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Abstract The continuous increase of computational

capacity has encouraged the extensive use of multiscale

techniques to simulate the material behaviour on several

fields of knowledge. In solid mechanics, the multiscale

approaches which consider the macro-scale deformation

gradient to obtain the homogenized material behaviour

from the micro-scale are called first-order computational

homogenization. Following this idea, the second-order FE2

methods incorporate high-order gradients to improve the

simulation accuracy. However, to capture the full advan-

tages of these high-order framework the classical boundary

value problem (BVP) at the macro-scale must be upgraded

to high-order level, which complicates their numerical

solution. With the purpose of obtaining the best of both

methods i.e. first-order and second-order, in this work an

enhanced-first-order computational homogenization is

presented. The proposed approach preserves a classical

BVP at the macro-scale level but taking into account the

high-order gradient of the macro-scale in the micro-scale

solution. The developed numerical examples show how the

proposed method obtains the expected stress distribution at

the micro-scale for states of structural bending loads.

Nevertheless, the macro-scale results achieved are the same

than the ones obtained with a first-order framework

because both approaches share the same macro-scale BVP.

1 Introduction

Almost all existing materials around us can be considered

heterogeneous structures or composite materials, since they

are composed by several phases or components at certain

spatial scale of observation. Prediction of the physical and

chemical behaviour of such materials is a complicated

target. Their properties, also called effective or homoge-

nized properties, fully depend on the internal microstruc-

ture which can be different from one to another composite

in morphology, volume fraction, and of course, in proper-

ties of constituents. The interaction between components,

failure of interfaces capacity or damage because of fracture

of the constituents must be also considered. Therefore,

obtaining a good characterization of composite materials

behaviour is in general a complex issue and requires con-

sidering suitable and sophisticated methods.

1.1 Review of Multiscale Methods

Within the context of solid mechanics, the pioneering

works of Eshelby [20], Hashin [38], Hashin and Shtrikman

[39, 40], Hill [42–45], Budiansky [10], Mandel [68] and

Gurson [37] have been significant theoretical developments

for the estimation of macroscopic properties of heteroge-

neous materials. Following in time, the asymptotic

homogenization theory has been another important mile-

stone for modelling multiphase materials. The method is

based on asymptotic expansions of displacement, strain and
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stress fields around their corresponding macroscopic val-

ues. Through variational principles is obtained a set of

boundary value problems. Fundamental contributions to

this modelling methodology are the original works of

Bensoussan et al. [7] and Sanchez-Palencia [102, 103].

Fish and co-workers presented a generalization of the

mathematical homogenization method based on double-

scale asymptotic expansion to account for non-linear

effects such as plasticity [26] and damage [27] in hetero-

geneous media. The asymptotic homogenization method

was continuously developed and nowadays, it still is a very

popular research topic [12, 17, 51, 98, 116].

In the last decade, several multiscale approaches have

been developed becoming nowadays in an essential tech-

nique for modelling composites materials. This is because,

even today performing a full direct numerical simulation

including all the heterogeneities leads to a huge problem,

which is expensive and unworkable from a computational

cost point of view. On the other hand, carrying out

numerous experiments on many material samples with

different geometrical and physical properties is practically

impossible because of time and cost.

In a general sense, it is possible classify the multiscale

models into the concurrent method [9, 19, 28, 31, 32, 47,

62, 67, 84, 117, 127] and the homogenization method, on

the latter one will be focused this article. The main feature

of a generic concurrent multiscale method is that coarse-

and fine-scale regions are processed simultaneously. The

links between different scales are accounted considering

displacement compatibility and momentum balance across

the whole solid. Therefore, this framework considers a

strong coupling between the scales. On the other hand, the

multiscale homogenization method is based on the princi-

ple of separation of scales and then, micro-scale length is

assumed much smaller than macro-scale length [30].

Consequently, in this approach the length scales of micro-

and macro-problems must be sufficiently separate.

Multiscale homogenization method which uses the

concept of Representative Volume Element (RVE)

[7, 42, 109, 113, 125] together with suitable computational

approaches has emerged as one of the most promising

formulation to address the response of composites struc-

tures. The RVE is employed to determine the homogenized

properties and behaviour of a material point at the macro-

scale level. It is defined as a microstructural subregion and

must be large enough to be statistically representative of

the composite material including all its microscopic

heterogeneities [18, 33, 53, 71, 90, 120]. However, it must

remain sufficiently small to be considered as a volume

element of the structure, fulfill space separation condition

and also due to computational efficiency [91, 119].

Renard and Marmonier [101] were the firsts to use a

finite element discretization to model heterogeneous

materials with a homogenization method. The geometry of

the RVE is meshed with finite elements to solve the micro-

scale Boundary Value Problem (BVP), then through

homogenization rules the micro-results are linked to

macro-scale properties [34, 35, 63, 107, 120]. Guedes and

Kikuchi [36] extended the method to analyze the

mechanical behavior of linear elastic 2D and 3D composite

materials with periodic microstructure. However, who

introduced the general formulation of FE2 was Feyel [22].

The structure at the macro-scale is discretized by finite

elements and for each integration points of the macro-

element one RVE also discretized by finite elements is

assigned. The coupled problem between both scale are

computationally performed by solving separate BVPs

through the finite element method. During subsequent

years, the FE2 computational technique has been further

developed in the works of many authors [59, 69, 74,

75, 78, 105, 108, 123].

The recent reviews of Kanouté et al. [54], Geers et al.

[30], McDowell [70] and Nguyen et al. [83] show that the

computational multiscale methods have a clear potential to

encourage important advances in modelling material non-

linear behaviour e.g. viscoelasticity, plasticity, material

fracture and among others. Because in general, the non-

linear processes are the result of many complex mecha-

nisms at the micro-scale level which depend of the specific

analyzed material. Since the pioneering works of Swan

[114], Smit et al. [108], Michel et al. [72], Miehe et al. [73]

and Nemat-Nasser [81] many developments have been

done on this issue for several authors [16, 24, 25, 48, 57,

59, 89, 115, 121].

One of the main challenges for computational multiscale

formulations is the objectivity i.e. energy consistency and

mesh/RVE-size independence [3]. The dissipated energy

by the failure mechanisms must be consistent through the

scales and, unaffected by RVE size [33] and convergent

with mesh refinement. To overcome the inherent non-ob-

jective of classical multiscale computational homogeniza-

tion due to size-effect associated with strain localization at

the micro-scale several techniques have been developed.

For instance, the Multiscale Aggregating Discontinuities

(MAD) was proposed by Belytschko et al. [4], the strategy

is based on aggregating discontinuities at the micro-scale

and passing these to the macro-scale [5, 111]. In [86], the

Continuum Strong Discontinuity Approach (CSDA) pro-

posed by Oliver and Huespe [85, 87, 88] is extended to

two-scale modeling of propagating fracture. In general,

these strategies introduced in the formulation a character-

istic length as a numerical parameter which is coming from

the RVE domain size e.g. the finite element size [93], the

bandwidth of crack [124] or the bandwidth of cohesive

zone [86]. In addition, computational homogenization

schemes using a gradient-enhanced to connect the scales
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were developed [50, 60, 61, 65, 66, 112], in these kind of

approaches it is not necessary to introduce artificially a

length-scale parameter because it arrives naturally. Coenen

et al. developed an enhanced multi-scale scheme by

introducing discontinuities to simulate the strain localiza-

tion band [14]. The same authors propose a new type of

boundary condition at the micro-scale to improve capture

the developing localization bands [13].

It is known that computational multiscale homogeniza-

tion techniques are computationally expensive for non-

linear analysis because the micro-scale problem needs to be

solved many times. However, the multiscale homogeniza-

tion solution is easily parallelizable due to the fact that the

different micro-scale BVPs are independent of each other

[23, 69, 80]. In addition, several recent contributions have

been presented aiming at improving the robustness and

reducing the computational cost e.g. adaptive strategies to

solve the micro-scale problem only the minimum number

of times necessary [93, 124], adaptive sub-incremental

strategies to ensure the convergence of the multiscale

solution in the presence of several sources of non-linearity

[100, 110], model-order reduction techniques [41, 64, 79,

129] which use the Proper Orthogonal Decomposition

(POD), or proper generalized decomposition, to obtain the

reduced set of empirical shape functions.

In the last years, multiphysics problems have been

addressed using multiscale homogenization methods, such

as [8, 95, 118, 122] for thermomechanical problems,

[11, 49] for magnetomechanical problems, [56, 77, 104] for

electromechanical problems, among others. On the other

hand, after the groundbreaking contribution of Bendsoe

and Kikuchi [6] in which the homogenization method is

used to design optimal topology structures several authors

have dabbled into this actual research topic [1, 21, 55,

106, 128].

1.2 Formulation Introduction

In the context of solid mechanics and multiscale compu-

tational homogenization, one of the most extended and

popular method is called First-Order Computational

Homogenization (FOCH) [72, 74, 120]. In this approach,

the macro-scale strain tensor (or deformation gradient

tensor) is used as input to solve the micro-scale BVP. The

material stress-strain relationship is obtained from the

solution of problem at the micro-scale i.e. the RVE which

contains the detailed modeling of the internal heteroge-

neous structure of the composite. Therefore, it does not

require any composite constitutive assumption or compat-

ibility equation to address the composite response [94].

And, there are not restriction on the constitutive model

used in the component materials, even non-linear materials

and time-dependency models can be taken into account

[89, 93, 108].

In the last decade, a Second-Order Computational

Homogenization (SOCH) was proposed as a natural

extension of the FOCH [50, 60, 61]. It was developed to be

applied in critical regions of large gradient deformation,

where the characteristic wave length of the macro-scale

deformation field is of the order of the size of the micro-

scale. In this method the macroscopic gradient of the

deformation gradient is also incorporated as input in the

micro-scale BVP. The first-order equilibrium problem is

conserved at the micro-scale level, while a higher-order

equilibrium problem appears at the structural scale. The

finite element framework necessary for the numerical

solution of the macro-scale problem leads to many com-

plications [58], which has restricted its extensive

applicability.

