical simulations made with the
plasticity model and with the plastic damage model. In both simulations soften-
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Figure 5.6: Evolution of the internal variables of the plastic damage model

ing initiates in the 60th cycle, with a total life of 90 cycles for the first simulation
and 93 cycles for the second one.

Several observations can be made when analysing figures 5.7 - 5.11.

First, a progressive reduction in stiffness can be observed from cycle to cycle when
the proposed model is used, that allows a more accurate representation of the
experimental behaviour than if only plasticity is taken onto account. Therefore,
it can be said that the hysteresis obtained in softening with the plastic damage
model is closer to the experimental behaviour.

Second, for the same moment in load history, the maximum stress decreases less
when using the plastic damage model than if only using plasticity equations.
Again, this is a result that indicates that the plastic damage model is closer to
the experimental behaviour.

Third, when considering the final cycles of the analysis (figures 5.10 and 5.11), it
can be seen that the stress does not decrease to 0 despite the fact that the internal
energy of the material has been totally spent. This behaviour is displayed both
in the numerical model and in the experiment, but the two numerical models
seem to totally exhaust the load baring capacity of the material at a lower level
of stress than the experimental result. This residual stress is a consequence of the
kinematic hardening and the results obtained with the two numerical simulations
suggest that, for this particular cyclic load, a lower elastic limit and higher kin-
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Figure 5.7: Evolution of the stress- strain curve. Comparison between the experimental

behavior and the numerical one when using plasticity equations and plastic damage

equations at cycles 1-59
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Figure 5.8: Evolution of the stress- strain curve at cycle 69
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Figure 5.9: Evolution of the stress- strain curve at cycle 79
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Figure 5.10: Evolution of the stress- strain curve at cycle 89
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ematic coefficients would have better approximated the hysteresis and residual
stress at the end of the simulation.



Chapter 6

Extension of the High Cycle

Fatigue model to composites

This chapter presents the methodology of application of the HCF damage model
to composite materials. The composite behaviour will be obtained by means of the
serial/parallel mixing theory that is also used as a constitutive equation manager.
This formulation is based on the composition of the fatigue behaviour of each
component and interface. The constitutive formulation is coupled with the load
advancing strategy in order to reduce the computational cost of the numerical
simulations. Validation of the constitutive formulation is done on pultruded glass
fiber reinforced polymer profiles. Special emphasis is made on the comparison
between the experimental and the numerical failure mode.

6.1 Introduction

The chosen approach in the present work is a phenomenological strength reduc-
tion model at constituent constitutive level based on the formulation adopted
for metals under cyclic loading condition [98],[12]. The stresses and strains of
the composite constituents are calculated using the serial/parallel mixing the-
ory (SP RoM) [77], which allows different constitutive behaviour for each of the
composite components and can accurately model delamination effects which are

143
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expected to be a consequence of fatigue damage. This theory is based on the
definition of some compatibility equations between the strain–stress states of the
composite constituent materials. In the case of a composite made of fiber and
matrix, what the Serial/Parallel mixing theory does is to impose an iso–strain
condition on the parallel direction, usually the fiber direction, and an iso–stress
condition on the serial direction, usually the remaining directions of the stress
and strain tensors. With this scope, if the matrix structural capacity is lost, the
Serial/Parallel mixing theory will reduce the structural capacity of fiber material
in the serial directions due to the iso–stress condition. Thus, it will be impossible
for the composite layer to develop shear or transversal stresses, less to transmit
them to the surroundings elements. It has been already proved in Martinez et
al. [78] that the structural failure just described is equivalent to a delamination
failure.

The basis of the high cycle fatigue constitutive model has been described in
chpater 4 of this document. The model establishes a relationship between the
residual material strength and the damage threshold evolution, controlled by the
material internal variables and by a new state variable of fatigue that incorporates
the influence of the cyclic load.

This constitutive model has been developed for HCF in steel and included a load
- advance strategy that allowed advancing by large loading steps. This work is
focused in assessing its life prediction capability for HCF in composites while
taking advantage of the load-advancing strategy. The formulation for the load
advancing strategy is also provided in chapter 4.

The formulation this chapter presents is validated on pultruded glass fiber re-
inforced polymer profiles by comparing experimental values with the values ob-
tained from a numerical simulation. The next section describes the serial/parallel
mixing theory used, the SP RoM, and how it is implemented in a finite element
code. The following section describes the test simulated. Finally, the results ob-
tained from the simulation are studied and compared to the experimental ones.

6.2 Rule of mixtures

The serial/parallel mixing theory (SP RoM) is based on the definition of two
different compatibility equations between the strain and stress states of the com-
posite constituent materials: it defines an iso-strain condition on the parallel
direction, usually the fiber direction, and it defines an iso-stress condition on the
serial direction, usually the remaining directions. Using these compatibility equa-
tions in a composite made of matrix and fiber, if the matrix structural capacity is
lost due to excessive shear stresses, the iso-stress condition also reduces the shear
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capacity of fiber, and consequently the composite serial strength is also reduced.

