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Polytechnic University of Catalonia

Although its main campus is located in Barcelona, it has also campuses 

in four other cities close to Barcelona.

The UPC was founded in 1965 when several architectural and 

engineering schools where gathered together. Some of them existed 

from mid XIX century.

In 1990 the Faculty of Nautical Studies joins the UPC. It is the oldest 

nautical school in Spain as it was founded in 1769.



International Center for Numerical Methods in Engineering

CIMNE is a research center associated to the UPC. It was founded in 

1987 as a partnership between the regional government and the UPC.

The aim of CIMNE is the development of numerical methods and 

computational techniques for advancing knowledge and technology in 

engineering in applied sciences.

It has more than 200 research scientists working in several disciplines. It 

has 8 branches and more than 30 classrooms spread around the globe.
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International Center for Numerical Methods in Engineering

The research areas that are covered by CIMNE can be summarized in 

the following:
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CIMNE Composites – PLCd Group

CIMNE Composites or PLCd group is composed by the following 

people:

+ The Salta (Argentina) team: 

Dr. Bibiana Luccioni

Dr. Facundo Bellomo

Dr. Rita Rango
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CIMNE Composites – PLCd Group

Some of the research lines in which the group has worked or is working 

are:

Presentation



Some of the research lines in which the group has worked or is working 

are:

A more detailed description of these research lines can be obtained from 

www.cimne.com/PLCd

All the developments are implemented in an in-house FEM code: PLCd

CIMNE Composites – PLCd Group
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1. Introduction to 

Multiscale Methods

Introduction



Need for multiscale methods

NEED FOR MULTISCALE METHODS

Structural Analysis:

The incorporation of computational tools in structural analysis has 

allowed improving the complexity of engineering structures.



Need for multiscale methods

Materials in structural analysis

Not only the structure has become more complex, but the materials 

are better known and can be modelled more precisely. 

Elastic analysis:

E, n

Plastic analysis

Non-linear 

laminate models



Need for multiscale methods

Materials in structural analysis

However, the complexity of the internal structures of nowadays 

composites makes necessary to improve the analysis tools, in order 

to characterize properly the composite performance.  

This is specially important when the analysis wants to be conducted 

in the non-linear range. 

Hayashida, K. and Tanaka, H. (2012)I-Chien Liao et al. (2013) Michailidis et al. (2012)



Need for multiscale methods

Basic analysis of composite materials

In most cases, composite materials are analyzed as an elastic 

material with orthotropic properties inherited from its constituents 

(or given by the manufacturer). 

Failure is obtained with a comparison criterion such as: maximum 

strain, maximum stress, Tsai-Hill, Tsai-Wu, etc.

These approaches does not allow knowing the non-linear 

performance of the composite. Neither the analysis of complex 

composite micro-structures. 



Need for multiscale methods

FEM elements for composite analyses

These models can be applied to 

solid materials, and can be also 

applied to shell elements using a 

lamination theory.

In solid elements, different 

strategies have been developed 

to characterize some failure 

modes. In example, for 

delamination, a quite extended 

procedure is the using a zero 

thickness decohesion element: 



Need for multiscale methods

Required approach to analyze composite materials

There are also specific models to capture some failure modes, such as 

matrix transversal cracking, fiber buckling, etc. 

However, in order to have an accurate prediction of the composite 

performance, it is necessary to treat it according to what it is: a micro-

structure with different components interacting between them.

This can be done with a multiscale procedure



Need for multiscale methods

A multiscale method consist on obtaining the material performance of 

the macro-structure from a micro-model of the material.

Multiscale methods – A possible solution

Macro-Scale

Micro-Scale



Need for multiscale methods

With a multiscale approach we are not only coupling “scales”, but also 

disciplines.

Coupling disciplines

Macro-Scale

Micro-Scale

Engineering Material Science



Need for multiscale methods

The community that works on multiscale analysis can focus in many 

different aspects:

Coupling disciplines

Integrated Computational Materials Engineering expert group

HDF5



Need for multiscale methods

Among the different aspects that can be considered in multiscale 

analyses, this course is focused in one of them.

Objective of current course

HDF5d
Our interest, and this course, 
focuses in the exchange of 
information between the 

macro- and the micro- scales.



Multiscale procedures. Examples

SOME EXAMPLES OF MULSTICALE PROCEDURES

In the following will be described some multiscale procedures with the 

aim of providing a better understanding on how these methods work, 

as well as giving a hint of different existing approaches. 

Material Model

Models based on continuum 

mechanics

• Constitutive equations

6. Serial/Parallel mixing theory

Models based on homogenization 

procedures:

1. Effective medium approximation

2. Asymptotic homogenization theory

3. Periodic microstructure model

4. Numerical homogenization

5. Homogenization using Lagrange Multipliers



Multiscale procedures. Examples

1. Effective medium approximation

The effective medium approximation was initially studied by Eshelby, 

who analyzed the performance of an homogeneous medium with an 

internal ellipsoidal inclusion.

The solution obtained by Eshelby provided the stresses and strains in 

the medium. 

This solution can be, and is, used to represent different composite 

materials, such as materials with ellipsoidal or elliptical cracks. 



Multiscale procedures. Examples

2. Asymptotic homogenization theory

This theory was initially proposed by Sanchez-Palencia in 1987 and can 

be considered the mathematical basis for most of the multiscale 

approaches proposed afterwards. 

The two scales that are used to solve the problem are related through a 

parameter d that takes into account the difference of magnitude 

between both scales. 

Defining x as macroscopic quantity and y = x/d , a microscopic quantity, 

the two-scale process introduced in the partial differential equations of 

the problem produces equations in x, y, and in both variables. 

Normally, the equations in y are solvable if the microscopic structure is 

periodic.



Multiscale procedures. Examples

3. Periodic microstructure model

This model was developed by Luciano and Barbero in 1995. 

