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Abstract. Nowadays, the model order reduction techniques have become an intensive research field because of the
increasing interest in the computational modeling of complex phenomena in multi-physic problems, and its conse-
quent increment in high-computing demanding processes; it is well known that the availability of high-performance
computing capacity is, in most of cases limited, therefore, the model order reduction becomes a novelty tool to
overcome this paradigm, that represents an immediately challenge in our research community. In computational
multiscale modeling for instance, in order to study the interaction between components, a different numerical model
has to be solved in each scale, this feature increases radically the computational cost. We present a reduced model
based on a multi-scale framework for numerical modeling of the structural failure of heterogeneous quasi-brittle
materials using the Strong Discontinuity Approach (CSD). The model is assessed by application to cementitious
materials. The Proper Orthogonal Decomposition (POD) and the Reduced Order Integration Cubature are the pro-
posed techniques to develop the reduced model, these two techniques work together to reduce both, the complexity
and computational time of the high-fidelity model, in our case the FE2 standard model.

1 Introduction

The present model departs from the multiscale framework developed in [2] for the numerical modeling of failure via
hierarchical multi-scale models, taking advantage of the reduced order techniques developed in [1], the theoretical
framework used in this work is based on the so-called (FE2) methods via first order computational homogenization
for the coupling between scales, in which homogenized quantities at the lower scale, represented by a so-called
failure-cell, are therefore transferred, in a one-way fashion, to material points (Gauss points) of the macroscopic
structure. The formulation is presented in terms of strains in a non-conventional format imposing the natural
multiscale boundary conditions via Lagrange multipliers.
This work attempts to solve the problematic of excessive computational time in multi-scale models, in our case an
additional complexity is induced by the discontinuous displacement field produced by the strain localization at both
scales. Nonetheless, the methodology can also be straightforward extended to problems with continuous fields.

2 Model description

2.1 Generalities of the FE2 method applied to multiscale fracture problems

This approach is developed under a small strain framework, the equality of internal power at both scales is guaranteed
via Hill-Mandell Macro-Homogeneity principle. In virtue of the finite element method, the dissipative processes that
occur at the meso-scale are modeled using cohesive bands, represented by quadrilateral elements endowed with a
regularized continuum damage model. These bands are characterized by a high aspect ratio (width smaller than its
length and, in turn, that width being much thinner than the representative cell dimensions). In addition, scattered
within the matrix, the aggregates and the interfaces between them are also included. In this way, they can model a
set of predefined crack patterns including several mechanisms such as percolation of the crack through the matrix
(necessary for softening behavior), mortar/aggregate decohesion and rupture between aggregates. Depending on the
loading process at the large scale, these crack patterns are loading and unloading until the full consolidation, finally,
a dominant mechanism naturally prevails, thus representing the final pattern of the micro-crack. This mechanism
is now referred to as mesoscopic failure mechanism. That mechanism has several features, its form and orientation
will be as precise as the richness of the lower scale, and is closely related to the crack orientation obtained at the
large scale.
In this approach, the macroscopic constitutive response is proven to be point-wise equivalent to an inelastic law
(in an incremental fashion) as a function of the homogenized elastic tangent tensor, Chom, and the incremental

homogenized inelastic strain rate ε̇(i) i.e.:

σ̇ = Chom : (ε̇(x)− ε̇(i)) ε̇(i) =
1

lµ
(n⊗ β̇) (1)



Where, the inelastic strain component ε̇(i) is expressed as a function of the homogenized variables taken from the
lower scale, and represent the average value of the symmetrical tensor product between the strong discontinuity
normal n, and the rate of displacement jump β̇ of each cohesive band, belonging to the manifold of the mesoscopic
failure mechanism Sµ, i.e. the mesoscopic crack. In addition, the so-called material characteristic length lµ is defined
as the ratio between the measure (volume or area) of the representative volume and the measure (surface or length)
of the mesoscopic failure mechanism. The equations that govern the lower scales are the next:

PROBLEM I: Given a macroscale strain ε, Find ũµ such that εµ = ε+∇sũµ and:∫
Bµ
σµ(εµ) : ∇sũµ dBµ = 0 ;∀ũµ ∈ Vuµ := {ũµ |

∫
Bµ
∇sũµ dBµ = 0}; (2)

Regarding the large scale (macro-scale), it is modeled via the finite element method. The strain injection technique
[3] is used in order to provide a robust and efficient model that can capture failure propagation even in high strain
localization scenarios. In addition, the crucial matter of positioning strong discontinuities is tackled by a parallel
technique termed crack-path field. This technique uses a directional derivative of a scalar field, based on a location
variable (in our case, the average of mesoscale dissipated energy) whose zero level set defines the crack path.

