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Abstract This paper investigates the possibility of using
classical first order computational homogenization together
with a simple regularization procedure based on the frac-
ture energy of the micro-scale-constituents. A generalized
geometrical characteristic length takes into account the size
of the macro-scale element as well as the size of the RVE
(and its constituents). The proposed regularization ensures
objectivity of the dissipated energy at the macro-scale, with
respect to the size of the FE in both scales and with respect
to the size of the RVE. The proposed method is first val-
idated against benchmark examples, and finally applied to
the numerical simulation of experimental tests on in-plane
loaded shear walls made of periodic masonry.
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1 Introduction

The formulation of phenomenological closed-form consti-
tutive laws for the analysis of heterogeneous quasi-brittle
materials such as masonry is still a challenging task [45,46].
The evolution of macroscopic properties is highly influenced
by the complex behavior of micro-structural phenomena
such as damaged-induced anisotropy, stress redistribution
among micro-structural constituents or strain localization.
In this context, it is difficult to take into account the influ-
ence of the evolving micro-structure on the macroscopic
properties, especially when strain localizations occur in the
micro-structure leading to complex dissipation mechanisms
at the structural level.

There are three main approaches to model this kind of
heterogeneous materials.

The first approach is the direct numerical simulation
(DNS) where a classical 1-scale FEmodel is used, and all the
information about the micro-structure is explicitly modeled.
Thismethod provides the best accuracy in taking into account
the micro-structure influence on the structural behavior. An
interface model using multisurface plasticity has been pro-
posed in [25] to describe the in-plane behavior of masonry.
In this kind of modeling, both bricks and mortar joints are
explicitly modeled, and all nonlinear behaviors are lumped
in the interface elements. This approach is very efficient
with small-scale structures (i.e. structural members tested in
laboratory).When dealing with large-scale analysis the com-
putational cost becomes unaffordable, as well as the effort
required to prepare the geometrical model.
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The second approach is known as concurrent multiscale
method (CMM). As a multiscale model, it involves the
study of multiple length scales as well as the exchange of
information among them. In this particular approach the
micro-structural scale is adaptively inserted and resolved
on the structural model, thus establishing a strong coupling
between macro and micro scales. Works on this subject can
be found in [23,24], among others.

The third approach is known as computational homoge-
nization method (CHM). Similar to the CMM, it is based
on multiscale modeling, in that information is obtained
from multiple length scales. Assuming that the length scales
are separated, this approach establishes a weak coupling
between them. The micro-structural features are not physi-
cally inserted in the structural model, as in the case of CMM,
but they are modeled into a so called representative volume
element (RVE) which is associated to each integration point
of the macroscopic mesh. This RVE, considered as a rep-
resentative sample of the micro-structure, is then used to
obtain a homogenized response to the macroscopic strain
field, thus emulating an equivalent homogeneous medium.
Due to its flexibility (no assumption has to be made on the
homogenized constitutive response) such model has been
used to model a large class of materials characterized by
complex micro-structures, with linear and nonlinear behav-
iors [8,41,43,44,47,54,55].

Although classical first order CHM has been successfully
used to model micro-structures exhibiting stable behav-
iors, it has been recognized to give non-objective results
when dealing with strain-softening materials. In fact the
RVE looses its representativeness upon strain localization.
In the last years, several modifications to the classical CHM
have been proposed, and a review on recent developments
can be found in [35] and in the references therein. Some
approaches regularize the response of the RVE by using
a higher order theory at the macro-scale, such that the
information about a material characteristic length is natu-
rally taken into account [2,15–17,21,22,52]. Others, known
as continuous-discontinuous approaches, up-scale the RVE
response to a traction-separation law (upon strain localiza-
tion) used by a discontinuity inserted into the macro-scale
model [5,7,29,30,32,33,37,39]. Another issue related to the
loss of representativeness of the RVE is the choice of proper
boundary conditions to be applied on the RVE. A study on
this topic has been done in [12], where a novel boundary
condition has been proposed, using the concept of rotating
periodicity to avoid costraining the crack propagation orien-
tation.

In the context ofmasonrymodeling, works on continuous-
discontinuous computational homogenization can be found
in [29,35] for modeling the in-plane behavior of masonry
structures, and later on extended to the study of shell ele-
ments for the analysis of the out-of-plane behavior [32,33],

while works on computational homogenization using a
Cosserat continuum at the macro-scale can be found in
[15,16].

Previous approaches based on first order homogenization
and fracture energy regularization considered the character-
istic length used in the microstructural constitutive models
equal to the characteristic length of the macro-scale finite
elements [3]. The same was done in [15] to compare
the classical first order homogenization with the Cosserat-
based homogenization. This paper proposes an extension of
the fracture energy-based regularization to two-scale com-
putational homogenization based on classical first order
continuum theory. The main aim is to allow the usage of
first order computational homogenization for the analysis
of quasi-brittle micro-structures. The main novelty of the
proposed approach resides in the consistent definition of a
fracture energy based regularization, in order to account for
the characteristic lengths of the finite elements at both scales,
as well as the size of the RVE.

The paper is organized as follows: Sect. 2 presents
the main concepts of classical computational homoge-
nization, without any reference to a particular class of
micro-structures, but for the sake of simplicity, assuming
small strain theory. In Sect. 3, the issues introduced by
strain-softening materials are described, and the proposed
regularization procedure is derived. In Sect. 4, a first bench-
mark test is used to assess the proposed regularization with
respect to a simple mode I fracture test. Finally in Sect. 5,
attention is given to the modeling of masonry structures,
through a more complicated test on in-plane loaded shear
walls.

2 Classical first order computational
homogenization

This section gives a brief summary of the main concepts and
basic equations of classical first order computational homog-
enization, where a standard first order continuum theory is
assumed in both scales. In the present work we assume the
infinitesimal strain theory.

The main work-flow of the classical CHM can be repre-
sented as in Fig. 1.

