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Abstract

The use of multi-scale procedures is encouraged by the continuous increase
of computational capacity, but it is still a challenge performing a non-linear
analysis of a real composite structure without the aid of large computers.
This work proposes a strategy to conduct non-linear two-scale analysis in an
efficient way. The proposed method considers that in a large structure, in
general, material non-linear processes only take place in a localized region
(or in a reduced number of finite elements, if a FE method is used). The
strategy determines the elements that require a non-linear analysis defining
of a non-linear activation function that accounts for the failure of the most
critical point in the microstructure. The procedure conserves the dissipated
energy through the scales, being mesh independent as the mesh objectivity
concept is extended to the microstructure. The validity of the strategy pro-
posed is proved with the analysis of academic examples showing not only the
mesh independency but also the reduction of computational cost. Finally, an
industrial composite component is solved using a standard computer, show-
ing that the proposed strategy is capable of reducing the computational cost
from 32 days and 14 hours (required by a classical multi-scale method) to
less than 12 hours.
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1. Introduction

Composite materials are not like simple materials because they are inter-
nally a complex structure. Therefore, composites required specific formula-
tions that the ones used in single materials. For a linear analysis or a study
of maximum load it is enough with one orthotropic material characterization
and a law with some complexity to predict the break of the structure (such
as, maximum strain criterion [1], tsai-wu criterion [2], etc). However, numer-
ical methods have allowed the simulation of structures beyond their elastic
limit, and then it is possible obtain the post critic behavior of the structure
and its tenacity and structural integrity can be estimate.

The complexity of composites has promoted that different formulations
appear to predict their behavior, which are more o less suitable according to
computational cost available, the accuracy in the results desired or even the
expected failure type. In the following, some of the most relevant formula-
tions are described.

One possibility to simulate structures of composite materials which have
complex microstructures is to use phenomenological homogenizations. The
most common method is the classical mixing theory, which obtains the be-
havior of the composite from the mechanical performance of the composite
components, these are simulated with its own constitutive law [3]. Afterward,
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Oller [4] generalizes the theory to enable the resolution of any composite
with reinforced matrix, without the limitation required by the compatibility
equation. On the other hand, in the SP [5] continuum approach the me-
chanic characteristic of the composite are obtained using the properties of
each component and taking into account its topological distribution. This
serial/parallel (SP) mixing theory assumes a serial-parallel self-adjusting be-
havior to the topological distribution of fiber embedded in the matrix of
the composite material. Recently, one extension of the mixing theory for
the study of matrices reinforced with nanotubes has also been developed [6].
All these theories have proved to be able to reproduce not only mechanic
properties of composites but to solve non-linear problems also [7, 8, 9]. It is
necessary to say that in some particular cases, when the damage is located in
one lamina, how in a delamination process, the SP theory may lack accuracy
[10].

To simulate laminated composites, one alternative to the previous method-
ologies described is the Discrete Damage Mechanics (DDM) models [11, 12].
The stiffness reduction due to transverse matrix cracking in laminates with
symmetric but with arbitrary laminate stacking sequence, subject to in-plane
stress, is obtained for the laminae [11]. The properties of the damaged lami-
nates only depend of the crack densities of the damaged laminae. The crack
density evolution is derived in term of the strain energy release rate. This
procedure showed that it can predict the initiation and evolution of the ma-
trix cracking, and the stress redistribution in the laminae. Recently, the
described method was extended to predict the laminate failure throughout
including fiber failure [13]. A Weibull statistical distribution is used to char-
acterize fiber failure and it is incorporated to [11] using a simple fiber damage
model. Therefore, the laminate properties now depend of the fiber damage
in the laminae too.

On the other hand, Sanchez-Palencia [14] and Suquet [15] laid the foun-
dation of what today is known as first-order homogenization methods. The
macroscopic deformation gradient tensor is used to solve the problem at the
microstructural scale and then the macroscopic stress tensor is obtained us-
ing the averaging equation [16, 17]. Later, Suquet uses the method of average
described to solve and extend the problem of two scales to non-linear range
[18]. Over time, thanks to the work to several authors, the method was ex-
tended to large deformations with arbitrary non-linear material behavior at
the microsctructural scale [19, 20, 21, 22, 23, 24].

Geers and Kouznetsova proposed what is called second-order homogeniza-
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tion [25, 26, 27], which is an extension of the first-order theory. In this case,
the macroscopic deformation gradient tensor and its Lagrangian gradient is
used to solve the boundary value problem at the microstructural scale. The
second-order approach allows solve problems in the presence of localization
phenomena without loss of precision in the solution because the Lagrangian
tensor is taken into account. The main drawbacks of this method are its
computational cost and complex implementation.

Continuous-discontinuous homogenization method has been developed in
the context of masonry [28]. The methodology incorporates a localization
band in the macrostructural scale and using the first-order homogenization
concepts solve the damaged zone (in the localization band) and the undam-
aged zone. However, the localization band has a fixed size and need to be
located at the beginning. Besides, the approach loses the benefits of the ho-
mogenization ideas and it is more similar to a domain decomposition with a
refined subscale. Other phenomenological and homogenization models specif-
ically applied to masonry can be found in references [29, 30, 31].