2.2 Model Order Reduction techniques

The reduction process is divided into two sequential stages. The first stage consists of a common Galerkin projection,
via Proper Orthogonal Decomposition POD for the meso-scale strain field, onto a small space (reduced-order space).
For the second stage, the main goal is to reduce the number of integration points given by the standard Gauss
quadrature, by defining a new scheme that efficiently determines optimal points and its corresponding weights so
that the error in the integration of the reduced model is minimized (Reduced Order Cubature - ROC).
In order to provide the reduced model with the input parameters and entities, the general procedure is also divided
into two parts, the first one (offline part) in which the projection operators for the meso-scale strain field and the
parameters of the new integration cubature are computed. These data, together with the material and geometrical
parameters, define the set of input parameters for the first and second stage (online part).
By comparison with the standard (FE2) scheme, the proposed model in (2) can be redefined in term of strains in a
generalized fashion, imposing the kinematic constraint (2-b) in an explicit way via Lagrange multipliers.

PROBLEM IB: Given a macro-scale strain ε, find ε̃µ and λ satisfying:

(ε̃µ(ε, dµ),λ(ε, dµ)) = arg{minε̃µ max
λ

Π(ε̃µ,λ)}; such that ḋµ(y, εµ) = g(εµ, dµ) (3)

Where Π is the homogenized potential of energy in the meso-scale, expressed in the following way:

Π(ε̃µ,λ) =

∫
Bµ
ψµ(ε̃µ) dBµ + λ

∫
Bµ
ε̃µ dBµ ψµ(ε̃µ) =

1

2
(1− dµ)(ε+ ε̃µ) · Celµ · (ε+ ε̃µ) (4)

Being ψµ, dµ and Celµ the internal energy, the damage internal variable and the elastic constitutive tensor at each
point y in the meso-scale, respectively.

2.2.1 Projection of strain field via POD

The reduction of the meso-scale strain field is based on the projection of the weak form of the discrete mechanical
problem into a reduced manifold (reduced-order space), this reduced space is spanned by Ritz (globally supported)
basis functions obtained via Singular Value Decomposition (SVD) of a set of snapshots taken from training tests
computed during the offline part. Following this reasoning, the meso-scale strain fluctuation can be expressed as:

ε̃µ(y, t) =

nε∑
i=1

Φi(y)ci(t) = Φ(y)c(t) (5)

Where c(t) = {c1, c2, c3, . . . , cnε} is time dependent (c ∈ Rnε) and represents the amplitude of the corresponding
meso-scale strain mode updated during the online part. Now, introducing (5) and (4) into the PROBLEM IB
and, after some straightforward manipulations, results into a new model written in terms of the reduced basis:

PROBLEM II: Given a macro-scale strain ε, find c ∈ Rnε satisfying:∫
Bµ

ΦT [σµ(ε+ Φc) + λ] dBµ = 0; tal que

∫
Bµ

Φ(y) c(t) dBµ = 0; (6)



Solving the system of equations (6) for c and λ (Lagrange multiplier to ensure the equality of internal power at
both scales via Hill-Mandel Macro-Homogeneity principle), it can be immediately noticed that this problem with
nε+nσ equations will be cheaper, (in computational cost terms), than the standard (FE2) framework. However, the
matricial form of PROBLEM II has to be computed (in a standard way) prior its projection onto the reduced-order
space. This fact highlights that the actual bottleneck for fast online computation is not the solution of the discrete
balance equations but, rather, the determination of the stresses, internal forces and stiffness matrices at all the
integration points of the underlyung finite element mesh and its posterior projection. Alternatively, this approach
proposes a second stage based on the PROBLEM II, that intends to reduce the amount of integration points in
which the constitutive equation is computed.

