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Abstract

The problem of polydisperse sphere packings is applied to concrete mesoscale geometries in finite sized specimens. Realistic

sphere diameter distributions are derived from concrete grading curves. An event-driven molecular dynamics simulation using grow-

ing particles is introduced. Compared to the widely used random sequential addition algorithm, it reaches denser aggregate packings

and saves computation time at high volume fractions.

A minimal distance between particles strongly influences the maximum aggregate content. It is essential to obtain undistorted

elements when meshing the geometry for finite element simulations. The algorithm maximizes this value and produces meshable

concrete mesostructures with more than 70% aggregate content.
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1. Introduction

The random packing of spherical particles is a common problem in research and industry, e.g. packaging, solidification processes

and material science. The particle volume fraction φ describes the ratio between particle and specimen volume. The maximum

value φmax for a given configuration depends on the particle size distribution and the specimen size, and is of high interest in these

applications. For a random monodisperse size distribution and a infinite specimen, the maximum value φmax ≈ 64% is established

[1]. Bidisperse and polydisperse size distributions are characterized by numerous parameters. This makes a general understanding of

the underlying processes difficult [2] and φmax is discussed only for certain types and parameters of size distributions, e.g. log-normal

distributions with varying width parameter σ [3].

In this paper, the special case of concrete aggregates is investigated. The size distribution is characterized by grading curves that

specify the mass fraction of aggregates passing through sieves of varying sizes. An optimization of the grading curve is an important

part of modern concrete design [4]. For a thorough understanding of the macroscopic concrete properties, it is important to consider

the influence of the heterogeneous structure. For a realistic model of concrete on the mesoscale, the size, position and orientation

of aggregates can be either determined experimentally [5] or simulated numerically [6]. Modeling concrete as a three-component

composite consisting of aggregates embedded in the mortar matrix with a special modeling of the interface zone makes it possible to

use relatively simple constitutive models for each individual component resulting in a complex macroscopic response [7]. In a first

approximation, aggregates can be approximated as spherical inclusions.

The focus of the paper is the generation of geometries for particle reinforced composites such as concrete, where the size distri-

bution is polydisperse. Typical volume fractions of concrete particles are in the range of φ = 60 − 80%, which is relatively close
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(a) The RSA algorithm fixes a particle’s positions, once it is placed

(solid). All possible positions for new particles (dashed) will overlap

with existing ones.

(b) Movable particles allow rearrangements. In combination with

growing particles, this can lead to jammed packings.

Fig. 1: Main advantages of moving particle methods over RSA methods at high particle volume fractions φ.

to the maximum packing. For the numerical simulation, a two stage take-and-place algorithm is commonly used [8, 9]. In the take

phase, the particles are generated based on the prescribed grading curve, the particle volume fraction φ and the specimen volume. In

the place phase, the particles are positioned within the specimen.

A very common algorithm for the particle placement is the random sequential addition (RSA) algorithm introduced by Widom in

1966 [10]. The particles are randomly placed into the specimen - one after another - starting with the largest ones. Separation checks

with previously placed particles are carried out to ensure a non-overlapping packing. There are several ways do deal with overlaps.

In the classic algorithm, a particle is only placed into the specimen when it is not overlapping with previously inserted particles -

otherwise a new random position is calculated. In a stochastic-heuristic algorithm, the particles are slightly moved [11]. Another

alternative is the drop-down algorithm, where a random position at the upper surface of the specimen is picked. The particle falls

down and remains where it first touches another particle [12].

The simplicity of random sequential addition and its high efficiency at low particle densities φ are huge advantages of this

algorithm. The main problem of this algorithm is the fact that a placed particle always remains at its initial position. For high particle

densities, it is very likely that previously placed particles block the next ones. The remaining gaps cannot be filled resulting in a

loosely packed state (see Fig. 1a).

In 1959, Alder and Wainwright introduced the idea of event-driven molecular dynamics (EDMD)[13] for efficient simulations

of molecule interactions in dilute systems. All particles in the system are constantly moving via free-flight dynamics and collisions

between them or the walls are fully elastic. The extension of this algorithm to growing particles by Lubachevsky and Stillinger in

1990 allowed to reach a random close packing of discs in 2D [14]. The advantage of this approach is shown in Fig. 1b. Several

improvements of the algorithms and growing PC performance allowed the simulation of larger systems in higher spacial dimensions.

Kansal et al. used this algorithm to simulated maximally random jammed (MRJ) packings of equal spheres [15]. With varying

growth rates, they also investigated bidisperse packings [16]. They used a RSA algorithm for a initial sphere distribution at φ = 35%

to speed up the simulation. MRJ packings of hyperspheres in R
4 . . .R7 were created by Skoge et al. [1]. Besides for the packing

problem, the EDMD algorithm is used in various applications, i.e. shock dynamics [17], homopolymers [18] and hard sphere glasses

[19].
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There are other approaches for the concrete geometry creation that are mentioned here, but not further investigated. Sonon

et al. increased the efficiency of the RSA for two dimensional specimens [20]. Instead of choosing the new particle positions

randomly, a level set function is used that indicates valid, non-overlapping positions. A geometric method is used by Jerier et al. [21].