The SOCH is able to capture the second-order effects in

the microscopic scale due to macroscopic high-order phe-

nomena such as bending or strain localization, this is its

major improvement over the FOCH. However, the FOCH

conserves first-order equilibrium equations at both scales,

which represents an advantage from a computational point

of view. With the purpose to take the best of these two

methods, the presented work proposes an Enhanced-First-

Order Computational Homogenization (EFOCH). The

developed procedure takes into account macroscopic sec-

ond-order effects by using the macro-scale second-order

deformation measure in the micro-scale BVP. Besides, the

proposed EFOCH conserves the classical first-order equi-

librium problem in the structural scale.

In the following, the classical FOCH is reviewed, as it is

the most common procedure used in mechanical multiscale

analysis. The description of the FOCH theory will be used

to set the theoretical framework of homogenization pro-

cedures. Afterwards, Sect. 3 presents the proposed

EFOCH, together with some remarks regarding the dif-

ferences found with the SOCH proposed and used by other

authors. In Sect. 4 the BVPs for both scales and some

considerations about the numerical implementation are

described. Section 5 contains the numerical examples used

to compare the results obtained with the proposed EFOCH

and FOCH. Finally in last section the conclusions of this

work are exposed.

2 General Considerations and FOCH

The no lineal transformation between the reference con-

figuration of the body X and the current configuration of

the same body Xc is defined as: / : X ! Xc j x ¼ / Xð Þ,
where x 2 Xc and X 2 X are respectively the current and
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the reference positions of the material point. Therefore, the

linear mapping for an infinitesimal material line element is

dx ¼ F � dX; ð1Þ

where the deformation gradient tensor is defined by

F ¼ o/
oX

¼ rx: ð2Þ

Here, the gradient operator rð�Þ is taken respect to the

reference configuration X.

Nevertheless, if now a finite material line within a finite

volume is considered, the expression given by (1) does not

apply any more. However, a Taylor series expansion

(centered at Xo) can be used to obtain an expression for the

finite material line Dx in the current configuration as

Dx ¼ F Xoð Þ � DX þ 1

2
G Xoð Þ : DX � DX þO DX3

o

� �
;

ð3Þ

where the third-order tensor G is the gradient of the

deformation gradient, which can be defined as

G ¼ o

oX

o/
oX

� �
¼ rF: ð4Þ

It can be shown from (4) that the tensor G has the sym-

metry property of Gijk ¼ Gikj [60].

2.1 First-Order Computational Homogenization

Let us consider a solid domain (or body X) with a periodic

or quasi-periodic microstructure that can be represented by

a RVE. In this body, it is possible to establish two scale

levels, a macro scale (or structural scale) for the

macrostructure, and a micro scale (or sub scale) for the

microstructure. The microstructural scale is defined using a

RVE which characterizes the microstructure of the mate-

rial. Let us also consider an infinitesimal material point Xo

in the reference configuration of the structure, and the RVE

around this considered point as Fig. 1 is showing.

The called principle of separation of scales [30] estab-

lishes that: the microstructural length scale ll is assumed to

be much smaller than the macrostructural characteristic

length l, which is the length over the macroscopic space. In

other words, the principle says that the existing periodical

microscopic dimension around of the macrostructural point

ðXoÞ must be smaller than the characteristic macrostruc-

tural dimension. If this principle is satisfied, the current

configuration or deformed position of a material point in

the RVE xl 2 Xc
l can be approximated as

xl Xo;Xl
� �

ffi xo
l þ F Xoð Þ � DXl þ w Xl

� �
; ð5Þ

where DXl ¼ Xl � Xo
l, and Xl 2 Xl is the reference

configuration or non-deformed position of the material

point in the RVE and Xo
l and xo

l are the origin of the

reference and the current coordinate system on the RVE,

respectively (see Fig. 2). The extra term w is a

microstructural displacement fluctuation field.

To simplify the symbolic manipulation of the formula-

tion is convenient to set the coordinate system’s origin as

Xo
l ¼ 0 and xo

l ¼ 0: ð6Þ

Later, it will be proved that with these values, the rigid

body motion of the RVE is avoided. Considering these

restrictions, the expression given by (5) can be rewritten as

xl Xo;Xl
� �

ffi F Xoð Þ � Xl þ w Xl
� �

: ð7Þ

2.1.1 Displacement Field on the RVE

The displacement field ul at the RVE is defined by

ul ¼ xl � Xl; ð8Þ

and taking into account (7) in the previous equation,

ul Xo;Xl

� �
ffi F Xoð Þ � I½ � � Xl þ w Xl

� �
; ð9Þ

where I is the second-order unit tensor.

Fig. 1 Macrostructure and microstructure around of the point Xo

Fig. 2 Reference and current configuration of the RVE
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2.1.2 Kinematically Admissible Displacement Fields

and Boundary Conditions

The displacement fields in the RVE that are kinematically

admissible are obtained as a result of the coupling between

the macrostructure and the microstructure. This linkage is

based on the average theorems and they have been initially

proposed for infinitesimal deformations by Hill [42]. Later,

Hill [46] and Nemat-Nasser [82] extended these to finite

deformations.

The first of the averaging relations postulates that the

volume average of the microstructural deformation gradi-

ent tensor Fl over the RVE must be equal to the macro-

scopic F. In the considered point Xo this is

F Xoð Þ ¼ 1

Vl

Z

Xl

Fl Xo;Xl
� �

dV ; ð10Þ

where Vl is the volume of the RVE in the reference

configuration.

Considering (7) it is possible to write Fl as

Fl Xo;Xl
� �

¼rxl Xo;Xl
� �

ffiF Xoð Þ þ rw Xl
� �

;
ð11Þ

and using this relation, the right hand size of (10) is

1

Vl

Z

Xl

Fl Xo;Xl

� �
dV ¼ 1

Vl

Z

Xl

rxl Xo;Xl

� �
dV

¼F Xoð Þ þ 1

Vl

Z

Xl

rw Xl
� �

dV:

ð12Þ

Equation (12) can be rewritten as

F Xoð Þ ¼ 1

Vl

Z

Xl

Fl Xo;Xl
� �

dV

� 1

Vl

Z

Xl

rw Xl
� �

dV ;

ð13Þ

or

F Xoð Þ ¼ 1

Vl

Z

Xl

rxl Xo;Xl
� �

dV

� 1

Vl

Z

Xl

rw Xl
� �

dV :

ð14Þ

Finally, applying the divergence theorem, in the right hand

size of (14), this can be also rewritten in term of surface

integral as

F Xoð Þ ¼ 1

Vl

Z

oXl

xl Xo;Xl
� �

� N dA

� 1

Vl

Z

oXl

w Xl
� �

� N dA;

ð15Þ

where oXl is the RVE boundary domain in the reference

configuration, and N denotes the outward unit normal on

oXl.

Clearly, to satisfy the first average theorem, the integrals

that depend of the displacement fluctuation in both (14) and

(15) must vanish. Therefore,
Z

Xl

rw Xl
� �

dV ¼ 0 ð16Þ

and
Z

oXl

w Xl
� �

� N dA ¼ 0: ð17Þ

Noting Fig. 2 and considering that the reference geom-

etry configuration of the RVE is originally a cube, as the

figure is showing, the integral restriction on the RVE

boundary can be splitted in the different surfaces of the

oXl domain. Besides, taking the reference coordinate

system that is shown in Fig. 3, the outward unit normal of

the cubic faces satisfy: N�
X ¼ �Nþ

X , N�
Y ¼ �Nþ

Y and

N�
Z ¼ �Nþ

Z . Here, the subscript makes reference to the axis

which is perpendicular to the considered face and the

superscript defines the position of the face on the axis.

Therefore, considering this geometry, the expression given

by (17) may be rewritten as

X

i¼X;Y ;Z

Z

Nþ
i

w dA�
Z

N�
i

w dA

 !

� Nþ
i ¼ 0 ð18Þ

Equation (18) shows that the boundary restriction on the

displacement fluctuation field can be splitted on the dif-

ferent surface pairs (X, Y and Z) of the RVE boundary.

Fig. 3 Normal vectors to the surfaces in the reference configuration

of a Cubic RVE
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Previous equations from (16) to (18) can be used to

obtain the different displacement fluctuation fields kine-

matically admissible in the microstructural level. Several

models have been defined that assume different fluctuation

fields:

1. Taylor model (or zero fluctuations): The expression

given by (16) is verified when

w; sufficiently regular j w Xl
� �

¼ 0; 8 Xl 2 Xl:

ð19Þ

This model gives homogeneous deformation in the

microstructural scale level (see 24).

2. Linear boundary displacements (or zero boundary

fluctuations): The expression given by (17) is verified

when

w; sufficiently regular j w Xl
� �

¼ 0; 8 Xl 2 oXl:

ð20Þ

The deformation of the RVE boundary domain for this

class are fully prescribed.

3. Periodic boundary fluctuations: The key kinematical

constraint for this class is that w must be periodic on

the different faces of the RVE. That is, for each pair

Xþ
l ;X�

l

n o
of boundary points the expression given by

(18) is verified when

w; suff: reg: j w Xþ
l

� �
¼ w X�

l

� �
;

8 pairs Xþ
l ;X�

l

n o
2 oXl:

ð21Þ

4. Minimal constraint (or uniform boundary traction): In

this constraint the nontrivial solution of (17) is obtained.

2.1.3 Microscopic and Macroscopic Strain Tensor

Considering a infinitesimal deformation framework the

strain tensor in the microstructural level can be obtained as

El Xo;Xl
� �

¼ 1

2
Fl Xo;Xl
� �

þ FT
l Xo;Xl
� �� �

� I

¼ 1

2
F Xoð Þ þ FT Xoð Þ
� �

� I

þ 1

2
rw Xl
� �

þ rw Xl
� �� �T� �

;

ð22Þ

and, if (10) is satisfied it can be proved that taking the

volume average of El over the RVE domain the following

relationship is obtained,

1

Vl

Z

Xl

El Xo;Xl
� �

dV

¼ 1

2
F Xoð Þ þ FT Xoð Þ
� �

� I ¼ E Xoð Þ:
ð23Þ

Here, E Xoð Þ is the macroscopic strain tensor. It is possible

to rewrite (22) as

El Xo;Xl
� �

¼ E Xoð Þ þ Ew
l Xl
� �

; ð24Þ

where Ew
l ¼ 1

2
rw þ rwð ÞT
� �

¼ rsw is the contribution

of w to the microscopic strain tensor and rs is the sym-

metric gradient operator. Because (10) is verified the vol-

ume average of Ew
l over the RVE domain is equal to zero.