The model is written to analyze the following composite:

• Long fiber reinforced matrices

• Fibers with circular cross section

• Rectangular, equally-spaced distribution of fibers in the composite

(a2 and a3 are constant in the composite, and a2 = a3)

• Fibers oriented in x direction



Multiscale procedures. Examples

3. Periodic microstructure model

If previous assumptions are fulfilled, the stiffness tensor of the 

composite can be obtained with the following parameters

Note: The above notation assumes that the stress and strain tensors have the 

following order: (x11, x22, x33, x23, x13, x12)



Multiscale procedures. Examples

3. Periodic microstructure model

The parameters that appear in previous equations are:

Equations equivalent to those shown can be obtained if a2 and a3

distances, defining the distribution of fibers in the composite, are 

not equal.



Multiscale procedures. Examples

3. Periodic microstructure model

The described model is valid under the following assumptions:

• Perfect elastic materials

• Perfect bonding between fiber and matrix 

• The material is in a small strain regime



Multiscale procedures. Examples

4. Numerical Homogenization

After previous approach, which was solved analytically, Barbero

proposed a numerical homogenization in which the composite 

parameters where obtained from a finite element model of a 

Representative Volume Element. 

The stiffness tensor of the composite is 

obtained by applying different strain 

tensors on the RVE



Multiscale procedures. Examples

4. Numerical Homogenization

In example, to obtain the first column of the stiffness tensor:

The considerations made on the periodic microstructure model are still valid: 

elasticity, perfect bonding between materials and small strains 



Multiscale procedures. Examples

5. Homogenization using Lagrange Multipliers

This model was initially proposed by Zalamea, Oller in 2001. 

It consists in obtaining the material performance by solving a finite 

element model of a representative volume element. 

x

x

1

2

x1

2x

y1
y2

Medio heterogéneo

Volumen representativo

Medio homogéneo
Heterogeneous 

medium Homogeneous 

medium
Representative Volume



Multiscale procedures. Examples

5. Homogenization using Lagrange Multipliers

The representative volume element is defined by cells. These have to 

be defined respecting the periodicity of the base material. To have the 

cell perfectly defined, it is necessary to define also the periodicity 

vectors.

a b

cd

P

P

P

P

Microestructura periódica

Célula

Puntos periódicos
Vect. de periodic.
Caras

Elementos geométricos

Periodic microstructure

Cell

Geometric elements

Periodic points 

and faces. 

Periodicity vectors



Multiscale procedures. Examples

5. Homogenization using Lagrange Multipliers

The periodicity elements will vary depending on the cell defined as 

Representative Volume Element.
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Multiscale procedures. Examples

5. Homogenization using Lagrange Multipliers

The deformation obtained in the macro-model is transferred to the 

micro-model using the average theory. 

It is important to remark that the micro-model deformation does not 

only modify the geometry of the RVE but also the periodicity vectors
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Multiscale procedures. Examples

5. Homogenization using Lagrange Multipliers

The use of Lagrange Multipliers to force the periodicity at the RVE 

increases the computational cost and the complexity of the system.

On the other hand, it allows defining periodicity vectors. With these, 

the same RVE can be used to characterize different composites.
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R =200

1

P

Punto de integración 1 (Elemento 1)

2

Compuesto

Célula

en células

h

Compuesto

Célula

en células

bh

Integration point    



Multiscale procedures. Examples

5. Homogenization using Lagrange Multipliers

The results obtained for the simulations previously presented are:

Compuesto

Célula

en células
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Compuesto
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Multiscale procedures. Examples

5. Homogenization using Lagrange Multipliers

Besides the additional complexity provided by the use of Lagrange 

Multipliers to solve the RVE problem, the major drawback of this 

homogenization procedure was:

It was proposed in 2001!

Computational capabilities were substantially smaller than today. 

The analyses that could be performed were only academic

In example: 

Previous case consisted in a macro model with 60 linear 2D elements and a micro model 

with 108 linear 2D elements. 

The problem was solved with a parallel process with 4 processors and required 1h15min 

to be solved



Multiscale procedures. Examples

6. Serial-parallel mixing theory

This last example differs from the others, as it does not defines an 

specific model to characterize a given composite geometry, but instead 

provides the mechanical response of the composite by defining specific 

relations between the constitutive equations of its components.

The serial-parallel mixing theory (SP RoM) can be understood as a 

phenomenological homogenization or a constitutive equation manager. 



In order to understand the performance of the serial/parallel mixing 

theory we will analyze a basic material: 

Multiscale procedures. Examples

6. Serial-parallel mixing theory

Parallel behavior

e1 = e2 = … = en

Serial behavior

s1 = s2 = … = sn



The serial/parallel mixing theory states that:

1. All components have the same strains in parallel direction

2. All components have the same stress in serial direction

3. All components participate in the composite material 

proportionally to their volumetric participation 

This is:

Multiscale procedures. Examples

6. Serial-parallel mixing theory
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Application of the SP RoM formulation to laminate materials:

Laminates simulated with solid elements:

Laminates simulated with shell elements:

Multiscale procedures. Examples

6. Serial-parallel mixing theory

1) Apply parallel RoM at layer level

2) Apply SP RoM for each layer

3) Obtain stresses with parallel RoM

e   e   ...   ec          L1                                            Ln

eLi sLi→

s   k sc          Li          Li

1) 2) SP RoM

eLi sLi→



Multiscale procedures. Examples

6. Serial-parallel mixing theory

Parallel Load:

Stress-strain graph 

in the load direction 

Stress-strain graph 

perpendicular to the load direction

ISO-STRAIN Behaviour ISO-STRESS Behaviour



Multiscale procedures. Examples

Serial Load:

Stress-strain graph 

in the load direction 

Stress-strain graph 

perpendicular to the load direction

ISO-STRESS Behaviour ISO-STRAIN Behaviour

6. Serial-parallel mixing theory



Numerical example. Delamination of composites

One of the most common failure modes of composite laminates is 

delamination. The SP RoM is capable of predicting this failure mode 

naturally.