Particles are placed on the nodes and edges of a previously generated mesh. Geometrically complex structures can be filled with this

technique. However, the particle size distribution is restricted to the underlying mesh. A popular approach using moving particles is

the discrete/distinct element method (DEM). It was introduced by Cundall and Strack and is based on time driven MD [22]. During

a fixed time step, overlapping of particles is allowed and results in a separation force that is considered in the next time step. An

application to concrete mesostructure can be found in [23].

In this paper, the RSA and the EDMD algorithm for the packing of polydisperse spherical particles is compared. The procedure

for the conversion of a mass distribution from real mix designs for concrete into a diameter distribution is presented in Sections 2

and 3. Afterwards, implementation details and a complexity analysis of the RSA and EDMD algorithm are presented in Sections 4

and 5. In a final section, numerical examples are discussed. The EDMD implementation is validated in a monodisperse jammed

packing setup. Then, polydisperse size distributions are investigated. The maximal particle volume fraction for both algorithms is

determined and the computational efficiency is discussed. The paper concludes with a general comparison of different sampling

procedures to build mesoscale models for concrete.

2. Particle size distribution

The aim of the following procedure is to create a random particle size distribution that matches a given particle mass distribution

[7]. This method can easily be applied to given particle volume distributions as well.

The particle mass distribution is given by a grading curve that consists of different mineral size classes i. They contain particle

sizes in the diameter range of dmin,i ≤ d < dmax,i. Their summed mass mi is calculated with the function Fm(d) in Eq. (1)

describing the mass ratio of particles smaller than the diameter d and the massmtotal of all particles. Therefore, Fm(d) is a cumulative

distribution function (CDF) of the particle mass

mi = mtotal [Fm(dmax,i)− Fm(dmin,i)] . (1)

Inside each mineral class i, the mass CDF F̃m,i(d) is assumed to be linear on a logarithmic scale

F̃m,i(d) =



























0 if d < dmin,i,

ln d− ln dmin,i

ln dmax,i − ln dmin,i
if dmin,i ≤ d < dmax,i,

1 if d ≥ dmax,i.

(2)

This function is monotonically increasing, F̃m,i(dmin,i) = 0 and F̃m,i(dmax,i) = 1. Thus it fulfills the requirements of a CDF inside

each mineral size class.

Based on the mass CDF F̃m,i(d) in the mineral size class i, an equivalent CDF of the particle number FN,i(d) can be computed.

Particles are generated according to FN,i until the mass mi of the mineral size class i is reached.

The derivative of Eq. (2) in the interval [dmin,i, dmax,i] is the probability density function (PDF) of the particle mass fm,i(d)

fm,i(d) =
∂F̃m,i(d)

∂d
=

1

d (ln dmax,i − ln dmin,i)
. (3)
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Thus, the term mifm,i(d) is the expected mass of particles with the diameter d. Dividing this by the mass ms(d) of a single

particle

ms(d) = ̺
π

6
d3 (4)

leads to the expected number of particles n(d) in the differential interval [d, d+ dd]

n(d) =
mifm,i(d)

mS(d)
. (5)

In an arbitrary diameter interval [d1, d2] with dmin,i ≤ d1 < d2 ≤ dmax,i, the total number of particles N is obtained by integrating

n(d)

N(d1, d2) =

d2
∫

d1

n(d)dd = mi

d2
∫

d1

fm(d)

ms(d)
dd. (6)

The CDF of the particle number FN,i(d) describes the ratio of the number of particles smaller than d to the total number of

particles in the mineral size class. Thus, it is defined by

FN,i(d) =
N(dmin,i, d)

N(dmin,i, dmax,i)
. (7)

Substituting Eqs. (3) and (6) into Eq. (7) yields

FN,i(d) =
d3

max,id
3
min,i

d3
max,i − d3

min,i

(

1

d3
min,i

− 1

d3

)

. (8)

The diameter d is a random variable with its CDF FN,i(d). The probability integral transform states that U = FN,i(d) is uniformly

distributed random variable in the interval [0,1]. Consequently, the distribution d can be calculated by the inverse formulation of

Eq. (8) as

d = F−1
N,i(U) (9)

d =
dmax,idmin,i

3

√

d3
max,i (1− U) + d3

min,iU
. (10)

The total volume within a mineral size class i is obtained by generating uniformly distributed random numbers and calculating

the diameter according to Eq. (10) until the total volume of the mineral size class is reached. The corresponding mass distribution is

then in accordance with Eq. (2). The last particle of each mineral class exceeds the mass mi and the mass difference is subtracted

from the mass of the next mineral size class. This procedure is summarized in Algorithm 1.

Fuller’s curve defines a special CDF for the particle mass

P (d) =

(

d

dmax

)q

, (11)

where dmax is the largest particle diameter and 0 < q < 1 is a parameter that characterizes the shape of the particle distribution. For

lower values of q, the mass fraction of smaller particles increases and the distribution gets finer. Special size distributions for concrete

on the basis of Fuller’s curves with dmax = 16 mm are specified in DIN 1045-2: A16 (q = 0.7), B16 (q = 0.35) and C16 (q = 0.22).

