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Abstract

A novel model-order reduction technique for the solution of the @a-scale
equilibrium problem appearing in computational homogenization is prested.
The reduced set of empirical shape functions is obtained using a ti&wned
version |that accounts for the elastic/inelastic character of the solution|
of the Proper Orthogonal Decomposition (POD). On the other hagh it is
shown that the standard approach of replacing the nona ne termby an
interpolant constructed using only POD modes leads to ill-posed fouta-
tions. We demonstrate that this ill-posedness can be avoided by efning
the approximation space with the span of the gradient of the empiat shape
functions. Furthermore, interpolation points are chosen guidedyot only by
accuracy requirements, but also by stability considerations. Theparoach is
assessed in the homogenization of a highly complex porous metal enatl.
Computed results show that computational complexity is independeé of the
size and geometrical complexity of the representative volume elemeThe
speedup factor is over three orders of magnitude |as comparedithh nite
element analysis| whereas the maximum error in stresses is less thd®©%.
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1. Introduction

1.1. Motivation and goal

The major challenge in the macro-scale continuum description of ket
erogeneous materials such as composites and polycrystalline me{ahsat
exhibit a clear heterogeneougomposition at the the micro-, or meso-, scale,
but that can be regarded, for practical purposes, asomogeneoust the the
macro-scale) lies in the determination of a constitutive connectiotyetween
macro-stresses and macro-strains, that accurately re ectbé properties and
geometrical arrangement of the distinct phases at the ner scaldt is well-
known [34] that, under the hypotheses of eithgperiodicity or statistical ho-
mogeneity on the one hand; andscale separation on the other hand, this
constitutive link can be systematically established by solving, fazachpoint
at the coarse scale, a boundary value problem (BVP) on a certainpresen-
tative microscopic subdomain. In a strain-driven formulation of thisBVP,
the macro-strain at a given point acts as \loading parameter”, in th form
of appropriate essential boundary conditions, whereas the asmied macro-
stress is obtained through volume averaging |i.e.,homogenization of the
corresponding micro-stress eld.

Methods dealing with the solution of this BVP range from purely ana-
lytical approaches todirect computational methodssuch as the two-level, Fi-
nite Element (FE?) method [29]. Analytical approaches are computationally
inexpensive, but only valid for certain types of geometrically and catitu-
tively simple micro-structures. By contrast, direct computationd methods
have no other limitation in scope than the imposed by the aforementied
hypotheses of statistical homogeneity and scale separation |in tase meth-
ods, the microscopic BVP at each coarse-scale point is attackedngsno
other approximation than the spatial discretization of the pertinat solution
strategy, thus, circumventing the need for introducingad-hog simplifying as-
sumptions regarding the topological arrangement of the micro-pkes and/or
their collective constitutive behavior. Needless to say, the verskty of di-
rect computational homogenization comes at a signi cant price: itsnormous
computational cost.



Between these two extremes (purely analytical and direct compational
methods), there are homogenization strategies that can be teech semi-
analytical, since they combine analytical results with numerical computa-
tions. Such is the case of thdransformation Field Analysis (TFA) [25]
and variants thereof [49, 50, 56, 30], which are based on thee-computation
of certain characteristic operators (strain localization and in uene tensors)
using the information obtained from solving a carefully chosen battg of
ne-scale BPVs. Although these methods have notably widen the cge
of classical analytical approaches |while maintaining their low compua-
tional cost|, they are still predicated, to a lesser or greater exent, on
ad-hoc assumptions connected with the constitutive descriptionf ¢he in-
volved phases. Consideration of new materials with unstudied congitions
using semi-analytical approaches, thus, requires additional reseh e orts
by specialists in the eld and eventual modi cations of the correspading
mathematical and numerical formulations |in contrast to direct computa-
tional homogenization approaches, such as the Finethod, in which the
formulation is \material-independent”, and hence more versatile.

The current state of a airs in the eld of two-scale homogenizatiorseems
to call, thus, for a uni ed homogenization approach that combinesasne-
what the advantages of direct computational homogenization arahalytical
and semi-analytical techniques. It would be desirable to have a hogeniza-
tion method with a computational cost virtually independent of the geomet-
ric complexity of the considered representative volume, as in analytical and
semi-analytical techniques. At the same time, it would be also inter@sg to
arrive at a method whose mathematical formulation dispenses wittd-hog
simplifying assumptions related with the composition of the heterogeous
material; i.e, one enjoying the versatility, unrestricted applicability ad \user-
friendliness” |insofar as it would totally relieve the modeler from the often
exceedingly di cult task of visualizing such assumptions | of direct compu-
tational homogenization methods. The goal of the present pape&r to show
that these desirable attributes can be achieved, for arbitrarily coplex het-
erogeneous materialgvell into the inelastic range by using the so-called [47]
Reduced-BasigRB) approximation in the solution of the ne-scale BVPs.

1.2. The reduced-basis method

Generally speaking, the reduced-basis approximation is a clas&ailerkin
approximation procedure that employs, as opposed to the FE meid, but



similarly to classical Rayleigh-Ritz solution techniques _[19],globally sup-
ported basis functions The main di erence with respect to classical Rayleigh-
Ritz schemes is that these basis functiore modesare not constructed from
either polynomials or transcendental functions (sines, cosines .byt rather
are determined from a larger set opreviously computed |using the nite
element (FE) method or other classical solution techniques| solutions of
the BVP at appropriately selected values of the input of interest. hese
functions are commonly termedempirical basis functions[41], the quali er
empirical meaning \derived from computational experiments".

1.2.1. Dimensionality reduction

As noted earlier, the input of interest or \loading" parameter in the ne-
scale problem is the macro-scale strain tensor. Accordingly, theasing
point for constructing the basis functions consists in solving, usinidpe FE
method, a battery of BVPs for various, representativenacro-strain histories
The outcome of these FE calculations is a data set comprising an embée of
hundred or even thousand (depending on the number of time stejpgo which
the strain histories are discretized) displacement eld solutions (adscalled
snapshot$. Were all these snapshots barely correlated with each other,dh
dimension of the manifold spanned by them would prove overly high,rder-
ing the entire approach impractical |it would no longer qualify as a truly
reducedbasis method. Fortunately, as we show in the present paper, in gen
eral, most of these snapshots do display strong linear correlatiobhstween
each other |i.e., they have redundant information|, and, in addition , con-
tain deformation modes that areirrelevant to the quality of coarse-scale
predictions. All that is required to obtain a much lower dimensional gre-
sentation of the solution data set, and therewith the desired reded basis, is
an automatic means to identify and remove this redundant and irrel@nt in-
formation, while preserving, as much as possible, iessentialfeatures. The
problem of removing unnecessary complexity from huge data sets &s to
uncover dominant patterns is the central concern of disciplines such as dig-
ital image compression. [60] and patter recognition![8], to name but aw,
and thereby many e cient dimensionality reduction (or data compression
in more common parlance) algorithms already exist to deal with it. Inhe
present work, we employ one of the simplest and most popular of gedi-



mensionality reduction algorithms: the Proper Orthogonal Decontpsitiorﬂ
(POD).

It may be inferred from the above that the proposed homogenizanh
method, like analytical and semi-analytical strategies, does introde sim-
pli cations in solving the ne-scale BVP. However, as opposed to analytical,
and to a lesser extent, semi-analytical procedures, these simpétons are
not introduced by the modeler, but rather are automatically carrid out by
the abovementioned dimensionality reduction methods (in an o ine sige,
prior to the overall multiscale analysis). In other words, in the propsed
method, the task of discerning what is essential and what is fotis entirely
delegated to the computeitself, and hence, its success does not depend upon
the depth of insight, experience, and knowledge base of the moddtnly
some discretion is to be exercised in choosing appropriate strain patfor
the oine FE analyses. This feature naturally confers the advantges of
versatility and \user-friendliness" enjoyed by direct computatioal methods.

1.2.2. Numerical integration

Once the global shape functions have been determined, the nexes
is to introduce ane cient method for numerically evaluating the integrals
appearing in the weak form of the cell BVP. Of course one can simplyge!
the same Gauss quadrature formulae and the same sampling poingstétal
number ofng = O(n), n being the number of mesh nodes) as the underlying
nite element model. But this would be akin to integrating, say, a third
order polynomial function using thousand of sampling points|a pro igate
waste of computational resources. Since displacement solutions the cell
BVP are constrained to lie in a reduced-order space of dimensiap << n ,
it is reasonable to expect that the corresponding stresses, intat forces
and Jacobians will also reside in reduced-order spaces of dimensioingrder
O(ny), and consequently,only p = O(n,) << n 4 sampling points would
su ce in principle to accurately evaluate the corresponding integris. The
challenging questions that have to be confronted are where to ldeahese
p sampling points and, loosely speaking, how to determine their assde

1By constraining the cell to deform only into the deformation modes determined by
the POD, one automatically obtains a genuinereduced-order model(ROM) of the cell.