The procedure can be defined by three main steps:

1. Down-scaling or macro-micro transition, where the
macroscopic strain at any point of themacroscopic mesh,
are transferred to the micro-scale, where they are used to
apply boundary conditions on the RVE mesh;

2. Solution of the micro-scale boundary value problem
(BVP), which can be done through any numerical
method, but here FEM is considered;
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Fig. 1 Work-flow of classical computational homogenization

3. Up-scaling or micro-macro transition, where the macro-
scale stress tensor and the macro-scale tangent operator
are obtained via homogenization procedures.

2.1 Down-scaling or macro-micro transition

The macroscopic strain εm , in each point xm of the macro-
scale domain and at each instant t , can be obtained as the
volume average of the microscopic strain field εμ defined at
each point xμ of themicro-scale domain and at each instant t :

εm(xm, t) = 1

Vμ

∫
Ωμ

εμ(xμ, t) dV

= 1

Vμ

∫
Ωμ

∇suμ dV

= 1

Vμ

∫
∂Ωμ

uμ ⊗s n dA (1)

being n the outward unit normal field on the RVE boundary
∂Ωμ. It is assumed that the microscopic displacement field
can be additively split into a linear part (coarse scale con-
tribution) and a fluctuating part ũμ (fine scale contribution)

uμ(xμ, t) = εm(xm, t)xμ + ũμ(xμ, t) (2)

and in the same way the microscopic strain field can be split
into a constant part (coarse scale contribution) and a fluctu-
ating part ε̃μ (fine scale contribution)

εμ(xμ, t) = εm(xm, t) + ε̃μ(xμ, t) (3)

Inserting the definition of the microscopic strain field
(Eq. (3)) into the definition of the macroscopic strain field
(Eq. (1)), one obtains:

εm(xm, t) = εm(xm, t) + 1

Vμ

∫
Ωμ

∇s ũμ dV (4)

which provides the minimal kinematic constraint that a
microscopic displacement fluctuation field should satisfy to
be kinematically admissible:
∫

Ωμ

∇s ũμ dV =
∫

∂Ωμ

ũμ ⊗s n dA = 0 (5)

The last step of the macro-micro transition is to define the
boundary conditions to be applied on the RVE displacement
fluctuation field, in order for the micro-BVP to be solved.
Following the work in [34], typical subsets of kinematically
admissible microscopic displacement fluctuations are briefly
summarized in the following.

– Zero displacement fluctuations

ũμ(xμ, t) = 0 ∀xμ ∈ Ωμ (6)

Displacement fluctuations vanish in every point of the
RVE domain, thus the whole RVE undergoes a uniform
strain equal to the macro-scale strain field.

– Zero boundary displacement fluctuations

ũμ(xμ, t) = 0 ∀xμ ∈ ∂Ωμ (7)

Displacement fluctuations vanish only on the boundaries
of the RVE.

– Periodic boundary displacement fluctuations

ũμ

(
x+

μ, t
) = ũμ

(
x−

μ, t
) ∀ pair

{
x+

μ, x−
μ

} ∈ ∂Ωμ (8)

being x+
μ and x−

μ two opposite points on the RVE
boundary ∂Ωμ. This model constraints the displacement
fluctuations on the boundaries of the RVE to be periodic.

– Minimally constrained boundary displacement fluctua-
tions or Uniform boundary traction

σμ(xμ, t)n(xμ) = σm(xm, t)n(xμ) ∀xμ ∈ ∂Ωμ (9)

Where σμ(xμ, t) is the microscopic stress field. As
shown in [34] , the distribution of stresses on the RVE
boundaries, reactive to the minimal kinematic constraint
given in Eq. (5), satisfies Eq. (9)

2.2 Solution of the micro-scale BVP

Assuming that inertia forces are negligible, the Principle of
Virtual Work establishes that the RVE is in equilibrium if and
only if the variational equation

∫
Ωμ

σμ(xμ, t) : ∇sη dV −
∫

Ωμ

b(xμ, t) · η dV

−
∫

∂Ωμ

te(xμ, t) · η dA = 0 ∀η ∈ Vμ (10)
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holds at each instant t . In Eq. (10), b(xμ, t) is the body force
field in the RVE domain, te(xμ, t) is the external traction
field on the boundaries of the RVE, and Vμ is an appropriate
space of virtual displacements η of the RVE, subjected to one
of the constraints defined in 2.1.

Akey ingredient in the definition ofmultiscale constitutive
models is the Hill-Mandel principle of macro-homogeneity
[19,28], an energy average theorem establishing that the
macroscopic stress power must equal the volume average
of the microscopic stress power over the RVE

σm : ε̇m = 1

Vμ

∫
Ωμ

σμ : ε̇μ dV (11)

for any kinematically admissiblemicroscopic strain rate field
ε̇μ, i.e. (following the additive split between coarse scale and
fine scale contributions) for any microscopic strain rate field
of the form:

ε̇μ = ε̇m + ∇s ˙̃uμ ∀ ˙̃uμ ∈ Vμ (12)

As proved in [34], the Hill-Mandel principle is equivalent to
requiring that body forces and surface traction in the RVE be
purely reactive, i.e. they are reaction to the chosen kinematic
constraints, and cannot be prescribed independently. In this
way the RVE equilibrium reduces to:

∫
Ωμ

σμ(xμ, t) : ∇sη dV = 0 (13)

2.3 Up-scaling or micro-macro transition

The last step in the homogenization procedure consists in
finding the homogenized macroscopic stress tensor (and if
required the homogenized tangent operator) after the RVE
equilibrium is found. As shown in [18,42], a definition of
the homogenized stress tensor can be derived directly from
the Hill-Mandel Principle and the additive split of the micro-
scopic strain, andnot as an assumption of themodel. Inserting
the split of the microscopic strain rate given in Eq. (12), into
the Hill-Mandel principle Eq. (11), the following relation is
obtained:

σm : ε̇m = 1

Vμ

∫
Ωμ

σμ : ε̇m dV

+ 1

Vμ

∫
Ωμ

σμ : ∇s ˙̃uμ dV ∀ ˙̃uμ ∈ Vμ (14)

which is valid for any kinematically admissible ˙̃uμ, and for
the case of ˙̃uμ = 0, the following relation is obtained:

σm : ε̇m = 1

Vμ

∫
Ωμ

σμ : ε̇m dV ∀ε̇m (15)

which is valid for any macroscopic strain rate field, leading
to:

σm = 1

Vμ

∫
Ωμ

σμ(xμ, t) dV (16)

Thus the homogenized macroscopic stress tensor can be
obtained as the volume average of the microscopic stress
field of the RVE.