Example: Ply drop-off test

Multiscale procedures. Examples

6. Serial-parallel mixing theory



Failure mode of the ply drop-off test:

Multiscale procedures. Examples

6. Serial-parallel mixing theory



SUMMARY

SUMMARY

• As materials have increased their complexity, advanced numerical 

approaches are also required for a correct characterization. 

• Multiscale procedures are the 

perfect framework to increase, as 

much as wanted, the complexity of 

the model used to define the 

composite.

• Solve engineering problems • An accurate material characterization. 

So all the possibilities of nowadays 

composites can be taken into account.

• Our interest lays in the information 

exchange between the two scales. 

The procedure chosen must allow:



2. First Order Computational 

Homogenization

FOCH
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2.1. Basic Principles
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BASIC PRINCIPLES – Multiscale procedures

A multiscale procedure consists on solving a numerical model, in which 

the response of some of its components is obtained from a numerical 

model found in a lower scale.

FOCH – Basic Principles



Multiscale procedures in mechanical problems

If this is applied to the solution of structural mechanical problems, the 

multiscale procedure consists on:

Transfer the deformation gradient tensor eM to the micro-scale, where 

is solved a boundary value problem (BVP) over a representative volume 

element (RVE). The macroscopic stress tensor sM and tangent stiffness 

matrix Chom can be obtained from this scale. (Geers et al. 2010)

FOCH – Basic Principles



Conditions to apply a multiscale procedure

In order to apply a multiscale procedure there are two conditions that 

must be fulfilled:

1. Periodicity of the RVE

2. Scale separation 

Lm <<< Le

FOCH – Basic Principles

There are several studies concerning the most 

representative size of the RVE, such as: 

S.M. Mirkhalaf, F.M. Andrade Pires, Ricardo Simoes: 

Determination of the size of the Representative Volume 

Element (RVE) for the simulation of heterogeneous 

polymers at finite strains. Finite Elements in Analysis 

and Design (119), 2016



FORMULATION – Macro displacement

The displacement field in the macro scale can be computed as:

Macro scale displacement:

Continuum:

Taylor’s exp.: 

with 

F = Deformation gradient tensor

G = Gradient of the deformation gradient tensor

FOCH – Formulation



Micro Displacement

The displacement field in the micro 

scale is a combination of the 

displacements provided by the macro 

structure and a micro fluctuation:

This is a FIRST ORDER HOMOGENIZATION because it only 

considers the first term of the macro displacement field.

FOCH – Formulation



Micro Displacement

To simplify the symbolic manipulation and for symmetry purposes, it is 

convenient to set the origin of the RVE’s coordinate system as:

Therefore,

And the displacement field of the RVE can be written as:

FOCH – Formulation 



Boundary Conditions in the RVE

The first average theorem states that the volume average of the 

microstructural deformation gradient over the RVE must be equal to 

the macroscopic deformation gradient:

FOCH – Formulation 

The microstructural deformation gradient can be written as:

With some math, it is finally obtained:



Boundary Conditions in the RVE

Applying the divergence theorem, the last expression becomes:

FOCH – Formulation 

Which can be rewritten as:



• Taylor Model (zero fluctuations):

• Linear boundary displacements (zero boundary fluctuations):

• Periodic boundary fluctuations:

• Minimal constrain: 

There is no specific restriction, besides the integral over the fluctuation field.

Boundary Conditions in the RVE

There are several boundary conditions that can be applied to the RVE 

that fulfil the defined requirement:

FOCH – Formulation 



Macro and micro strain tensor

The macro strain tensor must be equal to the volume average of the 

micro strain tensor:

FOCH – Formulation 

And the micro strain tensor can be written as:

being 



Hill-Mandel principle and RVE Equilibrium

The Hill-Mandel energy condition states that the virtual work of the 

point X0 must be equal to the volume average of the virtual work in the 

RVE for any kinematically admissible displacement field:

FOCH – Formulation 

Defining the macroscopic stress tensor as the average of the 

microstructural stress tensor in the RVE domain:



Hill-Mandel principle and RVE Equilibrium

The Hill-Mandel principle will be satisfied if:

FOCH – Formulation 

RVE variational equilibrium equation



Macroscopic and microscopic stress tensor

The microscopic stress tensor can be obtained as:

FOCH – Formulation 

And the macroscopic stress tensor can be calculated as:

with:



Macroscopic and microscopic stress tensor

Some remarks regarding the macroscopic stress tensor:

1. It does not depend explicitly on Xm. Therefore, the stresses 

provided by the RVE are independent of its size. 

A non-dimensional RVE can be used to characterize the material.

2. The fluctuation strains affect the macro-response of the structure. 

Depending on the boundary conditions chosen, different macro-

stress results will be obtained. 

The Taylor model returns the classical mixing theory results.

FOCH – Formulation 



IMPLEMENTATION – The Finite Element Method

The Finite Element Method for the analysis of structural problems is 

based on solving the Principle of Virtual Work:

FOCH – Implementation 

Which leads to the solution of the linear system of equations:

being

And the relation between stresses, strains and displacements:

IN A LINEAR ANALYSIS !



FEM – Flow diagram

In a non-linear analysis, the 

relation between strains and 

stresses are different to those 

predicted by the material 

stiffness matrix. In an implicit 

approach the displacements 

are found with an iterative 

procedure:

FOCH – Implementation 



Solution of the MACROSCALE problem

FOCH – Implementation 

The material stiffness 

matrix depends on the RVE 

microstructure

There is no constitutive 

model. The stress tensor 

corresponding to the 

applied stresses is obtained 

from the RVE solution

IN A LINEAR ANALISYS, 

THE RVE HAS TO BE 

SOLVED ONLY ONCE !