Computational homogenization approach is adopted to solve interface
volume with cohesive zone [32]. The cohesive zone (using a traction-opening
concept) is coupled with a microstructural scale with finite dimension. The
boundary value problem at the microstructure is solved using the macrostruc-
tural scale kinematics (interface opening vector).

The approach used in current work is a multi-scale homogenization based
on a Representative Volume Element (RVE) or unit cell concept. The RVE
has a microstructural subregion geometry which is representative of the entire
microstructure. The boundary value problem on the structural scale and
in the microstructural scale (RVE) is solved by the Finite Element (FE)
method (see AppendixA). With this approach, it is necessary to solve the
RVE each time that the macrostructural model requires information about
its performance, this is why this kind of solution procedure is known as FE2.

Most of the work on FE2 multi-scale procedures are done on analyzing the
numerical performance of RVE [33, 34] or on connecting different scales [35].
In general, in this kind of homogenization methods the elastic properties
of the microstructure are obtained solving the microstuctural problem at
the beginning of the structure problem. However, the problem with these
methods is their computational cost for a non-linear analysis because it is
required solving the RVE in every integration point at the macrostructural
problem and for every time step to know the non-linear limit and then the
behavior of the microstructure in non-linear range. Non-linear performance
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has also the problem that the dissipated energy of both scales is not always
related [36].

In order to improve the computational cost of the multi-scale homoge-
nization some strategies use model-order reduction techniques [37, 38, 39].
These methods use the Proper Orthogonal Decomposition (POD) to obtain
the reduced set of empirical shape functions. Besides, [39] proved that the
common approach of replacing the non-affine term by an interpolant con-
structed taking only POD modes arrives to ill-posed formulations. An en-
riched approximation space with the span of the gradient of the empirical
shape functions is proposed to avoid this ill-posedness. However, these kind
of procedures do not solve the complete structure.

Here it is proposed a new procedure to reduce computational cost of
multi-scale simulation. The paper looks also into the problem of localization
and energy dissipation across the scales, as the proposed method must be
consistent [40]. It is important to note that the procedure developed takes
and extends the two-scale homogenization proposed by Otero et al. [10] (see
AppendixA).

In the following the formulation and algorithm schemes of the proposed
procedure is described. Afterwards, Section 3 presents theoretical framework
and its extension to multi-scale methods of the consistent energy dissipation
problem. The numerical validation and one industrial application using the
developed method is shown in Section 4. Finally in last section the conclu-
sions of this work are exposed.

2. New procedure to reduce the computational cost of a multi-scale
analysis

The main advantage of the FE2 method related to a micro model is the
reduced computer memory requirements. To solve the same problem, the
amount of memory required by the classical FE micro model method is sub-
stantially larger than FE2 procedure [10]. This difference is found because
the memory used is proportional to the FE mesh size and, while the FE micro
model has to solve a problem with a very small discretization, the FE2 pro-
cedure only requires memory for the macrostructural problem and the RVE
that is being solved. However, if the material reaches non-linear behavior,
the computational cost of FE2 method becomes as large as the one required
by the micro model case, as the RVE has to be solved for each integration
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point when a real structure is solved. Because of this, a new Non-Linear
Strategy (NLS) is proposed in this work.

Continuum mechanics establishes the limit between linear and non-linear
performance of materials using comparison criterion that compares a given
combination of stresses with a threshold value (Von-Mises, Mohr-Coulomb,
etc.). This approach cannot be used in an homogenization double scale so-
lution directly as different strain-stress states may lead to different failure
modes of the composite.

A possible solution is to analyze the RVE at every time step. However,
this is extremely expensive and very ineffective, because the structural non-
linear behavior often occurs in a small part of its domain.

Here is proposed to develop a comparison function that looks a maximum
level of an elastic energy density that can be applied to the RVE before its
failure. This is done with the definition of an activation function for each
single integration point at the structural scale. It is important to remark
that the proposed approach does not use a model reduction strategy, instead
it is solving the actual structure, but only when it is strictly necessary.

The NLS is composed of two different procedures, a non-linear activation
function and a smart first step calculation. In the following are defined both
of them.

2.1. Non-linear activation function

The definition of a Non-Linear Activation Function (NLAF) is based on
the fact that any given material begins its non-linear performance when a
single particle of the material reaches its stress threshold. The objective of
the NLAF is to know whether any material point of the RVE has reached its
non-linear limit using homogenized variables.

To do so, present work defines a function f that relates the elastic energy
density (Ψe) of an integration point of the RVE with the maximum elastic
energy (Ψe

Limit) that can be applied to this material point, before reaching
the non-linear range. Therefore, f is defined as follows:

f =
Ψe

Ψe
Limit

, 0 < f < 1 (1)

In other words, f provides a value of how far is a material point in the
microstructure to reach the non-linear state.

