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[INCT-MACC, Instituto Nacional de Ciência e Tecnologia
em Medicina Assistida por Computação Cient́ıfica, Brasil
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Abstract

A multiscale theory of solids based on the concept of Representative Volume Element (RVE) and ac-
counting for micro-scale inertia and body forces is proposed. A simple extension of the classical Hill-Mandel
Principle together with suitable kinematical constraints on the micro-scale displacements provide the varia-
tional framework within which the theory is devised. In this context, the micro-scale equilibrium equation
and the homogenisation relations among the relevant macro- and micro-scale quantities are rigorously derived
by means of straightforward variational arguments. In particular, it is shown that only the fluctuations of
micro-scale inertia and body forces about their RVE volume averages may affect the micro-scale equilibrium
problem and the resulting homogenised stress. The volume average themselves are mechanically relevant
only to the macro-scale.
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1 Introduction

Classical multiscale theories to predict the mechanical behaviour of solids with a microstructure have their origins
in the pioneering works of Hill [9–12], Hashin and Shtrikman [8], Budiansky [3] and Mandel [17], among others.
Over the last two decades or so, theories relying on the averaging of stresses and strains over a representative
volume element (RVE) have become remarkably popular in the prediction of overall properties of heterogeneous
solids in non-linear regimes. Their use in practical applications relies almost exclusively on techniques of
computational homogenisation [14, 18, 19, 29]. These techniques have reached such a level of maturity that
multiscale theories are now beginning to find their way in specialised applications with a very promising prospect
of becoming a much needed tool to help the design of new materials and the prediction of constitutive behaviours
resulting from the interaction of complex microstructural phenomena [22, 26].

Despite the success history of RVE-based multiscale thories, the consideration of inertia and body forces in
general appears not to have been satisfactorily addressed to date. In the classical work of Hill [12] inertia and
body forces are not considered. In the more recent literature, body forces are often removed from the theory
on the basis of questionable arguments. Inertia forces, in turn, have rarely been considered in this context.
In the few reported attempts to incorporate inertia effects, the theory appears to be unclear and suffers from
significant inconsistencies.

At present, the increasing interest in so-called metamaterials – microsctructured materials displaying useful
exotic macroscopic behaviour – puts pressure on the development of robust multiscale theories capable of
predicting the overall response by accounting for the interaction of (possibly complex) phenomena at the micro-
scale [7]. In this context, the consideration of inertia and body forces may become crucial. The macroscopic
mechanical response of acoustic metamaterials, for example, is dictated by dynamic phenomena at the micro-
scale. Any attempt to model such materials by means of RVE-based multiscale theories must properly address
the consideration of micro-scale inertia effects.

Our purpose in the present paper is to show in a clear manner how inertia effects and body forces in general
can be rigorously accounted for in such theories. To this end we cast the theory within a framework relying
entirely on the two fundamental principles of kinematical admissibility and Multiscale Virtual Power – the
latter expressed as a variational statement of an extended version of the Hill-Mandel Principle of Macrohomo-
geneity [12, 17]. These provide the essential link between the macro- and micro-scale kinematics and virtual
power, respectively. Within this framework, once the macro- and micro-scale kinematical variables are defined
and appropriate kinematical constraints are postulated to link them in a consistent manner, all equations of
the resulting multiscale theory – including RVE equilibrium and the homogenisation relations for force- and
stress-like variables – are derived (rather than postulated) exclusively by means of straightforward variational
arguments. Here we should point out that the recent literature provides examples where extended versions of
the Hill-Mandel Principle have been used for this purpose, but a deeper look into the resulting models reveals
significant inconsistencies. Such inconsistencies stem either from insufficient kinematical constraints being im-
posed to ensure a meaningful link between the macro- and micro-scale kinematics or from the variationally
inconsistent manner in which kinematical constraints have been taken into account in the treatment of the
corresponding model. We begin by introducing the proposed framework in Section 2, against the background
provided by the well-known classical theory (in the absence of inertia and body forces). Our main result is
presented in Section 3 where we extend these ideas to the case of non-zero inertia and body forces. In this
context, the role of inertia and body forces naturally emerges very clearly, allowing one to easily see how they
can be taken into account in a consistent manner. A discussion of our findings follows in Section 4 and the
paper closes with some concluding remarks made in Section 5.