2Discerning what is essential and what is not is, according to M.Ashby|[# the key
to any successful computational model (i.e., one that strikes theright balance between
accuracy and simplicity)



weighting functions so that maximum accuracy in the integration is ahined.

Approaches found in the model reduction literature that, directlyor indi-
rectly, deal with these fundamental questions can be broadly ck®d either
asinterpolatory methods [7| 33, 54, 18/ 5] déauss-type quadraturestrategies
[3,139]. In both types of approaches, the integrand or part of thetegrand is
approximated by a linear combination of a reduced set of empirical rdes.
In interpolatory approaches, the coe cients in this approximationare ob-
tained by interpolation at a set of pre-selected sampling points; the criterion
for choosing the location of such points is theninimization of the interpo-
lation error over the nite element snapshots. In Gauss-type quadrature
procedures, on the other hand, the selection of sampling pointscathe cal-
culation of the accompanying weighting factors arsimultaneously carried
out, guided by a criterion ofminimum integration error over the snapshots.

In the BVP under consideration, theoutput of interest is the volume av-
erage of the stresses over the cell domain and, therefore, aacy is required
not only in the integration of the equilibrium equation, but also on the p-
proximation of the stresses themselves. This is the reason why eattion is
focused here on interpolatory integration strategies, the vari#dbd subject to
spatial interpolation being precisely the stresses.

1.3. Originality of this work

The idea of exploiting the synergistic combination of multiscale model-
ing and reduced basis approximation is admittedly not new. In the spec
context of two-scale homogenization, it has been recently expldrey Boy-
aval [10], Yvonnet et al. [62], and Monteiro et al. [51]. Traces of this éa
can also be found in articles dealing with more general hierarchical hiu
scale techniques |that do not presuppose either scale separatioar peri-
odicity/statistical homogeneity, or both|, namely, in the multiscale nite
element method|53,126, 27], in theheterogeneous multiscale methoi2, 1],
and in multiscale approaches based on the Proper Generalized Deposi-
tion (PGD)[21]. However, it should be noted that none of the aboveited
papers confronts the previously described, crucial question obvw to e -
ciently integrate the resulting reduced-order equations, simply because, in
most of them [10, 53, 26, 27, 2| 1], integration is not an issue | the m-scale
BVPs addressed in these works bear anne relation with the corresponding
coarse-scale, input parameter, as in linear elasticity, and, conseqtly, all
integrals can bepre-computed i.e., evaluatedo ine , with no impact in the
online computational cost. Thus, the development of reduceddaesr models
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endowed with e cient, mesh-size independent integration schemgable to
handle any material composition| is a research area that, to the bset of the
authors' knowledge, still remains uncharted.

1.3.1. Main original contributions

The theory underlying reduced-order models (ROMSs) that incorgate
e cient interpolatory integration schemes is still at its embryonic stage of
development |the rst general proposal for parametrized BVPs dates back
to 2004 [7]] and many fundamental issues remain to be addressed. oFe-
most among these is the crucial question afell-posednes®f the resulting
system of algebraic equations: does the replacement of the intaga, or non-
ane term in the integrand, by a reduced-order interpolant always leadot
a well-posed, discrete problem ? Examination of the reduced basistgtire
indicates that apparently no researcher has so far been confres with ill-
posed reduced-order equations, a fact that might certainly proote the view
that uniqueness of solution can be taken for granted wheneveretfull-order
model is well-posed. Unfortunately, this is not always so: we demadrae in
this paper that the choice of the reduced-order space in which tiv@gerpolant
of the integrand resides has a profound impact on the well-posedseof the
discrete problem. In particular, we show that, in the case of the e-scale
boundary-value problem, the widely adopted [33] approach of deteining
the basis functions for this space from (converged) FE snapskdeads in-
variably to ill-posed discrete formulations. Themain original contribution
of the present work to the eld of reduced-order modeling iké development
of an interpolatory integration method that safely overcoes this type of ill-
posedness The gist of the method is toexpandthe interpolation space so
that it embraces, aside from the span of the POD stress basis ftioos,
the space generated |and herein lies the novelty| by the gradient of the
(reduced-order) shape functions Furthermore, it is shown that, in contrast
to the situation encountered when using standard interpolatorychemes in
other parametrized BVPs |[33], in the BVP under consideration, thaumber
and particular placement of sampling points within the intgation domain
in uence notably the spectral properties(positive de niteness) of the Jaco-
bian matrix of the governing equationand therefore, theconvergence charac-
teristics of the accompanying Newton-Raphson solution alghm. Another
innovative ingredient of the present paper is a points selection algibim that
does acknowledge this peculiarity and chooses the desired sampliruinis
guided, not only by accuracy requirements (minimization of the intgrolation
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error over the FE stress snapshot), but also by stability considations.

2. RVE equilibrium problem

In this section, we present the variational statement and nite element
discretization of the ne-scale equilibrium problem which, recall, is the pa-
rameterized BVP we wish to e ciently solve using the reduced-basispgrox-
imation.

2.1. Preliminaries

Let RY(d = 2;3) be a subvolume of characteristic length << | ,
( Im is the characteristic length of the macro-continuum y,, see Figurel)
that is representative of the heterogeneous material as a whole. In micro-
structures that exhibit statistical homogeneity, this domain reciwes the name
of Representative Volume Elemen{RVE), whereas in micro-structures that
display periodicity, it is commonly known as repeating unit cell (RUC), o
simply unit cell [24]. In the sequel, the acronym RVE will be used to refer
to .

I <<ly

M
Macro-strains (input)

RVE or !ceII"m

Cell equilibrium
problem

a

Macro-stresses (output) =
Figure 1: First-order homogenization.

In the homogenization approach adopted in this work |commonly knavn
as rst-order homogenization [[32, 40]|, the strain eld (x) at any point
X 2 is assumed to be decomposed into macroscopic and uctuating cti
butions; under the hypothesis of in nitesimal deformations, this dcomposi-
tion can be written as:

(X)= wm +r1°u(x): (1)
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Here, standd for the macroscopic strain tensor (thenput parameter in
the problem) andr u denotes the symmetric gradient of thelisplacement
uctuation eld (this eld is, in turn, the basic unknownof the problem).

Implicit in the scale separation assumption is the fact that ne-scalele-
formations only in uence coarse-scale behavior through its voluneverage
over the RVE. It can be shown (see, for instance, Ref. [22]) thahis im-
plies that the boundary conditions (BCs) prescribed on the RVE mushe
homogeneous (i.e.Aqgu = 0 on @ A being a certain linear operator).
The natural choice for a repeating unit cell is to employeriodic boundary
conditions (See Refs. [9, 48] for more details on how to prescribésttype of
BCs). In statistically homogeneous micro-structures, by contsd, there is a
certain latitude in the choice of boundary conditions (vanishing uctiations,
uniform tractions, quasi-periodic conditions ...). In the exampleshown
later, vanishing boundary conditions are usedu(= 0 on @).

2.2. Variational formulation

2.2.1. Trial and test spaces
The trial space, i.e., theset of kinematically admissible displacement uc-
tuation elds, is de ned formally as

Vo= u2HY) 9jAqu=0; on @ ; (2)

where H() ¢ stands for the Sobolev space of functions possessing square
integrable derivatives over . Note that this set forms avector space Since

the test functions appearing in the variational statement shown in the
following are kinematically admissible variations( = u v; u;v 2V,),

V. having structure of vector space implies that, in the RVE equilibrium
problem, the spaces of trial and test functions coincide

2.2.2. Formal statement S

Consider a time discretization of the interval of interestth; tr] = 1% [tn; tne1 |-
The current value of the microscopic stress tensor,.; at eachx 2 is pre-
sumed to be entirely determined by, on the one hand, the currentilue of the

3Macroscopic variables will be identi ed by appending a subscript \M", while variables
associated to the ne scale will be designated by bare symbols. For stance, we shall
write  and (x) to denote the macroscopic strain tensor and the ne-scale stren eld,
respectively.



microscopic strain tensor n+1(X) = wm n+1 + I SUn+1(X), and, on the other
hand, a set of microscopic internal variables, ., |that encapsulate the his-

tory of microscopic deformations. The relationship between these vaias
is established by (phenomenological) rate constitutive equationdydse equa-
tions may vary from point to point within the RVE (multiphase materials).

Likewise, the considered RVE may contain also voids distributed all evthe

domain. The (incremental) RVE equilibrium problem at timet,.; can be
stated as follows (see Ref! [22]): given thaitial data fu,(X); mn; (X)g

and the prescribed macroscopic strain tensor y ,+1, Nd Up+; 2 Vy such
that Z

res n+1(Mn+1+rsun+l; n+1)d:0; (3)

for all 2 V,. The actual output of interest in this ne-scale BVP is not
the displacement uctuation eld per se but rather the macroscopic stress
tensor  j,,,, Which is de ned as the volume average over the RVE of the
microscopic stresses:

Z
1

M jn+1 = v n+1 d ; (4)
where V stands for the volume of the RVE. In order to keep the notation
uncluttered, the superindex \n+1" will be hereafter dropped outand all
guantities will be assumed to be evaluated at timg, ; only when confusion
is apt to show up, the pertinent distinction will be introduced.

