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Abstract

In the first part of this contribution, a brief theoretical revision of the mechanical and variational
foundations of a Failure-Oriented Multiscale Formulation (FOMF) devised for modeling failure in het-
erogeneous materials is described.

The proposed model considers two well separated physical length scales, namely: (i) the “macro”
scale where nucleation and evolution of a cohesive surface is considered as a medium to characterize the
degradation phenomenon occurring at the lower length scale, and (ii) the “micro” scale where some me-
chanical processes that lead to the material failure are taking place, such as strain localization, damage,
shear band formation, etc. These processes are modeled using the concept of Representative Volume Ele-
ment (RVE). On the macro scale, the traction separation response, characterizing the mechanical behavior
of the cohesive interface, is a result of the failure processes simulated in the micro scale. The traction
separation response is obtained by a particular homogenization technique applied on specific RVE sub-
domains. Standard, as well as, Non-Standard boundary conditions are consistently derived in order to
preserve “objectivity” of the homogenized response with respect to the micro-cell size.

In the second part of the paper, and as an original contribution, the detailed numerical implementation
of the two-scale model based on the Finite Element Method is presented. Special attention is devoted
to the topics which are distinctive of the FOMF, such as: (i) the finite element technologies adopted in
each scale along with their corresponding algorithmic expressions, (ii) the generalized treatment given
to the kinematical boundary conditions in the RVE and (iii) how these kinematical restrictions affect the

∗This is an uncomplete and uncorrected version of the paper that has been published in the Int. J. for Numerical Methods in Engrg.
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capturing of macroscopic material instability modes and the posterior evolution of failure at the RVE
level.

Finally, a set of numerical simulations is performed in order to show the potentialities of the proposed
methodology, as well as, to compare and validate the numerical solution furnished by the two-scale model
with respect to a mono-scale Direct Numerical Simulation (DNS) approach.

1 Introduction
Numerical simulation of heterogeneous materials using multiscale formulations is becoming a standard
tool of analysis. In a multiscale context, the mechanical response of a macro-structural component can
be retrieved through homogenization of complex micro-mechanical interactions taking place at the smaller
length scales. This idea is particularly attractive to predict/comprehend the phenomenology involved in
material failure scenarios, since the underlying heterogeneous micro-structural topology can play a decisive
role in the activation and propagation of failure mechanisms at the macro scale level.

Although there are different starting points for developing multiscale approaches [1–11], Two-scale
formulations (“macro-micro”) based on the concepts of Representative Volume Element (RVE) and compu-
tational homogenization, sometimes referred to as FE2 models [12, 13], have gained increasing popularity
due to its intrinsic ability for modeling many classes of heterogeneous micro-structures: periodic, as well
as, any statistical distribution of heterogeneities. Henceforth, we focus our developments on such “Two-
scale RVE-based” theoretical framework. In this sense, the RVE concept becomes a fundamental ingredient
of the formulation.

Following a common trend in the literature, we introduce a rather standard definition of RVE as the
minimal micro-structural sample size from which the macroscopic homogenized response remains almost
invariable1, with respect to larger sample sizes. For micro-structures displaying a stable constitutive be-
havior, the existence of a physically admissible RVE-size is a well accepted notion. However, for hetero-
geneous micro-structures characterized by softening-based materials, recent contributions have proven that
after crossing a critical point (i.e. during the macroscopic post-critical regime), an admissible RVE-size
cannot be found in the context of conventional multiscale techniques [15–18]. New theories turn out to be
necessary for modeling material failure phenomena within a multiscale paradigm [19]. Roughly speaking,
there are two fundamental topics to be solved:

(I) how to introduce failure mechanisms in the macro scale model, such that they represent well the
phenomenology captured by the microscale model;

(II) how to characterize this complex phenomenology via homogenization of micro-mechanical effects,
keeping the theoretical foundations of well-posed multiscale formulations (RVE existence).

Point (I) could be tackled from different approaches. In the present contribution the cohesive interface
method is adopted. The use of cohesive cracks for analyzing macroscopic material failure problems have
been introduced in the pioneer works of Hillerborg [20], Barenblatt [21], Xu and Needleman [22]. Since
then, numerous authors have followed this technique. Nowadays, cohesive models are widely used for rep-
resenting quasi-brittle fracture, as well as ductile failure. An advantage of this methodology relies in the
dramatic improvement of the kinematical description due to the introduction of displacement discontinu-
ities, or strong discontinuities, according to the expected singular phenomenology provided by the physics
of fracture. Cohesive interfaces have been utilized with a wide range of finite element techniques. Only
to cite a few, we can mention the cohesive models defined between the finite element interfaces, such as
advocated by Ortiz and coworkers [23], or cohesive interfaces which intersect arbitrarily the finite element
mesh such as X-FEM or E-FEM techniques, see Oliver et al. [24] for a comparative analysis between the
last two techniques.

1Alternative definitions of the RVE concept can be found in the available literature, see [14] and references cited therein.
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On the other hand, a particularity of the cohesive interface method is related to the need of assuming a
macroscopic traction-separation relation. This behavior can be difficult to characterize via phenomenologi-
cal equations, specially for heterogeneous materials in general loading paths.

With reference to Point (II), and considering the cohesive models mentioned in the previous paragraphs,
a natural option for characterizing the macro-cohesive response comes from a multiscale analysis jointly
with computational homogenization. This methodological approach has been the subject of recent intensive
research in the scientific community. A number of novel contributions have been made in this direction, see
for example the approaches of Matous et al. [25], Verhoosel et al. [26], Nguyen et al. [27,28] Belytschko and
coworkers [29,30], Geers and coworkers [31], Unger [32] and Souza et al. [33]. However, the development
of a consistent method has remained full of major theoretical challenges.

Motivated by this open issue in material science, Sánchez and coworkers in [17, 18] have developed a
multiscale model, called Failure-Oriented Multiscale Formulation (FOMF), based on axiomatic and rig-
orous variational foundations. The FOMF model provides two types of constitutive mechanical responses
at the macroscale level in different situations: (i) during the stable period, it determines a stress-strain re-
lation derived from a classical homogenization procedure; and (ii) during the evolution of the cohesive
macrocrack, it furnishes an homogenized mechanical response, i.e. a traction-separation relation, which is
objective with respect to the size of the micro-cell adopted for the analysis.

In the present contribution, we advocate the use of the computational homogenization technique pro-
posed by Sánchez et al. [17,18] which characterizes the mechanical response of the macro cohesive model,
i.e. a traction-separation relation (T ;β), emerging from the microscale through a homogenization proce-
dure. By adopting this approach, it is possible to tackle micro or mesoscopic failure mechanisms, developed
at smaller length scale, as being the precursors of material failure at the macro scale. In particular, this work
describes the most salient numerical and algorithmic issues that have been developed to implement the
FOMF in the context of the finite element method. We address several issues of the micro-cell model im-
plementation which are specific for multiscale analysis involving heterogeneous material failure problems.
These specific issues are related to the use of a variational incremental framework including the possible
change of the micro-cell boundary conditions during the mechanical evolution process. This key feature is
exploited in strain localization problems.

Different boundary conditions on the RVE represent different multiscale sub-models. Then, with the
generalized approach presented in this work, it is possible to simulate, in a flexible way, all these RVE
sub-models, as also a mixture of them or hybrid sub-models.

The paper is outlined as follows. Section 2 summarizes the FOMF approach by Sánchez et al. [17, 18].
Details about the numerical aspects and the proposed algorithms are shown in Sections 3, 4 and Appendix I,
paying particular attention to the non-standard aspects that are out of the scope of the traditional multi scale
methods. Section 3 describes the finite element models used for simulating the macro and micro scales.
Section 4 presents the specific issues of the RVE model which have to be taken into account to get the
complete degradation of the homogenized material. In Section 5 we present several numerical simulations.
Finally, Section 6 is devoted to the conclusions.

2 A two-scale material failure model
The microscale analysis is performed by using a RVE to take into account the phenomenology induced
by the degradation and strain localization phenomenon at the microscale. The crucial aspect is to get a
(T ;β) relation at the coarse scale, that is independent of the cell size. An outline of this notion is sketched
in Figure 1, where it is depicted that both domains, Cell1 and Cell2, are valid cells to perform the stress
homogenization analysis.

While the material response remains macroscopically stable, the existence of a RVE is a well established
concept ( [34]). However, when the material becomes macroscopically unstable, its existence has recently
been subjected to discussion. As proposed in the multiscale formulation of Sánchez et al. [17, 18], the goal
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to find a RVE during the macroscopic unstable response can be achieved by modifying the information
transfer procedure across both scales, as is summarized in the following subsections.

Figure 1: RVE’s with different sizes that can be used to homogenize the cohesive traction vector defined on
the crack surface.

2.1 Model hypotheses.
The basic assumptions of the model are described in the following items, and sketched in Figure 2:

i) Quasi-static problems are considered. The pseudo-time variable t ∈ [0, tE ], where [0, tE ] stands for
the pseudo time interval of analysis, is used to account for the evolution of the non-linear material
response. Increments of variables between the pseudo-time steps (t−dt) and (t) are denoted (d(·) =
(·)t − (·)t−dt).

ii) The heterogeneous material response can be described by means of a model using two well-separated
length scales. The structural scale, or macroscale, and the length scale in the order of the micro-
constituent sizes, or microscale. Infinitesimal strain theory is assumed for both scales.

iii) In the macroscale, the configuration of the body is denoted as Ω which is subjected to tractions t∗,
in the boundary Γσ , and prescribed displacement u∗, in Γu. Material points in Ω are denoted as “x”
and the prefix “macro-(•)” is used to indicate the fields defined at the macroscale, depending on x.
Every point x ∈ Ω is linked to a microscale model through a heterogeneous RVE. The RVE domain
is denoted Ωµ and their points are denoted y. The prefix “micro-(•)” is alternatively used to denote
the fields defined at the microscale, depending on y.

iv) Initially, the macroscale is idealized as a statistically homogeneous continuum, with a heterogeneous
microscale. At an arbitrary point xR of this configuration, see Figure 2, the macro-displacement
u, macro-strain εR, and the macro-stress σ, characterize the mechanical state of the continuum
medium. An alternative macro-mechanical scenario arises when a given critical condition, deter-
mined by micro-failure mechanisms, is reached. The new scenario is characterized in the model by
introducing a macro-cohesive crack, as shown in the point xS of Figure 2, where the existence of
a cohesive force T being a function of the displacement jump β across the discontinuity surfaces is
assumed. This cohesive force is determined through a specific homogenization technique.

v) In the microscale, we use a standard stress-strain approach for modeling the material failure. Then ,
the softening response is regularized by means of a smeared crack approach.
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vi) In the variational formulation used in this work, it is defined an admissible kinematics which, after
introducing the Hill-Mandel hypothesis, determines completely the homogenization rule that has to
be used to compute the generalized stresses: σ in the points xR and T in xS .
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Figure 2: Basic ingredients of a two-scale model based on the RVE concept (macro-micro scale).

2.2 Macroscopic model with strong discontinuity kinematics.
According to the assumption (iii) in the previous Sub-Section, let us consider a body Ω in Rndim, with
ndim being the dimension of the Euclidean space (in this work ndim = 2), undergoing a loading process,
as shown in Figure 2.