In order to know how far is the whole RVE to reach the non-linear perfor-
mance, it is necessary to use the information obtained for all the integration
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points of the RVE and transform it into a single representative number. This
is done with the assumption stated before that the failure of the macrostruc-
ture will start when the first integration point of the microstructure fails.
Therefore, the f̄ parameter of the RVE corresponds to the maximum f value
of all integration points of the RVE.

max{f1, ..., fn} = f̄ (2)

where the overline at the variables refers to the structure scale or homoge-
nized variables. Finally, the limit elastic energy density at the macrostructure
scale is obtained with the following equation:

Ψ̄e
Limit =

Ψ̄e
1

f̄
(3)

where Ψ̄e
1 is the elastic energy density for the strain state used to calculate

f̄ . The process described can be schematized as it is shown in Fig. 1.

Ψ̄e
Limit =

Ψ̄e
1

f̄

f =
Ψe

Ψe
Limit

RVE

ε̄1

Figure 1: Non-linear activation function scheme.

The NLAF is defined as following:

Ψ̄e − Ψ̄e
Limit ≤ 0 (4)

where Ψ̄e is the elastic energy density of the macro structural integration
point, which is calculated in each load step of the simulation.

The NLAF is valid only for the strain state used to calculate Ψ̄e
Limit (see

Eq. 3). If the strain state varies, it may also change the non-linear mode
and, therefore, the limit elastic energy density calculated may be no longer
valid. Therefore, Eq. (4) is valid while the strain state in the material
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remains proportional to the one used to obtain Ψ̄e
Limit. To quantify this

proportionality the next equation is proposed:

ε̄1 : ε̄i
‖ ε̄1 ‖‖ ε̄i ‖

= 1 ⇐⇒ Comparable States (5)

where the subscript i refers to the current i-nth deformation state and ‖ . ‖
is the norm’s mathematical symbol. In case this proportionality is lost, it
will be required to calculate again the new limit elastic energy density of the
RVE. This is summarized in the following flow diagram (see Fig. 2).

Ψ̄e
i − Ψ̄e

Limit ≤ 0

σ̄ep = C̄ : ε̄i
Ψ̄e

i = 1
2 σ̄ep : ε̄i

Solve Micro

no

Ψ̄e
Limit = Ψ̄e

i

σ̄i ; C̄
T

ivi

ε̄i
mp
ivi−1

Exit

ε̄ref.:ε̄i

‖ε̄ref.‖‖ε̄i‖ ≈ 1
yes

Solve Micro

no

Ψ̄e
Limit =

Ψ̄e
i

f̄

f̄

σ̄i = σ̄e.p.

ivi = ivi−1

mp = mat. properties
iv = internal variables
ep = elastic predictor
i = umpteenth step

yes

Figure 2: Non-linear strategy algorithm scheme.

It can be easily seen that with the proposed procedure the RVE must be
solved for each macro integration point on the first time step, in order to
calculate the elastic energy density limit using Eq. (3). Afterwards, it only
will be necessary to solve the RVE again if the strain state of the integration
point becomes non proportional to the calculated originally or if the NLAF
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is not satisfied, which means that the RVE becomes non-linear. Therefore,
if only few elements of the structure reach the non-linear state, only these
elements will have to be solved in the non-linear analysis.

2.2. Smart first step

As said before, at the beginning of the analysis it is required to solve
the RVE for every single integration point of the macrostructure to obtain
its Ψ̄e

Limit. This calculation process can be extremely expensive in terms of
computational cost.

In order to reduce this computational cost, it is proposed a Smart First
Step (SFS) strategy. This strategy consist in solving the RVE only if the de-
formation applied to it is different to all other deformation states considered
previously. Therefore before calculating the Ψ̄e

Limit of the RVE, the SFS pro-
cedure compares the deformation between the current and the all previous
integration points already calculated (Eq. 5). If the SFS finds one compara-
ble strain state, the current RVE takes the values of the RVE already solved.
If none of the previous microstructures solved have a comparable state, the
actual RVE is calculated. Fig. 3 shows the scheme of the described algorithm.

It will be shown, in the validation examples, that this procedure reduces
significantly the computational cost of the first step load in the simulation.

2.3. Numerical homogenized tangent constitutive tensor

The proposed NLS has been implemented in PLCd [41], a parallel finite
element code that works with 3D solid geometries. The PLCd code has al-
ready implemented the FE2 procedure [10]. In the code, a Newton-Raphson
scheme is adopted to solve the non-linear problem. To facilitate the conver-
gence of the whole problem, the tangent constitutive tensor at the integration
point is necessary to obtain the global tangent stiffness matrix.

A perturbation method is used to obtain a numerical approximation of the
homogenized tangent constitutive tensor of the RVE in the integration point.
The method implemented is analogous to the one proposed by Martinez et al.
in [42] (see AppendixB). Being the only difference that in current procedure
the perturbations must be applied on the RVE instead of applying them to
a constitutive equation. The n small perturbations (δε̄j) are applied to the
homogenized or structural strain vector. The RVE is solved n times and as
result gives the n stress vector δjσ̄. Therefore, the j columns of the tangent
constitutive tensor for the RVE can be obtained by the following equation:
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C̄
t
j ≡

δjσ̄

δε̄j
(6)

The calculation of the tangent stiffness tensor is necessary to obtain a
good convergence of the problem but it is computationally expensive. This
shows again the necessity to reduce the number of times in which this calcu-
lation is performed, and proves the necessity of having a non-linear strategy
to conduct the simulation.
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csk = ε̄k:ε̄i