For this reason it is necessary to define, and split, the serial and parallel parts
of the strain and stress tensors. This is done with two complementary fourth
order projector tensors, one corresponding to the serial direction (PS) and the
other to the parallel direction (PP ). These tensors are defined from the fiber axial
direction in the composite. Thus,

ε = εP + εS with εP = PP : ε and εS = PS : ε (6.1)

where,

PS = I − PP ; PP = NP ⊗NP and NP = e1 ⊗ e1 (6.2)

Being e1, the director vector that determines the parallel behaviour (fiber direc-
tion), and I the identity. The stress state may be split analogously, finding its
parallel and serial parts using also the 4th order tensors PP and PS :

σ = σP + σS with σP = PP : σ and σS = PS : σ (6.3)

6.2.1 Hypothesis for the numerical modelling

The numerical model developed to take into account this strain-stress state is
based on the following hypothesis:

1. The composite is composed by only two components: fiber and matrix.

2. Component materials have the same strain in parallel (fiber) direction.

3. Component materials have the same stress in serial direction.

4. Composite material response is in direct relation with the volume fractions of
compounding materials.

5. Homogeneous distribution of phases is considered in the composite.

6. Perfect bounding between components is also considered.
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6.2.2 Constitutive equations of component materials

Each composite component material is computed with its own constitutive equa-
tion. However, as in this work the materials will be modelled with a damage
formulation, the description of the formulation is done considering the particu-
lar case of isotropic damage. So, the stresses in matrix and fiber materials are
obtained using:

mσ = (1− md) · mC : mε
fσ = (1− fd) · fC : fε

(6.4)

being mC and fC the matrix and fiber stiffness tensors, respectively. These equa-
tions can be rewritten taking into account the serial and parallel split of strain
and stress tensors (equations 6.1 and 6.3), obtaining:

[
iσP
iσS

]
= (1− id) ·

[
iCPP

iCPS
iCSP

iCSS

]
:

[
iεP
iεS

]
(6.5)

where

iCPP = PP : iC : PP
iCPS = PP : iC : PS

iCSP = PS : iC : PP
iCSS = PS : iC : PS

with i = m, f (6.6)

6.2.3 Equilibrium and compatibility equations

The equations that define the stress equilibrium and establish the strain compat-
ibility between components arise from the analysis of the hypotheses previously
exposed,

Parallel behaviour :
cεP = fεP = mεP
cσP = fk · fσP + mk · mσP

(6.7)

Serial behaviour :
cεS = fk · fεS + mk · mεS
cσS = fσS = mσS

(6.8)

where superscripts c,m and f stand for composite, matrix and fiber, respectively,
and ik corresponds to the volume fraction coefficient of each constituent in the
composite.
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6.2.4 Serial/parallel rule of mixtures algorithm

The known variable that enters the algorithm is the strain state cε of the compos-
ite material at time t+∆t. From this variable, the serial/parallel rule of mixtures
algorithm has to find the strain and stress state of each component that fulfils the
equilibrium, the compatibility and the constitutive equations and the evolution
of the internal variables. The first thing done by the algorithm is to split the
strain tensor into its parallel and its serial parts, in order to compute the strain
state in the matrix and the fiber. The parallel strain component is, according to
equation 6.7, the same for both materials and for the composite. On the other
hand, the serial strain component requires a prediction of the strains expected in
one of the composite components. If this prediction is done for the matrix, the
increment of its serial strains can be computed as

[m∆εS ]
0
= A :

[
fCSS : c∆εS + fk ·

(
fCSP − mCSP

)
: c∆εP

]
(6.9)

with A =
[
mk · fCSS + fk · mCSS

]−1
and m∆εS = t+∆t [cεS ]− t [cεS ].

The initial prediction of matrix serial strains, proposed by Rastellini [107] and
described in equation 6.9, is obtained considering that the distribution of the
total strain, in its parallel and serial parts, is done in function of the composite
tangent stiffness obtained in previous time step. With the prediction of the matrix
serial strains, the fiber serial strains can be computed, in the iteration step n,
according to equation 6.8,

t+∆t
[
f∆εS

]n
=

1
fk

t+∆t [cεS ]−
mk
fk

t+∆t [mεS ]
n

(6.10)

where t+∆t [mεS ]
n
= t [mεS ] + [m∆εS ]

n
.

Regrouping again the serial and parallel components of the strain tensor (equation
6.3), the constitutive equations can be applied to the predicted strains to obtain
the stress tensor for both materials and the update of their internal variables.
fiber and matrix are modelled, each one, with their own constitutive law. If both
materials are described with an additive plasticity formulation, the stress vector
for each one is obtained using equation 6.4. The stresses obtained must fulfil the
following equation:

[∆σS ]
n
= t+∆t [mσS ]

n − t+∆t
[
fσS

]n ≤ toler (6.11)

If the residual stress is smaller than the tolerance, the computed strains and
stresses are considered to be correct and the structural calculation can continue.
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However, if equation 6.11 is not fulfilled, the initial prediction of the matrix strain
tensor has to be corrected. This correction is performed using a Newton-Raphson
scheme, in which the update is made using the Jacobian of the residual forces. It
is obtained deriving the residue function with respect to the unknown. According
to Rastellini [115], the expression for the Jacobian is given as follows:

J =
[
mCt

SS

]n
+

mk
fk

·
[
fCt

SS

]n
(6.12)

and, the correction of the matrix serial strains becomes

t+∆t [mεS ]
n+1

= t+∆t [mεS ]
n − J−1 : [∆σS ]

n
(6.13)

To obtain quadratic convergence in the S/P mixing theory, the Jacobian must be
obtained using the tangent constitutive tensors for the fibers and the matrix. De-
pending on the constitutive equation defined for each material, the constitutive
tensor cannot be obtained analytically. Thus, in order to obtain a reliable al-
gorithm, the expression of the tangent tensor is obtained numerically with the
procedure shown in Martinez et al. [77], [78].