2.4 Interpretation and comparison with other
multiscale methods

As already mentioned in Sect. 1, CHM allows a straight-
forward interpretation within the framework of Variational
Multiscale Methods (VMM). The main idea is to consider
that the continuous displacement field u can be decomposed
into a coarse and a fine component as

u = ū + ũ (17)

where ū is defined as the “coarse” scale contribution (i.e. the
one described by the coarse FEmesh) and ũ is the “fine” scale
contribution (i.e. the one thatwould correspond to a detail that
cannot be solved by the coarse FEmesh). The corresponding
test functions are named w̄ and w̃. Using such decomposition
the strain ε := ∇su becomes

ε = ∇s ū + ∇s ũ (18)

To follow the standardmultiscale procedure [20], one shall at
this point introduce a model to obtain ũ. This can be done by
applying the Galerkin approach at the level of the fine scale
to give

∫
Ω

w̃∇ ·σ (∇s ũ
)
dV =

∫
Ω

w̃ f dV −
∫

Ω

w̃∇ ·σ (∇s ū
)
dV

(19)

which defines a “fine” scale problemwhich can be eventually
solved if one, as in our case, provides a suitable discretization
of the fine scale domain (that is, a way to actually compute
w̃). The problem is completed once one prescribes a suitable
boundary condition for ũ. In the VMM community it is cus-
tomary to assume that

∫
Ω

w̃ (∇s ũ) dV = 0 which can be
reworked (by applying the Green-Gauss theorem) to give

∫
∂Ω

w̃ (ũ ⊗s n) dA = 0 (20)

In the case of CHM, w̃ can be considered as a discontinuous
function defined (locally in each integration point) by the
finite element discretization of the RVE. Under this assump-
tion, Eq. (19) and (20) can be restricted to the RVE volume
to give the Finite Element problem
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∫
ΩRV E

w̃∇ · σ
(∇s ũ

)
dV

=
∫

ΩRV E

w̃ f dV −
∫

ΩRV E

w̃∇ · σ
(∇s ū

)
dV (21)

∫
∂ΩRV E

w̃ (ũ ⊗s n) dA = 0 (22)

Interestingly, Eq. (22) coincides with the so called “min-
imal” boundary conditions for ũ. Observe that both ũ =
0 (in ∂ΩRV E ) and the constraint of ũ being periodic
(in ∂ΩRV E ) are special cases that comply with this boundary
condition. Observe also that no assumption on the periodicity
of ũ is needed when deriving minimal boundary conditions.

3 Fracture-energy-based regularization in
two-scale FE Computational Homogenization

An essential aspect in numerical modeling is mesh objec-
tivity, defined as the requirement that the results must be
independent of the adopted discretization.

In a continuum which exhibits strain-softening, the strain
localizes into a narrow zone where energy is dissipated
according to its size,while outside thematerial unloads elasti-
cally. On the other hand, in the FEMcontext, if standard local
continuummodels are used (i.e. thematerial response is com-
puted as a function of local strains), this localization zone is
related to the domain (volume or area) of each finite element.
Thus, if strain softening appears, the dissipative domain will
coincide with only one strip of elements through the finite
element mesh, but since the dissipation of the total energy
is proportional to the size of the finite elements, the energy
dissipated would diminish as the elements become smaller
upon mesh refinement, leading to non-objective results that
depend on the FE size.

A solution to this problem, nowwidely used, has been pro-
posed first in [4], and later on addressed by several authors
([9,36,40], among others). The authors point out that in a
FEM framework, the concept of strain softening should not
be considered as a characteristic of the material alone, since
it is related to both the fracture energy G f and the size of the
finite element where the energy dissipation occurs. The com-
putational width of the fracture process is computed in each
element dependingon its geometry anddimension.This com-
putationalwidth is known as the element characteristic length
lch . According to this model, the softening law depends on
both the material fracture energy per unit of crack surface
area G f and the element characteristic length lch , in such a
way that the following relation holds:

G f = W

A
= W

V
lch = g f lch (23)

Fig. 2 Representation of displacement and strain fields in mode I
fracture, and the regularization process. a Strong discontinuity, b regu-
larized smeared discontinuity

whereW is the total energy dissipated by the fracture process,
A is the crack surface area, g f is the fracture energy per unit
of volume, and V is the volume of the dissipative zone.

Referring to the notations given in Fig. 2, Eq. (23) can be
rewritten as:

G f = W

ht
= W

htlch
lch = g f lch (24)

In two-scale FE analysis, the concept of characteristic
length of the parent element (the element containing the con-
stitutive law that needs to be regularized) is not so obvious, in
the sense that the non-linear behavior is generated by a con-
stitutive model associated to a domain of the micro-scale, but
the dissipation finally occurs in a domain of the macro-scale.
If one considers only the characteristic length of the FE in
the micro-scale, one would obtain a correct dissipation in the
RVE, but then, changing the size of the RVE or the size of
the FE at the macro-scale, one would obtain non-objective
responses at the macro-scale. Both requirements of mesh-
objectivity and correct dissipation can be satisfied only if a
regularization is employed in both scales of the analysis.

This suggests that the regularization parameter for the con-
stitutive model used in the micro-scale should be adjusted to
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Fig. 3 Fracture energy based regularization in 2-scale FEM

take into account the nested feature of the multiscale homog-
enization procedure. As a starting point we can assume that
the constitutive law at the micro-scale should be regularized
using amodified characteristic length l̃ch,μ, defined as a func-
tion of all the characteristic lengths that may enter into the
problem (see Fig. 3):

l̃ch,μ = f
(
lch,μ, lch,m, lch,RV E

)
(25)

where lch,μis the characteristic length of the FE in the micro-
scale, lch,m is the characteristic length of the FE in themacro-
scale, and lch,RV E is the characteristic length of the RVE
itself. The characteristic length of the FE (both at the micro
and at the macro scale) has to be always computed according
to the geometry, interpolation and integration scheme of the
considered finite element [49].