Solution of the MICROSCALE problem

FOCH – Implementation 

The microscale problem is, by itself, a numerical model that will be 

solved with the FEM. 

The main differences compared to the macroscale problem are:

1. The boundary conditions to be applied to the model are defined by 

the deformation gradient of the macroscale problem. 

2. The result required from the model are the macroscale stresses, 

which are obtained from the microscale stresses, and the tangent 

stiffness tensor. 



MICRO-STRUCTURE boundary conditions

FOCH – Implementation 

From the different models that can be applied, the most convenient is 

the periodic boundary fluctuations:

Which can be rewritten as:

These boundary conditions are applied by 

defining master and slave nodes in the RVE 

model.



MICRO-STRUCTURE boundary conditions

Master and slave nodes in the RVE:

FOCH – Implementation 



MICRO-STRUCTURE boundary conditions

Position vector of the different nodes:

FOCH – Implementation 



MICRO-STRUCTURE boundary conditions

Having defined the position vector, the periodic boundary fluctuations 

condition can be written as:

defining:

the displacement of the slave nodes can be obtained as:

FOCH – Implementation 



Solution of the FEM problem with the given BC

The micro-structural problem to be solved 

consists on a RVE in which are known the 

displacement relations between its parallel 

faces.

This problem can be solved with two different 

approaches:

FOCH – Implementation 

1. Definition of Lagrange Multipliers 

that relate the displacement relation 

between master and slave nodes.

2. Removing the slave degrees of freedom from the linear system of 

equations.
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Elimination of slave degrees of freedom

The linear system of equations to be solved can be rewritten 

differentiating internal (u), master (m) and slave (s) nodes:

FOCH – Implementation 

The displacement of the slave nodes can be written as a function of the 

master nodes:



The periodic boundary fluctuation condition requires that the sum of 

forces in the master and slave nodes to be zero:

Elimination of slave degrees of freedom

Therefore:

FOCH – Implementation 



Elimination of slave degrees of freedom

The linear system of equation can be rewritten as:

FOCH – Implementation 



Solution of the MICROSCALE problem

FOCH – Implementation 

Input data provided by the 

macroproblem. 

Each gauss point provides a 

different input data.

Output result are the macro-

stress and the material tangent 

stiffness tensor



Macro stress and tangent constitutive tensor

The expression that provides the macro-stress tensor as been shown 

when describing the formulation behind the FOCH:

FOCH – Implementation 

The stiffness matrix of the RVE material cannot be obtained from the 

average of the micro-stiffness matrices, as the effect of the fluctuations 

would not be considered.



Tangent constitutive tensor

The RVE constitutive tensor (elastic and tangent) is obtained with a 

numerical derivation by perturbations. 

The relation between strains and stresses can be written, in matrix form:

FOCH – Implementation 

The stress tensor can be also obtained as the sum of n partial stress 

tensors, which are defined as:

with



Tangent constitutive tensor

The calculation of each one of 

these columns is obtained by 

defining a perturbed strain value 

in the different space directions:

FOCH – Implementation 



Summary

FOCH – Summary 

In a LINEAR PROBLEM this step is 

not required. The stresses are 

obtained with the RVE stiffness 

matrix.

In a FE2 problem, the RVE has to be 

solved at each load step in order to 

obtain the updated stresses. 

The tangent constitutive tensor has 

to be recalculated if materials 

inside the RVE become non-linear.

The boundary conditions applied at 

the RVE are defined by the 

deformation gradient tensor.

Applying six initial perturbations along 

the normal and shear directions of the 

RVE



NUMERICAL EXAMPLES

FOCH – Numerical Examples 

In the following section three different numerical examples will be 

described and studied.

1. Quasi-isotropic material.

2. Long fiber composite.

These examples will be used to show the basic performance of a 

multiscale procedure in a linear regime. 

3. Laminated composite. 

This example will be used to show the performance of the 

formulation if non-linear effects are considered. It also compares 

the results obtained with a multiscale procedure and other 

approaches such as a micro-model and a model using the 

serial/parallel mixing theory. 



Quasi-homogeneous mat. – Problem description

FOCH – Numerical Example 1 

Problem description

Simulation of a structure with a heterogeneous material composite. The 

macrostructure is a rectangle of 20x20 cm section and length 80 cm and 

the microstructure is a matrix with spherical inclusions.



Macro Model

FOCH – Numerical Example 1 

The macro FE mesh has 256 second order hexahedral element (20 

nodes) and 1505 nodes.

It is completely fixed in one end and it has an “x” displacement applied 

to the other end.



Micro Model

FOCH – Numerical Example 1 

The micromodel  is a cube with a length of 10 containing 252 spheres 

from d = 0,7 to d = 2,2. The spheres are randomly distributed. 

The FE mesh has 87405 first order tetrahedral elements and 15946 

nodes. The spheres represent 27% of the total volume.



Materials and models considered

FOCH – Numerical Example 1 

Two different isotropic materials have been considered in the 

simulation. Each one is defined with its Young and Poisson Modulus. 

The shear modulus is obtained from these two. 