6.3 Numerical simulation of GFRP profile

The capabilities of the fatigue constitutive model, together with the stepwise
load-advancing strategy presented, will be shown by comparing results obtained
from numerical simulations with the results provided in the experimental work
presented in Keller et al. [58] .

All the examples presented in this section have been calculated with the PLCd
finite element code [111], where the formulation presented here has been imple-
mented.

6.3.1 Problem definition. Geometry and material.

Pultruded GFRP plate profiles with 100 × 5 mm rectangular cross-section were
examined. The plates consisted of E-glass fibers embedded in an isophthalic poly-
ester resin. The fiber architecture comprised mainly unidirectional rovings in the
central region and one combined mat in the outside regions [57]. The combined
mats consisted of chopped strand mats (CSM) and woven mats 0◦/90◦ of different
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Architecture % by volume % by weight

Rovings (UD) 4:1 Straight and blown 37 53

Combined mats: 2 × 1

CSM (g/m2) 300 5 7

woven 0◦/90◦ 150/150 5 7

Total 47 67

Table 6.1: Fiber architecture and fractions by volume and weight of the pultruded profiles

used [58]

weights; these two mats were stitched together. Furthermore, a polyester surface
veil (40 g/m2) was added. The corresponding experimental fiber fractions are lis-
ted in table 6.1. They were determined by weighing the specimen before and after
a resin burn-off in a furnace at 450 ◦C. The experimental volume fractions were
calculated using an E-glass density of 2.56 g/cm3. Since the fatigue behaviour
is influenced by internal material defects and voids, some cross-sections were in-
vestigated by means of microscopy. The analysis showed a very good embedment
of the fibers without any voids [57].

The specimen shape used was a tapered form (TP specimens, dog-bone shape)
presented in figure 6.1. They were cut with a water-jet into a dog-bone form
according to ASTM E 466-96 with a gage length of 300 mm, a gage width of 40
mm and, accordingly, a grip-to-gage width ratio of 2.5. The radius of curvature
between the ends was 390 mm. The TP specimens were left in a laboratory
environment for more than one week prior to testing to reduce the moisture
effects induced during the cutting process [58].

6.3.2 Finite element model

The fatigue specimen presented in figure 6.1 has been reproduced by means
of a finite element model. The dog-bone shape volume has been meshed with
quadratic hexahedral elements as shown in figure 6.2. The mesh has 13896 nodes
and 2354 elements. Each finite element is described with 27 integration points.

The boundary conditions applied are shown in figure 6.3. The specimen is re-
strained at one end and subjected to a cyclical displacement at the other end.
All numerical simulations have been conducted under displacement-controlled
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Figure 6.1: Experiment specimen with strain and temperature gages [58]

Figure 6.2: Finite element mesh of quadratic hexahedral elements
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Figure 6.3: Boundary and loading conditions for the analysed geometry

Component

Ultimate limit

strength UTS

(MPa)

E-Modulus

longitudinal

(GPa)

E-Modulus

transversal

(GPa)

Fracture

energy

(MN*m/m2)

Fiber 2000 78.5 3 500

Matrix 75 3 3 10

Table 6.2: Material properties used in the numerical simulations

conditions.

The analytical formulation for the S−N curve used by the numerical model was
the one presented in [98] and shown in chapter 4. A decomposition of the exper-
imental S −N curve of the composite found in Keller et al. [58] has been made.
The maximum composite stress for each experimental test has been decomposed
according to the volumetric participation of each component into a maximum
associated stress in the matrix and a maximum associated stress in the fiber. Us-
ing this decomposition associated S −N points have resulted for the matrix and
fiber as derived from the experimental composite S−N curve. Afterwards, a cal-
ibration process has been conducted for both the fiber and the matrix in order to
find the material parameters that approximate correctly those points. The para-
meters used for the adjustment of the numerical S−N curve to the experimental
one proposed by Keller et al. [58] are Se/Su = 0.01, STHR1 = 3, STHR2 = 1.5,
ALFAF = 0.12, AUXR1 = 0.0001, AUXR2 = 0.008 and BETAF = 1.75
for the matrix and for the fiber Se/Su = 0.01, STHR1 = 3, STHR2 = 1.5,
ALFAF = 0.135, AUXR1 = 0.0001, AUXR2 = 0.008 and BETAF = 1.68.

The material properties used in the numerical simulations are shown in table 6.2.
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Specimen
Ultimate limit

strength UTS (MPa)

Failure strain

(%)

E-Modulus

(MPa)

5 mm tapered 459 ± 24 1.37 ± 0.07 34,799 ± 584

(3 specimens)

Table 6.3: Composite properties as recorded from the static experimental tests[58]

6.3.3 Experimental program

The experiments were performed in a laboratory environment at room temperat-
ure without humidity control. Effects of environmental exposures (temperature,
moisture, chemicals) on the fatigue behaviour were not investigated.

First, single-cycle axial tension experiments were performed with displacement-
controlled loading at a rate of 0.6 mm/min up to failure. The numbers of exper-
iments per specimen shape are listed in table 6.3.