These discontinuous grading curves are defined piecewise in terms of dmax,i, dmin,i and mi and provide the input for Algorithm 1.
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Algorithm 1: Take Phase

Input: grading curve defined by dmax,i, dmin,i, mi

Output: array of particle diameters d[ ]

foreach mineral size class i do

mtarget += mi - mdiff

while mtarget ≥mactual do

U = uniform random number

d[ ] =
dmax,idmin,i

3
√
d3

max,i
(1−U)+d3

min,i
U

mactual += ̺π6 d
3

end

mdiff = mactual - mtarget

end

In simulations that use Fuller’s curve P (d), the algorithm’s input is obtained by dividing the continuous curve into sufficiently small

classes according to Eq. (1) with Fm(d) = P (d).

However, for further analytic considerations, it is useful to perform the previously shown derivations with the continuous func-

tion P (d) in the whole diameter interval [dmin, dmax], instead of splitting it up into small classes. For example, the expected number

of particles in this interval is obtained by evaluating Eq. (6)

N(dmin, dmax) = mtotal

dmax
∫

dmin

1

ms(d)

∂P (d)

∂d
dd (12)

= φV
6q

πdqmax(q − 3)

(

dq−3
min − dq−3

max

)

. (13)

All the particle size distributions used in this paper are shown in Fig. 2.

3. Manipulation of the mass CDF

The simulation of the total particle mass mtotal is impossible, since the number of particles tends to infinity for dmin → 0.

Consequently, the particle mass CDF must be cut off at dmin > 0 and the mass mcutoff of all particles smaller than dmin is neglected.
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Fig. 2: The simulated particle size distributions (dashed black lines) obtained by Algorithm 1 are in agreement with the red target curves. A16 and B16 are specified

in DIN 1045-2, the markers show the limits of the mineral size classes. P (d) is Fuller’s curve (Eq. (11)) with q = 0.5, dmax = 16 mm.
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Fig. 3: The piecewise defined grading curves A16 and B16 are approximated with Fuller’s curves with q = 0.7 and q = 0.35. The effective particle volume fraction

φeff defined in Eq. (17) decreases with growing dmin since all the particles smaller than dmin are neglected. The number of particles N = N(dmin, dmax) is

determined analytically by Eq. (13) for a cubic specimen with an edge length a = 150 mm and the mixture particle volume fraction φM = 70%.

According to Eq. (1), this is obtained from

mcutoff = mtotalFm(dmin). (14)

Thus, a distinction between the particle volume fraction φM according to the mix design

φM =
mtotal

̺V
(15)

and the effective volume fraction φeff

φeff =
mtotal −mcutoff

̺V
(16)

= φM [1− Fm(dmin)] (17)

is needed, where ̺ is the particle density and V the specimen volume.

Depending on the area of application, either φM or φeff are of interest. For the simulation of concrete on the mesoscale, the total

volume fraction φM of the mixture is important, since this value is the prescribed parameter in the mix design. However, packing

algorithms discussed in literature usually use the effective volume fraction φeff. In the following sections, it is important to carefully

distinguish between these values.

In concrete geometry simulations, a common choice for the cutoff diameter is dmin = 2 mm [7]. All particles smaller than

2 mm are sand grains that are assumed to be represented by the homogenized mortar matrix. According to Eq. (17), their mass is

subtracted from the total mass and the effective volume fraction φeff reduces. In the common case of φM = 70%, which represents

the aggregate volume fraction that is physically filled in the concrete mixer, and the grading curve B16, the volume fraction that is

actually resolved by the mesoscale geometry model is φeff = 40.6%. For a cubic specimen with an edge length of a = 150 mm,

the number of simulated particles reduces from infinity (dmin = 0) to N ≈ 40 000 (dmin = 2mm). For the grading curve A16, the

corresponding values are φeff = 53.3% and N ≈ 44 000. In this case, the geometry creation of A16 is more challenging than the one

for B16, since the relative particle volume is larger and more particles have to be simulated. A more general dependency of the cutoff

diameter dmin on φeff and N is shown in Fig. 3 for the corresponding Fuller’s curve approximations of A16 and B16.

Another problem is related to the meshing of the generated particle geometries and the subsequent simulation using finite ele-

ments. For numerical reasons, highly distorted elements should be avoided. Especially for dynamic simulations of concrete using
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explicit time integration schemes, like wave propagation or dynamic crack propagation, the critical time step is strongly influenced

by the smallest element length. For this purpose, a minimal distance ∆d between any two particles is enforced. Consequently, an

increase in ∆d allows a coarser spatial and temporal discretization of the governing equations. Physically, this minimum distance can

be interpreted as a thin mortar film around each particle [24]. Experiments show a coating of mortar around each particle. Schlagen

and van Mier suggests a minimal distance ∆d = 0.1(d1 + d2)/2 between the particles with diameters d1 and d2 [25]. Wang et al.

uses the minimal distance ∆d = γmin(d1, d2) and γ depends on the particle volume fraction [8]. In this study, ∆d = dmin/2 is

used, unless stated otherwise.

4. Random sequential addition

The RSA algorithm is commonly used for the geometry creation of the concrete mesostructure. Our implementation of the

algorithm is as follows. All particles are sorted according to their volume and the place process is started with the largest particle.

Uniform random numbers are generated for all coordinates. In the case of axis-aligned box-shaped specimens, boundary collisions

can be eliminated by the right choice of the random number interval. For other specimen shapes such as cylinders, a check for

boundary collisions is performed.

The check for collisions with already placed particles is done by a simple sphere separation check. If the particle overlaps with

previously placed particles, a new random position is chosen. After NF failed placement attempts of a single particle, the algorithm

aborts (stopping criterion).