During the loading process, we consider the situation when a macro crack S, with a normal vector
n, arises in Ω, as shown in Figure 3-a. The cohesive crack is mechanically characterized by the relative
displacement jump β known in the literature (see Miehe experienced by the surfaces of the crack, i.e. the
crack opening, and the cohesive tractions T acting in those points.

We follow the work of Simo et al. [35] to represent strong discontinuity kinematics for modeling the
jump β in the macroscale. Thus, we define an arbitrary sub-domain Ωϕ (Ωϕ ⊂ Ω) including the interface
discontinuity S (S ⊂ Ωϕ) with smooth boundary: Γϕ (Γϕ = ΓϕI ∪Γ

ϕ
II ∪S+∪S−) as shown in Figure 3-b.

Also, note that S divides Ω in two sub-domains: Ω+ and Ω− with the normal vector n pointing toward
Ω+.

In this case, the mechanical response ofΩ displaying a crack is described by the variational formulation
of the problem summarized in Box 1, which has been taken from Sánchez et al. [17, 18]. Equation (1)
describes the macro displacement field u exhibiting discontinuities, u denotes a smooth field and MS(x)
is the so-called Unit Jump function defined with the Heaviside step function, HS(x) : Ω → R, shifted to
the discontinuity surface S: HS(x) = 0 ∀x ∈ Ω− and HS(x) = 1 ∀x ∈ Ω+. The term ϕ(x) : Ω → R is
a sufficiently smooth, but otherwise arbitrary function, such that: ϕ(x) = 0 ∀x ∈ Ω−\Ωϕ− and ϕ(x) = 1
∀x ∈ Ω+\Ωϕ+. The displacement jump across S is denoted: β(x, t).

The regular macro-strain εR is defined in points excluding S, and is written in equation (2).
Hence, from (1) and (2), observe that the macro-displacement and macro-strain fields are completely

described through the variables: (u,β). The kinematically admissible macro-displacement set U is defined
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Figure 3: Mechanical problem exhibiting a strong discontinuities across the material surface S.

in (3). The associated virtual space of admissible variations V is given by equations (4) and (5). Fields in
V are denoted with the symbol (̂·).

Equation (6) describes, in a standard variational form, the macroscale equilibrium. Body forces b (per
unit of volume) are considered to exist in Ω\S, as well as cohesive tractions T acting on the macro-crack
surfaces.

2.3 Scale transition models.
The item 4 in Box 1 summarizes the two-scale homogenization methodology defining the material response.
This scheme distinguishes between regular points xR in Ω/S and singular points xS ∈ S. In the first case,
the homogenization technique determines σ by means of the procedure described in Box 2. We call this
scheme, the Classical Multiscale Model (ClaMM). In fact, this procedure follows a standard model widely
known in the literature (see Miehe et al. [36], Michel et al. [37], de Souza et al. [38,39], Peric et al. [40], [41]
and references cited therein). In the second case, item 4.2, the homogenization technique determines the
tractions T as a function of the displacement jump β by means of the procedure described in Box 3. This is
called the Cohesive Multiscale Model (CohMM) and was recently proposed by Sánchez et al. [17,18]. The
two models, ClaMM and CohMM, are shown in terms of generalized strains, stress and traction increments.

The criterion that defines when the macroscopic material response becomes unstable, and hence, when
a macro-crack has to be introduced at a certain point x, is defined in the Item 5 of Box 1. This criterion is
based on the singularity of the acoustic tensorQ derived from the homogenized tangent constitutive tensor
C, where: dσ = C : dεR. The vectors n and γ are the eigenvectors of Q when it is singular. The vector
n represents the normal vector to the macro crack S and γ represents the instantaneous opening direction
of the crack at tN (β̇|t=tN ).

2.3.1 Classical multiscale model (ClaMM).

The stress determination in the points: x ∈ Ω/S is performed through a homogenization procedure using
a RVE and adopting the framework proposed in de Souza et al. [38, 39, 41]. Box 2 summarizes this model.

Let Ωµ denote the RVE domain and Γµ its boundary with normal νµ, as shown in Figure 2. The terms:
uµ, εµ and σµ denote the micro-displacement, micro-strain and micro-stress fields in Ωµ, respectively.
Their increments, at the pseudo-time t, are denoted with d(•).
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1-Kinematics:

u = u+ MS β ; MS(x) := HS(x)− ϕ(x) ; ∀x ∈ Ω (1)

ε = εR = ∇sxu+ MS ∇sxβ −∇xϕ⊗s β ; ∀x ∈ Ω/S (2)

(u,β) ∈ U ; U ≡
{
(u,β) | u ∈H1(Ω) , β ∈H1(Ω) and u|Γu = u∗

}
(3)

2-Virtual kinematically admissible actions (velocities):

û = û+ MS β̂ (4)

(û, β̂) ∈ V ; V ≡
{
(û, β̂) | û ∈H1(Ω) , β̂ ∈H1(Ω) and û|Γu = 0

}
(5)

3-Variational equilibrium problem:

Given b and t∗; find (u,β) ∈ U such that:∫
Ω\S

σ · ∇sx(û+ MS β̂) dΩ +

∫
S
T · β̂ dS −

−
∫
Ω\S

b · (û+ MS β̂) dΩ −
∫
Γσ

t∗ · û dΓ = 0 ; ∀ (û, β̂) ∈ V (6)

4-Required Constitutive responses via corresponding Multi-Scale Formulations:

4.1 ∀xR ∈ Ω/S and ∀ t ∈ [0, tE ] : Given εRt−dt and dεR, find dσ,

via the ClaMM formulation (refer to Box 2).

Update: σ = σt−dt + dσ

4.2 ∀xS ∈ S and ∀ t ∈ [tN , tE ] : Given {εR,β}t−dt and {dεR, dβ}, find dT ,

via the CohMM formulation (refer to Box 3).

Update: T = Tt−dt + dT

5-Cohesive crack nucleation criterion: (loss of material stability)

Find SN = {tN ,n,γ}, verifying the singularity of the Acoustic Tensor Q(εt,n):

det
(
Q(εt,n)

)
= 0 ; ∀x ∈ Ω/S and ∀n ∈ Rndim

where Q(εt,n)γ = [(C(εt)n)γ]n , ∀γ ∈ Rndim

and C(εt) is the Homogenized Tangent Constitutive Tensor, obtained via the ClaMM formulation (refer to Box 2)

Box 1: Macro-mechanical problem with strong discontinuities. Basic concepts and ingredients.
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As usual in this kind of formulation, the incremental micro-strain field dεµ is given by (see equation
(13) in Box 2):

dεµ = dεR +∇sydũµ (7)

where the micro strain fluctuation increments is: dε̃µ = ∇sydũµ and dũµ is the micro displacement fluc-
tuation increment field. It is interesting to mention here that in [17, 18] the authors present the Classical
Multiscale Model introducing the concept of the “Insertion Operator”. The generalization of this operator
plays a fundamental role in the extension of this formulation for Failure-Oriented Multiscale Modeling.
See [17, 18] for more details about this very important theoretical aspect.

Equation (14) expresses that the volumetric average (in Ωµ) of the micro-strain increment is equal to
the macro-strain increment, or similarly, that the volumetric average of dε̃µ is zero, which is equivalent to
constrain dũµ, on the boundary Γµ (with normal vector νµ), as follows:∫

Γµ

dũµ ⊗s νµ dΓµ = 0 (8)

Prescription (8) characterize what is known as the Minimally Constrained Vector Space of kinematically
admissible incremental displacement fluctuations at the RVE-level, Ũ µ (see equation (15) in Box 2). The
corresponding admissible variations of micro-displacement fluctuations vector space is denoted V µ (see
equation (16) in Box 2).

It is noted that very well known (and used) multiscale models can be viewed as sub-models of the Mini-
mum Kinematical Constraint Multiscale Model. They are considered sub-models because the kinematically
admissible displacement fluctuation space, in each case, results a subspace of the Minimally Constrained
vector space Ũ µ, i.e. they are particular cases of this general multiscale model. The considered kinemati-
cally admissible spaces of each sub-model are (omitting regularity requirements):

a) Taylor sub-model:

Ũ
Tay

µ = V Tay
µ =

{
ηµ | ηµ(y) = 0 ∀ y ∈ Ωµ

}
(9)

b) Linear boundary displacement sub-model;

Ũ
Lin

µ = V Lin
µ =

{
ηµ | ηµ(y) = 0 ∀ y ∈ Γµ

}
(10)

c) Periodic boundary fluctuation sub-model (the notation follows that of Miehe et al., [42]). Let us
consider the RVE boundary Γµ that is partitioned into Γ+

µ and Γ−µ (Γµ = Γ+
µ ∪ Γ−µ ) with unit

normals vectors: ν+
µ and ν−µ , respectively. Then, for every point y+

i ∈ Γ+
µ there is the corresponding

pair y−i ∈ Γ−µ , with the normal vectors: νµ(y+
i ) = −νµ(y−i ), which is associated to a given

periodicity direction. Therefore, the periodic boundary condition satisfies: dũµ(y+
i ) = dũµ(y−i )

and the corresponding admissible displacement spaces are:

Ũ
Per

µ = V Per
µ =

{
ηµ | ηµ(y+) = ηµ(y−) ∀ pair{y−,y+}

}
(11)

d) Minimum kinematical constraint model, as defined above, results when the expression (8) defines the
kinematically and variationally admissible micro-displacement fluctuation spaces, as follows:

Ũ
Min

µ = V Min
µ =

{
ηµ |

∫
Γµ

ηµ ⊗s νµ dΓµ = 0

}
(12)
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Given εRt−dt and dεR, find dσ and C:

1-Kinematics:

dεµ = dεR +∇sydũµ ; ∀y ∈ Ωµ (13)

1.a-Kinematical Admissibility and Strain Homogenization Procedure:

dεR =
1

|Ωµ|

∫
Ωµ

dεµ dΩµ (14)

dũµ ∈ Ũ µ ; Ũ µ ≡
{
dũµ | dũµ ∈H1(Ωµ) and

∫
Γµ

dũµ ⊗s νµ dΓµ = 0

}
(15)

1.b-Virtual kinematically admissible actions (velocities):

ûµ ∈ V µ ; V µ ≡
{
ûµ | ûµ ∈H1(Ωµ) and

∫
Γµ

ûµ ⊗s νµ dΓµ = 0

}
(16)

ε̂µ = ε̂R +∇syûµ ; ∀ ε̂R and ∀ ûµ ∈ V µ (17)

2-Hill-Mandel Variational Principle of Macro-Homogenity:

dσ · ε̂R =
1

|Ωµ|

∫
Ωµ

dσµ · ε̂µ dΩµ ; ∀ ε̂R and ∀ ε̂µ kinematically admissible (18)

2.a First consequence of the Hill-Mandel Variational Principle: Stress Homogenization

dσ =
1

|Ωµ|

∫
Ωµ

dσµ dΩµ (19)

2.b Second consequence of the Hill-Mandel Variational Principle: Equilibrium problem at the micro-scale
Given εR t−dt and dεR ; find dσµ, such that:∫
Ωµ

dσµ · ∇syûµ dΩµ = 0 ; ∀ ûµ ∈ V µ (20)

3-Homogenized Tangent Constitutive Tensor:

C = CT + C̃ (21)

Taylor contribution

CT =
1

|Ωµ|

∫
Ωµ

Cµ dΩµ (22)

Fluctuation contribution
For k, l = 1, 2, 3; find ∆ũkl ∈ Vµ such that:∫
Ωµ

Cµ∇sy∆ũkl · ∇syûµ dΩµ = −
[ ∫

Ωµ

Cµ (ek ⊗s el) · ∇syûµ dΩµ
]

; ∀ ûµ ∈ Vµ (23)

C̃ =

[
1

|Ωµ|

∫
Ωµ

(Cµ)ijpq (∇sy∆ũkl)pq dΩµ
]
ei ⊗ ej ⊗ ek ⊗ el

Box 2: Classical Multi-scale Model (ClaMM).
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The ClaMM satisfies the Hill-Mandel Variational Principle as a fundamental postulate (or hypothesis)
of the formulation. This principle expresses that the internal virtual power in the macroscale, is equal to
the volumetric average of the internal virtual power in the fine scale, and it is expressed in equation (18).
From it, and after selecting specific virtual strains, two variational equations can be derived. The first
one, equation (19), defines the stress homogenization or stress transfer operator from the microscale to the
macroscale. The second equation, given by expression (20), establishes the self-equilibrium of the micro-
stress field. The stress σµ is connected with εµ through the microscopic constitutive model σµ(εµ) and the
constitutive tangent tensor Cµ is such that: dσµ = Cµdεµ.