2 Classical theory. Review

Consider a solid continuum that occupies a region Ω of the three-dimensional Euclidean space in its reference
configuration. A wide family of so-called multiscale constitutive theories are derived based on the idea that any
point x of Ω is associated with a representative volume element (RVE), occupying a reference domain Ωµ of
characteristic length `µ much smaller than the characteristic length ` of Ω. The domains Ω and Ωµ are referred
to as the macro- and micro-scale, respectively.

Classical multiscale theories [4–6, 23] that predict the macro-scale mechanical behaviour from the constitu-
tive properties of the corresponding micro-scale can be entirely derived from two fundamental principles: (i)
kinematical admissibility ; and (ii) multiscale virtual power , that govern the transition between the two scales.
Although by no means absolutely necessary, the derivation of all equations of the theory as a consequence of
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these two principles alone provides, in our view, a robust framework to treat the problem. In particular, it
allows extensions of the classical theory (such as the one that is the subject matter of the present paper) to
be devised in very clear steps on solid theoretical grounds. We remark that this approach has been recently
employed with success by Sánchez et al. [27] in the derivation of a multiscale theory accounting for material
failure associated with micro-scale strain localisation phenomena. We begin by illustrating in the following the
use of this idea in the case of the classical theory, where inertia and body forces are asumed absent.

2.1 Kinematical homogenisation and kinematical admissibility

Let y ∈ Ωµ denote the coordinates of an arbitrary point of the RVE associated with a point x ∈ Ω. Without
loss of generality we shall assume the origin of the micro-scale coordinate system to be located at the centroid
of Ωµ, i.e.

∫

Ωµ

y dΩµ = 0. (1)

A fundamental assumption in the present class of theories is that the micro-scale displacement field uµ over Ωµ

can be expanded as

uµ(y) = u(x) + ∇u(x) y + ũµ(y)
= u(x) + [F(x) − I] y + ũµ(y),

(2)

where u(x) is the displacement of the corresponding point x of the macro-scale, ∇(·) denotes the gradient of
(·) with respect to the macro-scale coordinates,

F = I + ∇u (3)

is the macro-scale deformation gradient and

ũµ ≡ uµ − u − (F − I)y (4)

is defined as the displacement fluctuation field of the RVE. In view of (2) and (3) the micro-scale deformation
gradient field,

Fµ = I + ∇µuµ, (5)

with ∇µ denoting the gradient with respect to the micro-scale coordinates, is equivalently expressed as

Fµ(y) = I + ∇u(x) + ∇µũµ(y) = F(x) + ∇µũµ(y). (6)

That is, the micro-scale deformation gradient field is a sum of the macro-scale deformation gradient, inserted
uniformly throughout the whole domain Ωµ, and a micro-scale displacement fluctuation gradient ∇µũµ.

2.1.1 Kinematical admissibility

In addition to the above, the following kinematical homogenisation (averaging) relations, linking the micro-
scale displacement and deformation gradient fields to their corresponding macro-scale point values at x, are
postulated:

u =
1

|Ωµ|

∫

Ωµ

uµ dΩµ (7)

and

F =
1

|Ωµ|

∫

Ωµ

Fµ dΩµ, (8)

where |Ωµ| denotes the measure of Ωµ. The above postulates are equivalent to a statement of kinematical
admissibility of micro-scale displacement fields. Indeed, (7) is itself a kinematical constraint imposed on uµ.
Due to the split (4) and (1), it is equivalent to

∫

Ωµ

ũµ dΩµ = 0. (9)
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The averaging relation (8), in turn, due to (6), is equivalent to the following constraint on ∇µũµ:
∫

Ωµ

∇µũµ dΩµ = 0, (10)

or, after a straightforward integration by parts,
∫

Γµ

ũµ ⊗ n dΓµ = 0, (11)

where Γµ denotes the boundary of the RVE and n is the outward unit normal to Γµ. That is, only displacement
fluctuation fields that satisfy the kinematical constraints (9) and (11) can be regarded as kinematically admis-
sible, i.e. compatible with the kinematical averaging postulates (8) and (7). Hence, we can define a functional
space of kinematically admissible displacement fluctuations, denoted Kin∗

ũµ
, as

Kin∗

ũµ
≡

{

v ∈ [H1(Ωµ)]3 :
∫

Ωµ

v dΩµ = 0;
∫

Γµ

v ⊗ n dΓµ = 0
}

. (12)

Note that constraint (9), which follows from (7), implies that translational rigid displacement fluctuations are
excluded from Kin∗

ũµ
. Rotational rigid displacement fluctuations, in turn, are excluded from Kin∗

ũµ
due to

constraint (11) that follows from the deformation gradient averaging postulate (8). The corresponding space of
virtual kinematically admissible fluctuation fields, denoted Var∗