2.1.4 Hill–Mandel Principle and RVE Equilibrium

The Hill–Mandel energy condition [43, 68], also referred to

as the macro-homogeneity condition, states that the virtual

work of the point Xo considered must be equal to the

volume average of the virtual work in the RVE to any

kinematically admissible displacement field, this principle

can be formulated as

S : dE Xoð Þ ¼ 1

Vl

Z

Xl

Sl : dEl dV; ð25Þ

where S and Sl are the macroscopic and microscopic stress

tensor, respectively.

Using (24), the principle is rewritten as

S : dE Xoð Þ ¼ 1

Vl

Z

Xl

Sl dV : dE Xoð Þ

þ 1

Vl

Z

Xl

Sl : dEw
l Xl
� �

dV:

ð26Þ

Taking S as the volume average of Sl in the RVE domain,

which is similar to the first average relation (see 10)

S Xo;Xl

� �
� 1

Vl

Z

Xl

Sl Xo;Xl

� �
dV; ð27Þ

Eq. (26) will be satisfied if
Z

Xl

Sl : dEw
l Xl
� �

dV ¼
Z

Xl

Sl : rsdw dV ¼ 0: ð28Þ

Therefore, the RVE’s variational equilibrium equation is
Z

Xl

Sl : rsdw dV ¼ 0; ð29Þ

which must be satisfied for any kinematically admissible w

(see Sect. 2.1.2).

It is possible to observe that because of the symmetry of

Sl it can be proved that Sl : rað Þ ¼ Sl : rað ÞT , where a is

a first-order tensor, Eq. (28) also can be rewritten as
Z

Xl

Sl : dEw
l Xl
� �

dV ¼
Z

Xl

Sl : rdw dV ¼ 0: ð30Þ

F. Otero et al.

123



2.1.5 Microscopic and Macroscopic Stress Tensor

The microscopic stress tensor can be obtained as

Sl Xo;Xl
� �

¼Cl Xl
� �

: El Xo;Xl
� �

¼Cl Xl
� �

: E Xoð Þ þ Cl Xl
� �

: Ew
l Xl
� �

;

ð31Þ

where Cl is the material constitutive tensor in the RVE.

Then, using (27) the macroscopic stress tensor is

S Xo;Xl
� �

¼ �C : E Xoð Þ

þ 1

Vl

Z

Xl

Cl : Ew
l Xl
� �

dV ;
ð32Þ

where,

�C � 1

Vl

Z

Xl

Cl dV ð33Þ

is a constitutive tensor, which can be considered a material

property.

Equation (32) shows that S depends of E and also of Ew
l .

Moreover, Xl does not appear explicitly in Ew
l expression

(see 24) and, consequently, Xl does not appear in Sl either.

This implies that, the periodic microstructure around the

macro point Xo does not have to be modeled with its exact

dimensions. A non-dimensional RVE with the internal

distribution and volume fractions of the simple materials is

enough to obtain the microscopic strain and stress fields.

On the other hand, the kinematically admissible dis-

placement fluctuation option used to satisfy the boundary

condition affects the final S obtained, as occurs in the

Taylor model case. This means that if there is a null dis-

placement fluctuation field in the total RVE domain, the S

obtained only depend of E and �C. In other words, the

Taylor model condition returns the classical mixing theory

results.

3 Enhanced-First-Order Computational
Homogenization

In the following, an Enhanced-First-Order Computational

Homogenization (EFOCH) is proposed with the main

objective to include in the RVE the second-order effects

obtained from a macroscopic high-order phenomena.

Unlike the SOCH, the presented EFOCH preserves a

classical first-order BVP at the macro scale level as does

the FOCH.

If the principle of separation of scales is not clearly

satisfied, the microscopic displacement field can be enri-

ched with second-order information available in the macro

scale. The deformed position of a material point in the

RVE (see 5), can be rewritten with the second-order term

of (3). Then, it is possible to propose a new approximation

of the current configuration as

xl Xo;Xl
� �

ffi xc
l þ F Xoð Þ � DXl

þ 1

2
G Xoð Þ : DXl � DXl þ w Xl

� �
;

ð34Þ

and setting the coordinate system’s origin as defined in (6),

the proposed deformed position of the RVE is

xl Xo;Xl
� �

ffi F Xoð Þ � pXl

þ 1

2
G Xoð Þ : Xl � Xl þ w Xl

� �
:

ð35Þ

And the proposed displacement field ul on the RVE (see 8)

can be obtained now as

ul Xo;Xl
� �

ffi F Xoð Þ � I½ � � pXl

þ 1

2
G Xoð Þ : Xl � Xl þ w Xl

� �
:

ð36Þ

Noting that an extra term appears by including G in (34).

This extra second-order term is a new linking term between

the macroscopic and microscopic scales.

3.1 Kinematically Admissible Displacement Fields

and Boundary Conditions

Thefirst of theaveragepostulates (see10) is usedagain toobtain

the admissible displacement fields. The microscopic deforma-

tion gradient considering the expression given by (35) is

Fl Xo;Xl
� �

¼rxl Xo;Xl
� �

ffiF Xoð Þ þ G Xoð Þ � Xl þrw Xl
� �

:
ð37Þ

And, the volume average of Fl over the RVE is

1

Vl

Z

Xl

Fl Xo;Xl
� �

dV ¼ 1

Vl

Z

Xl

rxl Xo;Xl
� �

dV

¼F Xoð Þ þ G Xoð Þ � 1

Vl

Z

Xl

Xl dV

þ 1

Vl

Z

Xl

rw Xl
� �

dV :

ð38Þ

It can be proved that if the RVE geometry in the reference

configuration is originally a cube, as shown in Fig. 2, and

the position of the origin of the coordinate system is

defined at the center of the RVE, then the first moment of

volume of the RVE is
Z

Xl

Xl dV ¼ 0: ð39Þ

Therefore, (38) can be rewritten as (13) or (14), and the

restrictions on w are the same than the one obtained for the

FOCH, which are shown in (16)–(18). The fields
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kinematically admissible w presented in Sect. 2.1.2 are still

valid for the proposed EFOCH.

3.1.1 Extra Kinematic Restrictions and Boundary

Conditions

The next step consists in obtaining the kinematic restric-

tions result of including the new term G in ul. In other

words, some extension of the first average theorem needs to

be proposed in term of G. In the following, a natural

extension for the first average theorem is presented. The

main drawback of this proposal is that leads to restrictions

on the derivative displacement fluctuation field and there-

fore, a high-order problem on the RVE must be considered.

To avoid this situation, and in order to continue using the

classical first-order BVP on the RVE, the alternative

extension proposed by Kouznetsova [60] is also shown.

Natural extension of the first average theorem

The first natural possibility for this extension could be

G Xoð Þ ¼ 1

Vl

Z

Xl

Gl Xo;Xl
� �

dV : ð40Þ

Note that (40) is similar to (10) but in this case, the volume

average of Gl over the RVE must be equal to G in the

considered point Xo.

Considering (37) and (4), Gl can be written as

Gl Xo;Xl
� �

¼r rxl Xo;Xl
� �� �

ffiG Xoð Þ þ r rw Xl
� �� �

:
ð41Þ

Using (41) and taking the volume average over the RVE it

is possible to obtain

G Xoð Þ ¼ 1

Vl

Z

Xl

Gl Xo;Xl
� �

dV

� 1

Vl

Z

Xl

r rw Xl
� �� �

dV ;

ð42Þ

or

G Xoð Þ ¼ 1

Vl

Z

Xl

r rxl Xo;Xl
� �� �

dV

� 1

Vl

Z

Xl

r rw Xl
� �� �

dV :

ð43Þ

And, applying the divergence theorem in the last

expression

G Xoð Þ ¼ 1

Vl

Z

oXl

rxl Xo;Xl
� �

� N dA

� 1

Vl

Z

oXl

rw Xl
� �

� N dA:

ð44Þ

Similarly as in FOCH, to satisfy the proposed extension of

the first average theorem, the integrals that depend of the

displacement fluctuation in (42) and (44) must vanish, then

Z

Xl

r rw Xl
� �� �

dV ¼ 0; ð45Þ

and
Z

oXl

rw Xl
� �

� N dA ¼ 0: ð46Þ

The last expression represents an extra integral restriction

on the derivative displacement fluctuation field. Taking the

same consideration than before regarding the geometry of

the RVE (see Fig. 3), the boundary integration in (46) can

be splitted in

X

i¼X;Y ;Z

Z

Nþ
i

rw dA�
Z

N�
i

rw dA

 !

� Nþ
i ¼ 0: ð47Þ

Some components of the integrals can also be rewritten

in terms of line-boundary integrals applying the divergence

theorem. For example, if the first left integral in the first

term in (47) is taken, the line-boundary of this surface

integral can be separated in four different lines, two per-

pendiculars to Y axis, and the other two perpendiculars to

Z axis, as it is shown in Fig. 4. Because of the RVE

geometry considered, these lines boundary have the prop-

erty of N�
XjY ¼ �Nþ

XjY and N�
XjZ ¼ �Nþ

XjZ . Then, with this

information the considered integral can be rewritten as
Z

Nþ
X

rw dAyz ¼
Z

Nþ
X

rXw dAyz

þ
Z

Nþ
XjY

w dLz �
Z

N�
XjY

w dLz

 !

� Nþ
XjY

þ
Z

Nþ
XjZ

w dLy �
Z

N�
XjZ

w dLy

 !

� Nþ
XjZ ;

ð48Þ

where rX represents the derivative with respect to the X

axis. This term cannot be reduced to a line-integral using

Fig. 4 Normal vectors to the projection lines in the YZ surface of the

Cubic RVE
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the divergence theorem. It can be seen that when the Pe-

riodic boundary fluctuations condition is the kinematically

admissible option used for w on the RVE, the two right

terms on (48) are satisfied directly. The points on the

opposing lines are a pair boundary points that have the

same displacement fluctuation because of the kinematic

condition imposed. Applying this same procedure to the

rest of the terms of expression (47), this equation can be

rewritten as

X

i¼X;Y ;Z

Z

Nþ
i

riw dA�
Z

N�
i

riwdA

 !

� Nþ
i ¼ 0: ð49Þ

The previous expression represents an extra restriction on

the displacement fluctuation field that makes it kinemati-

cally admissible in the RVE. A possible set of boundary

conditions that satisfies this restriction is
Z

Nþ
i

riw dA ¼
Z

N�
i

riw dA; 8 i ¼ X; Y ; Z ð50Þ

Equation (49) is analogous to (18) but it is written in terms

of derived displacement fluctuation field, in this case, on

the normal direction of the pair surfaces (see Fig. 3).