2.3. Finite elgment formulation
Let = "e € pe a nite element discretization of the RVE. It will

n=1
be assumed that this discretization is ne enough to consider the ast and
FE approximated solutions indistinguishable at the accuracy level ater-
est. Let fN1(x);N2(X):::Nn(x)g (n denotes the number of nodes of the
discretization) be a set ofshape functionsassociated to this discretization.

Now we approximateu 2V, and 2V, as

xXo
ux; m) u(x; v)= Ny (X)U ( wm); )

=1

X
x) M= NX) (6)

=1

10



whereU, 2 R%and |, 2 RY (I =1;2:::n) denote the nodal values of the
displacement uctuations and test functions, respectively. Inséng these
approximations in Eq.(3), and exploiting the arbitrariness of coe ciets |

(I =1;2:::n), one arrives at the following set of discrete equilibrium equa-
tions (repeated indices implies summation):

z
@N
@x
Introducing Voigt's notationfi, the above equation can be expressed in matrix
format as: Z

BT (m +BU; )d= O0; (8)

i(wm+rsu® yd=0(i=21:::d1=1:::n): (7)

As usual, numerical evaluation of the integral in Eq.(8) is carried ouby
Gaussian quadrature:

Z Yo
BT d WgB (Xg) (Xg;3) = O (9)
g=1

Here, ng = O(n) stands for the total number of Gauss points of the mesh;
wy denotes the weight associated to thg th Gauss pointxg (this weight
includes both the quadrature weight itself and the corresponding Jacobian
determinant.); and B (Xg) and (Xg;;) stand for the B-matrix and the stress
vector at Gauss pointxg, respectively.

3. Computation of reduced basis

A basic, intuitive picture of the strategy for computing the reducd basis
onto which to project the RVE equilibrium equation [3) was already gien
in the introductory section. In the following, we put the idea behind his
strategy on a more rigorous footing. We begin by noting that, frona func-
tional analysis standpoint, the term model reductionis conceptually akin

4Here, it is convenient to use the so-callednodi ed Voigt's notation rather than the
standard one. In the modied Voigt's notation, both stress and strain  tensors are
represented as cobu[nn vectorsf( gandf g, respectively ) in which the shear components
are multiplied by = 2. The advantage of this notation over the cone{entional, engineeng
}{oigt‘s notation is the equivalence between norms; viz.,.k k = ~ 1 = kf gk =

f gT f g. The reader is urged to consult|[20] for further details on this noation.
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to the more common termmodel discretization since both connotetransi-
tions from higher-dimensional to lower-dimensional solution spaces. Whas
model discretizationis used to refer to the (classical) passage from the in nite
dimensional space&/,, to the nite element subspaceV!! V , model reduction
denotes a transition from this nite dimensional space/! to a signi cantly
smaller manifoldV, V [ [the reduced-orderspace. This latter transition
is not carried out directly, but in two sequential steps, namelysampling of
the input parameter spaceand dimensionality reduction

3.1. Sampling of the input parameter space

In constructing the nite element space okinematically admissible func-
tions VI, the only restrictions placed on the motion of the mesh nodes are
those imposed at the boundaries. The nite element solution spacthus,
does not presuppose any constraint on the motion of thaterior nodes of
the mesh.

However, in actuality, interior nodes cannot uctuate freely, indepen-
dently from each other, but they rather move according tadeformational
patterns dictated by the constitutive lawsthat govern the mechanical behav-
ior of the distinct phases in the RVE. This means that the solution of the
nite element equilibrium equation (3) for given values of the macrotgin
tensor \ actually lives in a smaller subspac&/, V ! (in the parlance
of model reduction |[4/7) 57]V, is the manifold induced by the parametric
dependence of the BVP on the input variables).

Yet, in general, this subspace cannot be precisely determined; dres to
be content to construct anapproximation of it as the span of the displace-
ment uctuation solutions obtained for a judiciously chosen set afi,g; input
strain historiesft y ;' \ 2;:::t "™t g. Suppose, for simplicity, that each
of these strain histories is discretized into equal number of steps,, and let

u ()= u(x; ') k=(i 0 Dnpg +j (10)
denote the displacement uctuation solution at thej th time step of the

i th strain history (i = 1;2:::nps, ] = 1;2:::Ngp). The approximating
space forV,, henceforth called thesnapshots spaceas then de ned as:

5As noted by Lubliner [45], constitutive laws can be regarded asnternal restrictions
on the kinds of deformation a body can su er
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V" =span ul(x);u?(x);:iu™™ (x)  V (11)

Nsnp = NstpNhst DEING the total number of snapshots. The matrix containing,
in columns, the nodal values of these displacement uctuations stilons:

X,= Ul U? Uhse 2 RN Nso (12)

will correspondingly be termed the (displacement uctuationssnapshot ma-
trix .

3.2. Dimensionality reduction

The next and de nitive step in the transition from the high-dimensioral
nite element space V! to the desired reduced-order space, |in which
the ne-scale BVP is to be nally posed| is the dimensionality reduction
process, in which, as pointed out in the introductory section, theaminant
deformational patterns of the RVE response are identi ed and weiled by
washing out the \inessentials". To accomplish this central task, wemploy
here a partitioned version of theProper Orthogonal Decompositio.

3.2.1. Elastic/Inelastic reduced basis functions

The Proper Orthogonal Decomposition is nothing but a multidimensical
data tting procedure intended to obtain a sequence of orthoga basis func-
tions whose span best approximate the space of snapshots. Ashsihe POD
is apurely data-drivenprocess |it is \agnostic" to the physical origin of the
data. For instance, for POD basis construction purposes, it is cqietely
immaterial whether a given snapshot corresponds to a purely lineafastic
solution or to a solution well into the inelastic regime. The task of disani-
nating which features of the RVE response amssentialand which are not is
exclusively guided by statistical considerations: if the elastic respse hap-
pens to be poorly represented within the snapshot ensemble, th©P may
regard as unimportant the contribution of these snapshots, an@s a conse-
guence, the basis functions with largest associated singular valyes., the
essential modes| would hardly contain any information of this range. To
accurately replicate the apparently trivial linear elastic behavior, ltus, one
may be forced to take a relatively large number of basis functionsné this

6See Appendix(A for a brief description of the POD.
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may translate into a signi cant increase in the overallbnline computational
cost. This fact certainly places the POD-based reduced basis appch at
a competitive disadvantage compared with semi-analytical homogeation
approaches such as the Nonlinear Transformation Field Analysis [5@]hich
do capture exactly (and e ortlessly) the linear elastic response tiie RVE.

To eliminate this shortcoming, we propose here a slightly di erent sat-
egy for constructing the reduced basis. The essence of the psal is to
partition the space of snapshot¥;" into elastic (V,.y) and inelastic (Vi
subspaces:

GRERV A (13)
( symbolizes direct sum of subspaces [55]) and then obtain the rediice
basis as theunion of the bases for both subspaces. Below, we describe this
strategy more in detail.

The rst step is to determine an orthogonal basis fo¥,.;. One can do this
by simply performing me independent, linear elastic nite element analysis
of the RVE (m¢ = 6 for 3D problemﬂ and m, = 3 for plane strain), and
then orthonormalizing the resulting displacement uctuation elds. These
me elastic modes will be considered as the rsm. basis functions of the
reduced basis:

snp

sparf 1; 2:ii; m.g= Vo (14)

usel *
Once we have at our disposal this set of elastic basis functions, veenpute
the (orthogonal) projection of each snapshat® onto the orthogonal comple-
ment of Vo (which is precisely the aforementioneéhelastic spaceVgih, ):
Xe )
BUT g K=1;2:Ngpp: (15)
i=1

It is now on this ensemble ofinelastic snapshotsfuk gi:¥ that the pre-

viously described POD is applied to obtain the remaininqn, m, basis
functions. Thus, we nally have:

EIasti(} modes \Essential" Irﬂlastic rqodes
V. = Vsnp Vv snp _ f . I { ..... . 16
u— Vuyel u;inel =spant  1; 2,:::5 6 Ty Ny g ( )

’Strictly speaking, the proposed decomposition is only valid for mateials governed by
rate-independent constitutive equations.
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for 3D problems, and

Elastig modes \Essential" inglastic des
flasignodef \Essetjal” nfestc odes
Ny g

Vy =spanf 15 2 3 PSR (17)

for plane strain. In placing the m, elastic modes within the rst m, posi-
tions, the reduced-order model is guaranteed to deliver linear di@ssolutions
with the same accuracy as the underlying (full-order) nite elemenmodel
(obviously, provided thatn, me).

Further details concerning the numerical implementation of this apgr-
ently novel [to the best of the authors' knowledge| basis constr uction
strategy can be found in AppendiXB.