Subsequently, cyclic axial tension–tension experiments were conducted under
load-controlled conditions with a sinusoidal waveform of constant amplitude. The
specimens were loaded at a minimum to maximum load ratio of R = 0.1 and at
different loading ranges. The upper boundary values were varied from 20% up
to 80% of the average ultimate tension strength (UTS) of the static experiments
(see table 6.3). The used frequencies varied between 1 and 12 Hz. Due to prac-
tical reasons, the highest frequencies were used for the lowest loading ranges with
maximum fatigue life and vice versa. Experiments were performed up to speci-
men failure (separation of samples) or up to ten million load cycles at maximum
(if possible due to time constraints). The parameter combinations used in this
study are summarized in table 6.4.

6.3.4 Results and discussion

The simulation program begun with a trial static simulation in order to con-
firm that the volumetric participations used in the numerical simulations yielded
the same initial stiffness as the experimental results. The experimental stresses
shown in table 6.3 were calculated from the measured loads (average stress in the
cross-section); the strains were obtained from the average measurements from
strain gages 1 and 2 (see figure 6.1). Due to the experimental fiber architecture
of the specimen (detailed in table 6.1) the first combination of volumetric parti-
cipations tested was 42% fibers and 58% matrix. These values have been chosen
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Specimen Loading

range

∆F

(kN)

Stress

range

∆σ

(MPa)

Maximum

(ulti-

mate)

load (%)

Amplitude

ratio R

Cycles

to fail-

ure N f

Remarks

TP5-1 65 325 82 0.13 1346

TP5-2 48 240 60 0.13 13,407

TP5-3 47 235 59 0.13 19,159

TP5-4 33 165 41 0.13 1,875,940

TP5-5 17 85 22 0.15 5,000,000 not

failed

Table 6.4: Overview of experimental results [58]

in order to approximate the contribution of the two combined mats consisting
of chopped strand mats (CSM) and woven mats 0◦/90◦ of different weights. In
the numerical simulation these mats were not specifically discretized as a differ-
ent material. Therefore, by increasing the volumetric participation of the fibers
with respect to the UD rovings, their effect was to be taken into account in a
homogenized way. Even though the two combined mats increased the volumetric
fiber participation by 10%, only a 5% increase has been considered numerically
since it was considered that the longitudinal contribution of the mats were of
only 5%, an assumption made by Keller et al. [58]. However, it can be seen from
figure 6.4 that the initial stiffness obtained in the numerical simulation with this
volumetric participation is not in accordance with the experimental recordings
(14.65% error in strain for a stress level of 400MPa). The next fiber percentage
tested was 37%, the percentage experimental recordings showed to correspond
to the UD rovings. For this percentage the error was of only 3,76% for the same
stress level and this was considered acceptable.

Following, cyclic simulations have been ran with an applied displacement that
induced the same stress amplitude and maximum stress as the experimental
recordings in table 6.4. From these simulations two aspects are analysed in detail:
the failure mode and the number of cycles until failure.
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Figure 6.4: Initial stiffness for the static case. Comparison between experimental and

numerical values.

6.3.4.1 Failure mode

Some considerations have to be made with respect to the experimental failure
mode. The static tests showed that the stress–strain relationship of the profiles
was almost linear-elastic up to failure. Failure always occurred in a very brittle
and sudden manner without any visible or audible signs (such as surface cracks
or cracking noises). Therefore, it could not be determined where the fracture
initiated. The specimens showed principally one diagonal crack in the tapered
region and some small longitudinal cracks in the grip region (see figure 6.5)
and they were split-up in the profile plane mainly between the outer layers con-
taining the combined mats and the center part containing the UD-rovings. The
length of the split parts spanned, more or less, the beginning and the end of
the diagonal cracks and the whole profile widths. The center parts were split-up
themselves along bundles of UD-rovings and resin. The diagonal cracks formed
principally in the outer layers containing the combined mats. The fiber failures
of the UD-rovings were distributed longitudinally in the split-up parts and were
not concentrated in the diagonal cracks. All of the UD-roving fibers must have
been failed within the split-up parts since no further load could be applied.

During the fatigue tests, 4 specimens fractured while one specimen did not fail
(see table 6.4). The failure modes under fatigue loadings were basically identical
to the failure modes under quasi-static loadings. In several specimens, however,
the widths of the cracks in the outer profile layers and the total elongations of
the specimens were much more significant in the fatigue experiments compared
to the static experiments. This observation can be explained by the progressive
deterioration of the matrix and fiber/matrix interfaces, which led to easier pull
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Figure 6.5: Static (above) and fatigue (below) experimental failure modes

out of the failed fibers [58].

The failure mode obtained in the numerical simulations can be seen in figure
6.6 for one of the numerical simulations. Specifically this simulation was set to
run with the same characteristics as specimen TP5-1 in table 6.4. The diagonal
distribution of the cracks was not found in any of the numerical simulations.
A possible reason is that the combined mats where the diagonal experimental
cracks were located were not taken into account in the numerical simulation.