‖ε̄k‖‖ε̄i‖ csk>cs
cs = csk
kp = kyes

nok=k+1

ε̄i ; Ψ̄e
i

k=1 ; cs=0

cs ≈ 1

cs ; kp

Solve Micro

no

Ψ̄e
Limit,i =

Ψ̄e
i

f̄

f̄

Ψ̄e
tk = Ψ̄e

Limit,i

ε̄tk = ε̄i

tk = tk+1

Exit

yes

Ψ̄e
Limit,i = Ψ̄e

kp

loop from k=1 to k=tk

cs = comp. states
tk = total k points
kp = k pointer
i = th gauss point

Figure 3: Smart first step algorithm scheme.
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3. Energy dissipation in a multi-scale analysis

The solution of material non-linear problems with a numerical double
scale homogenization procedure not only should be affordable computation-
ally, but the results obtained in the non-linear process must be also correct.
Therefore, the procedure must dissipate the same energy in both scales. In
order to conserve the dissipated energy through the scales, the following
methodology is proposed.

3.1. Fracture energy

Fracture mechanics presents the fracture energy per unit of area, Gf , as
a property of the material. This energy can be calculated as:

Gf =
Wf

Af
(7)

where, Wf is the energy dissipated by the fracture at the end of a quasi-static
process, and Af is the total fractured area. This fracture energy is the link
between the fracture mechanics and the constitutive model based on classical
solid mechanics. The constitutive model must satisfy:

1. The good representation of behavior of a set of points inside of a finite
domain.

2. The same energy dissipated by the total volume as the one dissipated
by the solid in the real fracture process.

Considering a simple tensile test, the constitutive model must verify the
following condition of dissipation:

Wf = GfAf︸ ︷︷ ︸
Fracture Mechanics

≡ Πd =

∫
v

gfdV︸ ︷︷ ︸
Solid Mechanics

(8)

where gf is the maximum specific energy dissipated by the constitutive model.
Eq. (8) states that the energy delivered to the tensile test must be equal to
the energy dissipated by the constitutive model. In solid mechanics, the
dissipation phenomena is located in a volume that can be represented as
Vd = AfLf , where Lf is a fracture length. For FE method the localization
phenomena in one strip of finite elements is sought, therefore Lf is commonly
approximated by some reference length of the finite element. This length is a
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parameter that accounts for the amount of energy dissipated by the fractured
material. Replacing the volume Vd in Eq. (8) the following expression is
obtained:

Wf = GfAf = gfAfLf (9)

From Eq. (9) the relation between the material parameter Gf and the
specific energy dissipated gf is found:

gf =
Gf

Lf
(10)

3.2. Localization at the microstructural scale

In multi-scale procedure, the specific energy at the macro structural scale
is obtained by the following equation:

gf =
1

Vm

∫
Ωm

gmf dVm (11)

where the index m is used to reference the microstructural scale variables.

Figure 4: Representative volume of the subscale.

Taking the same consideration than macroscale solid behavior, now the
dissipation phenomena is located at microstructural level (see Fig. 4). In
such case, we have the following dissipated equation:

gf =
1

Amf l
gmf A

m
f lf (12)

13



where, Amf is the RVE cross section area, l is the length in normal direction of
Amf and lf is the fracture length at the microstructure (RVE). With Eq. (12)
is possible to obtain the specific energy gmf dissipated at the microstructural
scale level as:

gmf =
gf l

lf
=

Gf l

Lf lf
(13)

Eq. (13) shows the relationship between the gmf and Gf which ensures to
dissipate the same energy by the solid mechanics, using a multi-scale method,
than the one obtains with a tensile test. The validity of this relation is proved
in the following example.

3.3. Validation example

A simple tensile numerical test over a material sample is simulated. The
objective of this example is to analyze the objectivity of the response obtained
using the proposed FE2 method. The same test using a classical one scale FE
method is also solved for comparison purposes. The geometry, the supports
and the displacements scheme of the simulated structure is presented in Fig.
5. The applied fixed displacement is represented by the arrows in the figure.

Figure 5: Structure simulated in the tensile test.

3.3.1. Material

The simple material used in the tensile test takes the properties shown in
Table 1. The constitutive model chosen is an explicit scalar damage model
with exponential softening [43, 44]. For this particular case, where the stress
state is uniform and there is only one simple material, and in order to help
the localization of the softening problem, the elastic limit is increased in some
elements (drawn with gray color in Fig. 6) up to a value of σLimit = 102MPa.

3.3.2. FE meshes

The finite element employed to solve the problem is a first order hexahedra
element. The example is solved for different combinations of finite element

14



Properties E [GPa] ν [−] σLimit [MPa] Gf [kJ/m2]
Values 100 0 100 20

Table 1: Simple material properties used in the tensile test.

meshes. Fig. 6 shows the different mesh sizes used in the simulation. The left
side of Fig. 6 shows the three different meshes used for the structural scale.
The mesh Macro1 has 10 finite elements, the mesh Macro2 has 84 elements
and finally the mesh Macro3 has 656 elements. On the other hand, the right
side of Fig. 6 shows the two different meshes used for the microstructural
scale. The mesh Micro1 has 125 finite elements and the mesh Micro2 has
729 elements.