4. Galerkin projection onto the reduced subspace

We now seek to pose the boundary-value problem represented ly. @) in

To this end, we approximate both test 2 V, and trial u 2 V, functions by
the following linear expansions:

ux; m) U (X; m)= | iU (m); (18)

(x) (x) = i(X) i (19)
i=1
u (x) and (x) being the low-dimensional approximations of trial and test
functions, respectively (hereafter, asterisked symbols will beadto denote
low-dimensional approximations of the associated variables). Im8eg Egs.
([@8) and (19) into Eqg.(3), and exploiting the arbitrariness of coe aents
(i=1;2:::ny), we arrive at the following set ofn, equilibrium equations:
Z
rs (x): (x; m+ru;)d=0; i=1;2:::ng: (20)

Expressing now the reduced basis functions in the above gquatiortdamms of
nite element shape functions (through expression(x) = ., N;(X) 1),
we get (in Voigt's notation):
Z
B.'(X) (x; m +B U ;)d= 0; i=1;2:::n; (21)
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or more compactly:
Z

B x) (x; vm +B U ; )d= 0 (22)

Here,U = U; U, U, T 2 R™ denotes the vector containing the
reduceddisplacement uctuations |the basic unknowns of the reduced-oder
problemjand B : ! R® " stands for thereduced\B-matrix", de ned
as:

B (x):=B(x) : (23)

This matrix connects the gradient of the displacement uctuation eld with
the vector of reduced displacement uctuations:

2 o
U

1
X Z i {8y,
réu = BiU = B; B, it B, § . (24)

i=1

U

Nu

=B U =B U:

For implementational purposes, it is more expedient to express HEJ) in
terms of elementalB matrices. To this end, we write:

B®(x); ifx2 °©

B(x)= 0; otherwise

(25)

whereB ¢ 2 RS 94" denotes the locaB -matrix of element € (n, in turn, is
the number of nodes in €). Thus,
B xX)=B(x) =B°x) % (26)

In the above equation, ©2 R " represents the block matrix of corre-
sponding to then, nodes of nite element € (e=1;2:::ny).

5. Stress approximation space

To arrive at an e cient, mesh-size independent integration schemewo
crucial questions have to be addressed, namely, the determinatiof the
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vector space (hereafter denoted by?"") in which the low-dimensional ap-
proximation of the stress eldd should lie in order to obtain an accurate and
at the same time well-posed ROM; and the calculation of the optimal lae

tion of the sampling or integration points Attention here and in the next

section is con ned to the aspect related to the stress approximah space;
the issue related to the selection of sampling points, on the other i is

examined in Sectioril7.

5.1. The reduced-order subspace of statically admissibteesses { )

At rst sight, the problem of constructing a O(n,)-dimensional repre-
sentation of the stress eld seems quite similar to the problem addsged in
Section[3 concerning the reduced basis for the displacement uetions: we
have to nd a set of orthogonal basis functiond (x); »(x)::: » (X)g
(n = O(ny)) such that its span accurately approximates the set of all possi-
ble stress solutions|that is, the set of all statically admissible stressesAc-
cordingly, following the procedure described in Sectidd 3, we rst ogpute
nite element, stress distributions over the RVE for representave macro-
strain historie$l. Then, the elastic/inelastic dimensionality reduction process
set forth in Section[3.2.1l is applied to the resulting ensemble of stresslu-
tionsf (x); 2(x)::: M (x)g, in order to identify both the elastic and the
essentialinelastic stress modes. The space spanned by these modes will be
denoted hereafter byV and termed thereduced-order subspace of statically
admissible stresses

Elastic St}TSS modes 5 \Essential", inelaﬂtic stress modes

Vo =spanf 1(X); 2(X);ii me(X); me+1(X); met2(X);iii; 0 (X)O:
(27)

8|t was mentioned in the introductory section that the central idea of e cient inter-
polatory approaches for numerical integration of reduced-orde BVPs is to replace the
nona ne term in the the integrand by low-dimensional interpolants. In our case, a glance
at the reduced-order equilibrium equation (21) readily reveals thatsuch \o ending", non-
ane term is the stress eld |the reduced B-matrix B = B (x) is independent of the
input parameter  and hence need not be subject to approximation.

9The most practical and somehow consistent choice regarding thesstrain trajectories
is to use the same as in the computation of the displacement uctuaibbns snapshots
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5.2. lll-posedness of the HP-ROM

Let us now try to construct the low-dimensional approximation of he
stress eld, denoted b@ , as a linear combination of the above described
stress reduced basis| hence making/?" = V |; i.e.,

X
(x; m;U ) (x; m;U )= i(X)G( m;U ); (28)

i=1

whereg 2 R (i = 1;2:::n ). This strategy of approximating the o end-
ing, nona ne term in the BVP by a linear combination of pre-computed
basis functions |obtained, in turn, from samples of the nona ne term eval-
uated at the solution| has been successfully applied by several ahbrs, with
no apparent |or at least not reported| computational pitfalls, to a wide
gamut of problems: nonlinear monotonic elliptic and nonlinear parabolic
BPVs [46, 33], nonlinear miscible viscous ngering in porous media [17,]18
uncertainty quanti cation in inverse problems [31], and nonlinear heacon-
duction problems [5, 5], to cite but a few.

However, a closer examination of the the RVE equilibrium problem reats
that, in this case, this \standard" strategy proves completely fuitless, for it
leads to patentlyill-posed reduced-order equations. To show this, let us rst
substitute approximation (28) into Eq.(21):

Z Z
B T(X) (x; m;U )d B T(X) (X; m;U)=

x £ (29)
B T(x) i)d &(wm;U)=o0
i=1
By virtue of Eq.(23), the bracketed integral in the preceding equeon can be
rephrased as:
Z Z
B "(x) ix)d= T BT(x) ix)d ; i=1;2:::n: (30)

Each basis function (x) (i =1;2:::n ) is, by construction, a linear com-
bination of the stress snapshots collected during the oine, nite é&ment

1ONotice that, in keeping with the notational convention introduced in Section[2, the
low-dimensional approximation of the stress eld is represented byattaching an asterisk
to the stress symbol.
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analysis; thus, we can write ; = P jni”lp i 1 (=1;2:::n), ; 2R being
the corresponding coe cients in the linear combination. Inserting he above
equation into Eq.(30) and considering that / (j = 1;2:::ngy) are nite
element stress solutions |and therefore ful Il the nite element equilibrium
equation (8)|, we nally arrive at:

Z

w TZ iF. { |
; BT id =0 i=1:2:::n: (31)
i=1

that is, the integral (30) appearing in the equilibrium equation [(Z0),and
hence, the left-hand side of the equation itself, vanishes identicaliggardless
of the value of the modal coe cientsg 2 R (i =1;2:::n ), and therefore,
regardless of the value of the reduced displacement uctuatiort$ |hence
the ill-posedness.

5.3. Proposed remedy: the expanded space approach

It is clear from the foregoing discussion that the root cause of thé-
posedness lies in the fact that the set of all admissible stress eld¥ |
forms a vector space and, consequently, the POD stress modes; 2 V
(i=1;2:::n) |and any linear combination of them| turn out to be self-
equilibrated elds. Thus, for the reduced-order problem to be wefposed,
the approximation spacev?" cannot be only formed by statically admissible
stresses, butit must also include statically inadmissible elddi.e. stress
functions that do not satisfy the reduced-order equilibrium equain (21).

One plausible route for determining a low-dimensional approximation
space that embraces both statically admissible and statically inadmibte
stresses might be to collect, during the o ine nite element calculatims, not
only converged stresses, but also the unconverged ones |i.e., th® gener-
ated during the corresponding iterative algorithm|, and then perform the
POD-based dimensionality reduction over the whole ensemble of sshapts.
In the present work, however, we pursue an approach that piedes the ne-
cessity of undertaking this computationally laborious and in some aspts
objectionable |there is no guarantee that the span of selected, mconverged
stress snapshots covers the entire space of statically inadmissibleesses|
process. The idea behind the employed approach was originally cawed,
but not fully developed, by the authors in a recent monograph [35]. dtle,
the theory underlying such an idea is further elaborated and casttm the
formalisms of functional analysis.
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5.3.1. Continuum formulation

To originate our considerations from a general standpoint, it pr@s con-
venient rst to rephrase the left-hand side of the reduced-ordesquilibrium
equation Eq.[21) as the action of a certain linear operatd@s : L,() 3! R"
on the streszs eld over the RVE:

B," d= M i, =(G[ I i=1;2:1in: (32)

Invoking now the orthogonal decomposition of,() ® induced by this oper-
ator, one obtains:

L2() °= N(G) sparfB gl ; (33)

whereN (G) stands for the nullspace ofs. Since the RVE equilibrium equa-
tion has a vanishing right-hand side term, it follows thatN (G) is actually
the space ofstatically admissible stress elds Its orthogonal complement,
sparf B ;g , can be therefore construed as the abovementionepace of
statically inadmissible stresses The key fact here is that such a space is
inherently ny-dimensional and, thus, there is no need to perform any dimen
sionality reduction whatsoever oveunconvergedsnapshots to arrive at the
desired basis: the strain-displacement functionsB ;B ,:::B , g themselves
are linearly independent (albeit not orthogonal) and can éneby serve this
very purpose