The item 3 in Box 2 defines the homogeneized tangent constitutive tensor C obtained by deriving the
expression dσµ(ε) given in (19). This tensor results from the addition of two terms: i)CT is the volumetric
average of the constitutive tangent tensor at the microscale Cµ, and ii) the tensor C̃, given by expression
(23), that comes from the derivation of the displacement fluctuations. In (23), the vectors e denote the
canonical basis of the Euclidean space. C is used to obtain the acoustic tensor, written in the Item 5 of Box
1, which singularity defines the macro-failure criterion.

2.3.2 Cohesive multiscale model (CohMM).

The homogenization of the traction-separation relation in xS ∈ S , is performed through the Cohesive
Multiscale Model (CohMM) proposed in [17, 18] and summarized in the Box 3.

As shown in Box 1, see also Figure 2, the kinematics of the points xS , in S, is characterized by the
terms εR, β and the normal vector to the discontinuity surface: n. These kinematical variables are injected
into the RVE using a specific strategy, such that the micro-strain increments are expressed by means of the
equation (27) in Box 3. The first two terms in the right part of (27) represent the macro strain that is injected
into the RVE:

dε = dεR + φLµ(y)
dβ ⊗s nµ

`M
; φLµ(y) =

{
|Ωµ|
|ΩLµ |

= `M
`µ

∀y ∈ ΩLµ
0 otherwise

(24)

where εR is given by equation (2). While dεR is uniformly distributed in the RVE, the collocation function
φLµ(y) distributes the term: (dβ ⊗s nµ)/`M into the so-called RVE strain localization subdomain, ΩLµ ,
of the RVE, with ΩLµ ⊂ Ωµ. In [17, 18], ΩLµ is defined as the RVE region where the material remains
in a loading condition when the corresponding macroscopic point x first satisfies the instability criterion
defined in Box 1, item 5, and a procedure is furnished to determine ΩLµ . The vector nµ is such that
nµ(y) = nµ(y0) for all y ∈ ΩLmu where y0 is the orthogonal projection of y over S and S is the
characteristic surface associated to ΩLµ , such as shown in Figure 2. The parameter `M plays the role of a
fictitious localization band width at the macroscale. Note also that, after replacing the function φLµ(y), the
parameter `M is removed from the model and only remains the parameter `µ, which represents the width
of the strain localization zone, ΩLµ , in the RVE. The parameter `µ works as a characteristic length in the
microscale model regularizing the material response during the unstable regime. The parameter `µ plays an
important role in determining the macroscale fracture energy of the homogenized material model.

We remark that the term: (dβ ⊗s nµ)/`M in (24), which is distributed in ΩLµ , is different from that
proposed in [17,18]. Here, we use nµ instead of the normal vector n to the macro-crack. This proposal for
injecting dβ into the RVE is a key issue during the transition of models, from the ClaMM to the CohMM,
to keep the kinematical consistency when strain localization subdomains with very arbitrary complex shape
are modeled in the RVE.

Finally, the third term in the right part of (27) corresponds to the micro-strain fluctuation increments.
The assumption of kinematical admissibility of the micro strain established by our model also implies

that the integrals of the micro-strain fluctuation increment over Ωµ and ΩLµ are zero. These conditions are
implicitly expressed in equations (28) and (29) of Box 3, and they are equivalent to writing the following
two constraints on the incremental displacement fluctuation field:
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∫
Γµ

dũµ ⊗s νµ dΓµ = 0 ; (SBC) (25)

∫
ΓLµ

dũµ ⊗s νLµ dΓµ = 0 ; (NSBC) (26)

which characterize the space of admissible displacement fluctuation increments Ũ
L

µ in Ωµ, as shown in
expression (30) of Box 3. They also define the space V L

µ of kinematically admissible variations of macro-
displacement fluctuations ûµ given in expression (31). Expression (32) defines the micro-strain variations
ε̂µ that are kinematically admissible. In this expression, β̂ and ûµ are the admissible variations of displace-

ment jumps and fluctuations, respectively. Selection of different subspaces of Ũ
L

µ and V L
µ similar to those

given by expressions (9)–(11), furnishes different CohMM models.
The boundary condition (25) is called Standard Boundary Condition (SBC) because they also arises in

the classical multiscale model (ClaMM), while (26) is called Non-Standard Boundary Condition (NSBC)
and constitutes a new ingredient introduced by the present FOMF approach.

Here, the homogenization of the traction vector T ∈ S, is derived from the Hill-Mandel Variational
Principle given in equation (33). This principle expresses the balance between the internal virtual power
at the macroscale, given by the product of the traction times the virtual displacement jump and divided
by `M , and the internal virtual power averaged in the microscale. From this variational principle, two
consequences are derived: the first one is the equation (34), which defines the homogenization rule for T ;
the second one provides the equation (35) representing, in a variational sense, the self-equilibrium of the
micro-stress increments: dσµ.

3 Finite Element Models
Given the particular characteristics of the FOMF approach, two different numerical techniques based on
the Finite Element Method are adopted for simulating the macro and micro scales: i) an E-FEM technique
for the macroscale, which utilizes strong discontinuity kinematics, and ii) a smeared crack approach with
appropriate boundary conditions for the RVE simulation.

In the following, we describe some specific issues of both numerical models.

3.1 Implementation of an E-FEM technique for the macroscale.
A non-symmetric formulation with strong discontinuity kinematics, such as that proposed in [43] and de-
noted E-FEM technique, is here adopted. This formulation introduces additional displacement modes which
specifically capture the discontinuities, or displacement jumps, arising in equation (1) of Box 1. Without
loss of generality, we use the Constant Strain Triangle (CST) in plane states as the underlying finite element.

Let us consider a finite element mesh covering the body Ω having a displacement discontinuity surface
S. The surface divides the finite element mesh in two disjoint partsΩ+ andΩ−, as shown in the Figure 4-b.
The finite element interpolation of the displacement field, given in equation (1) of Box 1, can be written as:

u(x) =

nnode∑
i=1

Ni(x)ui +

nSelem∑
e=1

(HeS(x)−Ne
+(x))︸ ︷︷ ︸

Me
S

βe (36)

where nnode denotes the total number of nodes of the finite element mesh; Ni and ui are the standard shape
function and the displacement vector (smooth part) of the i − th node, respectively. nSelem denotes the
number of elements that are intersected by the discontinuity surface S;HeS is the Heaviside step function of
element e shifted to S (HeS(x) = 1 if x ∈ Ωe+, HeS(x) = 0 otherwise), Ne

+(x) denotes the shape function

11



Given ε
R t−dt, βt−dt, dε

R
, and dβ, find dT :

1-Kinematics:

dεµ = dεR + φLµ (y)
dβ ⊗s nµ

`M
+∇sydũµ ; ∀y ∈ Ωµ (27)

φLµ (y) =

{ |Ωµ|
|ΩLµ |

= `M
`µ

∀y ∈ ΩLµ
0 otherwise

2-Kinematical Admissibility:∫
Ωµ

(
dεR + φLµ

dβ ⊗s nµ
`M

)
dΩµ =

∫
Ωµ

dεµ dΩµ (28)∫
ΩLµ

(
dεR +

dβ ⊗s nµ
`µ

)
dΩLµ =

∫
ΩLµ

dεµ dΩ
L
µ (29)

dũµ ∈ Ũ
L
µ ; Ũ

L
µ ≡

{
dũµ | dũµ ∈H1(Ωµ) ,

∫
Γµ

dũµ ⊗s νµ dΓµ = 0 and
∫
ΓLµ

dũµ ⊗s νLµ dΓµ = 0

}
(30)

3-Virtual kinematically admissible actions (velocities):

ûµ ∈ V L
µ ; V L

µ ≡
{
ûµ | ûµ ∈H1(Ωµ) ,

∫
Γµ

ûµ ⊗s νµ dΓµ = 0 and
∫
ΓLµ

ûµ ⊗s νLµ dΓµ = 0

}
(31)

ε̂µ = φLµ (y)
β̂ ⊗s nµ
`M

+∇syûµ ; ∀ β̂ and ∀ ûµ ∈ V L
µ (32)

4-Hill-Mandel variational principle of Macro-Homogenity:

dT · β̂ =
`M

|Ωµ|

∫
Ωµ

dσµ · ε̂µ dΩµ ; ∀ β̂ and ∀ ε̂µ kinematically admissible (33)

a) First consequence of Hill-Mandel variational principle: Failure-Oriented Stress Homogenization rule

dT =
1

|ΩLµ |

∫
ΩLµ

dσµ nµ dΩµ (34)

b) Second consequence of Hill-Mandel variational principle: Micro-Equilibrium problem
Given the history of the generalized macro deformation, characterized by {εR ,β}t−dt, and kinematically

admissible increments {dεR , dβ}, find the incremental micro-displacement fluctuation field dũµ ∈ Ũ
L
µ such that:∫

Ωµ

dσµ · ∇syûµ dΩµ = 0 ; ∀ ûµ ∈ V L
µ (35)

Box 3: Cohesive Multiscale Model (CohMM).
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of the node located in the Ω+ part of the element e, and βe is a constant displacement jump vector of the
same element e. Being that the displacement jump is constant into the finite element,∇βe is trivially zero.