To obtain a definition for the modified characteristic
length, we can define the energy WRV E,D dissipated in the
damaged domain of the RVE as:

WRV E,D = G f

l̃ch,μ

VRV E,D = G f

l̃ch,μ

lch,μ tμ hRV E (26)

where VRV E,D is the damaged domain of the RVE, hRV E is
the length of the RVE in the direction of the crack, and tμ is
the thickness of the RVE.We can now “smear” the dissipated
energy over the whole RVE domain, defining an equivalent
specific fracture energy g̃ f as:

g̃ f = WRV E,D

VRV E
= WRV E,D

lch,RV E hRV E tμ

= G f

l̃ch,μ

lch,μ

lch,RV E
(27)

Integrating this specific fracture energy over the dissipating
domain at the macro-scale we get the total energy Wm dissi-
pated at the macro-scale:

Wm =
∫

Am

g̃ f dVm (28)

Wm = g̃ f lch,m hm tm (29)

Where hm and tm are respectively the length and the thick-
ness of the crack at the macro-scale. Substituting Eq. (27)
in Eq. (29), and equating it with the actual dissipated energy
that we’re seeking at the structural level

W = G f hm tm (30)

we obtain a definition for the modified characteristic length,
to be used at the micro-scale, that provides the proper dissi-
pation at the macro-scale:

Wm = G f

l̃ch,μ

lch,μ

lch,RV E
lch,m hm tm = G f hm tm (31)

l̃ch,μ = lch,μ

lch,m

lch,RV E
(32)

From Eq. (32) it can be seen that the characteristic lengths
at the micro-scale should be multiplied by a scaling factor
(constant over the RVE) which is the ratio between the char-
acteristic length of the parent-element at the macro-scale and
the characteristic length of the RVE itself.

This procedure can be regarded as a 2-step smearing of
a discontinuity: (i) First, the discontinuity is smeared over
the localization band in the RVE (Eq. (26)) , with a width of
lch,μ, and a length of hRV E ; (ii) Then, the discontinuity (now
in the form of a localization band in the RVE) is smeared over
the localizing element at the structural-level (Eqs. (27), (28),
(29)).

In [3], the modified characteristic length to be used at
the micro-scale was taken equal to the characteristic length
of the macro-scale FE. In that context, however, the author
was dealing with composites made of damageable matrix
and long fibers. Long fibers are typically oriented along the
loading direction, allowing damage to spread over a wide
area. In those cases damage is distributed over thewholeRVE
domain, while the localization may happen at the structural
level. On the contrary, in masonry the localization is already
visible in the RVE, thus requiring to consider both length
scales during the regularization procedure. It should be noted
however, that the method proposed in [3] is recovered from
Eq. (32), setting lch,μ = lch,RV E .

In [30] the localized RVEwas homogenized towards a dis-
continuity with a band width equal to the RVE characteristic
length. In the approach proposed by this work, this corre-
sponds to lch,m = lch,RV E , thus leaving the characteristic
length of the microstructural elements unchanged.

Eqution (26) defines the total energy dissipated in the dam-
aged part of the RVE, assuming that the total length of the
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crack is equal to the length of the RVE in the crack direc-
tion (hRV E ), thus assuming a straight crack. Let’s assume
instead that in the RVE the crack is non-straight, with a total
length equal to ΦhRV E , where Φ ≥ 1 is a scaling factor that
measures the tortuosity of the crack. Eq. (26) then becomes

WRV E,D = G f

l̃ch,μ

lch,μ tμ ΦhRV E (33)

Equation (30), refers to the total energy dissipated by the real
crack that we should simulate, and it was assumed straight
(as for the crack in the RVE) with a length equal to the length
of the specimen in the crack direction hm . If we consider
instead a non-straight crack, Eq. (30) becomes

W = G f Φhm tm (34)

Thus Eq. (31) becomes

Wm = G f

l̃ch,μ

lch,μ

lch,RV E
Φlch,m hm tm = G f Φhm tm (35)

where the tortuosity factor Φ appears in both sides of the
equation, this it cancels out, and the modified characteristic
length defined in Eq. (32) remains unchanged.

4 Mode I fracture test

The test reported in this section is meant to assess the reg-
ularization capabilities of the proposed method with respect
to a simple mode I fracture test. The specimen is a rectan-
gular plate in a state of plane-stress subject to a uniaxial
tensile load. The micro-structure is assumed as a matrix with
a periodic pattern of circular voids (note that voids are emu-
lated with a very soft linear elastic material as reported in
Table 1). The regularization with respect to the macro-scale
FE size and the size of the RVE is checked by performing
the same analysis on two different macro-scale discretiza-
tions and two different RVE sample sizes, for a total of four
analyses. The same analyses are conducted with and without
the regularization procedure to better show the differences.

Details about the geometry, the two macro-scale mod-
els, and the two RVEs, are given respectively in [Figs. 4,
5, 6], while details about the mechanical properties of the
micro-structural constituents are given in Table 1. Periodic
boundary displacement fluctuations are employed in themul-
tiscale analysis, since in this example we expect cracks
aligned with the periodicity directions.