Therefore, to satisfy any kinematic restriction, as for

example (50), obtained from (49), a high-order problem on

the microscopic scale must be considered because the

restriction of w is written on its derivate.

Alternative extension of the first average theorem

An alternative to the proposed extension of the aver-

aging theorem given by (40) should be found in order to

keep a classical BVP on the microstructural RVE problem.

With this aim Kouznetsova [60] proposed another exten-

sion of the first average theorem. The proposed condition

imposes that the second moment of area of the deformed

RVE, given in terms of the microscopic displacements,

must be equal to the second moment of area of the RVE

expressed in terms of macroscopic deformation variables

[50]. Considering the above, the expression given by (37)

is multiplied by Xl and integrated over the RVE volume to

obtain
Z

Xl

rxl Xo;Xl
� �

� Xl dV ¼F Xoð Þ �
Z

Xl

Xl dV

þ G Xoð Þ �
Z

Xl

Xl � Xl dV

þ
Z

Xl

rw Xl
� �

� Xl dV :

ð51Þ

Knowing that the first moment of volume of the unde-

formed RVE is zero (see 39), and defining the second

moment of volume of the undeformed RVE as

J ¼
R
Xl

Xl � Xl dV . Equation (51) can be rewritten as

G Xoð Þ � J ¼
Z

Xl

rxl Xo;Xl
� �

� Xl dV

�
Z

Xl

rw Xl
� �

� Xl dV ;

ð52Þ

replacing the following relationships

rxl Xo;Xl
� �

� Xl ¼r xl Xo;Xl
� �

� Xl
� �

� xl Xo;Xl
� �

� I;
ð53Þ

and

rw Xl
� �

� Xl ¼ r w Xl
� �

� Xl
� �

� w Xl
� �

� I; ð54Þ

it is obtained

G Xoð Þ � J ¼
Z

Xl

r xl Xo;Xl
� �

� Xl
� �

dV

�
Z

Xl

r w Xl
� �

� Xl
� �

dV

�
Z

Xl

xl Xo;Xl
� �

dV � I

þ
Z

Xl

w Xl
� �

dV � I:

ð55Þ

Using (35) it can be shown that
Z

Xl

xl Xo;Xl
� �

dV � I ¼ 1

2
G Xoð Þ : J � I

þ
Z

Xl

w Xl
� �

dV � I;

ð56Þ

which is used to obtain the final version of the sought

expression

G Xoð Þ � J þ 1

2
G Xoð Þ : J � I

¼
Z

Xl

r xl Xo;Xl
� �

� Xl
� �

dV

�
Z

Xl

r w Xl
� �

� Xl
� �

dV ;

ð57Þ

Applying the divergence theorem on the right hand size of

the equation, it can be rewritten in term of surface integral

as

G Xoð Þ � J þ 1

2
G Xoð Þ : J � I

¼
Z

oXl

xl Xo;Xl
� �

� Xl � N dA

�
Z

oXl

w Xl
� �

� Xl � N dA:

ð58Þ

It is possible to make a parallelism between (15) and (58).

The additional condition regarding the second moment of
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area of the deformed RVE given by (51) requires that the

influence of w should vanish, then
Z

oXl

w Xl
� �

� Xl � N dA ¼ 0: ð59Þ

Equation (59) is a boundary restriction for w, then it is not

necessary a high-order BVP, at microscopic scale, to sat-

isfy the new boundary conditions deduced from it. Con-

sidering again the cubic geometry in the reference

configuration defined previously for the RVE (see Fig. 3),

the restriction given by (59) can be splitted in the different

surfaces of the domain as

X

i¼X;Y ;Z

Z

Nþ
i

w � Xl dA�
Z

N�
i

w � Xl dA

 !

� Nþ
i ¼ 0:

ð60Þ

The last expression is used in Sect. 4.2 to obtain the BVP

on the RVE for the EFOCH. In the case of Periodic

boundary fluctuations condition, it can be proved that the

expression (60) is automatically satisfied if
Z

N�
X

w dAyz ¼ 0;

Z

N�
Y

w dAxz ¼ 0 and

Z

N�
Z

w dAxy ¼ 0:

ð61Þ

Therefore, the extra boundary condition required in this

case is that the integral of the periodic displacement fluc-

tuations on the RVE surfaces must be zero.

It has been shown that in an EFOCH extra boundary

conditions must be considered. If the natural extension of

the first average theorem is used (40) extra high-order

conditions (50) are obtained. In consequence, this kind of

boundary conditions require a high-order microscopic

BVP. To avoid this situation, in this work will be used the

conditions obtained for the alternative extension given by

(57). Therefore, a first-order microscopic BVP is conserved

in the RVE, as it will be shown in Sect. 3.3.

3.2 Microscopic and Macroscopic Strain Tensor

For an infinitesimal deformation approach, El can be

written as

El Xo;Xl
� �

¼ 1

2
Fl Xo;Xl
� �

þ FT
l Xo;Xl
� �� �

� I

¼ 1

2
F Xoð Þ þ FT Xoð Þ
� �

� I

þ 1

2
G Xoð Þ � Xl þ G Xoð Þ � Xl

� �T� �

þ 1

2
rw Xl
� �

þ rw Xl
� �� �T� �

:

ð62Þ

Knowing that (10) is satisfied and using (39), the resulting

expression of the volume average of El over the RVE

domain is the same than (23), which was obtained previ-

ously in Sect. 2.1.3. Therefore, El can be rewritten as

El Xo;Xl
� �

¼ E Xoð Þ þ EG
l Xo;Xl
� �

þ Ew
l Xl
� �

; ð63Þ

where EG
l ¼ 1

2
G � Xl þ G � Xl

� �T� �
is a new term in the

microscopic strain tensor, resulting from including the

second-order term G in the formulation. Using the

expression given by (39), it can be proved that the volume

average of this new term EG
l over the RVE domain is equal

to zero.

3.3 Hill–Mandel Principle and RVE Equilibrium

When the second-order of the Taylor series expansion

given by (3) is used to improve the approximation of the

deformed position of a material point in the RVE (see 34),

it is assumed that exists a macroscopic finite volume XM

around the considered point Xo, as it is shown in Fig. 5.

This finite volume must be smaller than the characteristic

macroscopic dimension. Therefore, the Hill–Mandel prin-

ciple [43, 68] should be applied now, not only taking into

account the virtual work of the point Xo, but considering

the volume average of the virtual work in the macro vol-

ume XM . This can be stated as

1

VM

Z

XM

S : dE dV ¼ 1

Vl

Z

Xl

Sl : dEl dV ð64Þ

The macroscopic deformed position of a material point in

XM around the point Xo must now be approximated with a

second-order approach using (3) as

Dx ffi F Xoð Þ � DX þ 1

2
G Xoð Þ : DX � DX; ð65Þ

and the approximated macroscopic deformation gradient is

F ffi F Xoð Þ þ G Xoð Þ � DX: ð66Þ

The macroscopic strain tensor in the XM domain for

infinitesimal deformation approach can be then approxi-

mated as

Fig. 5 Macro volume XM around point Xo and its micro structure
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E ffi 1

2
F Xoð Þ þ FT Xoð Þ
� �

� I

þ 1

2
G Xoð Þ � DX þ G Xoð Þ � DXð ÞT
� � ð67Þ

or

E ffi E Xoð Þ þ EG Xo;Xð Þ; ð68Þ

where EG ¼ 1
2

G � DX þ G � DXð ÞT
� �

.

Taking into account (63) and (68), the expression given

by (64) can be rewritten as

1

VM

Z

XM

S dV : dE þ 1

VM

Z

XM

S : dEG dV

¼ 1

Vl

Z

Xl

Sl dV : dE þ 1

Vl

Z

Xl

Sl : dEG
l dV

þ 1

Vl

Z

Xl

Sl : dEw
l dV;

ð69Þ

and because of the symmetry of S, it can be proved that

S : rað Þ ¼ S : rað ÞT and S : G:að Þ ¼ S : G:að ÞT , where a

is a first order tensor. Then, (69) is finally

1

VM

Z

XM

S dV : dE þ 1

VM

Z

XM

S � DX dV ..
.
dG

¼ 1

Vl

Z

Xl

Sl dV : dE þ 1

Vl

Z

Xl

Sl � Xl dV
..
.
dG

þ 1

Vl

Z

Xl

Sl : rsdw dV :

ð70Þ

Following the same procedure used in Sect. 2.1.4 to satisfy

the Hill–Mandel principle, it is necessary to define the

following tensors:

Ŝ � 1

VM

Z

XM

S dV � 1

Vl

Z

Xl

Sl dV; ð71Þ

where Ŝ is the homogenized stress tenor, which is obtained

as the volume average of the stress tensor around the point

Xo, and

Q̂ � 1

VM

Z

XM

S � DX dV � 1

Vl

Z

Xl

Sl � Xl dV : ð72Þ

where Q̂ is the homogenized second-order stress tensor in

the point Xo, which is a third-order tensor. Finally, the

RVE’s variational equilibrium equation is
Z

Xl

Sl : rsdw dV ¼ 0; ð73Þ

that must be satisfied for any kinematically admissible w

shown in Sect. 3.1.

3.4 Homogenized Stress and Second-Order Stress

Tensor

The microscopic stress tensor can be obtained as

Sl ¼Cl : E Xoð Þ þ Cl : EG
l Xo;Xl
� �

þ Cl : Ew
l Xl
� �

;
ð74Þ

then, Ŝ at the macroscopic scale given by (71) is

Ŝ ¼ 1

Vl

Z

Xl

Cl dV : E Xoð Þ

þ 1

Vl

Z

Xl

Cl : EG
l Xo;Xl
� �

dV

þ 1

Vl

Z

Xl

Cl : Ew
l Xl
� �

dV

ð75Þ

or

Ŝ ¼ �C : E Xoð Þ þ �B ..
.
G Xoð Þ

þ 1

Vl

Z

Xl

Cl : Ew
l Xl
� �

dV ;
ð76Þ

where

�B � 1

Vl

Z

Xl

Cl � Xl dV : ð77Þ

The tensor �B can be considered a material property which

relates G with Ŝ, and generates a coupling effect. This

constitutive tensor is analogous to the called bending-ex-

tension coupling matrix used in plates or shells theories [2].