These two materials have been combined to create four different RVE 

models:

Material ID E [GPa] n

1 3.5 0.2

2 210 0.3

Model Matrix Spheres

RVE 1 1 1

RVE 2 1 2

RVE 3 2 1

RVE 3 1 -



Stiffness matrix comparison

FOCH – Numerical Example 1 

The multiscale procedures provides the stiffness 

matrix of the RVE considered. These are:

3.89 0.97 0.97 0 0 0

0.97 3.89 0.97 0 0 0

0.97 0.97 3.89 0 0 0

0 0 0 1.46 0 0

0 0 0 0 1.46 0

0 0 0 0 0 1.46

8.17 1.66 1.65 0 -0.03 0

1.66 8.15 1.65 -0.02 0 0

1.65 1.65 8.07 0 -0.02 0

0 -0.02 0 3.15 0 -0.01

-0.03 0 -0.02 0 3.10 -0.01

0 0 0 -0.01 -0.01 3.12

2.42 0.57 0.57 0 -0.02 0.01

0.57 2.42 0.57 -0.02 0 -0.01

0.57 0.57 2.41 0 -0.01 0.01

0 -0.02 0 0.91 0.01 -0.01

-0.02 0 -0.01 0.01 0.91 0

0.01 -0.01 0.01 -0.01 0 0.91

170.21 64.99 64.80 -0.03 -0.13 0.04

64.99 170.10 64.87 -0.13 -0.04 -0.06

64.80 64.87 169.48 -0.01 -0.06 0.05

-0.03 -0.13 -0.01 52.00 0.03 -0.04

-0.13 -0.04 -0.06 0.03 51.81 0

0.04 -0.06 0.05 -0.04 0 51.89

RVE 1 RVE 2

RVE 3 RVE 4

Model Matrix Spheres

RVE 1 1 1

RVE 2 1 2

RVE 3 2 1

RVE 3 1 -



Macro structural performance

FOCH – Numerical Example 1 

Model Matrix Spheres

RVE 1 1 1

RVE 2 1 2

RVE 3 2 1

RVE 3 1 -

DISPLACEMENT IN ALL RVEs

STRESS IN RVE 1

s = 0.35GPa

STRESS IN RVE 3

s = 13GPa

STRESS IN RVE 2

s = 0.76GPa

STRESS IN RVE 4

s = 0.22GPa

All macro results are 

very similar, varying 

only the stress values 

due to the different 

stiffness provided by 

the RVE model



Micro structural performance – RVE 1

FOCH – Numerical Example 1 

Displacements                               x strains                                    x stresses 



Micro structural performance – RVE 4

FOCH – Numerical Example 1 

Displacements                               x strains                                    x stresses 



LONG FIBER COMPOSITE – Model

FOCH – Numerical Example 2 

This example analyzes a clamped beam with a vertical displacement in 

its free edge. The micro-structure corresponds to a long fibre

composite.

Material E [GPa] n

Matrix 3.1 0.38

Fibre 24.1 0.20



LONG FIBER COMPOSITE – Results 

FOCH – Numerical Example 2 

Macro and micro results



LAMINATED COMPOSITE – Problem description

FOCH – Numerical Example 3 

In this example the results provided by different theories will be 

compared in order to assess the improvements provided by the 

multiscale method, as well as its possible drawbacks and costs.

The problem to study is a double clamped beam made of a laminated 

structure

The problem will be analyzed 

reducing the shear stiffness of 

different layers in the laminate.



Formulations to be tested

FOCH – Numerical Example 3 

The proposed problem will be analyzed with three different 

approaches:

1. Micro model. In which all layers are discretized.

2. Serial-Parallel mixing theory.

3. First Order Computational Homogenization.

The interest lays on comparing the accuracy of the solution provided 

by the different formulations, as well as the computational cost 

required to conduct the analysis. 



Numerical models

FOCH – Numerical Example 3 

Macro-model: 

Only half of the beam has been 

simulated using the existing symmetry. 

The macro FE mesh has 2048 first order 

hexahedral elements (8 nodes) and 

2673 nodes.

Micro-model: 

Different RVE micro-models have 

been defined to account for different 

number of layers with reduced shear 

stiffness (damaged layers). 

The material properties defined are 

those shown in the table.

Material Color E [GPa] G [GPa] n

Lamina 1 Black 210 80.76 0.38

Lamina 2 Grey 3.5 1.46 0.20

Lamina 3 White 3.5 0.146 0.20



Global damage case – Comparison FOCH vs SP RoM

FOCH – Numerical Example 3 

The first analysis made has been over a laminate in which all layers have 

the same “damage” value. This comparison has made between the 

FOCH and the SP RoM approaches.

Completely undamaged results: 

Different macro-model meshes have 

been analyzed to study the 

convergence of the problem.

Micro-model:

SP RoM model:

Parallel directions: X and Y

Serial directions: Z and shear

Material Color E [GPa] G [GPa] n

Lamina 1 Black 210 80.76 0.38

Lamina 2 Grey 3.5 1.46 0.20



Global damage case – Comparison FOCH vs SP RoM

FOCH – Numerical Example 3 

Damage evolution: 

The weakest lamina has been analyzed with different values of shear 

stiffness in order to asses the effect of this value on the results.

Material Color E [GPa] G [GPa] n

Lamina 1 Black 210 80.76 0.38

Lamina 2 Grey 3.5 varing 0.20

Model 0% 12.5% 25% 50% 100%

G [GPa] 1.46 1.295 1.131 0.803 0.146

As expected, results are 

identical for both theories



Local damage case – All approaches comparison

FOCH – Numerical Example 3 

In this case, the performance of the structure is analyzed when 

different proportions of layers have a reduced stiffness.

These analyses is made with all three approaches: micro-models, 

Serial/Parallel RoM and FOCH.

Cases considered:

Five different cases are considered: 0, 12.5, 25, 50 and 100%

0% 50%25%12,5%



Local damage case – All approaches comparison

FOCH – Numerical Example 3 

Results obtained:

The serial parallel mixing theory, as it assumes a parallel 

behavior of the different layers of the composite, cannot 

capture the abrupt variation of stiffness produced by 

damage in one layer.