Considering that the element e is intersected by the discontinuity, the regular strain of this element εeR
is given by equation (2) of Box 1 and it is interpolated as follows:

εeR(x) = Be(x)ue −∇sxNe
+(x)βe (37)

whereBe(x) is the standard strain-displacement matrix. Using Voigt notation for tensors in R2, the matrix
Be can be written as:

Be =

 (Ne
1 ),x1 0 (Ne

2 ),x1 0 (Ne
3 ),x1 0

0 (Ne
1 ),x2

0 (Ne
2 ),x2

0 (Ne
3 ),x2

(Ne
1 ),x2

(Ne
1 ),x1

(Ne
2 ),x2

(Ne
2 ),x1

(Ne
3 ),x2

(Ne
3 ),x1

 (38)

the first subindex of the shape functions Ne expresses the element node number and the second subindex
is the derivative respect to the corresponding coordinate. Adopting the same notation, the vector ue is the
element regular displacement vector:

ue =
[

(ue1)x1
(ue1)x2

(ue2)x1
(ue2)x2

(ue3)x1
(ue3)x2

]T
and ∇sxNe

+, as well as βe are:

∇sxNe
+ =

 (Ne
+),x1

0
0 (Ne

+),x2

(Ne
+),x2

(Ne
+),x1

 ; βe =
[
βex1

βex2

]T
Introducing the interpolated displacements and strain fields, defined in (36) and (37), into the incremen-

tal equilibrium problem described in equation (6) of Box 1; and performing variations respect to u and β
(both of these vectors collect all the element vectors ue and βe respectively), we can derive the following
two incremental equilibrium equations:

nelem∧
e=1

∫
Ωe\Se

(Be)T dσedΩe −
nelem∧
e=1

(dF e)ext = 0 (39)

−
∫
Ωe\Se

[∇sx(Ne
+)]T dσe dΩe +

∫
Se
dT edSe = 0 (40)

where
∧nelem
e=1 denotes the assembling operator for the total number of finite elements: nelem. The term

(dF e)ext denotes the standard incremental external forces. The number of equations (40) is nSelem, one for
every element intersected by S.

An alternative non-symmetric formulation of this technique can be derived by replacing the incremental
equilibrium equation (40) with a point wise collocation equation, per element, as follows (see [44]):

−dσene + dT e = 0 (41)

where dσe is evaluated in a representative point of Ωe\Se, and ne is the unit vector normal to the cohesive
interface Se in the element, as shown in Figure 4-b.

By using triangular elements as mentioned above, the enrichment shape function MS , in (36), looks
like that depicted in Figure 4-a. The numerical integration of expression (39) and (41) is performed by
means of two quadrature points. Figure 4-b depicts the integration points named PGR and PGL (PGR
denotes Regular Gauss Point and PGL refers to Localized Gauss Point).

The integration point PGR (square-symbol in Figure 4-b) is related to the domain Ωe\Se, and thus,
it is used to evaluate the regular component of the strain εeR, equation (37), and the integrals in (39).

13



Alternatively, the point PGL (x-symbol in Figure 4-(b)) is related to the domain Se. Both points, PGR
and PGL, are used to evaluate the traction continuity condition (41) across the discontinuity surface Se, as
follows:

dσe︸︷︷︸
PGR

ne = dT e︸︷︷︸
PGL

(42)

Each Gauss point is linked to its corresponding RVE. Prior to the macroscopic bifurcation, both RVE’s
evolve identically, since a constant regular-strain triangle is adopted. Thus equation (42) is trivially fulfilled.
During the loading process and after crossing the bifurcation point, each RVE representing the PGR and
PGL points evolves following different branches, as it is explained next.

(a) (b)

1

SBC

ClaMM CohMM

SBC NSBC

Node +

Figure 4: Finite element technique with embedded strong discontinuities in the macroscale: (a) shape
function for the enhanced discontinuous mode; (b) a body discretized with a finite element mesh using the
E-FEM methodology.

The Classical Multiscale Model (ClaMM), defined in Sub-Section 2.3.1 and Box 2, is used for the stress
homogenization procedure in the point PGR, during the complete loading history. Thus, the corresponding
incremental strain, dεR, is homogeneously inserted into the RVE and the increment of the homogenized
stress, dσ, is obtained. After detecting the macro-bifurcation condition, an incremental elastic response is
enforced in every point of this RVE, constraining the regular (PGR) Gauss point to behave as a homoge-
nized elastic, but possibly degraded, model. Also, when the bifurcation condition is fulfilled, the Cohesive
Multiscale Model defined in Sub-Section 2.3.2 and Box 3 is used for homogenizing the traction increment
in the point PGL. The incremental generalized kinematics, characterized by dεR, dβ and ne, is inserted
into the RVE using the equation (27) of Box 3. Note that both, the Standard as well as the Non-Standard
Boundary Conditions (SBC and NSBC) are prescribed in this RVE. It is of crucial importance to prescribe
them in incremental (rate) form. The increment of the homogenized traction vector, dT , is then obtained
by using the generalized homogenization formula given by expression (34).

After assembling the expressions in (39) and considering (41), u and β can be found by solving the
non-linear system of equations:

R(u,β) =

[
Ru
Rβ

]
= 0 (43)

whereRu andRβ are the residue (left term) of equations (39) and (41), respectively.
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3.1.1 Determination of the bifurcation condition at the macroscale.

At the macroscale level and after convergence of the Newton-Raphson iterative procedure, the bifurcation
condition expressed in the item 5 of Box 1 is evaluated as follows. The homogenized constitutive tangent
tensor, C, is determined in every quadrature point, and thus we can compute Q. Then, using a swept
algorithm, we find the minimum value:

ω = min
θ=1:∆θ:π

det (Q(n(θ))) (44)

by typically predefining an angle increment: ∆θ. When the condition ω ≤ 0 is found for the first time and
for some θ, the flag indicating the bifurcation state of that quadrature point is set to “TRUE” (the nucleation
time tN is obtained). In general, problem (44) furnishes two solutions (θn, θγ) which define the normal
vector to the crack n, as well as γ.

3.2 Implementation of the FEM technique for the microscale.
A standard finite element method is proposed for evaluating the numerical solution of the micro-cell prob-
lem evolution. Let us consider a micro-cell finite element mesh where the usual interpolation of the dis-
placement fluctuation field ũ(y) is:

ũµ(y) =

nµnode∑
i=1

Niµ(y)qi (45)

where Niµ(y) is the standard shape function of the finite element basis corresponding to node i and qi is
the nodal value of the displacement fluctuation for the same node; nµnode is the total number of nodes in
the RVE finite element mesh. The vector collecting the displacement fluctuations of all nodes is denoted q
and its dimension is n = 2nµnode (without loss of generality, we are considering problems in R2 with two
d.o.f.’s per node). Then, n is the total number of d.o.f.’s of the discretized problem.

As it is shown in Sub-Section 2.3.1, and after being generalized to the CohMM approach, different
RVE sub-models are defined depending on the functional spaces Ũ µ and V µ from where the displacement
solution is drawn. In a similar way, the increment of the discrete micro-cell nodal displacement fluctuation
vector ∆q can be searched in different vectorial spaces. Let us denote Ũq the finite dimensional vectorial
space of admissible nodal displacements, where (∆q ∈ Ũq), and Vq denotes the admissible variations of
displacement fluctuation q̂ (q̂ = ∆q2 −∆q1 with ∆q2, ∆q1 ∈ Ũq). In correspondence with expressions
(9)–(11) defining different RVE sub-models, we identify the discrete spaces:

a) Taylor sub-model:

Ũ Tay
q = V Tay

q =

{
∆q | ∆q = 0

}
(46)

b) Linear boundary displacement sub-model;

Ũ Lin
q = V Lin

q =

{
∆q | ∆qi = 0 ; ∀ node i ∈ Γµ

}
(47)

c) Periodic sub-model: considering the RVE boundary Γµ partitioned in Γ+
µ and Γ−µ , such that, for every

nodal point y+
i ∈ Γ+

µ there is the corresponding point y−i ∈ Γ−µ , lying along the periodicity direc-
tion. With this partition of Γµ at hands, two normal vectors to the external boundary, in opposite sides,
are given by: νµ(y+

i ) = −νµ(y−i ). This model satisfies the constraint: ∆ũµ(y+
i ) = ∆ũµ(y−i ).

Then, the admissible displacement fluctuation spaces can be written as follows:
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Ũ Per
q = V Per

q =

{
∆q | ∆q+

i = ∆ũµ(y−i ) ; ∀ node i+ ∈ Γ+
µ

}
(48)

where the constraint: ∆q+
i = ∆ũµ(y−i ), is introduced for every node i+ in Γ+

µ . Note that, we do not
require, a-priori, the presence of a nodal point in the position y−i , where the displacement fluctuation
interpolation is constrained to have the same displacement as the node i+.

Next, the periodic sub-model is generalized in the sense that the periodicity direction can be arbitrarily
defined. In this case, we identify the associated pair of boundary points (y+

i ,y
−
i ), such that, they are

the intersection points between the parallel line to the periodicity direction and the boundary surface
Γµ.

d) Minimum kinematical constraint model :

Ũ Min
q = V Min

q =

{
∆q |

∫
Γ̆

∑
i

(Niµ(y)∆qi ⊗s νiµ)dΓ̆ = 0 ; ∀ node i ∈ Γ̆
}

(49)

the integration domain Γ̆ depends of the model adopted during the analysis. Thus, in the ClaMM
formulation, the constraint (8) (SBC), which prescribes the displacement fluctuation increments, in-
volves an integration surface Γ̆ coinciding with the RVE external boundary: Γ̆ ≡ Γµ. In the CohMM
formulation, the constraint (25) also involves an identical integration domain: Γ̆ ≡ Γµ. However, an
additional equation (49) (NSBC) shall be prescribed with the integration domain given by: Γ̆ ≡ ΓLµ ,
as shown in equation (26).

Hence, the change of model during the course of analysis, from the ClaMM to the CohMM, requires a
change of the RVE boundary conditions.

Even when the ClaMM can be defined using one of the standard spaces described in the items (a)-(d)
above, the CohMM requires a hybrid combination of them.

In the following Sub-Sections, we present a systematic algorithm to manage, in an unified and flexible
format, a wide range of constraints that can be imposed to the vector∆q. The numerical procedure is based
on an exact enforcement of these constraints, by performing a partition of the total d.o.f.’s of the vector ∆q,
and a subsequent static condensation of one of these partitions.

3.2.1 Numerical treatment given to the kinematical constraints.

The different kinds of micro-cell sub-models, and the respective kinematical constraints prescribing the
increments of the nodal displacement fluctuations, are characterized by four generic situations. They are
described in the following items.

Case i) Nodes with the increments of displacement fluctuations prescribed to zero.
Assuming that there are “nc” d.o.f.’s with a kinematical constraint of the type: ∆qj = 0, where the

sub-index j represents the j-th component of the vector ∆q, we collect all these constraints in the linear
equation system written in terms of the vector ∆q:

Ic∆q = 0; (50)

where Ic ∈ Rnc×n is a matrix with ones in the positions (k, j) (Ickj = 1) and zeros in the remaining
positions. The index k (k = 1, ..., nc) corresponds to the k equation, and this equation prescribes to zero
the j-th d.o.f. of the vector ∆q.