The complexity of the collision checks of a single particle is O(N), since it must be checked against all N already placed

particles. With a cell method, these numerical costs can be reduced. The specimen is divided into N cell ≈ N cells and the collision

checks are only performed within a small number of cells. In the best case of monodisperse particles, each cell contains about one

particle and a constant complexity of O(1) can be reached.

The high polydispersity of concrete particles would cause performance problems, if the cell size is kept constant. A coarse cell

structure causes an increased number of particles per cell and lowers the efficiency. A fine cell structure can ensure one particle per

cell. However, the addition of a particle that is much bigger than a single cell requires a collision check in many cells.

In the current implementation, this problem is addressed by using a variable cell size. The place process starts with the largest

particles and a large cell size related to the particle diameter. Consequently, about one particle fits in a cell and a near optimal

performance is achieved. As the particles get smaller, the number of particles per cell increases and the method would become

inefficient. Thus, when the particle diameter reaches half of the starting particle diameter, all the cells are rebuild with a smaller cell

size. The previously placed particles are added to the new cells and the place process continues. Despite the overhead for adding

existing particles in the newly built cells, this technique adapts the cell size to the particle size and ensures only a small number of

particles per cell.

5. Event-driven molecular dynamics

Lubachevsky and Stillinger used a two dimensional EDMD algorithm with growing particles to simulate dense monodisperse

circle packings. Kansal et al. used a modified version with the following changes [16]. First, they transferred the problem to spheres

in the three dimensional space. Second, instead of starting with zero volume spheres, they used an RSA algorithm for an initial
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spacial distribution at φM ≈ 35%. Third, the growth rate for each sphere was set to be proportional to its initial diameter. With these

modifications, bidisperse and polydisperse sphere distributions were simulated in periodic specimens.

In our implementation, rigid walls are used as boundaries. A final size distribution is calculated for a given set of parameters

defined by the grading curve, the specimen size and the particle volume fraction φM . As stated above, the RSA excels at lower

particle volume fractions. Therefore, the final particle diameters are reduced, hence the volume fraction is reduced as well. The

modified particles are efficiently placed into the specimen using the RSA algorithm to provide an initial spacial particle distribution.

A random initial velocity and a growth rate is given to each particle and the system evolves in time. The growth rate of each

individual particle is set in a way that all particles reach their final diameter at the same time tend. Consequently, the resulting size

distribution is in accordance with the desired grading curve.

The details of the diameter reduction and the choice of the growth rate vary in the numerical experiments and are discussed in

Section 6. In the following, the implementation of our EDMD algorithm is shown in detail.

5.1. Collidable description

All the physical objects of the simulation are organized in collidables C. They are either static planar walls W or movable

spherical particles P . Cylindrical walls are also implemented. Their collision detection and collision physics are a combination of P

and W .

The description of the walls surface W is in point-normal form - w0 is one point of the wall and nW a normalized vector

perpendicular to the wall, pointing inwards. Every point w on the wall satisfies

(w−w0) · nW = 0. (18)

The time dependent particle position p(t) of a particle P depends on its current position p0 and its velocity v. The particle is

constantly growing, and its radius r(t) depends on an initial radius r0 and its growth rate γ

p(t) = p0 + v t (19)

r(t) = r0 + γ t. (20)

5.2. Collision detection

The time until impact for two collidables Ca and Cb is calculated by solving for the distance function D to vanish

tc ← D(tc, C
a, Cb) = 0. (21)

Particles are the only movable collidables. Thus, the first collidable Ca of every collision is a particle (Ca → P a). For the particle-

particle collisions (Cb → P b) the distance function D is

D(t, P a, P b) =
∣

∣p
a(t)− p

b(t)
∣

∣−
(

ra(t) + rb(t)
)

. (22)

It results in a quadratic equation for tc. The distance function D for the particle-wall collisions (Cb → W b) reduces to a linear

equation

D(t, P a,W b) =
(

p
a(t)−w

b
0

)

· nbW − ra(t). (23)
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5.3. Collision physics

The collision of two collidables causes their velocities to change. During wall collisions, the incoming velocity vector v is

reflected at the walls normal vector nW and results in the outgoing vector v
′

v
′ = v− 2 (v · nW ) nW . (24)

The three dimensional particle-particle collisions are reduced to one dimensional collisions of their normal velocities vn. Their

tangential velocities vt remain unchanged

vn = (n · v) with n =
p
a
0 − p

b
0

|pa0 − p
b
0|

(25)

vt = v− vnn. (26)

The post-collision normal velocities v′
n are obtained by a fully elastic collision depending on the particle masses m according to

Eq. (4)

v′a,b
n = 2

mavan +mbvbn
ma +mb

− va,bn . (27)

The new velocities v
′ are then given as

v
′ = vt + v′

nn. (28)

An alternative for calculating the post-collision normal velocities v∗
n is used by Kansal et al., where the sphere masses are assumed

to be equal and Eq. (27) reduces to

v∗a,b
n = vb,an . (29)

However, they suggest that this detail does not influence the generated packings [16].

5.4. Algorithm

The main loop of an EDMD program is shown in Algorithm 2. The previously defined operations for the collision detection and

the collision processing are nested in several loops. Additional operations are required for the handling of an event list and the system

update after each collision.