Equation (76) shows that Ŝ in the point Xo depends of

the macroscopic E and G, of the microscopic w and also, of

the position Xl of the RVE. Considering now a particular

case where the simple materials within the RVE are sym-

metrically located respect to the coordinate system’s ori-

gin, which has been placed on the RVE geometric center

(see Sect. 3.1). It can be proved that taking this symmetric

distribution of the simple materials the value obtains for �B

is zero. Therefore, Ŝ for this case can be rewritten as

Ŝ ¼ �C : E Xoð Þ þ 1

Vl

Z

Xl

Cl : Ew
l Xl

� �
dV: ð78Þ

Now, the term G and the position Xl do not affect Ŝ, and

expression given by (78) is the same than the one obtained

for FOCH given by (32).
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On the other hand, the homogenized second-order stress

tensor can be obtained using (72) and Sl given by (74) as

Q̂ ¼ 1

Vl

Z

Xl

Cl � Xl dV : E Xoð Þ

þ 1

Vl

Z

Xl

Cl � Xl
� �

: EG
l Xo;Xl
� �

dV

þ 1

Vl

Z

Xl

Cl : Ew
l Xl

� �
� Xl dV ;

ð79Þ

or

Q̂ ¼ �B :E Xoð Þþ �D ..
.
G Xoð Þþ 1

Vl

Z

Xl

Cl :Ew
l Xl
� �

�XldV ;

ð80Þ

where

�D ¼ 1

Vl

Z

Xl

Cl � Xl
� �

� Xl dV : ð81Þ

The tensor �D is also considered a material property, which

is obtained with the RVE model, as it is done with tensors
�C and �B. Taking into account the symmetric materials

distribution inside the RVE, the expression for Q̂ can be

rewritten as

Q̂ ¼ �D ..
.
G Xoð Þ þ 1

Vl

Z

Xl

Cl : Ew
l Xl
� �

� Xl dV : ð82Þ

Equation (82) shows that Q̂ depends on the macroscopic G

and on the microscopic w. But it also depends on the

position Xl of the material point in the RVE. In addition,

the tensor �D does not vanish because of the symmetric

materials distribution.

3.5 Some Remarks of the EFOCH

In the proposed EFOCH is lost the benefit shown by the

FOCH regarding the possibility of using a non-dimensional

RVE. Now, the microscopic strain (63) and stress (74)

tensor have an explicit dependence with the position Xl in

the RVE. Besides, to satisfy (69), which is obtained from

the Hill–Mandel condition, it is necessary to impose that

Xl � XM . Thus the RVE’s dimension used to characterize

the microstructure should be equal to the size of the finite

volume around the considered point Xo.

On the other hand, a detailed analysis of the EFOCH

formulation shows that the FOCH is contained in it.

Therefore, when the principle of separation of scales is

satisfied (l � ll), the results given by the EFOCH will be

the same than the ones provided by the FOCH.

As will be shown in the next section, the EFOCH con-

serves the classical first-order BVP in the structural level.

Therefore, the macroscopic second-order stress tensor

obtained from the RVE solution is not considered in the

macroscopic problem. This restricts the use of the EFOCH

to analyses where the principle of separation of scales is

satisfied or moderately satisfied. When this principle is not

verified, the homogenized tensor Q̂ should be considered in

the macroscopic BVP as the SOCH does [29, 60, 61].

However, from a microscopic point of view, the results

of the EFOCH are better than the ones provided with the

FOCH. Although the macroscopic stress tensor obtained

for both theories is the same, the microscopic displacement

field, the strain and, the stress tensors are not equal. The

EFOCH obtains a better approximation of the microscopic

behavior. Therefore, in a non-linear analysis, the initiation

and the evolution of the non-linear performance of the

microstructure will be better characterized.

4 Formulation and Numerical Implementation

In the following, the macroscopic and microscopic BVPs

are presented.

4.1 Macroscopic BVP

A macrostructural scale of domain X with a periodic

internal microstructure is considered. The kinematics of the

problem is related to a displacement field on the macro-

scopic scale, which provides the displacement of each

material point in X. From a continuum mechanics approach

the macroscopic BVP is

oSij

oXj

þ fi ¼ 0 in X;

ui ¼ �ui in oXu;

SijNj ¼ �ti in oXt;

ð83Þ

where Sij is the macroscopic stress tensor, and fi is the

internal body force associated to the mass force of the

material. The boundary of XðoX) is defined disjointedly by

the surfaces oXu where the macroscopic displacement is

known �ui (Dirichlet’s condition) and oXt where the

macroscopic surface load �ti is known (Neumann’s condi-

tion) with oXu [ oXt ¼ oX and oXu \ oXt ¼ ;. Finally, Nj

are the components of an outward vector normal to the

surface oXt.

The resolution of the BVP given by (83) consists on the

determination of the macroscopic displacement field cor-

responding to the solution u 2 VX, where VX is the set of

continuous and sufficiently regular functions with zero-

value in oXu. The partial differential equation in the

macroscopic BVP presented above can be rewritten in a

weak form (or variational form) as

F. Otero et al.
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Z

X

oSij

oXj

vi dV þ
Z

X
fivi dV ¼ 0 8 v 2 VX; ð84Þ

where vi are the called test functions. Equation (84) can be

rewritten, applying the divergence theorem, as
Z

X
Sij

ovi

oXj

dV ¼
Z

X
fivi dV þ

Z

oX

�tivi dA 8 v 2 VX:

ð85Þ

Considering infinitesimal deformations, the macroscopic

strain and stress tensor are

Eij ¼
1

2
Fij þ FTij

� �
� Iij ¼

1

2

oui

oXj

þ ouj

oXi

� �
in X;

Sij ¼
1

Vl

Z

Xl

Sl dV in X:
ð86Þ

4.2 Microscopic BVP

The variational equilibrium statement (or the virtual work

equation) in themicrostructure (see 29 and 73) can bewritten as
Z

Xl

Sl : rsw dV ¼ 0 8w 2 VXl : ð87Þ

Considering again an infinitesimal deformation, the

microscopic strain tensor is

El ¼
1

2
Fl þ FT

l

� �
� I ¼ rsul inXl; ð88Þ

where rsul is the symmetric gradient of the microscopic

displacement field in the RVE andVXl is the set of continuous

and sufficiently regular kinematically admissible RVE dis-

placement fields. Further, it is assumed that in the

microstructure the constitutive behavior is described by con-

ventional internal dissipative constitutive theories. Therefore,

the microscopic stress tensor is obtained by integrating the

constitutive equations, knowing a set of internal variables a,

for the given strain tensor history. Then, it is

Sl ¼ SlðEl; aÞ ¼ Slðrsul; aÞ: ð89Þ

With the above at hand, the resolution of the problem

consists on the determination of ul 2 VXl of the variational

problem for a given macroscopic tensor F, and its gradient

G in EFOCH. Therefore, to complete the microscopic BVP

it is necessary to define the boundary conditions used to

obtain kinematically admissible displacement fields from

the solution of (87).

4.2.1 Consequence of the Boundary Conditions Selected

The RVE has a finite dimension, which is opposed to the

theoretically infinite microstructure usually considered.

This creates the intrinsic problem of the non-physical RVE

edges. As a result, the election of the boundary condition in

the RVE problem is essential to characterize the real

behavior of the microstructure.

It has been shown in Sect. 2.1.5 that the boundary

condition used in the RVE problem affects the macroscopic

stress tensor obtained and therefore it also affects the

homogenized constitutive tensor. In example, the expres-

sion (32) shows that using the Taylor model condition the

result provides an upper bound of the estimated homoge-

nized microscopic stiffness.

On the other hand, theMinimal constraint provides a lower

bound of the estimated effective microstructural stiffness.

This boundary condition imposes the macroscopic strain

tensor on theRVE in theweakest sense. It has been shown that

the resulting boundary distribution of the microscopic stress

tensor in the RVE is uniform and equal to the macroscopic

stress tensor in this boundary restriction [15, 74].

The Linear boundary displacements condition is a too

restrictive constraint and it overestimates the homogenized

microscopic stiffness [13]. A conventional BVP with full

Dirichlet’s condition is obtained for the RVE.

It is shown in literature that the Periodic boundary

fluctuations provide a better apparent stiffness estimation

for both periodic as well as random microstructures

[52, 53, 74, 76, 97, 120, 126]. This condition makes the

RVE self adjoint by point to point (pairs of points) cou-

pling of boundary displacements, thereby it naturally

incorporates the mechanical response of the surrounding

material. Moreover, an anti-periodic condition of the

boundary forces is automatically fulfilled in the problem

because the boundary points of the RVE are considered as

internal points of the structure.

Based on the different performances described, in this

work the Periodic boundary fluctuations condition will be

used in the computational implementation for both

approaches considered, FOCH and EFOCH.

FOCH case In Sect. 2.1.2, the Periodic boundary

fluctuations condition was obtained (see 21). Using (9)

is possible to obtain this in terms of ul as

ulðXþ
l Þ � ulðX�

l Þ ¼ DiðF � IÞ � Nþ
i ;

8 pairs Xþ
l ;X�

l

n o
2 oXljNi

; i ¼ X;Y ;Z:
ð90Þ

EFOCH case. The Periodic boundary fluctuations

condition was obtained in Sect. 3.1. Now, using (36) is

possible to write this in terms of ul as

ulðXþ
l Þ � ulðX�

l Þ ¼ DiðF � IÞ � Nþ
i þ D2

i

2
G : Nþ

i � Nþ
i

þ DiG : Nþ
i � X�

l ;

8 pairs Xþ
l ;X�

l

n o
2 oXljNi

; i ¼ X;Y ;Z: ð91Þ
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In this case, the extra boundary restriction due to the

introduction of term G, for this kind of boundary con-

dition (see 61) is written in terms of ul as

2

Vl

Z

N�
i

ul dA ¼ ðI � FÞ � Nþ
i þ Di

4
G : Nþ

i � Nþ
i

þ
D2

j

12Di

G : Nþ
j � Nþ

j þ D2
k

12Di

G : Nþ
k � Nþ

k ;

8Xl 2 oXljN�
i
;

i ¼ X) j¼ Y ; k¼Z

i¼Y ) j¼X; k¼ Z

i¼Z) j¼X; k¼Y

ð92Þ

which are integral constraint boundary conditions.