Using this notation, the Ũ Lin
q space, defined in equation (47), that represents the Linear boundary

displacement micro-cell sub-model, is rewritten as:

16



Ũq
Lin

=

{
∆q | Ic∆q = 0

}
(51)

where it is understood that there are as many equations as d.o.f.’s prescribed to zero in the boundary Γµ.

Case ii) Rigid link imposing identical displacement fluctuations between a node and a point (Figure 5): :
classical periodic boundary condition.

Let us consider a rigid connection linking the displacement fluctuation of a node k ∈ Γ+
µ , in the position

y+, and the displacement fluctuation of the point y−:

∆qk = ∆ũµ(y−) =

nµnode∑
i=1

Niµ(y−)∆qi (52)

the points (y+,y−) form a pair as explained in the item (c) above. Note that the right hand term in (52) is
the nodal value of the displacement fluctuation increment interpolated in the point y−.

In a Periodic sub-model, as shown in Figure 5, np vectorial equations like (52) have to be prescribed,
with np the number of nodes in Γ+

µ . Then, the total system of equations can be written as follows:

(Ip −Nµ)∆q = 0 (53)

where the matrix Ip ∈ R(2np×n) is a matrix with ones in the positions (k, l) (Ipkl = 1) and zeros in the
remaining positions. The index k corresponds to the k-th equation, and this equation imposes the link
restriction of the l-th d.o.f. in ∆q. The point y− ∈ Γ−µ , which displacement fluctuation is prescribed
through equation k-th, is associated with the shape functions Niµ(y−). These shape functions are used to
assemble the MatrixNµ ∈ R(2np×n) given in expression (53).

With this notation, the spaces Ũ Per
q can be rewritten as follows:

Ũq
Per

=

{
∆q | (Ip −Nµ)∆q = 0

}
(54)

G+

G+

W

Periodicity
direction

Periodicity
direction

G
-

Dq
k

G
-

-Du y( )m

m

m

m

Nodes in G

Points in G

+

-

d.o.f. with rigid
links along directions
y  and y  (periodic model)

m

m

m

y

y

+

-

prescription to zero
of two d.o.f.'s

y1

y2

1 2

Figure 5: Micro-cell Ωµ and finite element mesh with classical periodic (rigid links) boundary conditions.

Periodic kinematical constraints, imposed on the complete boundary Γµ = Γ−µ ∪ Γ+
µ , preclude rigid

body rotations but not rigid body translations. Thus, in order to define a mechanically well-posed discrete
variational problem, two additional d.o.f.’s should be prescribed using equation (50), as sketched in Figure
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5. Furthermore, when using the periodic condition (52) in the boundary, and particularly when y− does
not coincides with a finite element mesh nodal point, we have observed that a good practice is to introduce
one additional kinematical constraint similar to the one presented in the following item case iii in order to
improve the accuracy..

Case iii) Imposition of a null volumetric average of strain fluctuation increments in a region Ω̆ bounded by
the surface Γ̆ (Figure 6).

Equation (8) prescribes the minimum kinematical constraint inΩµ, meaning that the volumetric average
in Ωµ of the strain fluctuation increments are null. A similar kinematical constraint can be prescribed in
domains Ω̆ ⊆ Ωµ bounded by closed surfaces Γ̆ and with normal vectors ν̆. This kind of prescriptions on
Γ̆ , including the specific case when Γ̆ ≡ Γµ, can be rewritten as follows:

H∆q = 0; (55)

where the matrix H ∈ R3×n is the assembling of “nel” finite element matrices He (nel is the number of
finite elements in the mesh belonging to the domain Ω̆, bounded by Γ̆ , and having at least one side in Γ̆ ):

H =
nel∧
e=1

∫
Γ̆ e
HedΓ̆ e (56)

with Γ̆ e being the finite element side that belongs to the boundary Γ̆ . The matrixHe is given by:

He = [ He
1 He

2 ... He
p ] =

[ ν̆y1N1
e
µ 0 ... ν̆y1Np

e
µ 0

0 ν̆y2N1
e
µ ... 0 ν̆y2Np

e
µ

ν̆y2N1
e
µ ν̆y1N1

e
µ ... ν̆y2Np

e
µ ν̆y1Np

e
µ

]
(57)

that is formed by p (p is the number of finite element nodes) matrix blocks of dimension: R3×2, one of this
block for every finite element node. Implicit in equations (56) and (57) is the concept that the matrix block
He
l (R3×2) associated with the node l not staying on the boundary Γ̆ , is null.

From these expressions, the space Ũ Min
q can be defined by means of the following condition:

Ũ Min
q =

{
∆q | H∆q = 0

}
(58)

where the integration boundary, Γ̆ , is chosen according to the RVE sub-model.

Figure 6: Micro-cell Ωµ and finite element mesh with a null average value of the strain fluctuation incre-
ments in the region Ω̆ bounded by the curve Γ̆ .

The kinematical constraints given by equation (55), involving the complete external boundary Γµ, does
not preclude micro-cell rigid body motions. Thus, three additional d.o.f. constraints (50) must be added to
the sub-model in order to define a well-posed incremental variational problem, as it is sketched in Figure 6.
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Case iv) Hybrid constraints: minimum kinematical constraints with imposition of rigid links on boundary
nodes along arbitrary directions (Figure 7). The motivation of using this kind of boundary conditions on Γµ
is discussed in Section 4.

Let us define rigid connections, or links, prescribing identical displacement fluctuation increments be-
tween boundary nodes lying along an arbitrary direction, not necessarily parallel to the micro-cell sides. The
pair of points y+ (in Γ+

µ ) and y− (in Γ−µ ), which are constrained to have identical displacement fluctuation
increments, are the intersection points between the segment parallel to the given direction (called periodic-
ity direction) with the boundary Γµ of the RVE, as shown in Figure 7. The prescriptions are imposed on y+

and y− by means of equations similar to (52). This constraint is called the generalized periodic boundary
condition.

In this general case, even when identical displacements are imposed on boundary points, because the
normal vectors do not necessarily satisfy the identity: ν−µ = −ν+

µ , then, the constraint (8) is not automat-
ically guaranteed and it has to be explicitly imposed. Otherwise, the volumetric average strain fluctuation
increments shall not be necessarily zero.

Furthermore, any rigid body translation should be explicitly precluded by adding two d.o.f. constraints
of the type given by equation (50).

W
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+Dq
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m

m

m

m

G
-
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Points in G

+
-

d.o.f. with a rigid
link (periodic model)

m

m

y

y

+

-

y1

y2

Figure 7: Micro-cell Ωµ and finite element mesh. Hybrid boundary condition: periodicity along arbitrary
directions which satisfies a null strain fluctuation increments in the region bounded by the curve Γµ.

All these kinds of kinematical constraints are imposed through the following blocks of the linear system
of equations:

Ic∆q = 0; (59)
(Ip −Nµ)∆q = 0; (60)

H∆q = 0. (61)

Thus, there are nc equations of type (59), 2np equations of type (60) and three equations of type (61) for
the RVE boundary Γµ.

Additional details about the numerical implementation of the kinematical constraints described in the
above cases i) to iv) are given in Appendix I.
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4 Technique to perform the RVE failure analysis
As mentioned previously, the RVE Standard Boundary Conditions (SBC) define the ClaMM sub-model
adopted for the analysis during the stable response of the material. Minimum kinematical constraint or
periodic sub-models, such as sketched in Figures 8-a and 8-b, can typically be used in this stage of the
analysis.

After the bifurcation time (t ≥ tN ), the ClaMM model is changed by the CohMM model. To perform
this change, the localization domain ΩLµ , sketched in Figure 8-d, must be clearly identified. Then, the non-
standard boundary conditions (NSBC) are prescribed along the boundary ΓLµ and the strain rates: (dβ ⊗s
nµ)/`µ are injected into ΩLµ , according to equation (27).

A technique which allows to determine ΩLµ and introduces the NSBC, as well as allows to induce the
complete degradation of the homogenized material response, consists of two sequential steps which are
described as follows:

i) First step, immediately after tN is detected:

Regardless of the RVE sub-model defined in the stable regime, at t = tN we change the SBC to
generalized periodic boundary conditions on Γµ having the periodicity direction orthogonal to n, or
equivalently, parallel to the discontinuity surface introduced at the macroscopic scale. This technique
follows the ideas proposed in the work of Coenen et al. [31], where similar kinematical constraints are
called the percolation-path-aligned boundary conditions. The so-considered periodic boundary con-
ditions are sketched in Figure 8-c, and they are prescribed in the model by adding the corresponding
set of equations (53).

In addition to these periodic boundary conditions aligned with the macro-crack, we also enforce the
minimum kinematical constraints on Γµ by adding a complementary set of three equations of the type
(55). In Figure 8-c, we depict a possible selection of dependent d.o.f.’s associated to these equations.

The introduction of the periodic boundary conditions aligned with the macro-crack intensifies the
strain localization zone evolution. This behavior is induced by the microscopic failure processes after
bifurcation, as well as allows for the elastic unloading of the neighbor zones evidencing more clearly
the detection of ΩLµ . Thus, introducing the periodic boundary conditions aligned with the macro-
crack into the model, and after a short period of time, ΩLµ and its boundary ΓLµ can be identified
using the following criteria: y ∈ ΩLµ , iff , n · dε̃µ(y) · β̇ > 0, where dε̃µ(y) is the micro strain
fluctuation increments defined in equation (7).

ii) Second step, a short time after the periodic boundary conditions aligned with the macro-crack have
been prescribed and the domain ΩLµ has been determined, the NSBC are introduced in the model.
From the wide class of NSBC that can be imposed on ΓLµ , we adopt the criterion of defining a Taylor
sub-model or linear displacement boundary conditions. Both of them allow for managing the cases
where ΩLµ intersects internal voids, as shown in Figure 8-d.

5 Numerical Model Assessment
In this Section, three numerical examples are presented in order to assess the multiscale failure model
presented in the previous sections.

The first one, described in Sub-Section 5.1, is a detailed failure analysis of several micro-cell sub-models
constructed with different boundary conditions. The example is addressed to evaluate the capability that
these sub-models have to capture the failure mode and the associated homogenized tractions for one macro-
scopic problem having a heterogeneous microstructure. In addition, this example allows us to represent the
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Figure 8: Micro-cell sub-models for the analysis of multiscale fracture problems. Boundary conditions on
the displacement fluctuation field: the symbols agree with those defined in Figure 5. During the macro-
scopic stable regime, the standard boundary conditions (SBC) are prescribed. After bifurcation (t ≥ tN ),
generalized periodic conditions are conveniently imposed, aligned with the crack direction (c), and new
boundary conditions (NSBC) are introduced (d).

evolution of the postcritical loading process until reaching the complete degradation of the RVE, which is
represented by a null homogenized traction vector for a given displacement jump.

The second example, presented in Sub-Section 5.2, shows a two-scale analysis of a structural problem.
We solve the structure by using Direct Numerical Simulation (DNS) and the solutions are then compared
to the numerical results supplied by the FOMF approach.

In the last example presented in Sub-Section 5.3, we simulate the failure of a strip undergoing uniaxial
tensile. This numerical test shows the capability of the multiscale model to simulate failure mechanisms
governed by micro-cracks displaying zigzag, or arbitrary, paths.