According to the preceding decomposition, any 2 L,() ° can be re-
solved as (see Figureél 2):

— ad + |n; with ad; in L0 — O; (34)
where 22N (G)and ™ 2 sparfB ;g stand for the statically admissible
and statically inadmissible components of , respectively. Following the
standard approach, the statically admissible component?® |i.e., the stress
solution we wish to calculate for a given inputy, | is forced to lie in the span
of the POD modes ; (i =1;2:::n ) obtained from converged snapshots:

X
ad = i (35)
i=1

Gi2R(i=1;2:::n) being the corresponding modal coe cients. The non-
equilibrated component "™, on the other hand, resides naturally in the span
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of the reduced strain-displacement functions, so we can directlyite|i.e.,
without introducing further approximationsi:

. Xu :

"= B (36)

i=1

with d" 2 R (i = 1;2:::n,). The low-dimensional approximation re-
quired in the proposed integration method, denoted in what followsyb €
(the appended superscript \ex" means \stress approximated irhe expanded
space"), is nally obtained as the sum of EqI(35) and Ed.(36) :

X . Xu _

e = o s Bg": (37)

i=1 j=1
Substituting the above approximation into the equilibrium equation, ae
spanB; B, .B,, )

(Space of statically
inadmissible stresses)

N(G)
(Space of statically
admissible stresses)

—_ span{ ", ;...

(POD stress modrés)

Figure 2: Expanded space approach. The stress approximation sge is expanded so that
it embraces, not only the span of the stress POD modes, but also #hspan of the reduced
strain-displacement functionsfB ;B ,:::B , g. The reduced-order RVE equilibrium prob-
lem boils down to nd the reduced displacement uctuations vector U that makes the
non-equilibrated component ™ to vanish ( ™ (U ; v )= 0).

gets:
Z L Z
B, & = B,'B;d ¢"=0; i=1;2::n: (38)
j=1
SincefB ;B ,:::B , g are linearly independent functions, it becomes imme-
diately clear that the above equations holds only if:

d"(m;U)=0; j=1;2::n (39)
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i.e., if the n, coe cients multiplying B; 2 L,() ° (i =1;2:::n,) are identi-
cally zero. In adopting the proposed integration approach, thushe reduced-
order RVE equilibrium problem (21) is transformed into the problem ofnd-
ing, for a given input macroscopic strain tensory, , the reduced displacement
uctuations vector U 2 R" that makes the non-equilibrated component "
(de ned in Eq.(B8)) to vanish.

In a nutshell, the ill-posedness exhibited by the discrete problem when
adopting the standard approach of using only POD modes isnghated by
expanding the stress approximation space so that it embsedso the span of
the reduced strain-displacement functions(or strain mode@) B, 2Ly)*®
(1=1;2:::ny):

n str modes Ny strajn modes
22 TP 2
V= v sparfB g, =spanf 1; 2::: o ;ByB,iiB,g (40)

5.3.2. Discrete formulation

In typical nite element implementations, both stresses and gradigs
of shape functions are only calculated and stored at the Gauss pisirof
the underlying spatial discretization. For practical reasons, ths} it proves
imperative to reformulate the above explaineagxpanded spacstrategy and
treat both magnitudes as spatially discrete variables, de ned onlytasuch
Gauss points.

The discrete counterparts of the continuously dened elds 2 L,() °
andB; 2 Lp() % (i =1;2:::n,) will be denoted byS 2 R"® and B =
B, B, B,, 2 R"?® ™, and termed the global stress vectqrand
the global matrix of strain modesrespectively. Theglobal stress vectoiS
is constructed by stacking the stress vectors(Xq; ) 2 R® (g=1;2:::ng) at
the Gauss points of the nite element grid into a single column vector:

T .

Si= T(xy) T(xz) T(Xng: ) (41)
Similarly, the global matrix of strain modesB is constructed as:
B = B T(x) B'(x) B "(Xn) : (42)

11 Indeed, functionsB; 2 L,() S (i = 1;2:::ny) can be viewed as uctuating strain
modes, since they are the symmetric gradient of the displacementuctuation modes, see
Eq. 23.
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Having de nitions (1) and (42) at hand, the approximation of Eq.(2)
by Gauss quadrature can be written as:

Z NG
B,"(x) (x;)d WB,; (Xg) (Xq; )=0
i - g=i g ¢} (43)
) B,'WS=0; i=1;2:::n,;
whereW is a diagonal matrix containing the weights at each Gauss point:
3
wil O O 0
0 Wol 0 0
W =g . L . (44)

0 0 0 0 w,l

(here, | denotes thesxs identity matrix). Assuming that wy > 0 (g =
1;2:::ng) |Gauss quadrature rules with negative weights are excluded from
our considerations|, and using the Cholesky decomposition oW (W =
W 2w 2) one can reexpress Edq.(#3) as

B TWS=(B "W ¥)(w¥2s)=o0: (45)

De ning now the weightedglobal stress vector andveightedmatrix of strain
modes as

p

T
an T(Xng’ ) l

(46)

p

=W¥s = "w; T(xg) sz T(x2;)

and
T

B =w>B = PwB "x) PWB T(x)  PwnB T(xn,)
(47)
respectively, and inserting these de nitions into Eql(41), one nallyarrives

at:
B' =0; (48)

or equivalently,
B' =0; i=1;2::n; (49)
which shows that any statically admissibleveightedstress vector is orthog-

onal, in the sense of the standard euclidean inner product, to theeighted
strain modesB, " (i =1;2:::n,).
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Comparing Eq.[@8) with Eq.(32), it becomes clear thaB T plays the
same role as operato6G in Eq.(32). In analogy with Eq.(33), thus, we can
write

R@S=N(B ') RangeB) (50)

whereN (B T) and RangeB ) denote the null space and the range (or column
space) ofB T and B , respectively, and consequently decompose any 2
R"s S as

= ad + in (51)

with 2@ 2N (B ")and ™ 2 Range@ ). As in the continuous case (see
Eq.(39)), the statically admissible component 29 is now approximated by
a linear combination of POD basis vectors obtained from convergetress
snapshot@:

ad — lead i = Cad; (52)

where = 1 2 n denotes the (weighted) stress basis matrix
and c® 2 R" stands for the vector of modal coe cients associated to such
a basis matrix. Likewise, since the non-equilibrated component” pertains
to the column space oB , we can directly write

n =Bch, (53)

wherec™ 2 R"™. The low-dimensional (weighted) stress vector ® required
in the proposed integration method is nally obtained as the sum of ER3)

and Eq.(52).

& = ¢+ Bc; (54)
or in a more compact format:
&= e (55)
where
&= B ; (56)

12The methodology for obtaining these modes using the SVD is similar tohat explained
in Section[3.2 for the displacement uctuation modes.

24



and
(57)

The matrix ® 2 R" s ("v*n ) de ned by Eq.(58) will be hereafter called
the expandedbasis matrix for the (weighted) stresses, whereas2 R" *"u
will be correspondingly termed theexpandedvector of modal coe cients.
Inserting approximation (52) into Eq.(@8), and considering thatB T = 0
and that B 7 is a full rank matrix, one nally arrives at the same equilibrium
condition derived in the continuum case (see E@.139):

c"(U ;: w)= 0: (58)

Once the above equation is solved faJ , the desired equilibrated stress
vector  is obtained by evaluating Eql(5R):

= ¢V ; wm): (59)

6. The High-Performance ROM

The next step in the development of the proposed integration same is to
deduce closed-form expressions for the vectors of modal coients c 2 R"
and c” 2 R"™ in terms of the stress values computed at a set pf= O(n,)
pre-speci ed sampling points(to be chosen among the set of Gauss points of
the underlying nite element mesh). To this end, we need rst to intoduce
some notation and terminology.