In the numerical simulation the specimen lasted a total of 1311.08 cycles until
failure. The distribution of the damage parameter for the composite material
is shown at different time steps. It can be seen that damage initiates in the
numerical simulation in the exterior parts of the curvature. As the number of
cycles applied increases, the internal damage variable continues to increase in
those same areas and consequently stress redistribution occurs in the material.
This stress redistribution activates the central area of the specimen where damage
starts to accumulate also, cutting thru the cross sectional area of the specimen,
perpendicular to its longitudinal axis. It should be noted that in the numerical
simulation the failure mode is symmetric. Damage propagation in the width of
the specimen occurred mainly in the two last cycles of the simulation, indicating
that the failure mode in the numerical model was also brittle, same as in the
experiment.

Figure 6.7 shows the evolution of the damage parameter in the glass fibers. It
can be seen that while damage is located in the exterior area of the curvature the
fibers remain in an elastic state. Only after approximately 1200 cycles the fibers
in the central area of the model start to enter into the nonlinear domain due to
the reduction in strength caused by the reduction coefficient, fred(N,Smax, R),
propagating thru the width of the specimen mostly in the last two cycles of the
simulation. In figure 6.8 it can be seen that damage in the external areas of the
specimen curvature appears due to matrix degradation. However, only the matrix
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Figure 6.6: Distribution of the damage internal variable for the composite at different

time steps
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cracking is not enough to lead to specimen failure. Only when fiber degradation
occurs failure is reached and this happens due to cross sectional degradation until
the remaining area cannot bear the applied cyclic loading.

In figure 6.9 a zoom on the central damaged area of the specimen is shown.

The distribution of the damage parameter for the composite material is painted
on the deformed shape of the specimen, scaled 20 times. Again it can be observed
that failure is caused due to damage in the central area, also visible when ob-
serving the longitudinal strain distribution in the last step of the analysis (figure
6.10).

Figure 6.11 shows the evolution of the curves of interest for the fatigue model
at the first integration point where damage initiates in the model. The number
of cycles is shown in a logarithmic scale on the horizontal axis. Since damage
initiates in the isophtalic matrix these curves refer to the matrix material. In
figure 6.11 the evolution of the equivalent stress in the undamaged space can be
seen. This equivalent stress has been calculated with a Von Mises surface and its
evolution shows how the load advancing strategy functions at integration point
level.

First the equivalent stress follows a sinusoidal curve while in the load-tracking
stage of the advancing algorithm. When the stress state has stabilized from one
cycle to the next in the entire geometry the large increments stage begins, where
the applied displacement is maintained constant at its maximum value and the
free variable number of cycles increases. In this stage the stress state does not
change from one increment to the next, only the material strength threshold
and the Wohler Stress change as indicated in figure 6.11. The strength threshold
at that material point is lowered progressively until it reaches the maximum
equivalent stress and the damage parameter starts to accumulate. The evolution
of the internal damage variable can be seen in figure 6.12 for the same material
point as above. It can be seen that only damage in the matrix accumulates since
only the matrix threshold has been surpassed.

The nonlinear stress-strain material behaviour in the isophtalic matrix can be
seen in figure 6.13. When the strength threshold is crossed for the first time a
drop in stress is visible. When unloading after this point a corresponding change
in stiffness has happened and progressively the matrix load bearing capacity
is degraded until failure at that material point. Each jump in stresses is the
consequence of another large increment of number of cycles being applied. It
can be seen that although the applied maximum displacement of the specimen
is constant, a slight reduction of the maximum strain is visible as the stress
history of this material point is pushed further in the nonlinear domain. This is
a consequence of the structural macro behaviour of the specimen.

Following, in figure 6.14 and figure 6.15 the fatigue curves of interest are shown
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Figure 6.7: Distribution of the damage parameter in the glass fibers at different time

steps
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Figure 6.8: Distribution of the damage parameter in the isophtalic matrix at different

time steps
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Figure 6.9: Composite damage distribution in the last step of the analysis on the de-

formed specimen shape (20x)

Figure 6.10: Distribution of the longitudinal strain of the composite in the last step of

the analysis on the deformed specimen shape (20x)
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Figure 6.13: Evolution of the matrix stress-strain at the first integration point where

damage initiates in the model

in one of the integration points situated in the center of the sample, at the exact
position where the strain gauges are located (see figure 6.1). When assessing the
evolution of the equivalent stress in the material, it can be seen that it is virtually
unchanged, demonstrating an elastic behaviour, up until the very last analysis
steps when there is a sudden increase. This corresponds to the moment in load
history when damage has propagated enough into the central width that the
remaining material area is unable to bear the applied displacement and sudden
structural failure occurs.

From figure 6.14 and figure 6.15 it can be seen that the behaviour in this model
area is the same in both matrix and fiber. The equivalent stress evolution present
in the two figures is in accordance to the experimental recordings, indicating a
brittle failure mode.
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6.3.4.2 S −N fatigue life curves

The comparison between the numerical and experimental S−N curves is shown
in figure 6.16. These curves are in semi-logarithmic representation. The last point
in the chart, corresponding to a ratio of 0.22 between the maximum induced stress
at the strain gauge location and the experimentally recorded UTS, represents a
cyclic test where the specimen has not failed even after applying 109 cycles of
loading both in the numerical simulation and in the experimental test.

The test used in the calibration of the fatigue material parameters and the frac-
ture energy was the first one, where the two curves coincide. The corresponding
ratio between the maximum induced stress at the strain gauge location and the
experimentally recorded UTS was 0.82. The remaining simulations have been ran
with the matrix and fiber material obtained from the calibration process. It can
be seen that the life prediction capabilities of the model progressively worsen as
the stress ratio lowers.