The triple 〈tc, Ca, Cb〉 is called event and describes a single collision. All collisions are handled in an event list that is ordered

by the collision time tc. The components of this list are addressed by 〈tc, Ca, Cb〉i. Even though at least one of the collidables Ca or

Cb is a particle P , the more general notation is used here.

If the simulation reaches the time t = tend, the desired particle size distribution will be reached. If the change of the simulation

time ∆t is smaller than a value of ε during 1000 events, the simulation will abort unsuccessfully.

The single steps of Algorithm 2 (basic implementation) including the optimization are implemented as follows:

Input: Before the main loop starts, an initial event list is built by cross checking every particle against every other particle. A binary

tree is used for the event list.

In the basic implementation, the number of events per particle depends on the number of particles N . Thus, the length of the

event list is in the order of O(N2). The use of the cell method (explained in Step 5) reduces the number of events per particle

to a constant value and the length of the event list to O(N).
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Algorithm 2: Basic implementation

Input: Event list as 〈tc, Ca, Cb〉i
while tc < tend do

Step 1:Find lowest time tc and the corresponding

event 〈tc, Cac , Cbc〉
Step 2:Update system to time tc

foreach Particle P do

p0 = p0 + v0tc

end

Step 3:Perform collision 〈tc, Cac , Cbc〉
Step 4:Delete invalid events of Cac and Cbc

foreach 〈t, Ca, Cb〉i do

if Cac or Cbc is in 〈t, Ca, Cb〉 then

delete 〈t, Ca, Cb〉
end

end

Step 5:Predict new collision times tc of Cac and Cbc

foreach collidable Ci do

solve distance equation:

tac ← D(tc, C
a
c , C

i) = 0

tbc ← D(tc, C
b
c , C

i) = 0

Step 6: Store the events 〈tac , Cac , Ci〉 (sorted)

Store the events 〈tbc, Cbc , Ci〉 (sorted)

end

end

Step 1 Find next event: Since the event list is sorted by time, the first element in this list is the next event.

Step 2 System update: The position of all spheres at the current simulation time must be known for the collision checks. In a

synchronized system, like in the basic implementation, all particle positions are updated after each collision. This causes an

additional loop over all particles with memory writes. In a delayed state simulation, the particles are usually out of sync [26].

They store the time of their last update and at each collision check their position is recalculated. The cost intensive memory

writes for every particle are omitted.

Step 3 Collision: The collision is performed according to the collision physics in section 5.3. In the delayed state simulation, the

two colliding particles must be synchronized beforehand.

Step 4 Event deletion: All stored events that contain the previously collided particles are now invalid and must be deleted. It is

required to search the entire event list for these events. Since the event list is sorted by time and not by particles, the tree

structure of the event list cannot be used.
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In our implementation, all particles list their events in a local event list (with constant length). These local events are then

deleted from the global event list. Now, the time-based tree structure of the global event list can be used, since the collision

time is known from the local event. Thus, the deletion takes O(logN) time per event.

Step 5 Event prediction: New collision times for the collided particles must be calculated. In the basic implementation, this requires

a collision check with all other particles and a complexity of O(N).

In the paper of Alder and Wainwright in which the EDMD was introduced, they also proposed the cell method for more

efficient collision checks [13]. The specimen is divided into much smaller disjunct cells that keep track of the particles inside.

If a sphere is in the transition from one cell to another, it is temporarily owned by two (or more) cells. Collision checks are

only performed inside a cell. Since the number of cells is chosen to be in the order of the particle number, the numerical costs

for collisions checks are constant (O(1)). The overhead caused by cell transfer events reduces as particles grow. In a densely

packed state, the marginal sphere movement causes almost no transfer events.

Step 6 Event storage: The insert operation has a O(logN) complexity in the tree-like event list. The overall complexity depends

on the number of new events (O(N logN) or O(logN) with the cell method).

The complexity of each step is summarized in Table 1. With all these optimization, the algorithm has a theoretical overall

complexity of O(logN). This is in agreement with numerical simulations. A system of N monodisperse particles with the same

growth rate developed for five million events to ensure a quite dense packing. Afterwards, the time for the next one million events

was measured, averaged and the results are shown in Fig. 4.

Inserting and deleting events consumes a lot of time, depending on the length of the event list. Thus, a time barrier is used to

keep the event list short. Events that occur after a certain time barrier are not inserted into the event list. When the simulation time

reaches the time barrier, the event list is cleared and rebuild. With the right choice of the time barrier, the overhead of rebuilding the

entire event list can be compensated and the overall performance increases significantly (by a constant factor). In our simulation, the

time barrier was chosen to be approximately 10 times the time required to rebuild the event list.

5.5. Further optimization

For experiments with a system size of about (≈ 104 particles), the performance of the presented algorithmO(logn) is satisfying.