4.3 Numerical Implementation

The numerical solution of the presented BVPs are obtained

through the FEM. To solve the macroscopic BVP it will be

necessary to know the stress tensor in the macro domain.

The multiscale computational homogenization methods

above described are used as constitutive models of the

heterogeneous material. Therefore, the macroscopic F, for

the FOCH, and its gradient G, for the EFOCH, are used to

solve the microscopic BVP. Consequently, the homoge-

nized stress tensor necessary to solve the macroscopic BVP

is obtained from the solution of this microscopic problem.

The proposed EFOCH has been implemented in PLCd

[92, 99], a parallel FE code that works with 3D solid

geometries. The PLCd program has already implemented

the FOCH described previously [93, 94]. The microscopic

displacement field obtained from the solution of the

microscopic BVP must satisfy the boundary conditions

defined previously, in Sect. 4.2.1. The restrictions of

degrees of freedom on the RVE boundary domain is

imposed by an elimination of redundant unknowns

[34, 94]. Equations (90), (91) and (92) show the redundant

boundary unknowns. In these expressions it is possible

identify master unknowns (the unknowns to solve) and

slave unknowns [92]. In ‘‘Appendix’’, the master-slave

kinematic relationships are presented for the EFOCH.

4.4 Some Important Considerations

Based on the characteristics of the formulations developed,

as well as on the implementation of these formulations

using the finite element method, in the following are

included some final remarks regarding the implications of

using the FOCH or the EFOCH.

Let us assume, for the sake of simplicity that the

macroscopic FE mesh has a single integration point. In this

case, the macroscopic finite volume XM around the

considered point Xo in the formulation is related with the

FE domain as Xe ¼ XM , where Xe is the FE domain.

Taking into account the considerations made in Sect. 3.5 it

can be concluded that Xe ¼ Xl, which means that for the

integration point of the FE, the RVE domain must be

geometrically equal to the FE domain. Consequently, in the

EFOCH the RVE dimension is related with the dis-

cretization mesh used in the macroscopic BVP.

The macroscopic BVP presented in Sect. 4.1 does not

take into account the homogenized second-order stress

tensor Q̂ obtained in the enhanced-first-order homoge-

nization. Besides, if the RVE materials are symmetrically

distributed in it, the estimated homogenized stress tensor

obtained is the same for both homogenization approaches.

Therefore, the proposed EFOCH does not improve the

macroscopic results obtained from the BVP. To improve

these, a high-order FE or enhanced FE mesh must be

considered at the structural scale. To account for the

homogenized second-order stress tensor Q̂ in the macro-

scopic scale a SOCH must be used [29, 60, 61].

4.5 Linear FE in the Macroscopic Mesh

In linear finite element the interpolation functions are first-

order polynomials and consequently, the displacement field in

the domain of the FE is a first-order function. The strain tensor

is obtained by differentiating the displacement field, then the

strain tensor in the FEwill be a constant function. Therefore, a

fine FE mesh on the macroscopic BVP should be used to

obtain an accurate approximation of the strains and stresses.

When linear finite elements and a FOCH are used to

solve the macroscopic problem, the RVE is just a repre-

sentative sub-domain of the periodic microstructure that

does not have any significance on real microscopic

dimension as has been shown in Sect. 2.1.5. The constant

value of the macroscopic gradient tensor F in the integra-

tion point of the macroscopic FE is used to define the BVP

in the RVE. From the solution of the microscopic problem

the macroscopic stress tensor is obtained for the considered

integration point.

In linear FE case, the solution of the microscopic BVP

with the EFOCH is an inefficient procedure because the

value of G in the integration point of the macroscopic

linear element has partial or even zero information.

4.6 High-Order FE in the Macroscopic Mesh

To improve the FEM approach high-order elements can be

used. Quadratic finite elements use second-order polyno-

mials as interpolation functions to approximate the dis-

placement field within the FE’s domain. The deformation

gradient tensor F of this element is a first-order function,
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while gradient of the deformation gradient tensor G, which

is obtained deriving twice the displacement, is a constant

function on the FE domain.

The developed EFOCH needs at least quadratic ele-

ments in the macroscopic mesh in order for the functions F

and G not to have zero value in the FE domain. Quadratic

elements need more than one Gauss point to obtain the best

integration approximation. As mentioned before, in the

proposed homogenization method the RVE dimension

must be related with the FE dimension. Therefore, for

quadratic elements the RVE must represent the sub-domain

within the FE associated to the Gauss point. If not, the

analysis will have an associated error due to the size

mismatch.

For this case, the best approximation of the strain and

stress fields at the micro-scale is obtained through an

EFOCH together with a RVE which represents the real

volume of the surrounding domain in the Gauss point. The

numerical examples described in Sect. 5 show that the

EFOCH produces more realistic stress fields at the micro-

scale which will lead to a better material characterization,

specially if non-linear effects are taken into account.

5 Numerical Example

The objective is this section to show the advantages and

drawbacks of the EFOCH with respect to the FOCH

through numerical examples.

Two numerical examples have been analyzed with the

same macroscopic geometry, the first one uses a homoge-

neous material. In this case, the numerical results can be

compared with the existing analytical solution. The second

numerical simulation uses a matrix with a long fiber

reinforcement.

5.1 Geometry, Boundary Conditions and Mesh

Information

5.1.1 Macroscopic Beam Model

The macroscopic structure chosen is a three-dimensional

fixed support beam that is subjected to a fixed displacement

(dZ) at the free end. Figure 6 shows the dimensions and the

support scheme on the geometry of the beam.

To study the numerical stability and convergence of the

problem four mesh sizes are simulated. Linear elements

and quadratic elements are used in the different meshes of

the numerical model for the FOCH case while only quad-

ratic FEs are used for the EFOCH. The linear FE is an

hexahedron of 8 nodes and 8 Gauss points, and the quad-

ratic FE is an hexahedron with 20 nodes and 27 Gauss

points.

Table 1 shows the more relevant information about the

macroscopic meshes used. These meshes are also shown in

Fig. 7.

5.1.2 Microscopic RVE Model

The geometry of the RVE depends of the numerical sim-

ulation case. For the case of a homogeneous material, the

RVE is a simple cube with length L, this is shown in

Fig. 8a. In the second simulation case, the material defined

is a composite with a 40% of cylindrical long fiber volume.

The geometry of the RVE that represents this periodical

microstructure is shown in the Fig. 8b.

It has been shown in previous section that the dimension

of the RVE is an important parameter for the EFOCH.

Moreover, this dimension L is directly related with the

volume around the Gauss point of the FE in the macro-

scopic mesh. Therefore, the value of the length L depends

of the dimension of the macroscopic FE used and of the

number of Gauss points of the FE. In Table 2 the number

of elements in the beam height, Z direction, and the value

that takes the length L in the RVE for the different

macroscopic meshes used are shown. The value of the

length L has been calculated considering quadratic ele-

ments on the macroscopic mesh.

The RVE has been analyzed with just one FE model.

Figure 9a shows the mesh used in the RVE for the

homogeneous material case, which has 1000 FE. Figure 9b

Fig. 6 Dimensions of the geometry and support scheme of the

structure simulated

Table 1 Number of elements (in X, Y and Z directions), nodes and

Gauss points of the meshes used in the beam structure

Mesh Elements Linear elem. Quadratic elem.

Nodes Gauss Nodes Gauss

Macro1 8	 1	 2 54 128 165 432

Macro2 16	 2	 4 255 1024 869 3456

Macro3 32	 4	 8 1485 8192 5433 27,648

Macro4 64	 8	 16 9945 655,366 37,937 221,184
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shows the mesh of the RVE for the composite material. In

this case, it has 1936 FE. For both RVE meshes, the FEs

used are linear.

5.2 Results and Analysis

5.2.1 Checkpoints and Variables Compared

in the Simulation

The reaction force in Z direction on the fixed support is a

variable used for the comparison. To compare not only this

macroscopic variable another checkpoint has been

designed. The macroscopic stress value is compared in the

macroscopic Gauss point closest to point A (see Fig. 6) and

the microscopic stress obtained in the RVE is also com-

pared for this same Gauss point. The microscopic stress

value used for the comparison is the one obtained in the

Gauss point closest to point A within the RVE. The geo-

metric point A is shown in Fig. 6. The longitudinal stress

Fig. 7 Different mesh sizes used in the macroscopic numerical

model. a Macro1, b Macro2, c Macro3, d Macro4

Fig. 8 RVE models for the two different numerical simulation cases

a RVE for homogeneous material, b RVE for composite material

Table 2 Number of elements in Z direction of the beam and length L

of the RVE for the different macroscopic mesh sizes

Data Macro1 Macro2 Macro3 Macro4

Num. elem. 2 4 8 16

Length L [mm] 1.3525 0.6762 0.3381 0.1691

Fig. 9 Mesh used on the RVE models for the different numerical

simulations a for homogeneous, b for composite
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values (SXX) and the shear stress values (SXZ ) will be

compared on this point.

5.2.2 Homogeneous Material Simulation

When the material used in the beam is a homogeneous

material it is possible to obtain the analytical solution for

the support scheme shown in the Fig. 6. The reaction force

in Z direction is given by

RZ ¼ l3

3EIyy
þ 6l

5GA

� 	�1

dZ ; ð93Þ

where E and G is the Young’s modulus and shear modulus

of the material, respectively, while Iyy, A and l are the

second moment of area, the cross section area and the

longitudinal length of the beam, respectively. Therefore,

considering an isotropic material with null Poisson’s ratio,

E ¼ 26560 [MPa], G ¼ 13280 [MPa] and taking a fixed

displacement of dZ ¼ 1 [mm], it is possible to address the

values shown in Table 3 from the analytical solution. The

SXX and SXZ values shown in table correspond to the ana-

lytical values obtained in point A.

The numerical results obtained for the different

approaches and meshes are presented in a simplified form

using tables and graphs. On the tables, the relative error or

absolute error obtained when comparing the result with the

analytical solution is also shown.