This tendency can either be a consequence of the test chosen for the calibration;
a consequence of the assumptions the model takes into account at splitting the
experimental S − N recording into matrix and fiber S − N values, or of the
assumption that the fiber and matrix both exhibit nonlinear effects due to fatigue.

In table 6.5 a summary of all the results, both numerical and experimental, is
presented.
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Figure 6.16: Comparison between the numerical and experimental S-N curves

Specimen
Max./ultim.

load (%)

Amplitude

ratio R

Cycles to

failure N f

(experi-

mental)

Cycles to

failure N f

(numerical)

Remarks

TP5-1 82 0.13 1346 1311

TP5-2 60 0.13 13407 9522

TP5-3 59 0.13 19159 13024

TP5-4 41 0.13 1875940 400020

29 0.13 3200036

Additional

numerical

test

TP5-5 22 0.15 5000000 5000000 not failed

Table 6.5: Overview of numerical and experimental results
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Chapter 7

Conclusions

7.1 Final remarks

The aim of this chapter is to summarize all the work done for this thesis high-
lighting its innovative points and main contributions. This work opens new per-
spectives to feasible and attractive future developments. The possible lines for
future improvements and subsequent developments are also given in this chapter.

The present thesis aims at advancing an innovative computational methodology
that simulates steel and composite fracture under cyclic loading following a phe-
nomenological approach, with calibration from both small scale and large scale
testing. This work addresses fatigue processes ranging from high cycle to ultra-
low-cycle fatigue.

The general objective of this work was, therefore, the development of a con-
stitutive formulation able to model the entire range of fatigue constitutive beha-
viour, be it in HCF, ULCF or LCF.

Taking this into consideration, in chapter 3 a new formulation especially de-
veloped to simulate the mechanical response of steel, and its failure due to ULCF,
has been presented. The formulation is based on the Barcelona plastic model
initially proposed by Lubliner et al. [71], which has been improved adding a non-
linear kinematic hardening law coupled with two variations of a new isotropic
hardening law. In the first case the isotropic hardening law is divided in two re-
gions. In the first one the material exhibits a hardening behaviour and this region

167
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is defined by several points that have to be obtained from experimental tests. In
the second region, the steel shows a softening behaviour, which is defined with an
exponential law. In the second case the curve is divided into three regions: initial
hardening obtained by curve fitting to experimental points; a second region, also
in hardening, defined by a linear curve with a user imposed slope; and a third
region consisting of exponential softening. The evolution of the material in both
these two cases is driven by the fracture energy that can be dissipated by the
material.

This approach allows predicting material failure by the constitutive model on
its own, without the need of additional parameters or additional laws especially
chosen for the failure criteria that is to be simulated. Therefore, with the pro-
posed formulation it is possible to simulate accurately the mechanical response of
steel under different loading scenarios, such as monotonic, regular cyclic, cyclic
followed by a monotonic or a random cyclic load. This last case is equivalent
to the load that will be obtained in a seismic case, where ULCF may be one
of the main causes of structural failure. Several numerical analyses have been
performed in order to show the behaviour of the formulation under the different
loading scenarios mentioned.

The capacity of the formulation to simulate accurately the ULCF phenomenon
has been proved by reproducing different experimental tests made on X52 steel
samples. The experimental campaign consisted in loading several specimens with
different strain amplitudes. Tests were also performed to notched specimens in
order to increase the plastic strain and reduce the number of cycles that could be
applied before failure. One of the experimental tests has been used to calibrate
the material parameters of the model; afterwards all other samples have been
reproduced numerically. All the numerical results obtained with the proposed
constitutive model have provided an excellent agreement with the experimental
tests, proving the validity of the proposed formulation to simulate the plastic
response of steel and its failure due to ULCF.

After validating the new constitutive law, especially formulated for the monotonic
and cyclic behaviour of steel, on small scale specimens, large scale simulations
have been conducted to assess its capabilities. Even though the law has been
designed for the particular case of cyclic loading, its behaviour was also assessed
on a straight pipe loaded monotonically. The results are very promising, with an
error of 0.8% in the total axial load at failure for the first case where tension
followed by internal pressure was applied. For the second case, internal pressure
followed by tension until failure, the error was higher in terms of total axial load,
of 9.11%, still below a 10% threshold.

Regarding the ULCF in-plane bending simulations conducted on a 16-inch 90◦

elbow, the results were in good agreement with the experimental test in terms of
force-displacement hysteresis loops and total fatigue life of the specimen, where
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the error in life prediction was of 5.11% on the safety side for the numerical
simulation.

The failure mode obtained by means of the numerical simulation was in agree-
ment to the one found in literature for low internal pressure, but not in agreement
with the particular experimental test used for comparison. An analysis of the de-
pendence of the failure mode to the internal pressure applied has been conducted
and the limit internal pressure between the two modes has been determined,
showing that the formulation is capable of obtaining both failure types.

It should be remarked that the material calibration for both experimental tests
reproduced (straight pipe and elbow) has been performed using data from other
experimental tests (small samples). This proves the excellent prediction capab-
ilities of the formulation, as it has been able to reproduce accurately the force-
displacement response, the maximum load applied and the failure mode in both
loading patterns: monotonic and cyclic.