A local continuum damage model is used to describe the
constitutive behavior of thematrix in theRVE. Themain con-
cepts of the model are summarized here. For further details
the reader can refer to [9,11] and the references therein. The
constitutive equation is defined as

σ = (1 − d)σ̄ = (1 − d)C : ε (36)

where the stress tensor σ is obtained as a function of the
effective stress tensor σ̄ , computed from the total strain tensor
ε and the fourth order isotropic linear elastic constitutive
tensorC , and the damage index d, which ranges from zero for
the undamaged material, to one for the completely damaged
material. In order to compute this damage index, related to
the current effective stress state, it is necessary to introduce a
scalar measure, termed as equivalent stress τ . In this example
we assume a Rankine criterion, so the equivalent stress can
be computed as follows:

τ = [
σ̄+ : Λ : σ̄+]1/2

(37)

where σ̄+ is the positive part of the effective stress tensor,
defined as

σ̄+ =
3∑

i=1

〈σ̄i 〉 pi ⊗ pi (38)

where pi is the eigenvector associated with the principal
stress σ̄i , symbols 〈•〉 are the Macaulay brackets (〈x〉 = x ,
if x ≥ 0, 〈x〉 = 0, if x < 0), and Λ is a non-dimensional
fourth order tensor defined as

Λ = p1 ⊗ p1 ⊗ p1 ⊗ p1 (39)

Table 1 Material properties
Property Value (material 1) Value (material 2) Unit

Young’s modulus 14,000.0 1.0 N/mm2

Poisson’s ratio 0.15 0.15 –

Type Continuum damage model Linear elastic –

Tensile maximum stress 2.2 – N/mm2

Tensile fracture energy 0.8 – N/mm

Damage criterion Rankine – –

Softening law Exponential – –
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Fig. 4 Geometry of the model and boundary conditions

(a) (b)

Fig. 5 Macro-scale meshes: a macro 1 × 1—mesh size = 1000;
b macro 2 × 2—mesh size = 500

Fig. 6 a RVE 1 × 1—size = 100; b RVE 3 × 3—size= 300

Being the damage an irreversible process, we can introduce
another scalar quantity, termed as damage threshold r , that
represents the largest value ever reached by the equivalent
stress τ during the loading history. The damage threshold r
at time t + Δt can be evaluated as

r = max (r0, max (rt , τ )) (40)

where rt is the damage threshold at the previous (converged)
time step, and r0 is the initial damage threshold (the one
that defines the elastic limit) that in this case is r0 = ft .

Accordingly, the following damage criterion is introduced:

Φ (τ, r) = τ − rt ≤ 0 (41)

In this way, the damage index d, in the time interval
[t, t + Δt], can grow only if τ > rt . In this test the damage
is assumed to evolve according to the following exponential
law:

d (r) = 1 − r0
r
exp

{
2Hdis

(
r0 − r

r0

)}
(42)

where Hdis is the discrete softening parameter. As described
in Sect. 3, in the discrete problem the softening law should be
adjusted according to the size of the dissipative zone (ldis),
in such a way that the following equation holds:

g f ldis = G f (43)

where the specific dissipated energy g f , for the exponential
softening law, can be calculated as:

g f =
(
1 + 1

Hdis

)
f 2t
2E

(44)

The discrete softening parameter is calculated as

Hdis = ldis
lmat − ldis

(45)

where lmat = 2EG f / f 2t . In standard 1-scale FE analysis,
ldis is assumed equal to the characteristic length of the FE
(ldis = lch). Here we are using this constitutive law in the
RVE of a 2-scale FE analysis, so ldis is equal to the modified
characteristic length l̃ch,μ, as defined in Eq. (32).

The analysis has been performed using Kratos Multi-
physics [13], a free open-source framework for the devel-
opment of multidisciplinary solvers, developed at CIMNE,
while pre and post-processing have been done in GiD [31],
also developed at CIMNE.

The results obtained without the proposed regulariza-
tion procedure (Fig. 7a) show four widely distinct force-
displacement curves. As expected, the response is more
brittle for larger RVEs and/or with finer meshes at the macro-
scale. Applying the proposed regularization all the analyses
give the same response (Fig. 7b), thus showing objectivity
with respect to the macro-scale FE size and to the RVE size.
Themacro-scale displacement field and themicro-scalemax-
imum principal strain, at the end of the analysis, are shown
in Fig. 8.
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(a) (b)

Fig. 7 Force-Displacement curves: a without regularization; b with regularization

Fig. 8 Macro-scale displacement field—RVEs maximum principal strain field (with regularization)

5 Application to masonry structures. Numerical
modeling of shear walls

In this section, the proposedmethod is used to simulate the in-
plane behavior of masonry structures. Shear walls has been
commonly used as in-plane shear tests. Here we consider the

experimental results obtained in [48] as a reference to assess
the capability of the proposed approach. First, a brief descrip-
tion of the selected experimental test is given in 5.1, then
the adopted RVE and the constitutive models used for each
micro-structural constituent are described in 5.2. Before pro-
ceeding with the multiscale simulation, a Direct Numerical
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Simulation (DNS) has been performed to check the capabil-
ity of the constitutive models to emulate the main behaviors
of the masonry wall, and the results are discussed in 5.3.
Finally the results obtained from the multiscale simulations
are comparedwith both the experimental results and theDNS
results in 5.4.

The analysis has been performed using Kratos Multi-
physics [13,14], a free open-source framework for the devel-
opment of multidisciplinary solvers, developed at CIMNE,
while pre and post-processing have been done in GiD [31],
also developed at CIMNE.

5.1 Experimental test: TU Eindhoven shear wall

The geometry of the wall (here denoted asW1) as well as the
boundary conditions are represented in Fig. 9. The wall has
no opening and it is made of one layer of solid bricks with
dimensions 210mm ×52mm ×100mm, with 10mm thick
mortar joints [48]. The wall is subjected to two load stages:
(i) First, a uniform pressure load of 0.3N/mm2 is applied on
the top of the wall, (ii) then a horizontal load is applied under
displacement control in a confinedway, keeping the top of the
wall horizontal and precluding vertical displacements. The
experimental failure mechanisms obtained from the tested
walls are shown in Fig. 10.