Figure 6: Different meshes used in the tensile test.

3.3.3. Results

The results obtained with the different mesh combinations are shown
graphically in the Fig. 7. As can be observed from the figure, the results are
equal for all combinations, and for both methods.

For the case considered, it is possible to validate the numerical results
with analytical calculations, knowing the area of the specimen, the Young’s
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Figure 7: Traction force vs displacement curves obtained in the tensile test.

modulus and the maximum tensile stress that can be applied, the maximum
load and displacement in the beam is:

Fmax = σLimit.A = 10kPa
dFmax = L.σLimit

E
= 0.1mm

It is also possible to calculate analytically the dissipated energy at the
end of the test:

Wf = Gf .A = 2J

If this energy is calculated from the numerical models, the following table is
obtained:

Energy [J] Macro1 Macro2 Macro3
One scale 1.728 1.737 1.748
Micro1 1.752 1.741 1.777
Micro2 1.713 1.761 1.812

Table 2: Dissipated energies obtained in the tensile test.

The difference between the estimated value and the ones show in Table 2
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is because at the numerical analysis the simulation has been stopped at
0.5mm. It has to be noted also that the dissipation obtained with all mesh
configurations is practically the same. Which proves the consistency of the
formulation proposed.

Displacement Damage

Figure 8: Macrostructural results obtained at the end of the tensile test.

The localization of non-linear phenomena in one strip of finite elements at
the structural scale is shown in the Fig. 8, for the analysis made with Macro2
mesh. This figure shows that damage is concentrated in the central zone of
the material sample, and therefore, the displacement too. In the proposed
multi-scale method the localization phenomena must be observed also at the
microstructural scale. As an example, Fig. 9 shows the microstructural
displacement and damage obtained at the end of one tensile numerical test.
In the figure can be observed that both results are localized in one strip of
finite elements in the RVE meshes.
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Figure 9: Microstructural results obtained at the end of the tensile test.
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4. Numerical examples of non-linear analyses

4.1. Tensile test of a plate with a hole.

The objective of this example is to show the performance of the NLS
developed, as well as to analyze the failure of the structure localizes in a
strip of elements. The test is a tensile test made on a plate with a hole in
its center. Due to the symmetry of the geometry and of the load applied,
only a quart of the real structure is simulated. Fig. 10 shows the modeled
geometry, the supports and the displacements scheme in the numerical model.
The applied fixed displacement is represented by the arrows in Fig. 10.

Figure 10: Simulated structure of the plate with a hole.

4.1.1. Material

Table 3 shows the properties of the simple material used. The constitutive
model of the material is the same (explicit scalar damage) that has been used
in the previous validation example 3.3.

Properties E [GPa] ν [−] σLimit [MPa] Gf [kJ/m2]
Values 100 0.15 100 10

Table 3: Simple material properties used in the plate with a hole.
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4.1.2. FE meshes

To analyze the response’s objectivity in the test, two finite element meshes
have been used for the macroscopic model. Fig. 11 shows the mesh sizes
employed. Mesh1 has 360 finite elements while Mesh2 is more dense and has
2880 elements. The microstructural model and finite element meshes are the
same than the ones used in previous validation example 3.3.

Mesh1 Mesh2

Figure 11: Different meshes used in the plate with a hole.

4.1.3. Results

Fig. 12 shows the traction force vs displacement curves obtained for the
different mesh combinations. This figure shows that the results are almost
equal. Therefore, the result obtained with the proposal method is mesh
independent. The curves show than the maximum force does not pass of
80kPa and it is obtained for an applied displacement of 0.08mm.

The dissipated energy for the different mesh configurations used in this
example is shown in Table 4. From the Table 4 can be observed than the
worst difference between two results is less than 2%.

Energy [J] Mesh1 Mesh2
Micro1 3.152 3.135
Micro2 3.192 3.169

Table 4: Dissipated energy in the plate with a hole.

To fully understand the behavior of the structure under the applied load
several figures for different load state are presented. Fig. 13 and Fig. 14
show the results obtained for Mesh1 and Mesh2, respectively. In the figures,
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strain and stress in Y direction and scalar damage are presented for four
different fixed displacement steps.

The figures show how at the beginning of the test (label a) d=0.05mm),
the maximum strain and stress are located at the inner border of the hole.
Then, the non-linear process starts there and, as a consequence, the damage
increases in that zone. Due to constitutive model used, when the damage
increases in the material the stress decreases. As the applied displacement
continues increasing, the structure transfers the load to non damaged zones.
Therefore, the zone with maximum stress moves from the inner border to the
central part and the strain and damage move on as a constitutive response.
At the end of the test (label d) d=0.11mm in the figures), the maximum
stress is located in the right external border of the plate. It is important to
mention that during the test, the stress in the structure never takes values
over the limit imposed (see Table 3) as can be observed in Figs. 13 and 14.
Finally, the figures show how the model is capable of localizing all damage
in a single strip of finite elements.
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Figure 13: Results obtained in the plate with a hole to Mesh1.
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Figure 14: Results obtained in the plate with a hole to Mesh2.
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4.1.4. Computational times

To show the advantage of using the NLS proposed, in comparison with a
full classical FE2, the calculation times are presented herein. A full FE2 solves
the microstructural problem for every integration point of the structure, and
for every time step. This procedure does not distinguish between linear range
and non-linear range.