Local damage case – All approaches comparison

FOCH – Numerical Example 3 

However, if a global damage is applied to the RVEs of some macro-

model elements, the results provided by both theories are very similar

Approach Reaction

FOCH 357.4 N

SP RoM 752.8 N

Approach Reaction

FOCH 666.4 N

SP RoM 663.9 N



Computational cost – Time & Memory

FOCH – Numerical Example 3 

In the following table is shown the computational cost required to 

perform the analysis of 50% local damage, by the different approaches 

considered:

Item Micro-model FE2 Linear FOCH SP RoM

Real Time (Min:Seg) 6:46 2:27 0:01 0:02

CPU Time (Min:Seg) 8:44 9:31 0:03 0:17

Memory (Mbytes) 2690,00 7,45 7,45 15,82

Reaction Force (N) 236,1 224,7 224,7 576,7

• Micro-model: Excessive CPU time and memory requirements

• FE2 model: Excessive time with a substantial reduction of CPU

• Linear FOCH & SP RoM: The most efficient



3. Enhanced First Order 

Computational Homogenization

EFOCH



3. Enhanced First Order Computational Homogenization (EFOCH)

3.1. Introduction

3.2. Formulation

3.3. Numerical example – Comparison FOCH vs. EFOCH

3.4. Discussion

Outline

Enhanced first order computational homogen.



2nd order elements provide a better approximation of the displacement, 

strain and stress fields:

Introduction

Need to account for 2nd order effects

Shape Functions:

Beam displacements:



If second order elements are used, the displacement field in the 

macrostructure uses the gradient of the deformation gradient

Introduction

Need to account for 2nd order effects



Micro Displacement

The Enhanced First Order Computational Homogenization (EFOCH) 

uses the first two terms of the macro displacement field

EFOCH – Formulation

Defining the origin of coordinates at the center of the RVE, the 

displacements can be written as:



Boundary Conditions in the RVE

The second order terms are also present in the expression of the 

microstructural deformation gradient:

EFOCH – Formulation 

And the volume average theorem over the deformation gradient 

becomes:

Having defined the origin of the RVE in its center, the first moment of 

volume is zero:

And the BC defined for the FOCH is recovered:



Boundary Conditions in the RVE

EFOCH – Formulation 

Defining the gradient of the deformation gradient in the microstructure 

as:

However, in the EFOCH it is necessary to apply the average theorem 

also to the gradient of the deformation gradient:

The new boundary condition that has to be applied to the RVE 

becomes:



Boundary Conditions in the RVE

Considering an hexahedral RVE, these last conditions can be rewritten 

as:

FOCH – Formulation 

And, a set of fluctuations that 

satisfy this last expression is:



Micro strain tensor

The expression that defines the microscopic strain tensor is:

EFOCH – Formulation 

with, 

Now, the microscopic strain 

depends on the size of the RVE!



Hill-Mandel principle and RVE Equilibrium

EFOCH – Formulation 

The Hill-Mandel energy 

condition states that the virtual 

work of the point X0 must be 

equal to the volume average of 

the virtual work in the RVE for 

any kinematically admissible 

displacement field.

When using a second order theory to describe the displacement field in 

the macro model, it is assumed that there is a virtual work of the point 

corresponds to an average of a macro-volume WM around the point. 

Therefore,



Hill-Mandel principle and RVE Equilibrium

Operating over the last expression and defining the homogenized 

stress tensor as:

FOCH – Formulation 

And the homogenized second order stress tensor as:

The final variational equilibrium equation becomes:

Which is the same that was obtained for the FOCH



EFOCH – Formulation 

Macroscopic and microscopic stress tensor

Microscopic Stress Tensor:

The microscopic stress tensor is calculated as:

It has to be noted that now, the stresses on the different elements of 

the RVE depends on the position of these elements in the RVE!

Macroscopic Stress Tensor:

The macroscopic stress tensor is obtained using the expression:



EFOCH – Formulation 

Macroscopic and microscopic stress tensor

Which leads to:

is equivalent to the bending-extension coupling matrix in shells and 

beam elements. In order to use it, it is necessary to have these sort of 

elements. 

To simplify this formulation in solid elements, 

it is necessary to have a RVE with symmetry 

in the material distribution around its center. 

With this RVE, = 0 , and therefore:



• 3. Numerical example

Mesh Elements L (mm)

Macro1 8x1x2 1,3525

Macro2 16x2x4 0,6762

Macro3 32x4x8 0,3381

Macro4 64x8x16 0,1691

Properties E     (GPa) v

Matrix 4,52 0,36

Long. Fiber (40%) 235 0,21

Model Elements Theory

LE&FO Linear First-order

QE&FO Quadratic First-order

QE&EFO Quadratic Enhanced-first-order

Properties E (GPa)

Homg mat. 26.56

1

2

Numerical Example – Cantilever Beam



3. Numerical example

Cantilever beam – Homogeneous material

Microstructure Results

Sxx (MPa) LE&FO % QE&FO % QE&EFO %

Macro1 69,43 30,57 86,08 13,92 98,66 1,34

Macro2 84,02 15,98 93,00 7,00 99,59 0,41

Macro3 91,82 8,18 96,50 3,50 99,87 0,14

Macro4 95,86 4,14 98,25 1,75 99,96 0,04

Analytical Sol. 

Sxx = 100 MPa

QE&EFO

QE&FO

LE&FO



3. Numerical example

Cantilever beam – Homogeneous material

Macrostructure Results

Rz (N) LE&FO % QE&FO % QE&EFO %

Macro1 679,09 13,18 600,43 0,07 600,43 0,07

Macro2 620,03 3,34 600,12 0,02 600,12 0,02

Macro3 605,09 0,85 600,09 0,01 600,09 0,01

Macro4 601,34 0,22 600,08 0,01 600,08 0,01

LE&FO

QE&FO

QE&EFO

Analytical Sol.

Rz = 600 N



3. Numerical example

Cantilever meam – Composite material

Microstructure Results

Sxx (MPa)
Fiber Matrix

LE&FO QE&FO QE&EFO LE&FO QE&FO QE&EFO

Macro1 454,56 543,31 616,13 11,11 11,18 14,10

Macro2 534,71 584,90 622,41 11,69 12,01 13,67

Macro3 578,97 606,60 625,56 12,23 12,46 13,25

Macro4 603,02 617,54 627,07 12,53 12,68 12,98

LE&FO QE&FO QE&EFO



4. Discussion

DISCUSSION. Are second order terms needed?