More advanced optimization techniques to boost the algorithms performance for larger systems are

Table 1: Complexity of the process of a single event based on the number of particles N . The basic implementation of Algorithm 2 is compared to the optimized one

used in this paper.

complexity

Step Task basic optimized

1 Find next event O(1)

2 System update O(N) 0

3 Collision O(1)

4 Event deletion O(N3) O(logN)

5 Event prediction O(N) O(1)

6 Event storage O(N logN) O(logN)
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Fig. 4: A system of N monodisperse particles with the same growth rate develops for five million events to ensure a quite dense packing. The time t for the next one

million events is measured, averaged and shown in this diagram. Our algorithm shows O(logN) scaling for the process of a single event.

near neighbor list: The cell method is most efficient with exactly one sphere per cell. In the case of high polydispersity, this cannot

be ensured. Therefore, more efficient techniques, e.g. the near neighbor list [27], are available.

event list: The event list handling (Step 4+6) is the only task with non-constant complexity. With the use of a calendar queue for the

event handling, all operations on this queue require a constant time O(1) [28]. This allows for the implementation of EDMD

algorithms, e.g. DynamO[29], where the execution of a single event is independent of the system size.

6. Numerical experiments

In this section, a validation of the EDMD is shown using the example of monodisperse sphere jamming. Next, a comparison

between the RSA and EDMD algorithm is performed in two different numerical experiments. In the first one, the maximal particle

volume fraction φeff for a given Fuller’s curve is investigated. A real concrete specimen with grading curve A16 and a defined distance

∆d between the particles is studied in the second experiment. Afterwards, the maximum value of ∆d is investigated for A16 and

B16 in combination with realistic volume fractions.

All calculations are performed on a single Intel R© Xeon R© E5-2630L CPU at 2.00 GHz.

6.1. Monodisperse particle jamming

The densest packing of equal (monodisperse) spheres can be achieved in regular lattices. The hexagonal close-packed (hcp) and

the face-centered cubic (fcc) arrangements both reach φ ≈ 74%. A maximally random jammed (MRJ) packing describes the closest

packing of randomly arranged equal spheres. Unlike the long-range order of the lattice structures, the MRJ consists of short-range

ordered clusters with changing orientations. For a three dimensional cell with periodic boundaries, the value of φMRJ ≈ 64% has

been verified numerically [15, 1].

In our simulations, rigid boundaries for a realistic representation of the wall effect in real concrete specimen are used. As a

consequence, the particle density at the wall is φWall= 0, which reduces the maximum particle density. The influence of this effect

decreases with a higher number of particles.

In the validation experiment, the initial particle distribution for the EDMD is obtained using the RSA algorithm with φ = 30%.

The spheres grow with the same growth rate until the simulation aborts and a final particle volume fraction φeff is reached. The results

of these simulations for varying particle numbers N and a constant sized cubic specimen are shown in Fig. 5.
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Fig. 5: Jamming of N monodisperse particles. The simulations approach the MRJ limit with increasing number of particles.

A single particle can grow until its diameter reaches the edge length of the cubic specimen and the theoretical volume fraction

φ = 4/3π(0.5)3 = π/6 ≈ 52% is reached. For two particles, the densest arrangement is the placement in opposite corners of the

specimen. Since the other corners are empty, this causes a drop in the volume fraction. The same effect occurs for three or more

particles, but its influence reduces with higher number of particles. At N = 23, the particle arrange in a simple cubic lattice that has

the same φ as the single particle. This ordered state is lost for N = 33. In general, the particle volume fraction increases with the

number of particles and gets close to φMRJ. Additionally, these experiments show that the algorithm’s performance is good enough

to reach a very jammed state.

6.2. Polydisperse particle jamming

The aim of the following numerical experiment is to compare the maximally reachable particle volume fraction and the perfor-

mance of the RSA and the EDMD algorithm. The polydisperse particle distribution is defined by Fuller’s curve P (d) with q = 0.5

and dmax = 16 mm. A minimal distance of dmin = 2 mm is chosen to ensure a reasonable number of particles for the simulation.

Since the maximal particle density is investigated, the effective volume fraction φeff is considered.

With increasing particle volume fraction φeff, both algorithms are more likely to fail. This can be expressed as a success rate

ψ(φeff). A successful attempt is defined by not reaching a stopping criterion. Beginning at φeff = 55%, the particle volume fraction

is increased in steps of ∆φeff = 0.5%. 50 random particle size distributions are calculated for each φeff and are used for both the RSA

and the EDMD algorithm. The total computation time of the 50 simulations is divided by the number of successful algorithm runs to

get the average time for a successful attempt tψ .

The RSA algorithm is applied straightforward with the stopping criteria, NF = 105 or NF = 106 (see Section 4). In the EDMD

algorithm, the final particle diameters d from the particle size distribution are scaled down by a factor of δ = 0.90 to the initial

diameters d0 = δ d. The scaled particles are now placed into the specimen using the RSA method. A relative growth rate γr = γ d0

with γ = 0.1 s−1 is applied to each particle. If the simulation reaches the time tend, the grown diameters will match the desired

particle distribution and the run is successful

tend =
1− δ
δγ

. (30)

If the change in the simulation time ∆t is below 10−6 during 1000 events or the computation wall time reaches 20 minutes, the

algorithm will fail.
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Fig. 6: The particle with the biggest diameter dmax is compared to the two specimen sizes used. The small box has an edge length a = 2 dmax, for the large box

a = 5 dmax.

All the simulations are carried out for two different cubic specimens. The edge lengths a are chosen to be multiples of the largest

diameter dmax. The two specimens with a = 2dmax = 32 mm and a = 5dmax = 80 mm are shown in Fig. 6. The initial velocities

for the EDMD simulations were uniformly distributed between −0.5 . . . 0.5 mm/s in each coordinate.