ũµ
, coincides with Kin∗

ũµ
itself,

Var∗
ũµ

≡
{

v = v1 − v2 : v1,v2 ∈ Kin∗

ũµ

}

= Kin∗

ũµ
. (13)

From (12) and (2) we have that, for a given macro-scale point displacement and deformation gradient, u and
F, the functional set of kinematically admissible micro-scale displacement fields reads

Kin∗

uµ
≡

{

v = u + [F − I]y + ṽ : ṽ ∈ Kin∗

ũµ

}

. (14)

The corresponding space of virtual kinematically admissible micro-scale displacements, in turn, is given by

Var∗
uµ

≡
{

v = v1 − v2 : v1,v2 ∈ Kin∗

uµ

}

= Kin∗

ũµ
= Var∗

ũµ
. (15)

2.1.2 Further kinematical constraints

It is worth remarking that the RVE kinematical constraints embedded in the definition of the functional space
Kin∗

ũµ
(or Var∗

uµ
) above are the minimal kinematical constraints compatible with the present family of multi-

scale theories of solid behaviour. That is, any relaxation of these kinematical constraints would allow for micro-
scale displacement fields that fail to satisfy the fundamental kinematical averaging relations (8) or (7) and the
resulting model would violate essential postulates of the theory. The enforcement of further, more stringent ,
kinematical constraints, on the other hand, is perfectly acceptable (and very sensible in many situations),
provided the resulting space of kinematically admissible fluctuations is a subspace of its minimally constrained
counterpart defined in (12). In fact, well-known multi-scale models of solid can be cast within the present
framework with the simple introduction of further kinematical constraints as follows:

• Voigt-Taylor , uniform strain model or rule of mixtures. It assumes a uniform deformation gradient, equal
to F, over the entire RVE domain. This is equivalent to saying that the displacement fluctuations vanish
over Ωµ. Hence, within the present framework the Voigt-Taylor model is retrieved by setting the actual
space Kinũµ

, of kinematically admissible displacement fluctuations, simply as

Kinũµ
= {0}. (16)

• Linear boundary displacements or uniform boundary strain model. This widely used model assumes the
displacement fluctuations to vanish on Γµ so that the displacement field on the boundary of the RVE
reads

uµ(y) = u + [F − I]y ∀y ∈ Γµ. (17)

The corresponding space of kinematically admissible displacement fluctuations is

Kinũµ
= {v ∈ Kin∗

ũµ
: v|Γµ

= 0}. (18)
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• Periodic boundary fluctuations model. This is the classical assumption adopted in the analysis of periodic
media. The RVE in this case is a unit cell whose periodic repetition generates the macro-scale continuum.
The RVE here must satisfy certain geometrical constraints so as to be compatible with the assumption
of periodicity of the medium. Under such conditions, parallel RVE boundary sides (in two dimensions)
or surfaces (in three dimensions) are identified in pairs. Within each side or surface a one-to-one corre-
spondance can be identified between its points and points of the corresponding pairing side or surface.
With (y+,y−) denoting an arbitrary pair of boundary points related by this one-to-one correspondance,
the periodicity constraint requires that displacement fluctuations at y+ and y− be identical. The space
of kinematically admissible fluctuations in this case then reads

Kinũµ
= {v ∈ Kin∗

ũµ
: v(y+) = v(y−) ∀ pairs (y+,y−)}. (19)

Finally, we point out that without any kinematical constraints other than the minimal requirements of the
theory, i.e. by choosing

Kinũµ
= Kin∗

ũµ
, (20)

it can be shown [6] that the resulting model predicts uniform traction on the boundary of the RVE. In this
case, with P denoting the First Piola-Kirchhoff stress tensor at the macro-scale point x, Pµ the corresponding
micro-scale counterpart field, we have

Pµ(y) n(y) = P n(y) ∀y ∈ Γµ. (21)

2.2 Principle of Multiscale Virtual Power

The Hill-Mandel Principle of Macro-homogeneity [9, 12, 17] establishes the energetic consistency between the
two scales. In its original form [12], it states that the volume average of the power of an equilibrium stress
field over an RVE subjected to either linear boundary displacements or uniform boundary tractions equals the
macro-scale stress power. Here, we rephrase the Hill-Mandel Principle as a variational statement – named
the Principle of Multiscale Virtual Power – by requiring the stress virtual power to coincide with the volume
average of its micro-scale counterpart. That is, we require that