Table 4 shows the reaction force in Z direction obtained

with the numerical simulations. In this table, the results

obtained with Linear Elements (LE) in the macro-model

and the First-Order (FO) computational homogenization

are shown in the first two rows. The following two rows

show the results obtained with Quadratic Elements (QE)

Table 3 Reaction force, longitudinal and shear stresses in point A of

the analytical solution

Data RZ [N] SXX [MPa] SXZ [MPa]

Values 600 100 0

Table 4 Reaction force and relative error for the different approaches

and meshes

RZ [N] Macro1 Macro2 Macro3 Macro4

LE&FO 679.09 620.03 605.09 601.34

% erel 13.18 3.34 0.85 0.22

QE&FO 600.43 600.12 600.09 600.08

% erel 0.07 0.02 0.01 0.01

QE&EFO 600.43 600.12 600.09 600.08

% erel 0.07 0.02 0.01 0.01

Table 5 Macroscopic longitudinal stress and relative error for the

values obtained in the Gauss point closest to point A

SXX [MPa] Macro1 Macro2 Macro3 Macro4

LE&FO 69.43 84.02 91.82 95.86

% erel 30.57 15.98 8.18 4.14

QE&FO 86.08 93.00 96.50 98.25

% erel 13.92 7.00 3.50 1.75

QE&EFO 86.08 93.00 96.50 98.25

% erel 13.92 7.00 3.50 1.75

Fig. 10 Reaction force versus number of elements in Z direction for

the different approaches

Table 6 Longitudinal stress in the RVE (Gauss point closest to point

A) and relative error for the different approaches and meshes

SXX [MPa] Macro1 Macro2 Macro3 Macro4

LE&FO 69.43 84.02 91.82 95.86

% erel 30.57 15.98 8.18 4.14

QE&FO 86.08 93.00 96.50 98.25

% erel 13.92 7.00 3.50 1.75

QE&EFO 98.66 99.59 99.87 99.96

% erel 1.34 0.41 0.14 0.04

Fig. 11 SXX obtained close to point A for the different meshes and

approaches used
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and the FOCH. And, in the last two rows, are included the

results obtained with QE for the macro model, and the

Enhanced-First-Order (EFO) computational

homogenization.

It is possible to observe that the results do not change

when a EFOCH is used, if they are compared with the

QE&FO results. This is because the EFOCH formulation

does not improve the macroscopic solution. The macro-

scopic stress field obtained is the same than the one

obtained with a FOCH approach, and therefore the reaction

forces are also the same (see Table 5). Another interesting

conclusion obtained from the results is that an increase in

the order of the macro FE represents a meaningful

improvement. The mesh Macro1 with QE obtains best

results than the mesh Macro4 with LE, which is surprising

because Macro4 has 16 FE in the beam height. Figure 10

Fig. 12 Macroscopic and microscopic (RVE closest to point A) SXX field for the mesh Macro3

Table 7 Microscopic shear stress (Gauss Point closest to point A)

and absolute error for the different approaches and meshes

SXZ [MPa] Macro1 Macro2 Macro3 Macro4

LE&FO -22.14 -12.26 -6.43 -3.29

QE&FO -3.90 -1.68 -0.77 -0.37

QE&EFO -1.88 -0.48 -0.13 -0.04

Fig. 13 SXZ obtained close to point A for the different meshes and

approaches used
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shows the curves of reaction force versus number of FEs in

the beam height. This curve shows clearly the result pre-

viously addressed.

Table 5 shows the macroscopic longitudinal stress

obtained from the numerical simulations and the relative

error of these numerical results using the analytical result

SXX ¼ 100 [MPa] as reference. The stress values shown in

the table correspond to the ones obtained for the Gauss

point closest to point A on the beam meshes. It has to be

noted that for large meshes, the error is also increased

because the position of the Gauss point, from which the

numerical result is obtained, differs slightly from the

position of point A.

The improvements of the EFOCH can be seen when

comparing the microscopic results provided by the RVEs

used in the macroscopic Gauss point closest to point A. The

longitudinal stress and shear stress present in the following

tables and figures are the microscopic stress values of the

Gauss point in the RVE closest to point A. Table 6 shows

the value of the longitudinal stress obtained within the

RVE for the Gauss point closest to point A. This

table shows that the results provided by the EFOCH are

always closer to the analytical ones, as the model is capable

of capturing the bending effects in the material.

Figure 11 shows the stress obtained as a function of the

number of elements in the beam height. The general

behavior of the stress when the number of elements

increase is similar. When a EFOCH is used the estimation

of the stress is good even for large elements. Moreover, the

benefit of change the approach is more significant for

meshes with low number of elements. The relative error for

2 elements case is around 1% which represents a very good

estimation.

As an example of the macroscopic and microscopic

longitudinal stress field obtained for the different approa-

ches Fig. 12 shows SXX for the mesh case Macro3. For the

FOCH the figure shows an uniform stress distribution in the

RVE, this is because the formulation only uses the

macroscopic deformation gradient to solve the RVE. This

occurs independently of the macro elements uses, LE or

QE. The macroscopic improvement observed in the QE

model is because the solution of the macroscopic problem

is better when this kind of element is used. For the same

macroscopic solution, if an EFOCH is used, the approxi-

mation of the microscopic stress field improves. The RVE

stress field shows a not uniform distribution (see QE&EFO

case) because the EFOCH can considered second-order

effects in the microstructure.

The results obtained for the shear stress in the RVE for

the Gauss point closest to point A are shown in Table 7.

This table does not show the relative error because for this

variable the analytical value obtained in the geometric

point A is SXZ ¼ 0 [MPa]. Figure 13 shows the shear stress

obtained for the different approaches as a function of the

number of elements in the height of the beam. From the

table and the figure it is possible to observe that the main

improvement in the shear stress results it is presented when

the FE is changed. However, the use of the EFOCH

improves the shear stress obtained for all meshes consid-

ered. The reason for this improvements is, as has been

pointed out with the SXX value, the capacity that the

EFOCH gives to the RVE model to account for the second-

order effects existing in the macro model.

5.2.3 Composite Material

In the following numerical simulations, the material used is

a composite with long fibers. The RVE used to simulate the

internal structure of this composite is shown in Fig. 8b,

while the FE mesh used is shown in Fig. 9b. The material

used for the matrix is an elastic isotropic material (resin

epoxy HSC Epikote 4652) with a Young’s modulus of

Em ¼ 4:52 [GPa] and a Poisson’s ratio of vm ¼ 0:36. The

long fiber material considered is a carbon fiber (Grafil

TR30S 3K carbon fiber) with a Ef ¼ 235 [GPa] and

vf ¼ 0:21. The materials properties have been taken from

the work of Perez et al. [96].

Table 8 shows the Z direction reaction force obtained

for the different approaches and meshes used in the

Table 8 Reaction force for the different approaches and meshes

RZ [N] LE&FO QE&FO QE&EFO

Macro1 1629.76 1537.74 1537.96

Macro2 1559.39 1530.45 1530.46

Macro3 1537.43 1529.36 1529.34

Macro4 1531.30 1529.10 1529.14

Fig. 14 Reaction force versus number of elements in Z direction for

the different approaches
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numerical simulation. Figure 14 shows these same reaction

forces plotted against the number of elements on the beam

height. This figure shows that the global performance

provided in the different models for the homogeneous

material is also provided for the composite material. This

is: changing the computational homogenization does not

Fig. 15 Fiber and matrix longitudinal stress field in the RVE of the Gauss point closest to point A for the mesh Macro3

Table 9 SXX of the components

in the RVE for the different

approaches and meshes

Data Fiber SXX [MPa] Matrix SXX [MPa]

LE&FO QE&FO QE&EFO LE&FO QE&FO QE&EFO

Macro1 454.56 543.31 616.13 11.11 11.18 14.10

Macro2 534.71 584.90 622.41 11.69 12.01 13.67

Macro3 578.97 606.60 625.56 12.23 12.46 13.25

Macro4 603.02 617.54 627.07 12.53 12.68 12.98
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change the reaction force obtained and the use of QE

represents a meaningful improvement of the results

obtained.

The improvements on the microscopic results when an

EFOCH is used can be seen in Fig. 15. The microscopic

stress fields shown in the figures correspond to the RVE of

the macroscopic Gauss point closest to point A for the

beam mesh Macro3. Figures on the left side present the

longitudinal stress distribution obtained in the RVE for the

fiber component while the right side shows the results

obtained for the matrix component. The longitudinal fiber

stress distribution for the FOCH is almost uniform for both

types of FE considered. While in the case of EFOCH the

fiber stress distribution in the RVE is more realistic con-

sidering the bending macroscopic state. The classical linear

distribution in the longitudinal stress expected for a bend-

ing load is achieved around the average value obtained for

the FOCH approach. The stress distribution for the matrix

present a similar behavior to the fiber component. It can be

observed that the maximum stress for the fiber and matrix

within the RVE are obtained in the Gauss points closest to

point A, which is an expected result.

To quantify the improvement on the microscopic solu-

tion due to the EFOCH, Table 9 shows the maximum

values of the longitudinal stress for the fiber and matrix

components within the RVE. These stress values are

graphically represented in Fig. 16 for both components.

From the figures is clearly seen that the response of com-

ponents change when the approach is changed.

6 Conclusions

This work presents an extension of the classical First-Order

Computational Homogenization (FOCH), which has been

calledEnhanced-First-OrderComputationalHomogenization

(EFOCH). The proposed EFOCH considers the macroscopic

second-order term ðGÞ in themicroscopic displacement as the

Second-OrderComputationalHomogenization (SOCH)does.

However, the presented EFOCH conserves a first-order

Boundary Value Problem (BVP) at the macroscopic scale.

As in the case of SOCH, the EFOCH obtains the same

microscopic variational equilibrium equation than the

FOCH (see [73]). However, the solution of the microscopic

BVP must satisfy extra boundary conditions, related to the

term G. In the numerical implementation, Periodic

boundary fluctuations condition have been imposed

through the elimination of redundant unknowns method

[94].

In the macroscopic BVP, the EFOCH does not take intro

account the second-order stress tensor (Q̂) associated to G

because the classical first-order formulations is preserved.

Besides, the homogenized stress tensor obtained is the

same than the one obtained with a FOCH due to the

assumption of the symmetric materials distribution in the

RVE. Because of the above, the macroscopic solution is

not improved when the EFOCH is used.

However, the EFOCH is better than the FOCH from a

microscopic point of view. The microscopic displacement

field, the strain and the stress tensors are enhanced. The

EFOCH gets a better approximation of the microscopic

behavior because it takes into account the extra information

provided by G. Therefore, phenomena such as macroscopic

bending or localization effect can be observed in the

solution of the microscopic problem. With the proposed

EFOCH, the initiation and the evolution of the non-linear

performance of the microstructure will be better

characterized.