Tables 5 and 6 present the calculation times required to solve the shown
example in the same desktop computer, an Intel R© CoreTM i7-2600 CPU @
3.40GHz with 8GB of RAM. The tables show the times used by the FE2

and by the FE2 with the NLS incorporated. The speed ratio column has the
relation times between both methodologies.

Table 5 has the total real times necessary to complete the numerical test,
up to d = 0.115mm, for all mesh configurations. The speed ratio variable
shows that the advantage of using the developed strategies increases specially
when the size of the macrostructure’s mesh increases. This is an expected
result because, in larger meshes, the proportion between linear and non-linear
elements becomes also larger.

Model FE2 FE2+NLS Speed ratio
Mesh1-Micro1 1:21:53 0:28:19 2.89
Mesh1-Micro2 8:41:19 3:10:44 2.73
Mesh2-Micro1 11:19:49 2:29:28 4.55
Mesh2-Micro2 76:40:33 18:39:33 4.11

Table 5: Computation times requested to solve the plate with a hole [hs:min:seg].

On the other hand, it is important to mention that when a RVE becomes
non-linear, its computational cost is more expensive than when it is linear.
This is because, besides the possible iteration required by the RVE to obtain
the correct non-linear solution, the estimation of the tangent constitutive
tensor by perturbation method requires to solve the RVE six more times (see
Subsection 2.3).

Consequently, when the number of non-linear elements in a problem in-
crease, the efficiency of the proposed method decreases. For the analyzed
example, if the simulation is stopped at the maximum admissible force in
the structure (around d=0.08mm in Fig. 12) which probably the most inter-
esting value for an engineer, the speed ratio would be better. To prove this,
let’s consider the Mesh2-Micro2 simulation. In this case, when the maximum
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load is applied (d=0.08mm) there are only 392 elements in non-linear range,
instead of 576 elements for d=0.115mm, and therefore at this load step the
speed ratio is of 7 instead of 4.11.

This simulation is also used to validate the effect of the Smart First Step
procedure. To do so, Table 6 shows the computational times consumed for
the first step in each one of the simulations conducted. The times shown
prove that using SFS strategy improves highly the computational efficiency
also for small mesh sizes, as speed ratio variable shows. The table also shows
that the number of RVE solved by the SFS is independent of the mesh used
in the microstructural problem.

Model
without SFS with SFS Speed

ratioTime RVE solved Time RVE solved
Mesh1-Micro1 0:17.9 2880 0:01.0 151 17.9
Mesh1-Micro2 1:48.3 2880 0:06.5 151 16.7
Mesh2-Micro1 2:12.0 23040 0:02.6 303 50.8
Mesh2-Micro2 14:05.9 23040 0:12.5 303 67.7

Table 6: First step computation times in the plate with a hole [min:seg].
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4.2. Industrial Component

In order to validate the efficiency obtained with the NLS when it is applied
to the solution of a real structure, in the following is included the non-linear
simulation of an structural component. In this case, the structure selected
for analysis is the industrial component show in Fig. 15. The geometry of
this engine stiffener has been proposed in the framework of M-RECT Project.
The stiffener is linked on one side to the gearbox, and on the other side to
the engine. This component has the objective of improving the connection
between engine and gearbox, as well as changing the dynamic properties of
the overall structure.

Figure 15: Engine stiffener part.

4.2.1. Materials

The material that will be used for the stiffener, different from the one
used in M-RECT, is a laminated thermoplastic composite. Therefore, the
material properties vary through the laminate thickness and respect to the
laminate’s reference direction. The composite is made with three orthotropic
sheets (see Fig. 15). The two external sheets (drawn in blue) have a thickness
of 1.5mm each one and, the core sheet (drawn in gray) has a thickness of
5.5mm.

The external laminae is composed by carbon fibers in an epoxy matrix.
The periodic microstructure of the external sheets can be represented by the
RVE shown in the Fig. 16. The laminate has a 40% of cylindrical long fiber
volume.
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a) Geometry of the microstructure (RVE)

b) Mesh used in the RVE

Figure 16: Geometry and mesh of the RVE used in the external sheets.

The matrix is an isotropic material, simulated with an explicit scalar dam-
age constitutive model with exponential softening (resin epoxy HSC Epikote
4652). The long fiber is modeled with an elastic constitutive model (Grafil
TR30S 3K carbon fiber). The properties of these simple materials are shown
in Table 7 [9].

Material E [GPa] ν [−] σLimit [MPa] Gf [J/m2]
Epoxy matrix 4.52 0.36 68 780
Carbon fiber 235 0.21 4410 -

Table 7: Simple material properties from Perez et al. (2013).

Finally, the FE mesh employed to analyze the RVE is shown in Fig. 16.
The mesh uses 1464 first order hexahedra finite elements.

On the other hand, the core sheet of the engine stiffener is a TenCate
commercial product, Cetex TC1200 PEEK 5HS LAMINATE. The properties
of this material have been obtained from TenCate website [45] and are shown
in Table 8. For the simulation, the core material is modeled using an elastic
constitutive model.