Homogenization methods are an improved procedure to characterize 

the material response. 

• Do we need to know the failure mechanism of the material?

• Do we need to characterize the material non-linear behavior of the 

structure?

YESNO

2nd order terms are NOT NEEDED

They increase the computational cost of the 

numerical analysis and they do not improve it.



4. Discussion

Are second order terms really needed?

Is the main aim of the simulation to characterize the micro-structure or 

the macro-structure?

YES

Including 2nd order terms will provide a better 

characterization of the material failure mode, however, 

not always this improved characterization is required. 

In most cases, it is more useful to improve the 

discretization of the macro-structure than to have a 

detailed prediction of the material performance.



4. Discussion

Are second order terms really needed?

micro-structure

In this case the 2nd order terms can become a requirement for the 

correct prediction of material failure. 

Taking into account 2nd order terms allows considering loading cases 

that cannot be taken into account with a first order approach (i.e. 

bending modes). 

Therefore, there will be some failure modes that will not be 

characterized unless these terms are used. 



4. Discussion

There are some drawbacks

• Non-linear analysis using multi-scale methods are really expensive.

• Including 2nd order terms:

o Increases also the computational cost of the analysis.

o Makes necessary to account for the size of the microstructure 

Representative Volume Element.

o Requires a RVE with a symmetric material distribution around its 

center.



4. Non-Linear Analyses 

Using Multiscale Methods

NLA



4. Non-Linear Analyses Using Multiscale Methods

4.1. Different approaches to conduct non-linear analyses

4.2. Proposal of a Non-Linear Strategy (NLS + SFS)

4.3. Numerical Examples

Outline

Non-linear analyses using multiscale methods



As engineers, when analyzing a structure, we want to know its 

mechanical response and its safety factor. 

Different approaches

Need for non-linear analyses

Deformation
Reactions

Stress ≤ Maximum material strength

If a multiscale method wants to be useful, it must provide the same 

information. 



A linear procedure is capable of 

providing the structural 

performance. This is, the forces 

and displacements on the macro-

structure. 

But it does not provide the safety 

factor.

Different approaches

Need for non-linear analyses

This loop is not done and 

the component stresses are 

unknown



A FE2 consists on using the RVE as a constitutive equation, therefore it 

is solved at each load step, for each gauss point.

Different approaches

DIFFERENT APPROACHES: 1. FE2

Advantage: It is the most accurate method

Drawback: Humongous computational cost



A failure characterization procedure consist on analyzing, after 

completing the macro-analysis, the most critical RVEs with the exact 

strain values obtained from the macro-analysis, increasing them until 

failure.

Different approaches

2. Failure Characterization

Advantage: With an affordable computational cost it is possible to 

know the SF in the macro-structure and the material failure of the RVE.

Drawback: Difficult to know with certainty which is the most critical RVE

In the most 

critical points



The RVE can be used as an experimental sample and it can be tested to 

obtain the parameters required by a given constitutive equation.

Different approaches

3. Micro-constitutive equation

The constitutive equation can be either an existing one (i.e. damage 

with a Von-Mises yield surface) or can be defined explicitly.

CONSTITUTIVE 

EQUATION



An explicit constitute equation is obtained by loading the RVE in 

different characteristic directions and recording its damage evolution 

and stress-strain in that direction.

Different approaches

3. Micro-constitutive equation

Advantage: It is possible to create a material library and, with it, the 

solution of the macro-structure is very cheap.

Drawback: It is not a proven method and it is possible to lose some 

failure modes.

The macro-model will use the 

stress-strain curve recorded in 

the direction given and, if it 

does not exist, it will interpolate 

it from the closest ones.



A non-linear strategy has been developed to analyze, only the RVEs 

that are close to failure.

Different approaches

4. Non-Linear Strategy

Advantage: It reduces enormously the computational cost compared to 

a FE2 method.

Drawback: It is still expensive, specially when failure occurs.

Only in failed 

RVEs



The NLS defined aims reducing the computational cost of analyzing 

a large structure, with an double scale homogenization method, 

taking into account material non-linearities. 

This is achieved with two different procedures:

1. Definition of a Non-Linear Activation Function (NLAF)

2. Definition of a Smart First Step (SFS) algorithm

It is important to remark that NLS does not try to reduce the 

computational cost by extrapolating some non-linear results (as 

reduction models do). Instead, it is designed to solve the minimum 

number of RVEs (those that have a non-linear performance)

Non-Linear Strategy (NLS)

Non-Linear Strategy



The objective of the NLAF is to have a threshold in the macro-

model that tells when the micro-model will become non-linear. 

And, therefore, if it is necessary to calculate it. 

NLAF must be calculated in the macro-model and must depend on 

damage activation of the micro-model.

NLS   – NON-LINEAR ACTIVATION FUNCTION

Non-Linear Strategy



The NLAF is defined using the elastic energy density of the material:

For each integration point, 

we can calculate: Ψ𝑒 =
1

2
𝜎: 𝜀

Each integration point is represented by an RVE, which has a 

maximum elastic energy density of: Ψ𝑒
𝐿𝑖𝑚

The threshold function is defined as: Ψ𝑒 −Ψ𝑒
𝐿𝑖𝑚 ≤ 0

In order to calculate the limit elastic energy density in the macro 

model,          , the following assumption is made: Ψ𝑒
𝐿𝑖𝑚

NLS   – NON-LINEAR ACTIVATION FUNCTION

Non-Linear Strategy



The material becomes no-linear when the first material point of 

the RVE becomes non-linear. 