2.2.2 Hyper-reduced model

As pointed out in the previous section, the next objective is to introduce an additional reduction step to diminish
the computational burden for equation (6-a). In addition, in order to guarantee the good performance for the
second stage, all possible operators have to be computed during the offline part. Particularly, the term (6-b) can be
computed entirely in the offline part. To persue the main objective of the second stage, we develop a Hyperreduced
Order Model (HPROM) via Reduced Optimized Cubature (ROC), this technique is based on a discrete minimization
problem that allows determining the optimized location of integration points and the corresponding weights. Once
these positions and weigths are at one’s disposal, the equation (6-a) can be easily determined as:∫

Bµ
ΦT [σµ(ε+ Φc)] dBµ ≈

nr∑
j=1

(Φ(zj)
Tσµ(zj , c))ωj (7)

The success of our proposed scheme, relies on the fact that it is possible to find a set of integration points nr,
substantially smaller than the ones given by the Gauss standard quadrature, minimizing the error in the assessment
of (6). Introducing the expression (7) into the PROBLEM II, we get:

PROBLEM III: Given the macro-scale strain ε, find c ∈ Rnε satisfying:

nr∑
j=1

(Φ(zj)
Tσµ(zj , c))ωj +

∫
Bµ

ΦTλ dBµ = 0; tal que

∫
Bµ

Φ(y) c(t) dBµ = 0; (8)

3 Numerical Results

3.1 Application to simulation of fracture in cementitious materials

The macro-scale will be splitted into two subdomains, the dark gray domain will be modeled using an elastic
monoscale constitutive law, taking the elastic homogenized constitutive tangent tensor, and, in the green domain
the Hiper-Reduced Order Model (HPROM). The finite element mesh of the meso-scale is also depicted in figure (1-b),
where the morphology and the considered pattern of cohesive bands can be seen (in light green the aggregates, in pink
the mortar matrix, in light gray the intra-matrix cohesive bands, and finally, in blue the interface matrix/aggregate
cohesive bands). The mechanical behavior of the cohesive bands is modeled by a rate-independent continuum damage
model endowed with a linear isotropic regularized softening, whose material properties have been taken from the
experimental test in [4].

(a) Macroscale FE discretization (b) Meso-scale FE discretization (c) Material properties

Figure 1: Finite element discretization and material properties

The figure (2-a) shows the structural response in terms of load-displacement (P−δ) curve (vertical load of the bottom,
rightmost corner node versus displacement at the same place) for each set of strain modes nε and integration points
nr. It is shown the sensitivity in the convergence of the structural behavior as nε increases. As a consequence, the



amount of integration points will increase in order to guarantee the numerical stability and the exact integration
of the scheme. For instance, with nε = 60 and nr = 188, we get a speed-up of 130 times with respect to the
time consumed by the standard (FE2) formulation. In this case the reduced model matches the peak load of the
experimental test; however, the softening branch (post-peak behavior) is not as precise as expected, the improvement
of this branch is achieved increasing the amount of strain modes in the online part.
Lastly, in figure (2-b) it can be observed the convergence results for the meso-scale tests using the Hiper-Reduced
Order Model; fixing a number of strain modes nε, we get an optimal number of integration points for the second
stage, (with an error less than 5% in homogenized tractions for the CSDA taking as a reference the HF solution).
In addition, it can be immediately noticed that, as the number of strain modes nε increases, the error decreases
monotonically. However, the rate of decrement in the error is considerably smaller than the rate of increment
of integration points, leading to an increment in the computational cost of the HPROM model, therefore, the
imposition of a judicious equilibrium between error and number of integration points plays an important role in the
good performance of our method, specially in low-performance computing platforms.

(a) Macro-structural response - L Shape Panel (b) Convergence analysis of the meso-scale

Figure 2: Convergence error in macro and meso scales

4 Conclusions

The result of this work is a reduced model based on a hierarchical (FE2) multiscale approach for material failure
in cementitious materials, that preserves all features of the standard FE model [2]. Furthermore, the two presented
simulations show the convergence of the meso-scale and the sensitivity of the macro-structural behavior, as a function
of the amount of strain modes, nε, and the number of integration points, nr. The reduced model solves the problem
of unafordable computational cost widely known in multiscale hierachical (FE2) approaches. This methodology can
be straighforward extended to problems with smooth fields.
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