27



Propertie [GPa] E(0o) E(90o) G(In plane)
TenCate lamina 56.1 55.6 4.5

Table 8: TenCate Lamina properties.

4.2.2. Mesh and boundary conditions

Fig. 17 label a) shows the mesh used to simulate the engine stiffener. The
mesh has 355.302 first order tetrahedra finite elements. The external laminae
requires 108.041 elements while the core lamina has 247.261 elements.

a) Mesh used in the engine stiffener

b) Nodes restricted and laminate’s reference direction

Figure 17: Mesh and boundary conditions used in the engine stiffener.

The nodes that will be restricted and the laminate’s reference direction
are shown in Fig. 17 label b). The nodes with green color are over the face
in contact with the gearbox. These nodes have a zero movement restriction
in all directions. On the other hand, the nodes drawn in yellow are on the
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face in contact with the engine. In this case, the restriction on these nodes
is a fixed displacement in X direction. The laminate’s reference direction is
the long fiber longitudinal direction in the external laminae.

4.2.3. Results

The analysis conducted on the first step to evaluate the elastic energy
density available in each integration point allows defining a “possible dam-
age” map of the structure, as it is shown in Fig. 18 label a), where f̄ is
presented. The blue zones in the external sheets have a f̄ near to zero and
then, these zones will have a Ψ̄e

Limit high while the zone with a f̄ near to 1
(critical zones) will have a smaller elastic energy density available. Therefore,
these zones are the regions where non-linear process has more possibilities to
start. In this example, the SFS has required analyzing 6.514 RVEs to deter-
mine the threshold functions of the whole structure. This quantity represents
only the 6% of the elements on the external laminae.

The numerical simulation has been stopped to a fixed X displacement of
1.36mm. The homogenized stress at the end of the analysis in the laminate’s
reference direction is shown in Fig. 18 label b). From the figure it is observed
that the maximum absolute stress is a compressive stress and it is located
near to the face in contact with the gearbox. The maximum tensile stress is
located in the same region but in the opposite external sheet.

Fig. 18 label c) shows the scalar homogenized damage at the end of the
test. The damaged area shown in figure has a relation with the previous
results presented. It is on the maximum compressive stress zone (see label
b)) and it is a critical zone in Fig. 18 label a).

To understand the internal structure behavior in the damaged zone it
is necessary to observe the mechanical performance of the most damaged
RVE. In current simulation the RVE selected is the one with the maximum
homogenized damage, in the engine stiffener mesh (see Fig. 18 label c)).
Fig. 19 shows the results obtained for this RVE. This shows the stress in the
RVE’s local X axis at the beginning (label a) at first step) and at the end
(label b) at last step) of the test. The shear stress in XY and YZ direction is
also shown in the figure for the first step of the analysis. Finally, the matrix
scalar damage variable in the RVE is shown for the last step.

From Fig. 19 can be observed that X compression stress is the dominant
state in the RVE but, its failure is produced by shear in the matrix material.
On the other hand, the carbon fiber has an extremely high strength threshold
(see Table 7), and because of this, this has been modeling with an elastic
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a) Parameter f̄ at the first step

b) Homogenized stress on the reference direction

c) Scalar homogenized damage at external sheet

Figure 18: Results obtained in the engine stiffener.

constitutive model. Figure shows that the maximum fiber stress reached in
the analysis (label b) at last step) is far away of its strength threshold as it
was expected.

The Fig. 19 shows that the external sheet has interlaminar delamination
in the damaged zone (see Fig. 18 label c)). It is important to stand out that
although the damage in the matrix is located in a small zone its global effect
is meaningful. Fig. 18 label c) shows that some elements have lost about
75% of its original load capacity.

This example has shown that it is possible to solve real problems with
a non-linear homogenization scheme. However, to see the advantages of
the proposed NLS procedure, it is necessary to analyze the computational
times required by the simulation, these are shown in Table 9. The FE2

computational time has been evaluated based on the time required to solve
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Methods FE2 FE2+NLS Speed ratio
Time [hs:min] 782:46 11:36 67.4

Table 9: Computation times requested by the simulation.

one RVE and the number of steps and iterations required by the simulation.
Table 9 shows that a FE2 has a computational cost that makes unfeasible
these sort of simulations. In current case, the simulation requires more than
32 days and 14 hours to be completed. The proposed method has a really
good computational time (less than 12 hours) and it is capable of speeding
up the process at a speed ratio of 67.4.

31



a) at first step b) at last step

X
st

re
ss

d
ir

ec
ti

on

a) XY direction b) YZ direction

F
ir

st
st

ep
sh

ea
r

st
re

ss

a) Whole RVE b) Only matrix

L
as

t
st

ep
d
am

ag
e

Figure 19: Results obtained in the RVE with maximum homogenized damage.
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5. Conclusions

The extension to non-linear range of the two-scale homogenization method-
ology proposed by Otero et al. [10] is presented in this work. The proposed
method uses a non-linear activation function defined in the structural scale
which it is obtained by solving the microstructural scale. The activation
function predicts if a material point (or integration point) in the structure
is in linear or non-linear range. Therefore, the method only analyzes the
non-linear integration points by solving the microstructural problem (using
a RVE). Section 2 shows the theory developed to obtain the non-linear strat-
egy proposed in this work. Besides, a smart first step had to be developed
to obtain in a efficient way the activation function.