Ψ𝑒𝑘 =
1

2
𝜎𝑘: 𝜀𝑘

Ψ𝑒
𝐿𝑖𝑚

𝑘 =
1

2
𝜎𝐿𝑖𝑚𝑘: 𝜀

𝐿𝑖𝑚
𝑘

We can define a function  f that relates how close is any integration 

point of the RVE to its elastic energy threshold: 

For a given strain-stress 

state we can calculate, 

in the RVE, for each 

integration point (k):

𝑓𝑘 =
Ψ𝑒𝑘
Ψ𝑒
𝐿𝑖𝑚

𝑘

𝑓 = max 𝑓𝑘
Extrapolation to macro-model

Therefore: Ψ𝑒
𝐿𝑖𝑚 =

Ψ𝑒
𝑓

NLS   – NON-LINEAR ACTIVATION FUNCTION

Non-Linear Strategy



The elastic energy density limit calculated defines the amount of 

energy in the material before its failure, for a given strain state. 

If the strain state changes, the elastic energy density limit will also 

change. 

It makes necessary to verify, at each load step,              , and    

recalculate             if the proportionality is not verified

𝜀𝑛 ~ 𝜀0

Ψ𝑒
𝐿𝑖𝑚

Result if proportionality 

is not verified

Result verifying 

proportionality

NLS   – NON-LINEAR ACTIVATION FUNCTION

Non-Linear Strategy



The final flow diagram of the Non-Linear Activation Function is:

NLS   – NON-LINEAR ACTIVATION FUNCTION

Non-Linear Strategy



The proposed procedure requires analyzing the RVE of each 

integration point in the first load step, in order to calculate

However, in many simulations, there are many strain-stress states 

that are proportional from the very beginning: 

Ψ𝑒
𝐿𝑖𝑚

It is possible to define a Smart First Step that minimizes the number 

of RVEs that must be analyzed to obtain the elastic energy limit of 

all integration points. 

NLS   – SMART FIRST STEP

Non-Linear Strategy



The flow diagram of 

the Smart First Step 

is:

NLS   – SMART FIRST STEP

Non-Linear Strategy



1. Once an integration point becomes non-linear, it will remain 

non-linear. The RVE has to be solved at each load step from 

then on. 

2. A material non-linear analysis requires a good approximation of 

the tangent stiffness tensor. In an homogenization procedure, 

this is calculated by numerical derivation. This requires 

analyzing the RVE 6 more times after convergence, with the 

consequent increase of computational cost. 

Concluding: A non-linear analysis is expensive, independently of 

the strategy used. 

NLS   – FINAL REMARKS

Non-Linear Strategy



Property Grey mat. Blue mat.

E [GPa] 100 100

n 0.15 0.15

slim [MPa] 102 100

Gf [kJ/m2] 10 10

Both materials are characterized with 

an explicit scalar damage model

NUMERICAL EXAMPLE – PLATE WITH A HOLE

Numerical examples



Results obtained. Damage parameter 

NUMERICAL EXAMPLE – PLATE WITH A HOLE

Numerical examples



Force-Displacement graphs for the different models analyzed. 

Computational cost: Model FE2 NLS Speed ratio

Mesh1-Micro1 1h 21’ 53’’ 28’ 19’’ 2.89

Mesh1-Micro2 8h 41’ 19’’ 3h 10’ 44’’ 2.73

Mesh2-Micro1 11h 19’ 49’’ 2h 29’ 28’’ 4.55

Mesh2-Micro2 76h 40’ 33’’ 18h 39’ 33’’ 4.11

If this simulation stops 

at Displ = 0.08mm, 

the speed ratio is 7.0

NUMERICAL EXAMPLE – PLATE WITH A HOLE

Numerical examples



Improvement of the computational cost thanks to the Smart First 

Step strategy

Model
Without SFS With SFS

Speed ratio
Time RVE solved Time RVE solved

Mesh1-Micro1 18’’ 2,880 1’’ 151 17.9

Mesh1-Micro2 1’ 48’’ 2,880 6’’ 151 16.7

Mesh2-Micro1 2’ 12’’ 23,040 3’’ 303 50.8

Mesh2-Micro2 14’ 06’’ 23,040 12’’ 303 67.7

NUMERICAL EXAMPLE – PLATE WITH A HOLE

Numerical examples



Material Model E [GPa] n slim [MPa] Gf [kJ/m2]

Fibre (Carbon) Elastic 235 0.21 4410 -

Matrix (Epoxy) Damage 4.52 0.36 68 780

Material Model E1 [GPa] E2 [GPa] G [MPa]

TenCate core Elastic 56.1 55.6 4.5

Gearbox

Engine

NUMERICAL EXAMPLE – INDUSTRIAL COMPONENT

Numerical examples



Results obtained. Damage parameter 

Note: Damage parameter in 

the macro-model is calculated 

based on the lost of stiffness 

of the whole RVE, and not as 

the integral of the damage 

over the RVE volume. 

NUMERICAL EXAMPLE – Industrial component

Numerical examples



Expected failure regions: 

Higher value means lower 

elastic energy available. 

Value equal to 1.0 means 

that all elastic energy has 

been consumed. 

Computational cost: Model FE2 NLS Speed ratio

Mesh1-Micro1 32d 14h 46’ 11h 36’ 67.4

98.5 % reduction of the computational cost !

NUMERICAL EXAMPLE – INDUSTRIAL COMPONENT

Numerical examples



This work presents a Non-Linear Strategy procedure that makes 

possible the analysis of structures using homogenization 

procedures. 

The NLS is based on reducing the number of times in which the 

RVE has to be solved. In other words, in solving the RVE only when 

it is strictly necessary.

Validation examples have shown the excellent performance 

provided by the NLS, which in large problems can reduce the 

computational cost in a 98.5%

These sort of strategies are a must in order to use homogenization 

procedures in non-linear analysis of structures. 

Conclusions

Numerical examples
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