The results of the simulations are shown in Fig. 7. The success rate is close to ψ = 1 for low particle volume fractions. At a

certain volume fraction, the success rates drop to ψ = 0 and the average time for a successful attempt tψ increases. For both specimen

sizes the EDMD method reaches the highest particle volume fraction and the RSA method with NF = 105 the lowest one. After a

break-even point (φeff, tψ) & (60%, 0.2 s) in Fig. 7a and (φeff, tψ) & (62.5%, 4 s) in Fig. 7b, the EDMD algorithms performs faster

than the RSA algorithm.

For the larger specimen, the maximal volume fraction φeff,EDMD = 70% is 5.3% higher than φeff,RSA = 66.5%.

The overall reachable particle volume fraction for a specimen size of 32 mm illustrated in Fig. 7a is below the one for a specimen

size of 80 mm shown in Fig. 7b for both algorithms. This is due to the wall effect. The ratio between the specimen volume and the

wall area is proportional to the edge length a. Therefore, the influence of the wall effect decreases with larger specimens.

Even at low values of φ, the EDMD algorithm fails at some runs. The failure is caused by the stopping criterion ∆t < ε in an
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(b) Specimen size a = 80 mm.

Fig. 7: Results of the polydisperse particle jamming experiment: The success rates ψ are shown in solid lines, the average time for a successful attempt tψ in dashed

lines. The indexes stand for the stop criteria NF = 105 and NF = 106.

early stage of the simulation. This is caused by a few particles that get stuck and keep colliding with each other, for example near

a corner. The larger specimen with a = 80 mm has about 16 times more particles, which increases the probability for these events.

However, they are efficiently identified with the stopping criterion and barely influence the average computation time.

The particle distribution for a = 80 mm and φeff = 70% is illustrated in Fig. 8. The RSA algorithm stopped after placing 3 166

of 9 367 particles, whereas the EDMD was successful.

6.3. Meshable concrete specimen

In this numerical experiment, the particle size distribution of a real concrete specimens is simulated. The grading curve A16

according to DIN 1045-2 is chosen. As Section 3 describes, only particles larger than dmin = 2 mm are considered and a distinction

between φM and φeff is important. Additionally, a minimal distance of ∆d = dmin/2 = 1 mm between the particles is enforced by

increasing their diameter by ∆d during the particle placement.

The RSA algorithm is performed with the modified diameters d+ ∆d. For the initial sphere distribution of the EDMD algorithm,

the RSA algorithm with ∆d = 0 is used. The absolute growth rate γa = 0.1 mm/s is applied to each particle and the EDMD

simulations runs until tend. Since the growth rate γ applies to the particle radius and not its diameter, the factor 2 appears.

tend =
∆d

2γa
(31)

A cubic specimen with edge length a = 5 dmax is used. Similar to the previous section, the volume fraction is increased in steps

of ∆φM = 0.5%, beginning at φM = 40%. In each step, 50 size distributions are simulated and the success rate ψ and the time tψ is

calculated.
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(a) RSA - unsuccessful attempt. The algorithm

failed after placing the 3 166 largest of 9 367 to-

tal particles

(b) EDMD - successful attempt. The 3 166 biggest

particles are colored white, the others black.
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cylindrical specimen with diameter a

and height a.

Fig. 8: Result of the simulation with a = 5 dmax and an effective volume fraction of φeff = 70%.

The results shown in Fig. 9 are qualitatively similar to Fig. 7. The smaller reachable particle volume is due to the minimum

distance ∆d between any two particles. The EDMD algorithm is able to create concrete structures with 11% more particle volume

(φM,EDMD = 53.5%, φM,RSA = 48%). Since the smallest 21% of the particles mass are not explicitly modeled (d < dmin), the

corresponding effective volume fractions are φeff,EDMD = 42% and φeff,RSA = 38%.

At φM = 53.5%, 90% of the EDMD runs were successful, the simulations had about 5 000 particles and took 135 s on average.

About 4 million events occurred: 88% particle collisions, 10.5% wall collisions and 1.5% cell transfers (caused by the cell method).

The additional volume due to ∆d, i.e. the layer coating each particle with the thickness ∆d/2, has a volume fraction of φ∆d = 25%.

With the effective volume fraction of the simulation, this adds up to a total volume fraction of 67%.
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Fig. 9: Results of the meshable concrete specimen experiment with A16, a = 80 mm and a minimal distance ∆d = dmin/2 = 1 mm between the particles. The

solid lines represent the success rates ψ, the dashed lines the time tψ . The indices stand for the stop criteria NF = 106 and NF = 108.
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by numbers [mm] in the graph).

6.4. Maximizing the particle distance

In the previous experiment and for the purpose of comparing the RSA and the EDMD algorithm, a fixed ∆d is prescribed and

φM is varied. In a more practical approach, the highest ∆d for a given configuration is of interest. It can be connected directly

to a minimal element length in finite element simulations and, thus, gives an approximation for the expected number of degrees of

freedom.

Here, only the EDMD algorithm is used. Similar to the previous experiment, an initial size distribution that already matches the

desired grading curve is obtained by the RSA algorithm. Now, an absolute growth rate γa is given to each particle. As the simulation

time t passes, the distance ∆d grows. The simulation is carried out until the stopping criterion (∆t < 10−6s in 1000 events) is

reached.