6.1. Gappy vectors

Letl =1l 4;12:::1,9 f 1,2  nggdenote the set of indices of sampling
points. Notationally, we write “(;, 2 RP® to designate the subvector of
containing the rows associated to these sampling points; viz.:

P

N T

oy= W Teas) P T W, T(x,;) " (60)
(When confusion is not apt to arise, the parenthetical subscript gicating
the set of sampling indices will be dropped, and we shall simply writ&).
It proves conceptually advantageous to regard thigestricted or \gappy" |

a terminology that goes back to the work of Everson et al.| [28]| stras

vector "y as the result of the application of a certain boolean operator
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Pay:R"%s! RPSoverthe full vector (i.e., " = Py ). Wecall P,
the selection operatorassociated to sampling indices. This operator can
be of course applied to anyy 2 R"° % (z 2 N). For instance, the restricted
matrix of weighted strain modes is de ned a8 := P B . Furthermore, it
is straighforward to show that

PiPiy=1; (61)
(herel is the (ng s)x(ng s) identity matrix) and that
Pi)y(AY )= (P AP [ )(P)Y) (62)

forany A 2 R"S "eSandyY 2 R"eS 2,

6.2. Least-squares t

In the spirit of classical polynomial quadrature, such as Newtondfes
formulae [36], the modal coe cientsc® 2 R" andc™ 2 R™ are determined
by tting the low-dimensional approximation [(54) to the weighted stresses
calculated at the pre-speci ed sampling points. It should be noticethat,
the variable subject to approximation |the stress| being a vector -valued
function, the total number of discrete points to be tted does nbcoincide
with the number of spatial sampling points p), but rather is equal to the
product of such a number times the number of stress componerfs. The
well-posedness of the tting problem, thus, demandsthgt s n +ng, i.e.,
the number of discrete points must be equal or greater than theumber of
parameters to be adjusted. For the equality to hold, botm + n, and p have
to be multiple of s; thus, anexact t is in general not possible for arbitrary
values ofn and ny, and recourse to amapproximate t is to be made. In
this respect, we follow here the standard approach of usingleast-squares
best- t criterion, i.e., minimization of the squares of the deviations btween
\observed" (") and tted ( *%° = "“a+ B b) values (in our context, \ob-
served" signi es \calculated through the pertinent constitutive euation”).
This minimization problem can be stated as:

ad
€= gi” - arg aermitr)lanu K" "a+Bb k (63)

ex —

wherek k stands for the standard euclidean norm. Lef & = P, =

[* B ] be the gappyexpanded basis matrix, and suppose that the sampling
indices| have been chosen so thalt ¢ has full rank, i.e.:

rank(“®)=rank(( " B])=n + ng: (64)
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Then, it can be shown (see, for instance, Refl [23]) that the soluticof
this standard, least-squares problem is provided by the following ater of
coe cients:

c= Cin = nen ; (65)
where .
2 M {
/\exy:z (/\exT/\eX) 1 ~hex T (66)

is the so-calledpseudo-inverseof matrix " €*.

Recall that our ultimate aim is to derive closed-form expressions fof”
and ¢ as functions of *. Thus, it remains to extricate these two sub-
vectors from expression[{65). This can be done by rst partitionig both
M = ~ex"“ex and “e' in terms of the gappy stress basis matri¥ and
the gappy matrix of strain modesB :

" # " #
Cad AT A AT é AT A
Cc= Cin = éTA QTB BT : (67)
Invoking the blockwise inverse formula for 2x2 block symmetric mates [11],
and upon tedious algebra |that has been relegated to AppendiX_C| one
nally arrives at the following expressions forc® and c"

cd= """ B, (68)
cn=s1" | Yo (69)

where "’ denotes the pseudoinverse of the gappy stress basis matfix
/\y:(/\T/\) AT (70)

andS=B8"(01 ") (note that S s invertible by virtue of the hypothesis
represented by Eq[(GH4)).

6.2.1. Reconstruction matrix
Let us rst examine expression[{68) for the modal coe cientx?? |those
that multiply the statically admissiblecomponent of the global stress vector.
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Since, at the solution,c™ = 0, we have that:

ad _ /\Y(A B ZTE): AYA (71

c% = c :
(Notice that this result can also be obtained by directly solving minimiz#on
problem (63) with b = 0). Substitution of this equation into Eq.(59) yields:

= cd= "N=RN, (72)

where T T
R= "= ("M (73)

Inspection of Eq.[72) reveals that the matrixR 2 R"¢® P* de ned above is
the operator that allows one toreconstruct the (weighted) statically admissi-
blestress vector 2 R" S using only the (weighted) stress values'( 2 RP )
calculated at the pre-selected sampling points. For this reason, we shall use
the term weighted reconstruction matrix(or simply reconstruction matrix)
to refer to this operator. It must be emphasized here that this ntax only
depends on the POD stress basis matrix and on the selected sampling
indices| |i.e., it is independent of the input parameter, the macro-strain
v |and, therefore, it can be pre-computed o ine .

6.3. \Hyperreduced" RVE equilibrium equation

As for the expression for the set of \statically inadmissible” coe ciats
¢ 2 R", we know that, at the solution, these coe cients must vanish; this,
from Eq.(69), we have

"W w)=sBT 1 "M MU )= o (74)
SinceS is a nonsingular matrix, the above condition is equivalent to
BT 1 A MNU w)=0: (75)

Furthermore, examination of Eq.{7B) and Eq[(75) readily shows thathe

bracketed term ™ Y in Eq.([75) is nothing but the submatrix of the recon-
struction matrix R formed by the rows associated to sampling points, i.e.:
N

Ay: P(|)( Ay): P(|)R:F$: (76)
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Substitution of expression[(76) into Eql(75) nally leads to:
B (1 R wm)=o (77)

As previously noted (see Figur&l2), the purpose of enforcing catiah
c"(U ; m) = 0 is to ensure that the stress solution lies entirely in the
space of equilibrated stresses. Equation (77) can be viewed, thas the
\hyperreduced" form of the original RVE equilibrium equation.

Observation 6.1. The \hyperreduced" quali er |coined by D. Ryckelynck
[58,159]| is used here to indicate that Eq.(77) is the result é two subsequent
steps of complexity reduction: rstly, in the number of deges of freedom
(when passing from the nite element model to the ROM that ergys stan-
dard Gauss quadrature), and, secondly, in the number of igration points
(when passing from this standard ROM to what we have baptEetHigh-
Performance" ROM ). This double complexity reduction can beetter appre-
ciated by rephrasing both Ed.(77) and the FE equationl (9) infarmat similar
to that of Eq.(48), viz.:

T

2 5
B0 B =8 T""=o0 (78)
and
X
WgB (Xg) (Xg:;)= BT =0; (79)
g=1

respectively (here,B 2 R"s "¢ js the nite element counterpart of B , de-
ned in Eq.(#2)). With Eq.(79), Eq.(48) and Eq.(78) at our disposal, the
abovementioned process of complexity reduction can be sgiichlly repre-
sented as

15treduc. , 2" reduc. HP-ROM
z_ T« o d unu 209 oM ng | up z_T}j\ —{
BT =0 =) BT =0 L) B =0; (80)

13 The term High-Performance, Reduced-Order Model(HP-ROM) is used to highlight
the tremendous gains in performance that a ords this model overthe standard ROM, let
alone over the full-order, nite model. In the numerical example shavn in Section[9, we
report speedup factors of above three order of magnitudes.
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the relation betweerB 2 R"%s "4 B 2 R%S " and B 2 RPS " being
B =B and
B :=(1 R)B8 =(1 R)P|)B; (81)

with p = O(ny) << n 4 = O(n). It is interesting to see how the reduction
in complexity of the RVE equilibrium equation is re ected inthe gradual
reduction of the dimensions of the \B" operators that act ontte weighted
vector of stresses.

6.3.1. Physical interpretation

Aside from a \compressed" version of the original, full-order cell odi-
tion, the hyperreducedequation (77) can be alternatively interpreted as a
balance between \observed" and \ tted" internal forces at theselected sam-
pling points. Such an interpretation becomes readily identi able by raizing
that the product R " appearing in Eq.[ZT) is but the (weighted) vector of
tted stresses at the selected sampling points. Indeed, by virtue of B
and, considering the properties of the selection operatér ), we have that

R"=PHRM=Pyy =": (82)
Using the above equality, Eq[(7]7) is expressible 8™ " = B ™" , or, re-
verting to the original, summation notation as
X
wiB 5) (x:)=  wB (x) (x;): (83)
j2l j2l

Note that both sides of the above equation represent the sameygical
guantity, namely, the sum of internal forces, in reduced coordites, at the
sampling Gauss pointsx; ;X;,  X;,g. The dierence lies in the stresses
employed for computing these internal forces. In the left-handde, they are
calculated using \observed" stresses |[stresses that arises directly from
evaluating the corresponding constitutive equation|, whereas, inthe right-
hand side, \tted" stresses are used |that is, stresses obtained from
tting the approximation constructed using the POD stress basisunctions

1, 2:.. n tothe observed data. Thus, the HP-ROM equilibrium con-
dition (B3) is telling us that, at the solution, the sum of internal forces |at
the pre-selected sampling points| computed using either slerved or tted
stresse®d must coincide

141t should be mentioned in this respect that, in general, (x;; )6 (x;; ) since the
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6.4. Jacobian matrix

Needless to say, the dependence of the stresses on the redweetbr of
reduced displacement uctuationsU is in general non-linear, and, thereby,
an iterative method is required for solving EqL(47). Here we employ ¢hstan-
dard Newton-Raphsomprocedure. The iterative scheme corresponding to this
procedure is given by the following expression (the parentheticalfgerscript
indicates iteration number):

u &=y W g 0 g ®. (84)
where
FO=B80 R)"(m;u®) (85)
and
K =8BT0 R)E(y;U B : (86)