5.2 RVE and micro-scale constitutive laws

Thewalls considered in this section aremade of running bond
masonry, thus showing a periodic texture. Taking advantage
of the periodicity of the micro-structure, periodic boundary
displacement fluctuations (see Eq. (8)) are enforced on the
boundaries of the RVE. In some applications, the assumption
of periodic boundary fluctuations might enforce unphysi-
cal constraints on the crack direction [12]. However, for the
specific case of masonry the cracks mainly take place fol-
lowing the periodic geometry of the weak mortar joints. In
this sense, the periodic assumption does not spoil the actual
cracking direction, both in the case of failure of bed/head
joints and in the case of staircase cracks. The mesh for
both bricks and mortar joints consists in a structured grid
of standard displacement-based 4-node quadrilateral plane
stress elements, with a uniform size of 10.0mm, as shown
in Fig. 11.

The constitutivemodels used for themicro-structural con-
stituents are here briefly presented, and they have been used
for both the direct numerical simulation and the multiscale
computational homogenization. Both constituents, bricks
and mortar joints, are assumed to be isotropic. Their non-
linear behavior is simulated by means of a local continuum
damage model that is an improvement of the scalar isotropic
damage model described in Sect. 4. To take into account the
different behaviors of these materials in tension and com-

(a)

(b)

Fig. 9 Wall W1—TU Eindhoven shear wall [48]. Geometry and load-
ing stages: a stage 1: uniform vertical load; b stage 2: horizontal
displacement under vertical confinement

Fig. 10 Experimental crack patterns

pression, a bi-dissipative d+/d− damage model has been
adopted, following the work in [53], such that the stress state
can be computed as
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Fig. 11 RVE mesh. All units are in mm

σ = (
1 − d+)

σ̄+ + (
1 − d−)

σ̄− (46)

where σ̄+ and σ̄− are the positive and negative parts of the
effective stress tensor σ̄ :

σ̄ = C : ε (47)

σ̄+ =
3∑

i=1

〈σ̄i 〉 pi ⊗ pi (48)

σ̄− = σ̄ − σ̄+ (49)

d+ and d− are respectively the tensile and compressive dam-
age indexes, and they affect respectively the positive σ̄+
and negative σ̄− part of the effective stress tensor σ̄ . Two
scalar measures are introduced, termed as equivalent stresses
τ+ and τ−, in order to identify “loading”, “unloading” or
“reloading” situations for a general state of stress. In the
present work we have chosen different damage surfaces than
those adopted in [53]. More specifically, the same form of
damage surface, based on the one proposed in [27], has been
used for both tensile and compressive states, but with slight
differences, in order to better capture the shear behavior of
masonry components (especially mortar joints).

The equivalent stresses τ+ and τ− are computed as

τ− = 1

1 − α

(
α I1 + √

3J2 + κ1β 〈σmax 〉
)

(50)

τ+ = 1

1 − α

(
α I1 + √

3J2 + β 〈σmax 〉
) ft

fcp
(51)

α = κb − 1

2κb − 1
(52)

β = fcp
ft

(1 − α) − (1 + α) (53)

where I1 is the first invariant of the stress tensor, J2 is the
second invariant of the stress deviator, σmax is the maximum
principal stress, and κb is the ratio between bi-axial and uni-
axial compressive strengths. The constant κ1 in Eq. (50) has
been here introduced to better control the effect of the com-
pressive surface on the shear strength of the model. This
constant can range from 0 (leading to the Drucker-Prager
criterion) to 1 (leading to the criterion proposed in [27]). ft

Fig. 12 Initial damage surfaces (2D plane-stress)

and fcp are respectively the tensile and compressive peak
stresses, but while ft coincides with the initiation of non
linearity in uniaxial tension, fcp doesn’t coincide with the
initiation of non linearity in uniaxial compression fc0, due
to the initial hardening. This choice is motivated by the fact
that in tension no hardening has been considered. Finally the
term ft

fcp
has been introduced in Eq. (51) to relate τ+ to the

tensile strength ft .
Being the damage an irreversible process, other two scalar

quantities are introduced, termed as damage thresholds r±,
that represent the largest values ever reached by the equiv-
alent stresses τ± during the loading history. The damage
thresholds r± at time t + Δt can be evaluated as

r± = max
(
r±
0 , max

(
r±
t , τ±))

(54)

r+
0 = ft (55)

r−
0 = fc0 (56)

where r+
0 and r−

0 represent the initial damage thresholds
respectively in tension and compression (i.e. the elastic lim-
its in uniaxial tension ft and compression fc0). Accordingly,
the following damage criteria are introduced:

Φ
(
τ±, r±) = τ± − r±

t ≤ 0 (57)

A plot with the superposition of the two damage surfaces,
in principal stress space for the 2D plane-stress case, is given
in Fig. 12. The compressive surface is plotted with different
values of the constant κ1. Since these surfaces are defined
for any stress state, it is necessary to make them inactive
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Fig. 13 Tensile uniaxial law

Fig. 14 Compressive uniaxial law

(as pointed out in Fig. 12 with dashed lines) under certain
conditions:

1. Compressive surface is allowed to evolve only if at least
one principal stress is negative

2. Tensile surface is allowed to evolve only if at least one
principal stress is positive

The tensile damage index d+ is calculated according to the
following equation:

d+ (
r+) = 1 − r+

0

r+ exp

{
2Hdis

(
r+
0 − r+

r+
0

)}
(58)

where Hdis is the discrete softening parameters, and it’s cal-
culated as explained inEq. (45). The resulting tensile uniaxial
law is given in Fig. 13.

For the evaluation of the compressive damage index d−an
ad hoc formulation has been adopted, in order to obtain a
compressive uniaxial law like the one given in Fig. 14.

This curve consists of: (1) a linear part [(0, 0) − (ε0, σ0)],
(2) a hardening part

[
(ε0, σ0) − (

εp, σp
)]
, (3–4) two soften-

ing parts
[(

εp, σp
) − (εk, σk)

]
[(εk, σk) − (εu, σu)], and 5)

a final constant residual stress part [(εu, σu) − (+∞, σu)].