Finally, the main advantage of the model: its ability to predict material failure
under a wide variety of non-regular cyclic loads, or under complex loading his-
tories that incorporate monotonic and cyclic episodes, has been emphasized. A
seismic-like cyclic displacement has been applied on small scale samples made of
X52 steel and the performance of the model has been shown after one and after
several cycles of loading.

Chapter 4 has presented a fatigue formulation that takes into account the effects
caused by the accumulation of number of cycles of loading thru an alteration
in the strength and in the stiffness of the material. First, material strength is
reduced until it reaches the induced maximum stress level. From that point on,
energy dissipation is done by means of stiffness reduction.

The cyclical load is taken into consideration by means of two parameters: max-
imum stress generated by the applied load and stress reversion factor. Both para-
meters have a direct influence on the onset of damage and on the strength re-
duction. This allows a quantification of the effects induced by different cyclical
loads and discrimination between different load-applying orders.

In order to take full advantage of this formulation a stepwise load advancing
strategy has been proposed. Its aim is to save computational time and improve
convergence in a number of cases, such as load combinations and nonlinear ma-
terial behaviour.

The procedure divides the load in two different loading processes: load track-
ing and large increments phases. The jump between the two loading schemes is
made automatically, depending on the mechanical response of the structure. The
algorithm is user controlled by means of the stabilization tolerance and by the
number of cycles considered as large step.
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The capabilities of the formulation have been shown in test cases of single cyclical
loads and in ones with the load history comprised of two different loads. Valid-
ation of the proposed model has been done by reproducing the experimental
results obtained by Marines et al. [76].These tests show that, with the strategy
proposed, it is possible to perform fatigue simulations taking into account mater-
ial nonlinearities and load variations straightforward, as the advancing strategy
takes care automatically of the procedure required at each step (load-tracking
or large increments) in order to obtain the most accurate result with the lowest
computational cost.

Chapter 5 describes the formulation for a constitutive model that couples plas-
ticity with damage by a simultaneous integration of the equations of the two
processes. The model is energy based and the material performance is determ-
ined by the amount of energy dissipated by plasticity and by damage.

This formulation has been applied to cyclical loads and an energy distribution law
has been proposed that establishes the energy participation factors for the two
processes as a function of the number of cycles the material has been subjected
to until having reached softening.

The automated distribution of the energy between the two processes is the main
contribution of this work as well as the application of the simultaneous integration
scheme for the case of cyclic loading, while considering at the same time both
isotropic and kinematic hardening.

The formulation has been implemented to work in the softening regime as dam-
age is a softening process. Comparison to the experimental stress-strain loop has
shown the plastic damage model exhibits a behaviour that is closer to the exper-
iment in terms of hysteresis shape and maximum stress reduction, as compared
to a formulation using only plasticity equations.

This chapter has also shown that both LCF and ULCF can be simulated with
the same thermodynamic framework as the constitutive formulation is able to
adapt by itself to the type of fatigue involved.

Chapter 6 has presented the application of the previously shown HCF damage
model, coupled with the load-advancing strategy for composite materials. First,
material strength has been reduced for each component until it reached the in-
duced maximum stress level in that component. From that point on, energy
dissipation has been done by means of stiffness reduction, same as for the model
presented in chapter 4.

The constitutive model has been used for both the fiber and the matrix of a
composite material and the composite material behaviour has been obtained
by means of the serial/parallel rule of mixtures. The fatigue behaviour of the
composite has been obtained therefore as a composition of the fatigue of its
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components. The possibilities of this constitutive strategy have been studied for
the case of a pultruded glass fiber reinforced polymer. For this case, a calibration
of the material parameters has been made with one of the experimental tests and
the resulting material has been used for the rest of the simulations.

The results showed a progressively higher discrepancy between the experimental
fatigue life and the numerical one, the lower the maximum stress induced in the
specimen is. This tendency is believed to be a consequence of several factors, such
as: choosing a skewed test for the calibration; a consequence of the assumptions
the model takes into account at splitting the experimental S−N recordings into
matrix and fiber S − N values, or of the assumption that the fiber and matrix
both exhibit nonlinear effects due to fatigue.

Regarding the failure mode, the experimental results showed diagonal cracks
formed in the outer layers containing the combined mats. However, the failure
mode in the numerical simulations did not exhibit diagonal cracks. This discrep-
ancy may be due to the fact that the combined mats were not discretized in the
numerical model.

Overall, all the objectives defined in the beginning of this document have been
achieved. Chapter 3 has adressed the first specific objective of the thesis; chapter
4 has addressed the second and fourth specific objectives of the thesis; chapter 5
has addressed the third specific objective of the thesis and the 6th chapter has
addressed the last specific objective of the thesis.

7.2 Future work

This section outlines the possible lines of research opened by this work, as follows:

• The three constitutive formulations shown in this thesis share a common
thermodynamic and mechanical framework which offers the possibility of a
unified fatigue constitutive formulation that adjusts by itself to the type of
problem to be solved (ULCF, HCF or LCF). The preliminary theoretical
framework has been addressed by the author in [13] and its implementa-
tion is currently work in progress. Chapter 5 has already shown that the
consitutive formulation can adapt by itself to LCF and ULCF. The HCF
formulation should also be coupled under the same constitutive framework
since in real-life simulations it is seldom known beforehand under what type
of fatigue failure occurs.