P : δF =
1

|Ωµ|

∫

Ωµ

Pµ : δFµ dΩµ (22)

for all virtual macro-scale deformation gradients and micro-scale deformation gradient fields, δF and δFµ,
kinematically admissible in the sense of (8). By taking (6) into account, the Hill-Mandel Principle can be
expressed by the following variational equation:

P : δF =
1

|Ωµ|

∫

Ωµ

Pµ : (δF + ∇µδũµ) dΩµ, ∀δF;∀δũµ ∈ Varũµ
. (23)

2.2.1 Stress homogenisation and micro-scale equilibrium

The variational statement of the Hill-Mandel Principle plays a fundamental role in the definition of the transition
between the micro- and macro-scales. As direct consequences of (23) we have:

• The stress homogenisation relation,

P =
1

|Ωµ|

∫

Ωµ

Pµ dΩµ, (24)

obtained from (23) by choosing δũµ = 0 and allowing arbitrary variations δF, and;

• The micro-scale equilibrium equation,

∫

Ωµ

Pµ : ∇µδũµ dΩµ = 0, ∀δũµ ∈ Varũµ
, (25)

obtained by setting δF = 0 and allowing any kinematically admissible virtual displacement fluctuations
in (23).
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In the conventional approach to homogenisation problems under the assumptions of periodic displacement
fluctuations or minimal kinematical constraint, translational rigid body displacement fluctuations are prevented
by fixing an arbitrary point of the RVE. Here, translational rigid modes are dealt with by imposing (9) (embedded
in the definition of Varũµ

). We remark, however, that both approaches are mechanically equivalent in the absence
of body forces.

Remark 2.1 In contrast with the usual way in which multi-scale theories are presented, within the present
framework the stress homogenisation expression (24) and the micro-scale equilibrium equation (25) are not a
priori assumptions.1 Rather, they are derived here as direct consequences of the variational statement (22) of
the Hill-Mandel Principle – the Principle of Multiscale Virtual Power.

Remark 2.2 In the above derivation, following the usual assumption in the treatment of the classical theory
(see for instance [12]), inertia and body forces have been assumed zero. It should be noted, however, that any
inertia or body force field orthogonal to the space Varũµ

is consistent with the variational equilibrium equation
(25) [4, 23]. As we shall see, the extended theory presented in Section 3 provides the natural framework to fully
address the consideration of inertia and body forces.

2.3 Summary. Macro-scale constitutive response

The complete classical multiscale theory can be summarised by the deformation gradient averaging and stress
homogenisation relations, given respectively by (8) and (24), and the micro-scale equilibrium equation (25).
With these at hand, together with the choice of an appropriate space Kinũµ

= Varũµ
, the macro-scale con-

stitutive response at a point x of the macroscopic continuum with a given associated RVE, is obtained as
follows:

• Given the history of deformation gradient tF(x) at point x up to time t, find a corresponding history tũµ

of kinematically admissible micro-scale displacement fluctuation fields ũµ ∈ Kinũµ
, such that the RVE

equilibrium equation is satisfied:

∫

Ωµ

Pµ(y, τFµ) : ∇µδv dΩµ = 0 ∀δv ∈ Varũµ
,∀τ ∈ [0, t], (26)

where the histories of Fµ and ũµ are related by:

τFµ(y) = τF(x) + ∇µ
τ ũµ(y) (27)

and Pµ(y, ·) is a given constitutive response functional that maps histories of deformation gradient into
the First Piola Kirchhoff stress tensor at point y of the RVE:

Pµ(y, τ) = Pµ(y, τFµ). (28)

• With the solution of the above RVE equilibrium problem at hand, obtain for all τ ∈ [0, t] the macro-scale
First Piola-Kirchhoff stress tensor according to the averaging relation (24).

3 Consideration of inertia and body forces

We shall now consider the situation where inertia and body forces may be present. Then, let f b
µ denote the

reference micro-scale body force field. That is, the body force per unit volume of the reference configuration of
the RVE. In addition, let ρµ be the micro-scale reference mass density field.

Rather than assuming a particular format for the homogenisation of the inertia and body forces, or for the
corresponding RVE equilibrium equation, we shall proceed here to derive them from an extended version of
the Hill-Mandel Principle, which enforces energy consistency between the two scales in the present case. Note
that this approach is entirely in line with the methodology adopted above in the formulation of the classical
theory (in the absence of inertia and body forces) where both the homogenisation of the stress and the RVE
equilibrium were derived from the variational statement of the Hill-Mandel Principle.