5.1 Fracture process analysis of a heterogeneous material point.
5.1.1 Microstructure description.

The case of study corresponds to a material having a microstructure with a periodic distribution of mi-
crovoids, such as shown in Figure 9-a. The microvoid periodicity line, along which the distance between
microvoids is closer, forms an angle α = 30.[deg] with the horizontal direction. The remaining length
defining the microstructure is the minimum distance h between voids. Also, Figure 9-a shows a unit cell
with height 4h denoted Cell1x1.

The base material in the micro-structure is characterized with a damage model with an exponential
softening (for a detailed description of this material model see [45] and [46]). The model parameters are:
Young’s modulus: E = 30 [GPa], Poisson’s ratio: ν = 0.3, ultimate stress: ft = 2.5 [MPa] and fracture
energy: Gf = 10 N/m. The numerical simulations of the micro-cells are performed by using a smeared
crack approach. Then, the softening modulus of the continuum damage model is regularized with the
fracture energy and the finite element size according to the technique described in [45].

Notice that any point of the microstructure can undergo damage and strain localization. As well as,
there are not strain localization bands predefined in the microstructure.
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Figure 9: Fracture process analysis of a heterogeneous material point. a) Material microstructure and Cell
definitions, b) pseudo-time dependent curves defining the evolution of the macrostrains.

5.1.2 Loading condition of the micro-cells.

Initially, before detecting the macrosocopic bifurcation, the macroscopic point represented by the unit cell,
Cell1x1, is undergoing an uniaxial vertical stretching process being modeled with the ClaMM approach. In
this stage, the macroscopic strain is given by εR = [εRx1 , εRx2 , εRx1x2 ] = [0, f1(t), 0], where f1(t) is a
linear increasing function in time, as depicted in Figure 9-b.

Once the macroscopic bifurcation time is detected (t = tN ), the unit cell model is changed according
with the CohMM. We assume that the macroscopic strain, that is compatible with a strain localization mode,
is given by: ε = εR+εD, where εR(t) corresponds to the regular part of the strain and is defined identically
as in the previous paragraph, with the function f1(t) now decreasing to zero, while εD = (n ⊗s β)/`µ
typifies the term related to the displacement jump in the macroscopic band. In this example, we define
β(t) = f2(t)`µγ, with f2(t) being a monotonous increasing function of time plotted in Figure 9-b. The
vectors n and γ are the eigenvectors of the acoustic tensor which are determined at the bifurcation time.
The vector n represents the normal vector to the the discontinuity surface at the macroscale. And, as
can be observed in the following numerical results, it is almost identical to the unit vector nµ, that is
orthogonal to the strain localization band at the microscopic scale. Here, it is interesting to remark that
for the present example the Insertion Operator behind the expression given by (24) reduces to the Insertion
Operator proposed by the authors in ( [17, 18]).

The macroscopic strain increment ε, is injected into the micro-cell as dictated by the CohMM approach,
i.e., εR(t) is uniformly distributed in the unit cell, while εD is uniformly distributed in ΩLµ .

5.1.3 Analysis of the strain localization mode detected with different cell models.

Since the microstructure is periodic, the unit cell Cell1x1 with periodic boundary conditions satisfies the
criterion for constituting a RVE, at least for the macroscopic stable material regime. However, the Cell1x1

with minimum kinematical constraint, or with linear displacements on the boundary, does not satisfy that
criterion, i.e., they are not RVE.

First, we analyze the strain localization mode obtained with the ClaMM and Cell1x1 with periodic
boundary conditions. The strain localization mode is typified by the angles θn and θγ , the time of bifur-
cation tN and the homogenized stress levels at tN . The solution is taken as the exact one and is compared
with the same variables obtained using cells with increasing sizes and subjected to minimally constrained
or linear boundary displacements in order to estimate the required cell size providing similar solutions to
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Figure 10: Analysis of the strain localization mode. a) Evolution of detQ(n(θ), t) for the Cell1x1 with
periodic boundary conditions. b) homogenized macro stress vs. macro strain. Letters identify the time
when detQ has been evaluated.

the unit cell with periodic boundary conditions.
The loss of macroscopic material stability is tested during the simulation. Figure 10 shows the evolution

of detQ(n(θ), t)) vs. the angle θ formed by the vector n and the horizontal direction in different stages
of the analysis. The determinant is normalized with the square of an effective Young’s modulus: Ef =
(1 − fv)E, being fv the microvoid volume fraction and E is the Young’s modulus of the bulk material.
These results have been obtained with the Cell1x1. Also, in this Figure, we plot the evolution of the two
minimum values of det(Q). The bifurcation time corresponds to the instant when these curves intersect
the horizontal axis (Point J). Additionally, the two angles given by the minimum values of the determinant
correspond with the two eigenvectors of the acoustic tensor: n and γ and their angles are denoted θn and
θγ , respectively.

Note that, under the loading condition studied in this example, the angle θn defines a vector n which
is almost orthogonal to the line along which the distance between micro-voids are closer, characterizing a
macro crack which is parallel to that direction.

Next, we analyze the localization modes determined with a sequence of cells, such as that depicted
in Figure 11. They are denoted Cell1x1, Cell2x2, Cell3x3, Cell4x4, and are obtained by the horizontal and
vertical repetition of the Cell1x1. Those cells are subjected to minimally constrained or linear boundary
displacements.

The bifurcation mode solutions obtained with the four sequence of cells are presented in Table 1, where
the following variables are depicted: i) the bifurcation time tN , ii) both angles, θn and θγ and iii) the
homogenized stress σx2

and strain (εR)x2
levels at tN .

Figure 12-a shows a zoom, close to tN , of the σx2
vs. (εR)x2

solution curves that have been obtained
with the sequence of four cells using the linear displacement boundary condition sub-model. These curves
are compared with the solution obtained using periodic boundary conditions. Also, Figure 12-b plots the
logarithmic error of the homogenized stress at the bifurcation time tN vs. the logarithmic cell sizes. The

23



Cell

2290 elements

9160 elements

20610 elements

36640 elements

Cell

Cell

Cell

1x1

2x2

3x3

4x4

Figure 11: A sequence of cells taken to analyze the localization modes using minimally constrained or
linear boundary displacements.

sub-model Cell size tN σNx2 [MPa] (εR)
N
x2

θn[deg] θγ [deg]

Cell1×1 0.766 2,380 7.65e-5 -64.8 75.1
Periodic Cell2×2 0.766 2,380 7.65e-5 -64.8 75.1

boundary conditions Cell3×3 0.766 2,380 7.65e-5 -64.8 75.1
Cell1×1 0.694 2,346 6.93e-5 -70.2 75.6

Minimum kinematical Cell2×2 0.694 2,354 6.93e-5 -69.3 76.0
boundary conditions Cell3×3 0.704 2.359 7.03e-5 -68.0 75.6

Cell4×4 0.705 2.361 7.04e-5 -67.9 76.0
Cell1×1 0.890 2.492 8.99e-5 -68.4 81.0

Linear displacement Cell2×2 0.801 2.425 8.00e-5 -65.2 77.4
boundary conditions Cell3×3 0.770 2.405 7.69e-5 -64.8 76.0

Cell4×4 0.757 2.396 7.56e-5 -64.8 75.6

Table 1: Capture of strain localization modes using different cell sizes and sub-models.

(relative) error is defined as:

e =
‖σ∗N − σ

p
N‖

‖σpN‖
(62)

where σ∗N denotes the stress σx2
at the bifurcation time tN evaluated with the minimum kinematical con-

straint or linear boundary displacement sub-models, and σpN denotes the same stress determined with the
periodic boundary condition sub-model.

As can be observed from Table 1 and Figure 12, in all cases, the sequence of the stress level reached
at tN tends to the value furnished by the periodic solution. The linear boundary displacement sub-models
show a higher convergence rate, see Figure 12-b. The angles θn and θγ , and tN show a correct trend
only in those cases corresponding to the linear boundary displacement sub-models. However, the solutions
provided by the sequence of minimum kinematical constraint models display limit values which are slightly
different. We can explain this inconsistency by the fact that, when we use minimum kinematical constraint
models, the micro cells have to be slightly modified in order to avoid the very marked bias induced by voids
which are close to the boundaries with uniform tractions. Thus, we have decided to remove the voids, which
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are close to the boundaries, from the cells.
With this analysis we get an estimation of the cell size satisfying the condition which are required to

be considered a RVE. A similar analysis to determine the RVE size by means of a convergence analysis
has been performed by Pindera et al. [47]. They have also used several cells with linear displacement
and minimum kinematical boundary condition sub-models. However, the Pindera’s et al. study has been
restricted only to elastic heterogeneous materials with periodic microstructure, while in the present case we
are extending the discussion by incorporating failure mechanisms in the analysis.

5.1.4 Analysis of objectivity of the CohMM results in the postcritical regime.

After detecting the bifurcation condition, the generalized macro-kinematics is injected are injected in the
cell as dictated by the CohMM approach, and boundary conditions are modified consequently. In this
case, we select a linear displacement boundary condition that is prescribed on ΓLµ , while, in Γµ we adopt
boundary conditions with a periodicity direction orthogonal to n.

In order to analyze the objectivity of results with respect to the cell size, we adopt two cells denoted
Cell1x1 and Cell1x2, as shown in Figure 9.

Figure 13 shows the finite element meshes employed for modeling both cells: Cell1x1 and Cell1x2 and
the localization domain ΩLµ evaluated at tN in each case. Note that, in order to include parts of the voids
into ΩLµ , the voids are discretized with the finite element mesh and they are modeled by assuming an elastic
material with a very small Young’s modulus.

Figure 14 displays the damage map and deformed meshes, defined by the displacement fluctuation
field, of both cells and at two different stages: at the bifurcation time tN and at the end of the analysis.
The damage level obtained in the pre-bifurcation stage is notably high. We remark the fact that damage
evolution, during the pre-bifurcation stage, determines a non-linear homogenized macroscopic constitutive
response displaying, at this level of analysis, a stable energetic dissipation.

The normal and tangential components of the homogenized traction vector T as a function of the macro-
scopic displacement jump β are plotted in Figure 15. The vector T is computed during the post-critical
macroscopic regime by using the CohMM approach. Solutions obtained with the Cell1x1 and Cell1x2 are in-
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cluded in the plots. Note that solutions supplied by both cells are almost identical, verifying the objectivity
in the material response

Also, the pseudo-time continuity of T , at the bifurcation time when changing from the ClaMM to the
CohMM model, has been determined. Defining the traction vector TClaMM = σn with σ being the ho-
mogenized stress obtained with the ClaMM approach and with TCohMM the homogenized traction vector
obtained with the CohMM approach, and a relative error norm as: eT = (‖TCohMM − TClaMM‖)/ ‖TCohMM‖;
then, we have determined that, using periodic constraints during the stable regime, with the Cell1x1 the error
is: eT = 4, 14%, and with the Cell1x2 the error is: eT = 4, 41%.

Note that a macroscopic mixed-mode of fracture is captured by using the FOMF approach.