In the above equation,& 2 RPS Ps denotes a block diagonal matrix contain-
ing the algorithmic, constitutive tangent matrices at each sampling qnt:

2 3
Cxi,;) 0 0 0
6 O (')(')C(x'.p;)

6.4.1. Positive de niteness

Because of its relevance in the overall robustness of the propsbseethod,
it is worthwhile at this point to digress and discuss thoroughly the spral
properties of the Jacobian matrix represented by Ed.(86). In pacular, it
would be interesting to ascertain whethepositive de nitenessof the algorith-
mic tangent matricesC (x,,; ); C(x,,; ); C(x,,) at the selected sampling
points, and thus of matrix €, ensures positive de niteness of the Jacobian
matrix K |as it occurs when using classical Gauss quadrature rules with
positive weights|, and, if not, which remedies can be applied to obtainsuch
desirable property.

number of data items to be tted (p s) is always greater than the number of stress modes
(n ). Observed and tted stresses coincide only when the stress véar  one wishes to
approximate pertains to the column space of the stress basis maitt
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Positive de niteness of the Jacobian matrix[(86) requires that théunction
de ned as

FU)=UTK U=(BU)"(1 R)EBU) (88)

be positive for all non-zeroU 2 R"™. SinceB is a full rank matrix |by
virtue of Eq.(64)|, condition F(U) > 0 is equivalent to:

GV)=V'(1 R)Ev>0 (89)

for all non-zeroV 2 Range@ ).

To go further, we need to demonstrate thalR 2 R" S "s s |recall that
R is the matrix that maps the vector of \observed" stresseé' to the vector
of tted stresses” | actually represents an orthogonal projectior@ onto
the column space of the gappy stress basis matrix. This can be shown by
simply noting that R is, on the one hand, symmetric:

I:%T:(/\(/\TA) 1AT)-|-: A(AT/\) TAT= F% (90)
and, on the other hand, idempotent:
2 ANY A /\T/\TII /\T/\{ AT A AT ANANTA AT
RE= (M™M= A ATy anT ATy T ATy anT o g,
(91)

With this property at hand, we can decompose any 2 Range@ ) as
V=Visv? (92)

whereVi = RV 2 Range(") [the component of V along the column space
of “|and V? = (I R)V |the component of V along the orthogonal
complement of Range( ). Introducing the above decomposition into Eq{89),
we arrive at

G=V?'ev?+Vv? Bvi: (93)

While the rst term V?T€V? in the preceding equation is, in virtue of
the positive de niteness of€, eminently positive for all nonzerov? 2 RP s,

nothing can be said in principle about the second terd ? T €V ii: numerical

experience shows that the sign and relative magnitude of this ternepends
further on the chosenset of sampling indiced .

15 R is the so-called \hat" matrix of linear regression models|[52].
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Remark 6.1. From the above observation, it follows that the positive de
niteness of the Jacobian matriXX is determined not only by the spectral
properties of €, but |not surprisingly| also by the number and the location
within the RVE of the sampling points employed in the integiian.

The foregoing remark naturally leads to wonder whether it is possible
to select the sampling indices so as to ensure the positive de niteness of
K (assuming, obviously, that€ enjoys this property). To shed light on this
question, let us rst divide Eq.@3) by V? "€V ? (notice that hypothesis [62)
precludes the possibility ofV ? being zero)

G v? T Bvi

= - =1+ —_=" . (94)
Vv?2Tev? v?2Tev?

Suppose now, for the sake of argument, thdt is also symmetric. Such being
the case, the above equation can be legitimately rewritten as:

- kVik
— ? \/]i ¢. 95
G=1+cos(V”;V )Ckv’-’kc’ (95)
where
) V7V
7iviyg= b 96
cos(V ?; Vi) VARV (96)

In the above equation,h; i symbolizes the inner product de ned by (i.e.,
h;yip = xT Cy), whereask ke denotes the norm associated to such an
inner product (kxk2c = hx;xig). From Eq.(@4), it can be deduced that a
su cient (yet not necessary) condition for G > 0, and thus forK to be
positive de nite, is that )
KV ke
KV 7 ke

<1 (97)

for all nonzeroV 2 Range@ ), or equivalently (settingV = B U):

kRB Ukg
k(I R)B Uke

<1 (98)

for all nonzeroU 2 R,
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Useful guidelines on how to choode so as to make positive de nite the
Jacobian matrix K can be inferred from inequality [9B). Firstly, given a
xed number of sampling pointsp, expression[(9B) indicates that such points
should be selected so that the columns of the gapptrain basis matrix 8 =
P:)yB =[B,B,:::B,]are, loosely speaking, \as orthogonal as possible" to
I:«\’angeqf\*) = Range(”) |the column space of the gappy stressbasis matrix

= P, . Inso doing, the factor de ned as
s
Ku
kR B, k2
fo'=s = =1 ; (99)
k(I R)B K%

i=1

would diminish, and so would, consequently, the left-hand side of ingajity
Eq.(@8). In practice, however, factorf . cannot be used as a criterion for
guiding the selection of sampling points, simply because it is de ned inrtas
of the norm induced by€, and this matrix virtually changes at every time
step and iteration. One has to be content to estimate this factorsing other
norm; for instance, employing the standard euclidean nori k, one gets

s ____
)Qu
kR B, k2 @8
fo fpi= st = F (100)
Xu
(BB k(I R)B ke

wherek kg stands for the Frobenius norm.
Aside from seeking orthogonality betweeB and R, expression[99) sug-
gests that another way of lowering factorf r may be to reduce the ratio

de ned as

_ kRkg
"T K Rke (o0

SinceR and, consequently] q R are matrices representing orthogonal projec-

tions, we have thatkRke = rank(R)= P andkl Rk = P ps n.
Therefore,

L — (102)



Observation 6.2. From the above expression, thus, one can conclude that
increasing the number of sampling pointp while keeping the number of
stress modesn constant also contributes to reduce factofg in EqQ.(@9),
and, hence, to improve the spectral properties (positive deteness) of the
Jacobian matrix K . Notice that this property is totally consistent with the
fact that, in the limiting case of taking all Gauss pointsg= ng), the reduced
matricesR andB degenerate into their full order counterpart® andB , for
which the conditionR B = 0 holds |they span subspaces that are mutually
orthogonal|, hence making fg = fo =0.

7. Selection of sampling points

The last theoretical issue to be discussed in the present work is tee-
lection [among the full set of Gauss points of the underlying nite element
mesh| of appropriate sampling or interpolation points At the very least,
the set of sampling indice$ = fi;i,:::i,g must be chosen so that thgappy
expanded basis matrix has full rank (see sectign 6.2):

rank( ")) = rank([ "y By = n + ny: (103)

Any set of sampling indices ful lling this necessary condition is said to be
admissible

7.1. Optimality criteria

7.1.1. Accuracy

As in any other model reduction problem, the overriding concern vem
choosing the sampling points is thaccuracy of the approximation we would
like to position such points so that maximum similarity between the \high
delity", nite element solution and its reduced-order counterpart is ob-
tained. More speci cally, since the output of interest in our BVP is tle
macroscopicstress response, the aim is to nd the set of sampling points
that minimizes the following error estimate:

v
pxe
Em: ( ;1) := K m! m (5 1)KZ (104)
i=1
where ' = n (' w) denotes the nite element, macroscopic stress

response corresponding to the the th (k =1;2:::ng,) time step of the
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\training" !9 strain trajectory ' ) (j = 1;2:::nhg); @and (1) its
low-dimensional approximation.

Using the Cauchy-Schwarz inequality, and approximating the pertant
integrals by Gauss quadrature, we can write

1% .
Em. 2 v k '(x) '(x; ;1)k?d
i=1
1 % X | |
KW g P g K (105)
i=1 g=1
— 1%np i i 269 — 1 . 2
_vi:lk (k2= SR X (SR
whereX = ' 2 "woand X ( ;1) = Rg)(PyX). The error

estimate for the macroscopic stresses de ned in Hg.(104) is, thusounded
above by the Frobenius norm of the di erence between the (weigid) stress
snapshot matrix X and its oblique projection, X , onto Range( ). This
bound, hereafter designated by , admits the following decompositi

ezzvikx X ?( )k,%+%kx?( Y X ( :1)K3: (106)

X ? being the orthogonal projection of X onto the range of ,ie,X ? =

TX . Note that the rst term of the right-hand side of Eq.(I08) only
depends on the stress basis matrix, but not on the employed samgjiimdices;
it provides, thus, an estimate of thestress truncation error. The term that
actually measures the quality, in terms of accuracy, of a given sdtadmissible
sampling points is the second onel|it provides an (a priori) estimate otthe
stress reconstruction error We shall denote this term bye¢:

gec = %kx () X ( iDke: (107)

For this reason |and also because the cost of evaluating expressidcq.(107)

16The term \training", which, incidentally, is borrowed from the neura | network litera-
ture [3€], is used throughout the text to refer to the o ine generation of snapshots.
This decomposition follows easily from the Pythagorean theorem (jst notice that
T ?
X X 7)=0)
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is independent of the number of Gauss poir@ and therefore signi cantly
lower than in the case of the original error estimatdy. |, we shall use
in what follows €€¢ as error estimator for guiding the selection of sampling
points.