1In Hill’s original work [12], equilibrium and homogenisation of stress are a priori assumptions which, combined, have the
classical Hill-Mandel Principle as a consequence.
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3.1 Extended Hill-Mandel Principle

In order to account for inertia and body forces in the micro-to-macro transition, we postulate an extended
version of the Hill-Mandel Principle by simply stating the Principle of Multiscale Virtual Power in terms of
total virtual powers at both macro- and micro-scales [1]. The extended principle requires that the total macro-
scale virtual power coincides with the volume average of its micro-scale counterpart. That is, it requires the
variational equation

P : δF − f · δu =
1

|Ωµ|

∫

Ωµ

(Pµ : δFµ − fb
µ · δuµ + ρµüµ · δuµ) dΩµ (29)

to hold for all tensors δF and vectors δu and all virtual micro-scale deformation gradient and displacement fields,
δFµ and δuµ, kinematically admissible in the sense of (8) and (7). In (29), üµ is the micro-scale acceleration
field. It should be noted that in stating the macro-scale total virtual power, a macro-scale force vector f has
been introduced as the dual of the macro-scale displacement vector, with no reference to its specific nature (i.e.
whether it results specificaly from prescribed micro-scale body forces or inertia forces). Its actual meaning – to
be made clear by the homogenisation formulae linking the macro-scale force vector f to the micro-scale fields
it originates from – will be determined as a consequence of (29) by means of simple, but rigorous, variational
arguments.

By decomposing δFµ and δuµ following (2) and (6), the Principle of Multiscale Virtual Power can be
re-written in the equivalent form:

P : δF − f · δu =
1

|Ωµ|

∫

Ωµ

[Pµ : (δF + ∇µδũµ) − (fb
µ − ρµüµ) · (δu

+δFy + δũµ)] dΩµ∀δF, δu; ∀δũµ ∈ Varũµ
.

(30)

3.2 Stress, inertia and body force homogenisation and RVE equilibrium

Following the procedure of Section 2, by setting δu = 0, δũµ = 0, and allowing arbitrary variations δF in (30),
we obtain the expression for the stress homogenisation in the presence of micro-scale inertia and body forces:

P =
1

|Ωµ|

∫

Ωµ

[Pµ − (fb
µ − ρµüµ) ⊗ y] dΩµ. (31)

Further, with δF = 0 and δu = 0, (30) yields the corresponding RVE equilibrium equation:
∫

Ωµ

[Pµ : ∇µδũµ − (fb
µ − ρµüµ) · δũµ] dΩµ = 0, ∀δũµ ∈ Varũµ

. (32)

Finally, with δF = 0 and δũµ = 0, (30) results in the homogenisation expression for the macro-scale force f :

f =
1

|Ωµ|

∫

Ωµ

(fb
µ − ρµüµ) dΩµ. (33)

Obviously, one can conveniently split f as

f = fb − fρ, (34)

with

fb :=
1

|Ωµ|

∫

Ωµ

fb
µ dΩµ (35)

identified as the homogenised body force and

fρ :=
1

|Ωµ|

∫

Ωµ

fρ
µ dΩµ; fρ

µ := ρµüµ, (36)

as the homogenised inertia force. That is, as one might have intuitively expected, the macro-scale body force
fb turns out to be the volume average of its micro-scale counterpart over the RVE, and the same applies to the
macro-scale inertia force fρ. Here, these homogenisation formulae have been naturally derived as consequence
of the Euler-Lagrange equation of the Principle of Multiscale Virtual Power.
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3.3 Inertia and body force fluctuation fields

To gain some further insight into the role of inertia and body forces in the micro-scale it is convenient to define
the micro-scale body force fluctuation field ,

f̃b
µ := fb

µ −
1

|Ωµ|

∫

Ωµ

fb
µ dΩµ = fb

µ − fb, (37)

and the micro-scale inertia force fluctuation field ,

f̃ρ
µ := fρ

µ −
1

|Ωµ|

∫

Ωµ

fρ
µ dΩµ = fρ

µ − fρ, (38)

That is, the fields f̃b
µ and f̃ρ

µ measure the fluctuation of fb
µ and fρ

µ about their respective volume averages, fb

and fρ.
With the introduction of the above split of fb

µ and fρ
µ into (31) we obtain

P =
1

|Ωµ|

{

∫

Ωµ

[Pµ − (f̃b
µ − f̃ρ

µ) ⊗ y] dΩµ − (fb − fρ) ⊗

∫

Ωµ

y dΩµ

}

(39)

which, in view of (1), results in the following expression for the stress homogenisation:

P =
1

|Ωµ|

∫

Ωµ

[Pµ − (f̃b
µ − f̃ρ

µ) ⊗ y] dΩµ. (40)

Analogously, with the use of (37) and (38) in (32), we obtain

∫

Ωµ

[Pµ : ∇µδũµ − (f̃b
µ − f̃

ρ
µ) · δũµ] dΩµ − (fb − fρ) ·

∫

Ωµ

δũµ dΩµ = 0,

∀δũµ ∈ Varũµ
. (41)

By noting that Varũµ
⊂ Var∗

ũµ
= Kin∗

ũµ
, the constraints of definition (12) imply that the second integral on the

left hand side of (41) vanishes – the volume averages f b and fρ are orthogonal to Varũµ
– and the equilibrium

of the RVE can be equivalently expressed by the variational equation

∫

Ωµ

[Pµ : ∇µδũµ − (f̃b
µ − f̃ρ

µ) · δũµ] dΩµ = 0, ∀δũµ ∈ Varũµ
, (42)

where only the fluctuating components f̃ρ
µ and f̃b

µ of the micro-scale inertia and body force take part.2

Finally, for the sake of completeness, by using in (40) the general tensor relation

∫

Ωµ

S dΩµ =

∫

Γµ

Sn ⊗ y dΓµ +

∫

Ωµ

divµS ⊗ y dΩµ, (43)

valid for any sufficiently smooth tensor field S, together with the strong form of (42), we obtain the alternative
expression for the homogenised stress which uses only boundary information:

P =
1

|Ωµ|

∫

Γµ

Pµn ⊗ y dΓµ (44)

2Although not specifically relevant to the treatment of micro-scale inertia and body forces, it is worth noting that a completely
analogous argument, taking into account the kinematical constraint (10) embedded in the definition of Varũµ

, leads to a similar
conclusion regarding the role of the micro-scale stress field in the RVE equilibrium equation. That is, only the micro-scale stress

fluctuation field ,

P̃µ := Pµ − P,

may produce non-zero virtual power. Hence, (42) is equivalent to
∫

Ωµ

[P̃µ : ∇µδũµ − (f̃b
µ
− f̃

ρ

µ
) · δũµ] dΩµ = 0, ∀δũµ ∈ Varũµ

,

where only fluctuations of micro-scale forces and stresses are of relevance.
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or, simply,

P =
1

|Ωµ|

∫

Γµ

tµ ⊗ y dΓµ (45)

where tµ = Pµn is the Piola stress vector on Γµ. Note that tµ is a purely reactive boundary traction, i.e,
tµ ⊥ Varũµ

. Obviously, this expression remains valid in the absence of body forces.

3.4 Summary. Macro-scale response with micro-scale inertia and body forces

In the presence of inertia and micro-scale body forces or, more precisely, non-zero inertia and body force
fluctuations at the micro-scale, the macro-scale stress response at a point x of the macro-continuum is obtained
as follows:

• Given the history tF(x) of deformation gradient at point x up to time t, the history tf̃b
µ of the reference

micro-scale body force fluctuation field and the initial conditions ũµ(t0), and ˙̃uµ(t0), for the displace-
ment and velocity fluctuation fields at the initial time t0, we solve the RVE equilibrium problem: find
a corresponding history tũµ of kinematically admissible displacement fluctuation fields ũµ ∈ Kinũµ

such
that

∫

Ωµ

Pµ(y, τFµ) : ∇µδv dΩµ −

∫

Ωµ

[f̃b
µ(τ) − f̃ρ

µ(τ)] · δv dΩµ = 0

∀δv ∈ Varũµ
,∀τ ∈ [0, t].

(46)

• With the solution of the RVE equilibrium problem at hand, obtain for all τ ∈ [0, t] the macro-scale First
Piola-Kirchhoff stress tensor according to the stress homogenisation relation (40) or (45). The homogenised
macro-scale inertia and body forces, in turn, are obtained according to (36) and (35), respectively.

4 Discussion

In the absence of inertia and body forces, the classical procedure summarised in Section 2.3 determines the
macro-scale First Piola-Kirchhoff stress tensor at a point of the macro-continuum as a function solely of the
history of the macro-scale deformation gradient at that point. That is, the procedure implicitly defines a local
constitutive response functional P for the macro-scale stress such that

P(t) = P(tF). (47)

In this case, the macro-scale stress response resulting from the multiscale modelling is purely constitutive in
that it depends only on the history of the macro-scale deformation gradient.