5.2 Single-Edge Notched Bending (SENB) tests of a beam with microstructure.
In this test, we assess the accuracy of the multiscale formulation to estimate the fracture energy at the
macroscale resulting from the upscaling of the dissipative mechanisms at the microscopic level. To achieve
this goal, we choose a test where the macroscopic fracture energy can be analytically evaluated. In the mi-
crostructure, the crack pattern leading to failure is predefined. While, the macrocrack path can be precisely
estimated.

The tests consist of a three-point notched beam bending problem, undergoing a vertical displacement
that is prescribed in the upper mid-span point. Beams with identical geometries, which dimensions are
displayed in Figure 16-e, and with different microstructures are simulated. A plane strain hypothesis is
considered and the beam thickness is 1.mm.

5.2.1 Description of the material and its microstructure.

Three types of periodic microstructures with a regular arrangement of voids are modeled. Inserts a, b and
c in Figure 16 display a detail of the microstructures. The volume fractions of voids fv in each one of
the three cases are: 0.0, 0.037 and 0.111, respectively. A central vertical band of finite thickness, crossing
the voids, is characterized with a damage model that degrades under tensile stress states. This material is
denoted M1 in Figures 16. This band is embedded into an elastic matrix of material denoted M2 in the
Figure. The microvoids are typified by an extremely soft elastic material (E → 0) denoted M3. The fact of
treating the voids in this way simplifies the algorithmic procedure which is used for detecting the localized
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Constitutive E ν Gfµ Ultimate tensile Finite element
Name Model stress fc type

[GPa] [N/m] [MPa]
M1 Damage 20 0.20 100. 2.4 Bilinear Quad.

(microscale)
M2 Elastic 20 0.20 − − Bilinear Quad.

(microscale)
M3 Elastic

(microscale 0 0 0. − Bilinear Quad.
voids)

M4 Multiscale − − − − SD Linear
(macroscale) Triangle

Elastic
M5 (homogenized − − − − Bilinear Quad.

macroscale)

Table 2: SENB tests with microstructures: material properties and finite element descriptions according to
the denomination given in Figure 16.

domain ΩLµ , as well as for evaluating the boundary surface ΓLµ where the NSBC should be prescribed, once
the CohMM is adopted. Then, a crack is expected to develop in the micro-cells along the vertical band.

The material M4, defined at the macrostructural level, behaves according to the multiscale model, i.e.
macro-stresses σ depend on macro-strain ε through the homogenization procedure. While, material M5 is
a macroscopic elastic model with a constitutive equation given by:

σ̇ = (Ce)homogε̇

where (Ce)homog is the homogenized elastic tensor that is obtained from each microstructure, with equation
(23), in an elastic loading process. For every microstructure, the tensor (Ce)homog is determined in a
previous micro-cell analysis.

Material parameters for M1, M2 and M3 are presented in Table 2.

5.2.2 Numerical models.

Two numerical approaches are used for simulating all these cases:

i) Multiscale Simulations (MS), for which the finite element models are shown in Figure 16-g:f and
inserts a:c. The beam is modeled with 40 (triangular) E-FEM finite elements in the localization
band (material M4) plus 1136 bilinear quadrilateral elements for modeling material M5. The finite
element models of the unit cells are depicted in Figure 16-a:c. These cells are simulated with standard
bilinear quadrilateral elements. The material softening response is regularized through a smeared
crack approach.

ii) Direct Numerical Simulations (DNS). The finite element models of the macro-structure use refined
meshes to capture the details of the microstructure. The DNS model only represents the central part
of the beam, such as shown in Figures 16-e:d and inserts a:c. The remaining part of the beam is
modeled with the material M5. The beam model uses 53703 standard bilinear quadrilateral finite
elements. A smeared crack approach regularizing the material strain softening response is taken. The
pattern adopted to define the midspan vertical band, where failure is expected to occur, is based on
a periodic repetition of microcells, identical in size and geometry, to those used for the RVE’s of
the MS simulations and shown in Figures 16-a, 16-b and 16-c. Also, the material distributions are
identical to those defined for the MS models.
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Figure 17: RVE Boundary conditions. Symbols are defined in Figure 25.

The results obtained with DNS are taken as reference solutions to perform the numerical validation of
the MS responses.

In the MS models, and during the macroscopic stable response, the RVE representing the heterogeneous
material points (vertical band of the beams) is simulated with a minimum kinematical constraint model, such
as that sketched in Figure 17-a. Once detected the bifurcation condition in a macroscopic finite element, the
RVE associated to the PGS singular quadrature point, is endowed with the NSBC. In the present case, we
adopt a sub-model with linear displacement fluctuation increments in the boundary ΓLµ , such as sketched in
Figure 17-b. Alternatively, the RVE representing the PGR regular quadrature point, is subjected to the same
boundary conditions as that defined in the microcell during the precritical regime, as sketched in Figure 17-
a. However, the responses of all materials characterizing the RVE of the PGR points are forced to respond
elastically during the postcritical regime.

Note that one of the most striking difference between MS and DNS models lies on the fact that, MS
models utilize strong discontinuity kinematics for simulating the macroscopic scale. Meanwhile, the DNS
models are simulated with a continuum kinematics and the softening response is regularized through a
smeared crack model.

5.2.3 Overall fracture energy obtained with the MS models.

Figure 18 plots the structural responses of the SENB tests: loads vs. vertical displacements of point PI.
As can be observed, the DNS and MS models furnish almost the same macroscopic solutions for the three
microstructures. As expected, microstructures with larger fv require less energy to completely exhaust the
structural response.

Furthermore, Figure 19 plots the homogenized traction vs. displacement jump curves which corre-
sponds to the quadrature point where the bifurcation condition is first satisfied (PGS quadrature point
located in PII of Figure 16-f). The plots of Figure 19 represent the normal components of tractions and
displacement jumps. Observe that the crack opening is almost a pure mode I.

Using the plots of Figure 19, we can evaluate the effective density of dissipated energy in point PII,
which is put into play to completely exhaust the macroscopically homogeneous material point. The dissi-
pated energy is evaluated by determining the area of the plots in Figure 19-a:b, and defining the effective
fracture energy:

Gf =

∫ ∞
tN

(T · β̇)dt (63)

This parameter is depicted in Table 3, column 2. Alternatively, we evaluate the energy dissipated by the
RVE through the dissipated energy of those finite elements belonging to the localization bandΩLµ including
voids, and after the macroscopic bifurcation conditions has been detected (t > tN ):
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Gfe =
1∣∣ΩLµ ∣∣
∫
ΩLµ

Gfµ dΩ (64)

where Gfµ = 100.N/m for the material M1 and Gfµ = 0.N/m for the material M3, as shown in Table 2.
The energies Gfe are shown in Table 3, column 4, for each microstructure. Note the effect that the variable
fv has on the effective fracture energy.

Comparing the so obtained valuesGf andGfe, it is observed that, for the RVE without pores, the agree-
ment between both values is almost exact. A slightly larger disagreement is observed when microstructures
with one and three pores are analyzed. This result is explained because Gfe is determined by assuming
that, during the stable regime (i.e. previous to the macroscopic bifurcation detection), energy dissipation
has not occurred. In the case of the RVE without pores, the problem is homogeneous before bifurcation
because all materials have the same elastic constant. And macroscopic bifurcation detection happens just
at the moment that the material band, described with the damage model, reaches the limit strength. Then,
the assumption that no dissipation before bifurcation detection happens, is correct. However, in the RVE
cases with pores, damage during the stable regime happens. Thus, the assumption that the fracture energy
is evaluated by (64) is no longer correct and the parameter Gfe thus evaluated, overestimates the fracture
energy of the material M4.

The normal vectors to the macroscopic discontinuity surface, evaluated with the condition (44), are
depicted in Figure 19-b.

Figure 20 shows the objectivity of the structural multiscale response with respect the macroscopic finite
element mesh size. The finite element mesh denoted as Mesh 1 displays smaller elements with respect to
Mesh 2, in the zone where the multiscale material M4 is constitutively simulated.

5.3 Uniaxial tensile test.
We simulate the failure of a strip with a microstructure undergoing uniaxial tensile loading in the vertical

31



Horizontal displacement jump [mm]β
n

(b)(a)

n

−0.1−0.08−0.06−0.04−0.020

−2.5

−2

−1.5

−1

−0.5

0

T
ra

ct
io

n
 C

o
m

p
o

n
en

t
[N

/m
m

²]
T

n β

T

T n

s
macro-crack

PII

f  = 0.0v

f  = 0.037v

f  = 0.111v

Figure 19: MS model. Horizontal-components of the traction vectors vs. horizontal displacement jump
evaluated in the first point (picture-b) satisfying the bifurcation condition.

RVE Effective Fract. Energy (MS) Pore ratio fv Fract. Energy estimation
Gf ( that intersects Gfe

[N/m] ΩLµ ) [N/m]

fv = 0.0 99.90 0 100.
fv = 0.037 88.42 0.1111 88.89
fv = 0.111 66.16 0.3333 66.67

Table 3: SENB test. Effective fracture energy evaluated with different void volume fractions (fv) in ΩLµ .
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direction, such as depicted in Figure 21. A vertical displacement ∆ is imposed uniformly on the upper edge
of the strip, while the lower edge is fixed.
5.3.1 Description of the microstructure

The material is composed of a homogeneous matrix with a statistically uniform distribution of elliptical
microvoids embedded in it. All micro-voids have elliptical shapes and are of identical sizes. Their major
axes are equal to 0.01[mm] and the ratio between the major and minor semi-axes is 1.5. The direction of
the major axis of the elliptical pores, as well as the position of the centers, are randomly distributed. The
volume fraction of voids is: fv = 0.1.

The mechanical behavior of the matrix material is described by a damage model that is characterized
with the following parameters: Young’s modulus: 200GPa, Poisson’s ratio: 0.2, Fracture Energy: 0.5N/m,
and ultimate tensile stress: 2.4MPa. An exponential softening relation is adopted.

As it was explained in previous tests, the voids are also meshed and a soft material is assigned to them
with a Young’s modulus: 2.0× 10−9GPa.

5.3.2 Finite element model

The strip, at the macro level, is simulated with two E-FEM triangles. In order to compare solutions pro-
vided by different micro-cells, we have simulated two cells of identical sizes by changing randomly the
distribution and position of voids. In Figure 21, the two cells are denoted: Cell 1 and Cell 2. The meshes of
Cells 1 and 2 have 2142 and 2122 bilinear quadrilateral finite elements, respectively.

Periodic standard boundary conditions are assumed, while, for the non-standard boundary conditions,
we impose null-fluctuations (Taylor sub-model) in ΩLµ . In order to inject the strain dεµ, given by equation
(27), into the micro-cells, it is necessary to determine the normal vectors nµ to the strain localization
domain ΩLµ . These normal vectors are sketched in the Figure 21-c. And they are evaluated just before
inserting the macro-crack, and once the strain localized zone is known.
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5.3.3 Discussion of results

Figure 22 displays the macrostructural responses of the strip, which are obtained with the micro-cells 1
and 2. We plot the load vs. vertical displacement of the upper edge of the strip. When comparing these
solutions, it is observed a good agreement during the macroscopic stable regime. However, during the
postcritical regime, a small difference is observed. We think that this disagreement is caused by the, well-
known, deficient response supplied by the standard bilinear quadrilateral elements for capturing arbitrary
localized failure modes. An additional argument in favor of this conclusion can be obtained by observing
Figure 24. There, we depict the localized domain that is captured by the cells 1 and 2. The localization
bands, using both cells, have more than one finite element width, probably, due to the poor behavior of the
finite element.