A cubic specimen with an edge length a = 150 mm is used in all simulations. The grading curves A16 and B16, as well as the

mixture volume fraction φM = 60% and φM = 70% are investigated. Additionally, the cutoff diameter dmin is varied.

For a specific set of parameters, the computation time needed to reach a certain ∆d is shown in Fig. 10. When ∆d reaches its

maximum, the slope of the curves increases dramatically and the calculation stops.

Two phenomena can be analyzed in Fig. 10. First, with decreasing dmin, the computation time increases. This is due to the

growing number of simulated particles that causes more collisions and longer event lists. Second, B16 reaches a higher particle

distance ∆d compared to A16 - in this case about twice as much. Since B16 has a lower effective volume fraction than A16, it

provides more space for the additional volume caused by ∆d.
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Fig. 11: Maximum ∆d reachable at a certain cutoff diameter dmin for different grading curves and volume fractions. In the legend entries, the numbers indicate the

particle volume fraction φM = 60% and φM = 70%. The dotted red line represents the requirement 2∆d = dmin used in the previous sections.
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Fig. 12: The EDMD algorithm can be performed with bounding spheres of diameter dB for each non-spherical particle. Arbitrary shapes e.g. a) based on spherical

harmonics [33], b) deformed cuboids or c) ellipsoids can be used.

As shown in Fig. 11, the second effect occurs for different cutoff diameters dmin and different volume fractions. The B16 grading

curve meets the requirements of ∆d = dmin/2 from the previous section for both volume fractions φM = 60% and φM = 70%,

whereas the A16 grading curve does not. The only exception is dmin = 0.5 mm. Due to the grading curve design, the overall number

of particles is about 2.05 million for B16 and only 0.82 million for A16 (see Fig. 3). Each particle is coated with a layer of thickness

∆d/2. For a higher number of particles, this layer requires more volume. Consequently, the reachable ∆d decreases. Since the

number of particles grows with decreasing cutoff diameters, this dependence also explains the general decrease of ∆d.

7. Non-spherical particles

Both algorithms in this paper use spherical particles. However, extensions to ellipsoidal particles are possible. A fast ellipsoid

separation check by Wang et al. [30] allows an efficient handling of those particles in an RSA algorithm. An implementation is done

by Häfner et al. [31]. In an EDMD algorithm for ellipsoids, their movement (including rotations), their collision behavior and their

collision prediction must be considered. The latter one involves solving a quartic equation, in contrast to a quadratic one for spheres.

This is efficiently implemented by Donev et al. [27, 32].

The shape of real concrete aggregates, e.g. obtained by x-ray tomography, is more complex. Garboczi used spherical harmonics

to characterize arbitrarily shaped particles [33]. The functional description of the corresponding geometry is very complex and

separation checks or collision predictions are difficult to implement. With a slight modification of the present EDMD algorithm

these shapes can be represented as well. In the take phase, the non-spherical particles must be picked in accordance with the desired

grading curve. Each particle is embedded in a bounding sphere whose diameter dB matches the largest particle dimension. Their size

distribution is then used as the input for the place phase with the EDMD algorithm. In a post-processing step, illustrated in Fig. 12,

the non-spherical particles are placed in their bounding spheres.

However, with higher particle asphericity, the reachable volume fraction drops, since the bounding spheres are not completely

filled. In this case, the previously described modifications using ellipsoids are advantageous.

8. Conclusions

In this paper, the RSA and the EDMD algorithm are used to create realistic concrete mesoscale geometries based on a given

grading curve. Both methods are compared in terms of maximal reachable volume fraction and performance. For a fixed set of
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parameters and varying volume fractions, the success rate and the average time for a successful geometry creation is measured.

In the RSA implementation, a cell method with variable cell sizes is used. At low volume fractions, it performs much faster than

the EDMD algorithm. However, near its maximum volume fraction, its performance drops under the EDMD performance, until it is

not able to create a valid geometry at all.

The present EDMD algorithm is a modified Lubachevski-Stillinger packing algorithm. A loosely packed initial state is obtained

by the RSA method. Several optimization techniques, like the delayed state, the cell method, local event lists and time barriers, are

implemented. The process of a single event scales logarithmically with the number of particles and dense geometries with over two

million particles are created. Depending on the specific grading curve used, the maximum volume fraction of the algorithm exceeds

the RSA value by up to 11%.

In real concrete specimens, a the minimal distance ∆d between particles is observable. Maximizing this distance is advantageous

for future finite element simulations. For this purpose, the presented EDMD algorithm is ideal. For the initial state a valid particle

configuration matching the prescribed grading curve but without a minimal distance (∆d = 0) can be obtained either using RSA or

EDMD. Using a constant growth rate for ∆d, the particle distance is increased over time. A stopping criterion, e.g. the time increase

for 1000 events, indicates a configuration with maximum particle distance ∆d. The particles are shrunk back to their original size

and now have a distance ∆d between each other.

For the B16 grading curve and an aggregate volume fraction of 70%, the EDMD algorithm reaches a value of ∆d = dmin/2.

This value is excellent for meshing the resulting geometry.

An extension of this algorithm to ellipsoidal particles is planned for future work. With the more sophisticated optimization

techniques mentioned in this paper, the number of collision predictions can be further reduced and the complex ellipsoid movement

and collision prediction becomes manageable.
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