However, if inertia or body forces are taken into account the above no longer holds true in general. Indeed,
note that the stress determination procedure of Section 3.4 in fact defines the macro-scale First Piola-Kirchhoff
stress as a function of the history of the macro-scale deformation gradient and the history of the micro-scale
inertia and body force fluctuation fields. As for the history of micro-scale inertia forces, we should note that
the histories tF and tu implicitly contain the data ü and F̈ required by the dynamic RVE equilibrium problem
whose solution gives the microscale acceleration field üµ. As the microscale inertia forces are determined from
üµ through (36)2 we have that the stress response functional, in this case denoted Sα, is such that for a given

set α ≡ {ũµ(t0), ˙̃uµ(t0)} of initial conditions for the micro-scale displacement and velocity flutuation fields we
have

P(t) = Sα(tF, tu, tf̃
b

µ). (48)

The functional S in this case cannot in general be classed as a constitutive functional in the classical sense
because, in addition to the standard dependence upon the deformation gradient history, the stress here depends
also on external prescribed loading – more precisely, on the micro-scale body force fluctuation fields – and on the
history of the macro-scale displacement. The dependence of the stress response on the histories of displacements
or external agents is non-conventional and does not fit within the classical and widely accepted framework of
simple materials [20, 21].
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Of course, the stress dependence upon inertia or body forces will be of practical relevance only in situa-
tions where their fluctuations are of sufficient intensity to have a significant effect on the solution of the RVE
equilibrium problem (46) and on the stress homogenisation (40) or (45). It is worth remarking here however
that, even in such cases, the macro-scale First Piola-Kirchhoff stress (as obtained in (45)) remains identifiable
in terms of RVE boundary data alone – a property pointed out by Hill [12] as fundamental in the definition of
macro-scale variables.

The consideration of body forces in the multiscale modelling of solids has been recently addressed in [15,
16, 25]. In the context of a homogenisation procedure based on the Irving-Kirkwood statistical mechanical
theory [13], Mandadapu et al. [16] arrived at an expression for the homogenised body force which reduces to
that of (35) for a suitable choice of weighting function in their theory. Interestingly, following a variational
approach similar to the one reported here, where macro- and micro-scale body forces are correctly accounted
for, Ricker et al. [25] concluded that the extended Hill-Mandel approach is consistent only with self-equilibrated
micro-scale body forces (and consequently zero macro-scale body force). Their analysis was conducted under the
assumption of periodic RVE boundary conditions. Their conclusion is at odds with the findings of the present
paper and can be explained as follows. In [25], no kinematical constraint has been imposed on the micro-scale
displacement field to link it to the macro-scale displacement. That is, without a constraint of the type (7),
the kinematically admissible displacements within the RVE domain are independent of the macro-displacement.
As a consequence, the corresponding space of virtual RVE displacements contains rigid translations and the
extended Hill-Mandel Principle can only hold if the volume average of the micro-scale body forces vanishes.
Hence, the conclusion of [25] is variationally consistent with the kinematics they adopted. However, since
body forces are work-conjugate to displacements, the inclusion of the virtual power of (macro- and micro-scale)
body forces into the Hill-Mandel Principle must be accompanied by an appropriate kinematical constraint that,
just as (6) and (10) link the macro- and micro-scale displacement gradients, links the macro- and micro-scale
displacements in a physically meaningful way. This issue is fully resolved with the simple incorporation of the
fundamental constraint (7). Within the present framework, where the entire theory derives from the fundamental
concept of kinematical admissibility and the Principle of Multiscale Virtual Power, once the constraint (7) is in
place, the homogenisation formulae and RVE equilibrium equation that correctly account for possible non-zero
inertia and body forces follow naturally from straightforward variational arguments. Note that, due to the
nature of constraint (7), only the fluctuating (zero volume average) components of the micro-scale inertia and
body force fields contribute to the micro-scale virtual power and are relevant to the RVE equilibrium equation.
Their uniform (volume average) component is orthogonal to the space Varũµ

(see Remark 2.2) and therefore
”invisible” to the RVE equilibrium problem. That is, the uniform components f ρ and fb of the micro-scale
inertia and body forces, defined in (36) and (35), are balanced by a purely reactive force field generated by
the kinematical constraint (7). We remark that the present findings – fluctuation and volume average force
components only ”visible” at the micro- and macro-scale respectively – are consistent with those reported by
Sanchez-Palencia [28] in the context of asymptotic expansion treatment of rapidly varying body force fields in
linear elasticity of periodic media.