Finally, it is possible to show that the FOCH is a par-

ticular case of the EFOCH. Therefore, when the principle

of separation of scales is strictly verified, the results

obtained using the EFOCH are the same than the ones

obtained using the FOCH. In other words, if the periodic

microstructural length ll is much smaller than the structure

Fig. 16 Longitudinal stress of the fiber and matrix components in the RVE close to point A for the different meshes and approaches used
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characteristic length l, the contribution of G in the micro-

scopic solution is negligible.
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Appendix: Microscopic Kinematic Relationships
for the EFOCH

In the following are described the kinematic relationships

defined between master and slaves nodes of the RVE,

required for the implementation of the EFOCH in a FEM

software.

In the Fig. 17, it is possible identify easily master nodes

(named with a letter) and slave nodes (named with a letter

and number). This is when a structured FE mesh on the

boundary of the RVE is used. In the vertices nodes, also it

is possible to identify a master node (‘‘1’’) and seven slave

nodes (‘‘2’’ ,‘‘3’’ , ...and ‘‘8’’).

Using (91) is possible to write the displacement of the

slave node ‘‘a1’’ as a function of the displacement of the

master node ‘‘a’’ for EFOCH as

�ua1 ¼ �ua þ D2 F � Ið Þ � Nþ
Y þ D2ð Þ2

2
Nþ

Y � G � Nþ
Y

þ D2Xa � G � Nþ
Y :

ð94Þ

To simplify the final expressions is defined

smG
1 ¼ D1ð Þ2

2
Nþ

X
�G�Nþ

X
; smG

2 ¼ D2ð Þ2
2

Nþ
Y
�G�Nþ

Y
;

smG
3 ¼ D3ð Þ2

2
Nþ

Z
�G�Nþ

Z
; smG

12 ¼ D1D2Nþ
X
�G�Nþ

Y
;

smG
13 ¼ D1D3Nþ

X
�G�Nþ

Z
; smG

23 ¼ D2D3Nþ
Y
�G�Nþ

Z
;

SMG
1 ¼ D1Nþ

X
�G; SMG

2 ¼ D2Nþ
Y
�G; SMG

3 ¼ D3Nþ
Z
�G:

Therefore, it can be shown that the slaves nodes are

�ua1 ¼ �ua þ sm2 þ smG
2 þ SMG

2 � Xa;

�ua2 ¼ �ua þ sm2 þ sm3 þ smG
2 þ smG

3 þ smG
23

þ ðSMG
2 þ SMG

3 Þ � Xa;

�ua3 ¼ �ua þ sm3 þ smG
3 þ SMG

3 � Xa;

�ub1 ¼ �ub þ sm1 þ smG
1 þ SMG

1 � Xb;

�ub2 ¼ �ub þ sm1 þ sm3 þ smG
1 þ smG

3 þ smG
13

þ ðSMG
1 þ SMG

3 Þ � Xb;

�ub3 ¼ �ub þ sm3 þ smG
3 þ SMG

3 � Xb;

�uc1 ¼ �uc þ sm1 þ smG
1 þ SMG

1 � Xc;

�uc2 ¼ �uc þ sm1 þ sm2 þ smG
1 þ smG

2 þ smG
12

þ ðSMG
1 þ SMG

2 Þ � Xc;

�uc3 ¼ �uc þ sm2 þ smG
2 þ SMG

2 � Xc;

�ud1 ¼ �ud þ sm3 þ smG
3 þ SMG

3 � Xd;

�ue1 ¼ �ue þ sm1 þ smG
1 þ SMG

1 � Xe;

�uf1 ¼ �uf þ sm2 þ smG
2 þ SMG

2 � Xf :

And, taking into account that the position vector of the

master vertex node ‘‘1’’ is: X1 ¼ � D1

2
Nþ

X � D2

2
Nþ

Y� D3

2
Nþ

Z ,

the slaves vertices nodes are

Fig. 17 Master and slaves nodes in a general hexagonal RVE Fig. 18 Master and slaves nodes on the negative faces of the RVE
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�u2 ¼ �u1 þ sm1 �
smG

12

2
� smG

13

2
;

�u3 ¼ �u1 þ sm1 þ sm2 �
smG

13

2
� smG

23

2
;

�u4 ¼ �u1 þ sm2 �
smG

12

2
� smG

23

2
;

�u5 ¼ �u1 þ sm3 �
smG

13

2
� smG

23

2
;

�u6 ¼ �u1 þ sm1 þ sm3 �
smG

12

2
� smG

23

2
;

�u7 ¼ �u1 þ sm1 þ sm2 þ sm3;

�u8 ¼ �u1 þ sm2 þ smG
3 � smG

12

2
� smG

13

2
:

The extra boundary restrictions must be also satisfied.

These boundary conditions are integral boundary con-

straints on each negative face of the RVE. Equation (92)

can be rewritten as

Ayz � �uyz ¼ Hyz; inoX
h
ljN�

X
;

Axz � �uxz ¼ Hxz; inoX
h
ljN�

Y
;

Axy � �uxy ¼ Hyz; inoX
h
ljN�

Z

ð95Þ

where,

Hyz ¼� 1

2
D1D2D3ðF � IÞ � Nþ

X þ 1

8
ðD1Þ2D2D3G : Nþ

X � Nþ
X

þ 1

24
ðD2Þ3D3G : Nþ

Y � Nþ
Y þ 1

24
D2ðD3Þ3G : Nþ

Z � Nþ
Z ;

Hxz ¼� 1

2
D1D2D3ðF � IÞ � Nþ

Y þ 1

8
D1ðD2Þ2D3G : Nþ

Y � Nþ
Y

þ 1

24
ðD1Þ3D3G : Nþ

X � Nþ
X þ 1

24
D1ðD3Þ3G : Nþ

Z � Nþ
Z ;

Hxy ¼� 1

2
D1D2D3ðF � IÞ � Nþ

Z þ 1

8
D1D2ðD3Þ2G : Nþ

Z � Nþ
Z

þ 1

24
ðD1Þ3D2G : Nþ

X � Nþ
X þ 1

24
D1ðD2Þ3G : Nþ

Y � Nþ
Y

and,

Ayz ¼
Z

N�
X

Nyz dAyz; Axz ¼
Z

N�
Y

Nxz dAxz;

Axy ¼
Z

N�
Z

Nxy dAxy:

Here, Nyz, Nxz and Nxy are the shape functions on the

negative face YZ, XZ and XY of the RVE, respectively.

And, from Fig. 18 it is possible to write the displacement

vectors of the nodes on the different negative faces as

�uyz ¼f�u1j�u4j�u5j�u8j�ubj�ub3 j�ucj�uc3 j�ueg;
�uxz ¼f�u1j�u2j�u5j�u6j�uaj�ua3 j�ucj�uc1 j�uf g;
�uxy ¼f�u1j�u2j�u3j�u4j�uaj�ua1 j�ubj�ub1 j�udg:

In the previous displacement vectors of the nodes on the

negative faces of the RVE it is possible identify masters

and slaves nodes. Therefore, the boundary constraints (95)

obtained above can be written in terms of master nodes as

Am
yz � �um

yz ¼Hm
yz; in oXh

ljN�
X
;

Am
xz � �um

xz ¼Hm
xz; in oXh

ljN�
Y
;

Am
xy � �um

xy ¼Hm
yz; in oXh

ljN�
Z
:

ð96Þ

where,

�um
yz ¼f�u1j�ubj�ucj�ueg;
�um
xz ¼f�u1j�uaj�ucj�uf g;
�um
xy ¼f�u1j�uaj�ubj�udg:

and, as an example, the term of the matrix Am
yz for the �ub of

the master nodes on the negative face YZ is

Am
yzjb ¼ Ayzjb þ Am

yzjb3 ;

and the contribution to Hm
yz for the �ub3 of the slave nodes on

the negative face YZ is

Hm
yzjb ¼ Am

yzjb3 � ðsm3 þ smG
3 þ SMG

3 � XbÞ:

The master nodes on the different negative faces of the

RVE must verify (96). Therefore, with the aim to find

redundant unknowns, it is possible to identify another slave

extra node by each negative face which can be obtained as

a function of the other master nodes. Then,

�us1
yz ¼� ½As1

yz�
�1 � Aðm�1Þ

yz � �uðm�1Þ
yz þ Hm

yz; in oXh
ljN�

X
;

�us2
xz ¼� ½As2

xz�
�1 � Aðm�1Þ

xz � �uðm�1Þ
xz þ Hm

xz; in oXh
ljN�

Y
;

�us3
xy ¼� ½As3

xy�
�1 � Aðm�1Þ

xy � �uðm�1Þ
xy þ Hm

yz; in oXh
ljN�

Z
:

ð97Þ
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16. de Souza Neto E, Feijóo R (2008) On the equivalence between

spatial and material volume averaging of stress in large strain

multi-scale solid constitutive models. Mech Mater

40(10):803–811. doi:10.1016/j.mechmat.2008.04.006

17. Dong JW, Feng MI (2010) Asymptotic expansion homoge-

nization for simulating progressive damage of 3D braided

composites. Compos Struct 92(4):873–882. doi:10.1016/j.comp

struct.2009.09.026

18. Drugan WJ, Willis JR (1996) A micromechanics-based nonlocal

constitutive equation and estimates of representative volume

element size for elastic composites. J Mech Phys Solids

44(4):497–524. doi:10.1016/0022-5096(96)00007-5

19. Elmekati A, Shamy UE (2010) A practical co-simulation

approach for multiscale analysis of geotechnical systems.

Comput Geotech 37(4):494–503. doi:10.1016/j.compgeo.2010.

02.002

20. Eshelby JD (1957) The determination of the elastic field of an

ellipsoidal inclusion, and related problems. Proc R Soc A Math

Phys Eng Sci 241:376–396. doi:10.1098/rspa.1957.0133

21. Ferrer A, Oliver J, Cante JC, Lloberas-Valls O (2016) Vade-

mecum-based approach to multi-scale topological material

design. Adv Model Simul Eng Sci 3(1):1–22. doi:10.1186/

s40323-016-0078-4

22. Feyel F (1998) Application du calcul parallèle aux modèlles à
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