The purpose of the NLS procedure developed is to solve non-linear prob-
lems, and the first requirement to meet is conserve the dissipated energy
through the scales. Section 3 describes in detail how the fracture length
concept applied to one scale continuum mechanics is extended to two-scale
homogenization approach. It is shown that the procedure presented is energy
consistent and mesh independent.

The main objective of the proposed non-linear strategy is to reduce sig-
nificantly the computational times requested by a multi-scale approach. The
plate with a hole example presented shows how the computational times are
reduced around four times. Besides, the mesh independency and energy con-
sistency of the proposed methodology is proved again. The example also
shows how the localization phenomena in the macrostructural scale, in this
case the plate with a hole, appears naturally from the microstructure. Fi-
nally, an engine stiffener has been solved to prove the large computational
advantage of the proposed procedure when a real industrial component is
simulated. The computational time is less than 12 hours comparing to 32
days and almost 15 hours required by a classical FE2 approach. In addition,
the method predicted the failure zone naturally and the mode failure of the
internal structure.
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AppendixA. Two-scale homogenization procedure used

The first-order homogenization framework presented by Otero et al. [10]
is briefly described here. This multi-scale method is based on the use of an
RVE which is representative of the entire sub scale. The RVE is employed to
detemine the corresponding effective properties for the homogenized macro
scale. This procedure can be identified as a “deformation driven”, therefore,
with a deformation at the macro scale level ε̄, the homogenized stress tensor
σ̄ and the homogenized constitutive tensor C̄ can be determined at the sub
scale level.

Linear formulation at the upper scale

A boundary value problem (BVP) is considered for the upper scale of
a domain Ω with a periodic sub structure. The kinematics of the problem
is related to a displacements field on the upper scale, which expresses the
displacement of each particle of the domain Ω. The BVP at the upper scale
level must satisfy the following set of equations:

∂σ̄(x̄)

∂x̄
+ b̄ = 0 equilibrium equation in Ω(A.1)

σ̄(x̄) =
1

Vc

∫
Ωc

σ(x) dVc = C̄ : ε̄(x̄) constitutive equation in Ω(A.2)

u(x̄) = ū(x̄) displacements in ∂Ωu (A.3)

σ̄(x̄) · n = t̄(x̄) forces in ∂Ωt (A.4)

where ∂Ωu is the boundary in which the displacement is known (Dirichlet
condition) and ∂Ωt is the boundary where the forces are known (Neumann
condition).

Linear formulation at the sub scale

To formulate the problem at the sub scale level it is necessary to es-
tablish special boundary conditions at the RVE domain Ωc. To ensure the
compatibility of displacements at the upper scale level, a periodic boundary
fluctuation displacements is used. Then, the relative displacement between
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the RVE boundary’s periodic points or pair points {x+, x−} can be expressed
as shown Eq. A.7. Furthermore, by the principle of action and reaction, the
sum of the forces generated on the RVE boundary ∂Ωc (at the periodic points)
must be zero. This condition ensures the periodicity of the field of internal
forces in the upper scale level. Under these considerations, the problem is
reduced to solve the following BVP in the domain of the RVE Ωc:

∂σ(x)

∂x
= 0 equilibrium equation in Ωc (A.5)

σ(x) = C(x) : ε(x) constitutive equation in Ωc (A.6)

u(x+)− u(x−) = ε̄(x̄) ·D periodic displacements in ∂Ωc (A.7)

t(x+) + t(x−) = 0 periodic forces in ∂Ωc (A.8)

where C(x) is the constitutive tensor corresponding to the respective com-
ponent at each point inside the domain.

AppendixB. Numerical tangent constitutive tensor

The perturbation method used to obtain the homogenized tangent tensor
of the RVE which was presented by Martinez et al. [42] is described in this
appendix. The tangent constitutive tensor (Ct) is defined as following:

σ̇ = Ct : ε̇ (B.1)

The matrix description of Eq. B.1 for orthotropic materials can be written
as:  σ̇1

...
σ̇n

 =

 Ct
11 · · · Ct

1n
...

. . .
...

Ct
n1

... Ct
nn


 ε̇1

...
ε̇n

 (B.2)

The stress vector rate can be obtained as the sum of n stress vector,
which are the product of the j component of the strain vector rate and the
j column of the tangent tensor. Then:

σ̇ ≡
n∑
j=1

δjσ =
n∑
j=1

Ct
j.δεj (B.3)

where
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Ct
j =

[
Ct

1j Ct
2j · · · Ct

nj

]T
(B.4)

Then, Eq. B.3 can be used to obtain the j column of the tangent consti-
tutive tensor:

Ct
j =

jσ̇

ε̇j
≡ δjσ

δεj
(B.5)

Therefore, the perturbation method consists in defining n small varia-
tions, or perturbation, of the strain vector δεj, to obtain n stress vectors
δjσ to obtain the numerical approach (Eq. B.5) of the tangent constitutive
tensor.
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