These observations shed light on an issue which, in our view, appears to be quite unclear in the recent liter-
ature (see [24]). The apparent confusion surrounding this issue seems to stem partly from the non-conventional
nature of the kinematical constraint (7) – a volume integral constraint – imposed upon the microscale displace-
ment field. However, once the theory is properly cast in variational form, the consequences of this constraint
(in particular, the reactive nature of the uniform component of the microscale inertia and body forces) can be
rigorously dealt with in exactly the same way as the conventional kinematical constraints of solid mechanics by
simply observing the orthogonality between the functional spaces of reactive forces and kinematically admissible
virtual displacements. As an interesting practical consequence of these variational considerations we have the
following. Note that under the assumptions of minimal kinematical constraint or periodic boundary fluctua-
tions the domain integral constraint (7) serves only to prevent rigid translations. Hence, in these cases an RVE
equilibrium problem mechanically equivalent to (46) can be defined by relaxing the constraint (7) of Varũµ

and

loading the RVE only with the fluctuating components f̃ρ
µ and f̃b

µ of the inertia and body forces. Obviously, in
such cases another kinematical constraint (e.g. the typical boundary point displacement constraints [23] used in
RVE computations in the absence of inertia and body forces) must be imposed to prevent rigid translations in
the mechanically equivalent problem. This approach is likely to be simpler in practical computations as it does
not require the domain integral constraint to be considered at all. However, if the full inertia or body forces are
applied to the RVE (i.e. fluctuating plus volume average components) then the constraint (7) must be imposed
in the solution of the RVE equilibrium problem. Also noteworthy is the fact that, under the assumption of
linear RVE boundary displacements, rigid translations are fully prevented by the boundary constraints alone
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and (7) is a further kinematical constraint. Hence, unlike the periodic boundary fluctuations and the minimally
contrained models, in this case there is in general no mechanically equivalent RVE equilibrium problem that
does not require the domain integral constraint (7) to be imposed explicitly.

5 Conclusion

An RVE-based multiscale theory of solids accounting for the effects of micro-scale inertia and body forces
has been proposed and discussed in detail. The theory was cast within a framework relying entirely on the
two fundamental principles of kinematical admissibility and Multiscale Virtual Power . These principles are
regarded as fundamental in that they provide the essential link between the macro- and micro-scale kinematics
and virtual power, respectively. In this context, it has been shown that a simple extension of the Hill-Mandel
Principle that accounts for the total virtual power, together with a suitable set of kinematical constraints upon
the RVE displacements, provide an appropriate framework to address the effects of inertia and body forces on
the micro-to-macro transition. Within this framework, the RVE equilibrium equation and the homogenisation
relations among the relevant macro- and micro-scale quantities are naturally derived by means of straightforward
variational arguments. The following findings are of particular relevance:

• As one would intuitively expect, the macro-scale inertia and body force are obtained simply as the volume
average of the micro-scale inertia and body force fields over the RVE domain, respectively;

• The contribution of the micro-scale inertia and body force fields to the homogenised stress is such that
the macro-scale stress tensor remains, as in the classical theory of Hill [12], representable exclusively in
terms of RVE boundary tractions;

• Only fluctuations of the micro-scale inertia and body force fields about their homogenised (volume average)
values are of relevance to the RVE equilibrium equation. Uniform micro-scale inertia and body force fields
are ”invisible” to the RVE equilibrium problem (as they produce no virtual power in the micro-scale) and,
therefore, do not contribute to the homogenised stress.

To the authors’ knowledge, these findings are novel in this context and clarify the issue of inertia and body forces
within this class of multiscale theories – an issue which appears to not to have been satisfactorily addressed
in the literature. We finish by noting that a generalisation of the framework adopted here – where the entire
theory can be derived from the principles of kinematical admissibility and Multiscale Virtual Power alone
– is currently under development [1, 2] and will be the subject of a forthcoming publication. The generalised
framework extends the concepts discussed here to tackle non-classical multiscale problems involving, for example,
kinematical discontinuities, higher order kinematics or distinct kinematics at micro- and macro-scales.
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[1] Blanco PJ, Sánchez PJ, de Souza Neto EA, Feijóo RA. 2014. Variational foundations of RVE-based multiscale
models. Technical Report P&D No. 2, LNCC-MCTI Laboratório Nacional de Computação Cient́ıfica, Brazil.

[2] Blanco PJ, Sánchez PJ, de Souza Neto EA, Feijóo RA. 2014. Unified variational theory of RVE-based
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