Table 2 Material properties for bricks and mortar joints

Property Bricks Mortar joints Units

E 16,700.0 800.0 N/mm2

ν 0.15 0.15 –

σt 2.0 0.25 N/mm2

Gt 0.08 0.016 N/mm

σ0 3.0 2.0 N/mm2

σp 11.5 8.5 N/mm2

σr 2.0 2.0 N/mm2

Gc 1.0 80.0 N/mm

εp 0.003 0.04 –

kb 1.2 1.6 –

k1 0.0 0.16 –

Parts 2, 3 and 4 are quadratic bezier curves. Each one has
three control points defining the shape of the curve, the end-
positions, and the tangents to the curve at the end-positions.

As for the tensile case, in the discrete problem this uniaxial
curve needs to be regularized in such a way that the shaded
area under the curve be Gc/ ldis , where in the present work
ldis is equal to the modified characteristic length l̃ch,μ, as
defined in Eq. (32).

Material properties for bricks and mortar joints, used next
in the DNS and Multiscale simulations, are summarized in
Table 2. These values are taken from the analysis conducted
in [25,26]. The material parameters governing the compres-
sive behavior of mortar joints have been adapted to obtain
the correct compressive behavior of the masonry composite
material. In fact in this simulation a plane stress behavior has
been adopted, which cannot capture the typical increase in
compressive capacity of mortar joints, due to the confining
effect of the surrounding bricks. Another possibility of cope
with this issue could be the generalized plane state model
[1].

5.3 Direct numerical simulation

In this section, the results obtained from the DNS are dis-
cussed and compared to the experimental results. This allows
to assess the capability of the constitutive model described
in 5.2 to represent the in-plane behavior of shear-walls.
The discretization consists in a structured mesh of stan-
dard displacement-based 4-node quadrilateral plane stress
elements. The size of the discretization is 10 mm. The non-
linear static analysis is conducted in two stages:

1. In the first stage, a uniform pressure of 0.3N/mm2 is
applied on top of the wall, under load control;

2. In the second stage, a horizontal nodal load is applied
on the top-right corner of the wall, under displacement
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Fig. 15 Load-Displacement curve

control. In this second stage, the vertical displacement on
top of the wall, is kept fixed at the value reached at the
previous step.

Figure 15 shows the structural response in terms of horizon-
tal top displacement against total horizontal reaction. The
results obtained with the DNS are in good agreement with
the experimental results, also in terms of the obtained failure
mechanisms, as it can be seen in Tables 3 and 4.

In this context, it is interesting to highlight the main fea-
tures characterizing the behavior of this kind of experiment
(for a detailed description see [26]). To this end, five signif-
icant snapshots of the analysis have been extracted. These
snapshots are identified by horizontal top displacements
Ux = [0.5, 1.1, 1.8, 2.5, 3.0]mm.The obtained results can
be seen inTables 3 and 4, in terms of displacement,maximum
principal strain, minimum principal stress, tensile damage
and compressive damage.

The first non-linearity appears at a horizontal top dis-
placement Ux = 0.5mm, with horizontal tensile cracks
developing at the bottom-right and top-left parts of the
wall. In this first stage, compressive stresses form several
parallel struts oriented along the direction given by the cen-
tral points of the bricks. At a horizontal-top-displacement
Ux = 1.1mm, staircase diagonal cracks appear from the
center of the wall, proceeding towards the supports through
the mortar joints. In this stage there are several cracks, but
not yet a fully open unique crack, due to the presence of
bricks that are still below their tensile peak stress. The for-
mation of these diagonal cracks also produces the first visible
change in the slope of the load-displacement curve. The
stage between horizontal-top-displacements Ux = 1.8mm
and Ux = 2.5mm is characterized by the previously men-
tioned cracks joining to form a unique diagonal crack that
fully reaches the supports. The joining of those cracks is
due to tensile failure of bricks. In this stage, is also visible
the change in compressive stresses, now rotating and form-
ing two separated struts. The further opening of the diagonal
crack leads to the full development of the shear mechanism
for the ultimate displacement Ux = 3.0mm.

5.4 Multiscale simulation

In order to assess the proposed method, the multiscale
homogenization analysis has been performed on four differ-
ent meshes, here denoted as mesh 7× 7, mesh 8× 8, mesh 9
× 9, and mesh 15× 15, as shown in Fig. 16. All macro-scale
models consists of a structured mesh of 4-node quadrilateral
plane-stress finite elements. In order to improve the perfor-
mance of these rather coarse discretizations, the enhanced
assumed strain (EAS) quadrilateral element proposed in [51]
was used.

The results obtained from all four analyses are in very
good agreement with the DNS predictions. Figure 17 shows
how the obtained load-displacement curves closely follow
the curve of the DNS. Furthermore it can be seen how
upon mesh refinement the relative error among the curves
diminishes, thus showing objectivity of the response thanks
to the regularization procedure proposed by this research.
The coarsest mesh (7 × 7) shows a premature failure in the
compressed corners probably due to the sudden loss of bear-
ing capacity of the few elements involved in the nonlinear
process.However, already the 8x8mesh shows a better agree-
ment in thefinal stage, andfinally the 9x9 and15×15meshes
start showing smoother transitions towards the compressive
failure.

The 15 × 15 mesh from a practical point of view may not
seem the best choice for the analyzed problem, since the FE
size at themacro-level is smaller than theRVE size.However,
the 15 × 15 case has been intentionally addressed to show
themesh insensitivity of the proposed regularizationmethod.
All the other cases with coarser meshes actually look more
appropriate, since the FE size at themacro-level is larger than
the RVE size. In those cases, the main failure mechanisms,
displacement and force capacities are correctly represented
despite the mesh coarseness.

Table 6 shows the obtained results in terms of displace-
ment, maximum principal strain and minimum principal
stress. In particular, it can be seen how the shape of the crack
(in terms of maximum principal strains) and the redistribu-
tion of compressive stresses closely resembles those obtained
with the DNS.