Because the problem is macroscopically homogeneous, all macroscopic points reach the bifurcation
time at the same instant, which is depicted in the plots of the structural response. The bifurcation time has
been detected when the vertical displacement of the upper edge of the strip is ∆ = 0.248 × 10−4[mm]
for Cell 1, and ∆ = 0.254 × 10−4[mm] for Cell 2. Also, a few time steps after, we have marked the
macro-crack insertion instant. It happens when the vertical displacement is ∆ = 0.288 × 10−4[mm] for
Cell 1, and ∆ = 0.294 × 10−4[mm] for Cell 2. The macro-crack insertion coincides with the model
change in the micro-cells. The bifurcation angle detected with the cells are: θ = −84.6[deg] for Cell 1, and
θ = 89.55[deg] for Cell 2.

Figure 23 displays the evolution of the damage distribution that is obtained with the micro-cell 1. The
sequence of pictures temporally agrees with the points marked in the structural response inserted in the
same Figure. During the initial stage of material degradation and before the detection of the macroscopic
bifurcation, it is observed at the microscopic scale a number of evolving cracks that eventually coalesce into
a single micro-crack with a zigzag path.

Figure 24 displays the evolution of the strain localization zone ΩLµ for Cells 1 and 2. It is observed
that ΩLµ changes during the precritical stage. After the bifurcation instant, the strain localization domains
remain fixed because the coalescence phenomenon of the micro-cracks.
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6 Conclusions
A Failure-Oriented Multiscale variational Formulation (FOMF), devised for modeling the connection be-
tween failure mechanisms taking place in both macro and micro scales, is presented. Particular attention
is paid to the numerical implementation of the model, which is based on the finite element method. We
introduce an E-FEM technique for simulating the cohesive surface at the macroscale, and a standard finite
element technique at the microscale that regularizes the material response with softening by means of a
smeared crack model.

Within the FOMF framework, the kinematical restrictions (boundary conditions) to be applied at the
RVE-level change, in an incremental sense, during the loading history. In this regard, a generalized and
very flexible treatment given to such boundary conditions has been presented in detail throughout the paper.
It is mandatory to formulate the problem in rates, which allows for introducing the boundary conditions in
an incremental sense.

In the first numerical test of Section 5, we have evaluated different cell sizes and sub-models in order to
understand their effects on the captured failure modes. In this sense, we conclude that different sub-models
supply similar results under the condition that the micro-cells are large enough. Also, in the same test,
we have evaluated the RVE model capability to reach a complete degradation of the homogenized material
without introducing spurious responses. To reach this goal, a very important aspect of the methodology is
the introduction, after detecting the stability loss at the macro scale, of the hybrid boundary conditions with
periodicity aligned with the crack. This concept was taken from Coenen et al. [31].

As a rigorous proof of the model performance, a comparative study in terms of the Load-Displacement
curves (at macro-level) obtained using the FOMF and DNS approach have been conducted for a typical
problem in the fracture mechanics context (the three-point bending test). The numerical results show full
consistency between both methodologies during the pre and post-bifurcation regimens, as well as when
comparing the dissipated energy at the macroscopic level. These conclusions are clearly proven with the
structural responses obtained in Figure 18.

According with the last numerical example presented in this contribution, we can conclude that the
present formulation can handle rather complex microstructural mechanisms leading to material failure,
either during the macroscopic stable regime of the material, as well as during the postcritical regime.

Finally, a very important conclusion of this work, that complements previous results of the authors, is
referred to the objectivity displayed by the homogenization procedure with respect to the micro-cell sizes.
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7 APPENDIX I
Sub-Section 3.2.1 presents the numerical treatment given to the kinematical constraints in order to define
different sub-models of the RVE. In this Appendix, we show additional details about the handling and
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computational implementation of these generic kinds of boundary conditions.

7.1 Partitioning of d.o.f.’s and static condensation.
The linear system of equations (59)-(61) expresses the most general kinematical constraints that can be
considered in the proposed model. Any other kind of boundary conditions, such as those specified in the
cases i) to iii) in Sub-Section 3.2.1, can be treated as particular cases of the hybrid boundary condition, by
removing equations from the mentioned equation system. Let us now rewrite (59)-(61) as follows:

J∆q = 0; (65)

with

J =

[
Ic

Ip −Nµ

H

]
(66)

with J ∈ R(m×n), being m = nc + 2np + 3. These equations implicitly define a natural partition of the
vector ∆q = [∆qd; ∆qf ]T , where ∆qd ∈ Rm collects all the dependent d.o.f.’s, and ∆qf collects all the
free d.o.f.’s. Using the same sets of d.o.f.’s, the matrix J and the system of equations (66) can be partitioned
and rewritten as:

J∆q =
[
Jd Jf

] [ ∆qd
∆qf

]
= 0 (67)

which allows for a static condensation of the ∆qd d.o.f.’s, which is given by:

∆qd = L∆qf ; (68)

with: L = −(Jd)
−1Jf .

Thus, we can typify the different spaces: Ũq and Vq , for each RVE sub-model, by means of the following
unified notation:

Ũq ≡
{
∆q = [∆qd,∆qf ]

T | ∆qd = L ∆qf
}

(69)

Vq ≡
{
q̂ = [q̂d, q̂f ]

T | q̂d = L q̂f
}

(70)

7.2 Selection of dependent nodal d.o.f.’s.
The selection of the dependent d.o.f.’s of the vector ∆q, should be based on the fact that the static con-
densation defined in equation (68) can be performed. This requires that the square matrix Jd has to be
nonsingular. Note that an admissible static condensation of the d.o.f.’s ∆qd does not automatically guar-
antee the well-posedness of the finite element micro-cell model, i.e. the non-singularity of the reduced
stiffness matrix.

The selection of the dependent nodal d.o.f.’s, ∆qd, is based in the following considerations, see Figure
25:

i) All the d.o.f.’s of the nodes which are prescribed through equations of the type (59), must belong to
∆qd. The partition of the displacement vector associated with these d.o.f.’s, is generically denoted as
∆qcd;

ii) All the d.o.f.’s of the nodes in (y+), which are linked to points y− (∈ Γ−) through equation (60),
belong to ∆qd. The partition of the displacement vector associated with these d.o.f.’s, is generically
denoted: ∆qpd .
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iii) Every block of equations (61) adds three additional d.o.f.’s to the list of ∆qd. These three d.o.f.’s are
associated to nodes in the boundary Γ̆ . The partition of the displacement vector associated with the
three d.o.f.’s, is generically denoted: ∆qhd .

Thus, the vector ∆qd can be partitioned according to: ∆qd = [∆qcd;∆q
p
d;∆qhd ]T . With this partition-

ing, the equation system (66) can be rewritten as follows:

m

 nc{
2np{
3{

 Ic 0 0 0
Jpdc Ip Jpdh Jpf
Jhdc Jhdp Jhdh Jhf



∆qcd
∆qpd
∆qhd
−−
∆qf

 =

 0
0
0

 (71)

It can be observed that the matrix Jd, in expression (67), corresponds to the square matrix formed by the
first 3× 3 sub-block matrices on the left part of equations.

Also, note in the second line of equations (71), that the blocks of three sub-matrices: Jpdc, J
p
dh and Jpf ,

contain the negative expressions of the shape functions Nµ evaluated in the point y−, as described in the
right part of equation (52). Thus, the second block of 2np equations includes different possible scenarios
of prescribing periodic conditions between boundary points. As an example, let us consider a node placed
in y+ and having a displacement ∆qp, see Figure 5 and equation (52). This node is linked to the point
y− which may not coincide with a finite element mesh node. In this case, the displacement of the point
y− should be interpolated as shown in the right part of equation (52). This interpolation could involve
nodes which: i) are prescribed, ii) belong to the minimum kinematical constraint condition, or iiii) are fixed
nodes (i.e. prescribed with zero displacement increment). Their respective displacements belong to the
blocks denoted ∆qcd, ∆qhd , ∆qf . Then, the sub-matrices: Jpdc ,J

p
dh J

p
f will be constituted by the negative

expressions of the shape functions associated to those nodes, respectively.
In the third line of (71), the block of three equations (assuming problems in R2) are built with matrices

Hj , as shown in equations (55)-(57), and the addition of zero-matrix blocks, depends on which d.o.f.’s,
∆qcd, ∆qpd , ∆qhd or ∆qf are linked through the minimum kinematical constraint (61).

7.3 Strategy for solving the finite element governing equations.
The incremental equilibrium problem of the micro-cell finite element model is written in terms of the
displacement fluctuations increments, as follows:

q̂T ·R(∆q) = q̂T ·
[ nelem∧
e=1

∫
Ωeµ

(Be
µ)T∆σµ(∆q) dΩeµ

]
= 0; ; ∀ q̂ ∈ Vq (72)

where R represents the residual vector of the incremental internal forces which should be zero;
∧

is the
standard assembling operator, nelem the number of finite element in the RVE mesh, Be

µ is the element
strain-displacement matrix, Ωeµ is the finite element domain in the microscale. We make explicit the depen-
dence of ∆σµ with ∆q. In fact, from the material constitutive relation, the microscopic stress increment
∆σµ depends on the strain increment: ∆εµ := ∆ε+∇sx(Niµ∆qi).

The nonlinear system of equations resulting from (72), after inserting the kinematical constraints forcing
the finite element functions to belong to (69) and (70), respectively, can be solved through a Newton-
Raphson iterative scheme. Then, a typical iteration “k” can be written as follows:

[
L q̂f
q̂f

]T
·


[

Rd

Rf

](k−1)

+

[
Kdd Kdf

Kfd Kff

]
︸ ︷︷ ︸

K

(k−1) [
L Dqf
Dqf

](k) = 0 ; ∀ q̂f (73)
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where K is the Jacobian matrix of the residue, K = ∂R/∂∆q and Dqf is the increment of ∆qf at
iteration k. Expression (73) is partitioned according to the vector partition [∆qd, ∆qf ]T discussed above.
Condensing the dependent d.o.f.’s at iteration k, the system of equations (73) results:(

LTKddL+KdfL+LTKfd +Kff

)(k−1)

Dq
(k)
f = −

[
Rf +LT Rd

](k−1)

(74)
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M. Jirásek, and J. Mazars, editors, Fracture and Damage in Quasi-brittle Structures., pages 25–39. E & FN Spon, 1994.

[36] C. Miehe, J. Schroder, and M. Becker. Computational homogenization analysis in finite elasticity: material and structural
instabilities on the micro- and macro-scales of periodics composites and their interaction. Comput. Methods Appl. Mech. Eng.,
191:4971–5005, 2002.

[37] J.C. Michel, H. Moulinec, and P. Suquet. Effective properties of composite materials with periodic microstructure: a computa-
tional approach. Comput. Methods Appl. Mech. Engrg., 172:109–143, 1999.
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