• Mirroring the load-advancing algorithm proposed, a new advancing strategy
opens up for ULCF problems where high levels of plastic strain are recorded
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from the first cycles. Specifically, in the load-tracking stage apart from
the characteristics of the stress from one cycle to the next, the energy
dissipated is monitored. When the dissipation per cycle reaches a stationary
state throughout the continuum a jump can be made where the load is
maintained at the maximum level and the dissipation at each Gauss point
is incremented with the number of cycles applied as step multiplied by the
stabilized dissipation per cycle. The internal variables of the model will
then adjust to the new energy state and this procedure can be applied until
exhausting all the energy available for hardening, for instance.

• For the case of composite materials only a preliminary study has been made
so far. The application of the constitutive formulation to other types of
composites (e.g. laminated composites) should be investigated. Following, a
generalized application scheme can be derived with a posterior optimization
of the constitutive formulation for different types of constituent materials.

• A study on the application of the constitutive models developed in this
thesis is to be made taking into consideration other fields such as aero-
generators, structures subjected to vibrations or structures subjected to
seismic actions.

• The behaviour of the LCF plastic damage model should be extensively
studied for the different cases of cyclic loads, not just for those that induce
fatigue lives closer to the ULCF regime but also for the opposite, closer to
the HCF regime.

7.3 Innovative contributions

The innovative points of this work can be summarized by the following list:

• Development of a new Barcelona plastic damage model by adding a kin-
ematic and an isotropic constitutive law.

• Characterization of ULCF failure by using the new Barcelona plastic dam-
age model.

• Automatic load-advancing strategy for the resolution of HCF problems.

• Application of the coupled integration scheme to the cyclic problem.

• A fracture energy distribution law for fatigue problems that automatically
distributes the energy between damage and plasticity.

• The application of the HCF damage model to composites.
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7.4 Publications derived from this work and par-

ticipation in projects

From the work carried out in the context of this thesis the following publications
have resulted:

Peer-reviewed journal publications:

1. Martinez, X., Oller, S., Barbu, L., Barbat, A. and De Jesus, A.M.P. Analysis of
ultra-low cycle fatigue problems with the Barcelona plastic damage model and a
new isotropic hardening law, International Journal of Fatigue (2015); 73:132-42.

2. Barbu, L.G., Oller, S., Martinez, X. and Barbat, A. High cycle fatigue simula-
tion: A new stepwise load-advancing strategy, Engineering Structures (2015) 97:
118-129, http://dx.doi.org/10.1016/j.engstruct.2015.04.012.

3. Barbu, L.G., Martinez, X., Oller, S. and Barbat, A.H. Validation on large scale
tests of a new hardening-softening law for the Barcelona plastic damage model,
International Journal of Fatigue (2015); 81:213-226.

4. Barbu, L.G., Oller, S., Martinez, X. and Barbat, A.H. High-cycle fatigue con-
stitutive model for the analysis of fiber reinforced composites, Composite Struc-
tures, under review.

5. Barbu, L.G., Oller, S., Martinez, X. and Barbat, A.H. Coupled plastic dam-
age model for the analysis of pipelines under low and ultra-low cycle fatigue,
Engineering Fracture Mechanics, under review.

Conference papers:

1. Martinez, X., Oller, S., Barbu, L.G. and Barbat, A.H. Analysis of ultra low
cycle fatigue problems with the Barcelona plastic damage model, Proceedings of
the 12th International Conference on Computational Plasticity - Fundamentals
and Applications, COMPLAS 2013; 352-63.

2. Barbu, L.G., Oller, S., Martnez, X. and Barbat, A.H. Stepwise advancing
strategy for the simulation of fatigue problems. Proceedings of the 12th Interna-
tional Conference on Computational Plasticity - Fundamentals and Applications,
COMPLAS 2013: 1153-64.
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3. Barbu, L.G., Oller, S., Martnez, X. and Barbat, A.H Coupled plastic dam-
age model for low and ultra-low cycle seismic fatigue. 11th. World Congress on
Computational Mechanics 2014; 2955-66, ISBN 978-84-942844-7-2.

4. Barbu, L.G., Martinez, X., Oller, S. and Barbat, A.H. Large scale validation of
a new isotropic hardening law for the Barcelona plastic damage model under Ultra
Low Cycle Fatigue conditions, Proceedings of the 13th International Conference
on Computational Plasticity - Fundamentals and Applications, COMPLAS 2015;
248-259.

5. Barbu, L.G., Oller, S., Martnez, X. and Barbat, A.H. Model-wise algorithm for
the resolution of fatigue problems, Proceedings of the 13th International Confer-
ence on Computational Plasticity - Fundamentals and Applications, COMPLAS
2015; 260-271.

Projects:

Ultra low cycle fatigue of steel under cyclic high-strain loading conditions Funded
by the Research Fund for Coal and Steel thru grant no. RFSR-CT-2011-00029
Starting date: 01/07/2011 End date: 30/06/2014

Conference attendance with presentation:

1. Barbu, L.G., Oller, S., Martinez, X. and Barbat, A.H. Plastic damage model
for fatigue in composites. ICCS18 (18th International Conference on Composite
Structures), Lisbon, Portugal, 15-18 June 2015.
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