Table 5 shows the final state (in terms of maximum
principal strain, tensile and compressive damage) of three
significant RVEs. The first RVE (RVE 1) shows a prevailing
mode I failure, where the tensile damage concentrates in one
of the bed joints. This is the first source of non-linearity that
appears during the test, while the vertical confinement is still
low. The second RVE (RVE 2) shows the typical staircase
failure due to shear with low confining pressure. This RVE
is taken from the center of the wall, where the main diagonal
crack starts. Finally the third RVE (RVE 3) is taken from
the bottom-left corner of the wall, where the main diagonal
crack ultimately triggers the collapse of the wall. This failure
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Table 3 DNS. Incremental contour plots of (Ux ) horizontal top displacement, (εmax ) maximum principal strain, and (σmin) minimum principal
stress

top − displacement Ux (mm) εmax σmin (N/mm2)

0.5mm

1.1mm

1.8mm

2.5mm

3.0mm
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Table 4 DNS. Incremental
contour plots of (d+) tensile
damage, and (d−) compressive
damage

top − displacement d+ d−

0.5mm

1.1mm

1.8mm

2.5mm

3.0mm
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Fig. 16 Adopted meshes at the macro-scale

Fig. 17 Load-Displacement curve

happens at a later stage of the test, and due to the fact that
vertical displacements on top of the wall are constrained, this
area is subjected to significant concentration of compressive
stresses. The RVE successfully shows a first staircase dam-
age pattern, followed by the failure of the brick by vertical
splitting.

The smeared crack approach adopted in this research,
together with proper fracture energy regularization, has pro-
vided numerical results in remarkable agreement with the
experimental cracking patterns on masonry shear walls.

However, it must be noted that in general the proposed
regularization cannot solve (and neither attempts to) thewell-
known problem of mesh-bias dependency of the FE solution,
that is, some preferred directionsmight still exist in themodel
depending on the orientation of the mesh. Such issue can
be however addressed by carefully choosing the finite ele-
ment model employed in the coarse mesh, as demonstrated
by recent works [6,9–11,38]. In particular the element for-

Table 5 Final state in three significant RVEs

mulation employed in current work (EAS [51]) makes it
reasonably insensitive to mesh bias.

5.5 Computational cost

An important aspect in this kind of simulations is the compu-
tational cost. Even if such a study is out of the scope of this
paper, this section gives just a brief comparison between the
DNS and the Multiscale simulations. It should be noted that
the specimen described in 5.1 is quite small (1m ×1m) and
it is not the perfect candidate for a multiscale simulation.
Nevertheless it has been analyzed for a comparison with
experimental results. To exploit the advantages of the pro-
posed multiscale model, a second DNS has been conducted
on a largermodel (3m ×3m)which is a scaled version of the
original one. For both cases a multiscale simulation has been
carried out, using the same macro-scale discretization (7× 7
mesh) which proved to be sufficient to obtain good results in
both analysis (see Fig. 18a, b). Table 7a and 7b show the com-
putational cost of the DNS and the multiscale simulations in
terms of memory usage and (real) time. To give an objective
comparison, the measured time is not referred to the entire
simulation, but to the average duration of a single global iter-
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Table 6 CHM. Incremental contour plots of (Ux ) horizontal top displacement, (εmax ) maximum principal strain, and (σmin) minimum principal
stress

top − displacement Ux εmax σmin

0.5mm

1.1mm

1.8mm

2.5mm

3.0mm
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(a) (b)

Fig. 18 Load-displacement curves for the original (a) and scaled model (b)

Table 7 Computational cost for the direct numerical simulations (a) and for the Multiscale simulation with a 7 × 7 mesh (b)

DNS model Number of nodes Number of
elements

Average time per
iteration

Memory

(a)

1m × 1m 11,152 10,934 1.51 s 120MB

3m × 3m 77,064 76,502 9.72 s 730MB

Number of nodes Number of
elements

Number of RVEs Number of nodes
(RVE)

Number of
elements (RVE)

Average time per
iteration

Memory

(b)

64 49 196 322 356 4.97 s 275MB

ation (i.e. the total duration of a load step, divided by the
number of equilibrium iterations). Furthermore the time has
been measured during specific load steps where almost the
entire model is in a nonlinear range.

As it can be observed, the multiscale simulation proves
to be efficient with respect to the DNS when dealing with
large structures (or alternatively when the micro-structure is
very small compared to the specimen). The DNS is penal-
ized when used with large models due to increasing time and
memory requirements, mainly required by the storage and
solution of large linear systems of equations. On the contrary,
the Multiscale simulation is penalized when used with small
models, where the overhead of the homogenization process
dominates.

All the computations have been done on a single machine
with an Intel Core i7-2670QM-2.20GHz CPU and 8.00 GB
RAM. The code has been parallelized using OpenMP.

6 Conclusions

Classical first order computational homogenization is a well
established framework used to capture the effect that a com-
plex micro-structure has on the structural level. It has been

however recognized to suffer from spurious dependence on
the macro-mesh size as well as on the RVE size, when strain
localization takes place.

In this paper, the authors propose a simple regular-
ization technique that allows to use classical first order
computational homogenization for problems involving strain
localizations, while keeping its settings, and thus its sim-
plicity, unchanged. In the context of the smeared crack
approach (SCA), the fracture-energy-based regularization,
commonly used in 1-scale FE analysis when dealing with
strain-softening materials, is extended here to 2-scale FE
analysis. The proposed regularization procedure ensures
objectivity of the dissipation at the macro-scale, by embed-
ding in the definition of themicro-scale characteristic lengths
(used to regularize micro-structural constitutive laws), the
size of the finite elements from both scales as well as the size
of the RVE itself. This is achieved by means of a scaling fac-
tor which is constant over the RVE. Of particular interest is
the fact that an existing FE code implementing classical com-
putational homogenization needs only a marginal change in
the evaluation of this scaling factor.

The proposed method is validated through basic bench-
mark tests as well as with more involved analyses of in-plane
loaded masonry shear walls, showing satisfactory results.
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More specifically, the application of the proposed multi-
scale procedure shows a remarkable agreement with the
results given by the DNS. As for the analysis of the masonry
shear wall, the proposed model has shown its capability at
the micro-scale to represent the local tensile, compressive
and shear failures due to the complex interaction between
units and joints. At the macro-scale, the model can cor-
rectly describe the phenomenological structural response.
The proposed multiscale approach is robust and objective
for different mesh discretizations.
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