7.1.2. Spectral properties
Yet the optimality of a given set of sampling points cannot be measute
only in terms of accuracy of the approximation. As demonstrated iSec-
tion 6.4, the number and particular placement of such points in uere also
the spectral properties(positive de niteness) of the Jacobian matrix of the
equilibrium equation, and therefore, the convergence charadsics of the
accompanying Newton-Raphson algorithm. We saw that, to preser the
positive de niteness of the full-order Jacobian matrix, one shouldtréve to
choose the sampling indiceb so as to make the factor |de ned previously
in Eq.(T00)|:
KR (1)By ke

fe( sB;l)= k(I IQU))Q(I)kF

(108)

as small as possible.

7.2. Optimization approach: basic and stabilizing samptinpoints

Unfortunately, the minimization of the approximation error repregnted
by expression EQ[(107) and the minimization of EG.(I08) are in genéin-
icting goals. For instance, numerical experiments show that whethe selec-
tion is driven exclusively by accuracy considerations, the resultingadobian
matrix becomes inde nite at certain states of deformation |especally when
inelastic deformations are severe|, leading occasionally to conveegce fail-
ures. These goals must be therefore balanced in order to arriveaat accurate
and at the same time robust solution scheme.

To accomodate these con icting requirements, we propose herbeuristic
strategy that basically consists in treating the minimization of Eq[(1@) and

BIndeed, since is column-wise orthogonal, minimizing Eq.[I07) is equivalent to min-
imizing the di erence between the coe cients of the respective projections. The number
of coe cients is equal to the number of snapshots, which is normallymuch lower than the
number of Gauss points.
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Eq.(L08) as two separated, sequential problems [in the spirit of tke so-
called \greedy" optimization algorithm@ [44]. The set of sampling points is
assumed to be divided into two disjoint subsets and | g:

I =1 [I g: (109)
The rstsubset | = fiy;ip; iy gis obtained as the minimizer of the error
estimation given in Eq.[107Y), viz.:
—_ H rec . .
I arg o rrl1;|2r:1::ngge ( ;K): (110)

Once the set is determined, the remaining sampling indicess = fj1;j2  jp, O
(p + pg = p) are calculated as

| g =arg ot Tg:]::nggfp( Bl [K): (111)
Remark 7.1. It must be noted here that the minimization problem repre-
sented by Eq[(110) is in essence the same problem addressestandard)
interpolatory-based, model reduction approaches for detgning, given a set
of empirical basis functions, the optimal location of assiated interpolations
points. For this reason, we shall refer to the set of points iaing from solving
this minimization problem as thestandard or basic sampling pointgthese
are the Best Interpolation Points of Nguyen et al. [54], or #1\magic points"
of Maday et al. [46].. By contrast, the necessity of introduleg points that
attempt to solve problem[(111) is a consequence of expandimg stress ap-
proximation space in the rst place |the main innovative feature of our
approach|, and it is therefore not present in other model rediction strate-
gies. We shall calff X, (1); Xi5 2 2 X145 (ps)9 the set of stabilizing sampling
points.

The number ofbasic sampling pointanust satisfy the necessary condition
p n =s In general, takingp = n suces to ensure highly satisfactory
approximations. How many, on the other handstabilizing sampling points
have to be added to safely render positive de nite the Jacobian mat |
for at least a representative range of macroscopic state defatons| is a

9A greedy method is any algorithm that solves the problem by making tre locally
optimal choice at each step with the hope of nding the global optimum.
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guestion that can only be answered empirically. In the examples pesged
in the next section, it has been found that a conservative answertis use as
many stabilizing sampling points as displacement basis modegs (= ny).

To deal with the discrete minimization problem [1ID), we have used te
the Hierarchical Interpolation Points (HPI) method proposed by Nguyen et
al. [54]. The essence of this method is to construct, irgaeedyfashion, the set
of indices by solving asequenceof one-dimensional minimization problems.
The minimization problem (I11) is also addressed using a heuristic bdse
on the greedy paradigm. In particular, thek th (k =1;2:::pg) index is
selected by solving the following, one-dimensional minimization problem

lg(k)=arg min fe( ;B ;K(j)) (112a)

j2f 1,2:ingg

K=1 [fl g(1);1s(2) lek 1)jg (112b)

8. Summary

Lastly, for the reader's convenience and easy reference, théimmreduced-
order problem, along with the o ine steps that leads to the the hypereduced
operators appearing in the online problem, are summarized in BoXed &nd
B.2.

9. Numerical results

This section is intended to illustrate the performance and assesstke -
ciency of the proposed model reduction strategy in solving the n&cale BVP
corresponding to a porous metal materialunder plane strain conditions.

9.1. Microstructure description

The voids are elliptical in shape (with eccentricity equal to 0.3), ranaimly
distributed (with porosity equal to 0.3), and have aligned major ax@ranging
in length |according to the cumulative probability distribution displaye d in
gure Blb| from 0.2 to 1.5 mm. The mechanical behavior of the metal matrix
is modeled by a rate-independent, Von Mises elastoplastic model end
with the following non-linear, isotropic hardening saturation law (cosult
Ref. [61] for details on the implementation of this elastoplastic model)

u( )= otH +( 1 o1 exp( )): (118)
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1. Compute FE displacement uctuations and stress snaphots foepre-
sentative, input macro-strain histories. Apply |see AppendixB] th e
elastic/inelastic POD to the resulting snapshot matrices to obtain th
displacement uctuation and stress basis matrices (2 R"9 "v and

2 R"93 " respectively).

2. Calculate the weighted matrix of uctuating strain modesB 2
R" s " using Egs. [Z6) and[(4T7).

3. Select a set of sampling indices optimal for the basis matrices and
B following the procedure sketched in Sectidd 7.

4. Finally, using , B and |, construct the hyperreducedorder matrices
B 2 RPS ™ andT 2 RS PS; the expressions for these matrices read:

B =(1 RB =0 PuHR)P()B) (113)
and 1

T= o Pan Pwl Pl R (114)
whereR = (*'") " and " = P,

Box 8.1: O ine stage. Pre-computation of reduced basis and hyperredude
operators.

Here, , stands for the yield stress, 0 denotes the equivalent plastic
strain; and o =75:0 MPa, ; =100:0 MPa, = 2500:.0 andH = 5000
MP a are material constants. The Young's modulus and Poisson's coe gig
on the other hand, are equal tcE,, = 75GPaand ., = 0:3, respectively
(these material constants corresponds approximately to Alumima).

9.2. RVE and nite element discretization

The size of the RVE was determined by conducting nite element anal-
yses on square domains of increasing size subject to vanishing disptaent
uctuations boundary conditions. It was found that the macrosopic stress
responses calculated under representative macroscopic straaths (stretch-
ing along the longitudinal and transversal directions, and shearipgf all
samples above 20x2tm? were practically indistinguishable. This fact indi-
cates that any subvolume of 20x2@hm? (or greater) can be considered as a
Representative Volume Element (RVE) of the porous material undestudy.
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1. Initial data: U, 2 R"™ (reduced vector of displacement uct
tuations at t,), wm, (macroscopic strain vector att,), and
foa(Xi): w(Xi2)i:o0 ((xi,)g (internal variables at t, at the selected
sampling pointg.

2. Input data: y ,+1 (macroscopic strain vector att,.;)

3. Given the above initial and input data, nd U ,; 2 R" such that

B ""(mn1iUpg)=0; (115)

T

n_ P

= P, ") Pwn Ty ow, T, ) T (116)

(here, (x;,; )denotes the stress vector evaluated at the th sampling
point through the corresponding constitutive equation).

4. Output data: Once Eq.[1I6) has been solved fdy,,,, update the
macroscopic stress vector as

Minsr = T (mnsiUnag): (117)

Box 8.2: Online stage (solution of the hyperreduced-order RVE equilibrium
problem for given macroscopic strains).

The nite element discretization corresponding to the particular 2820
mm? RVE employed in the ensuing simulations is shown in gurgl3.a. The
number of (four-node bilinear) elements is, = 9746, and the number of
nodesn = 11825. The employed quadrature formula, on the other hand,
is the standard 2x2 Gauss rule, the total number of Gauss pointsn@aunt-
ing thus to ng = 4 ne = 38984. To overcome incompressibility issues while
maintaining the displacement-based formulation presented in the @ceding
sections, the commonly known as \B-bar" approach is adopt The con-
stitutive di erential equations are integrated in time using the clasgal (fully

20This means that, in this case, the reduced \B-matrix" B (x) appearing in the for-
mulation of the HP-ROM is not constructed using the gradients of the shape functions,
as indicated by Eq.(Z3), but rather using the modi ed \B-matrix" em anating from the
three- eld Hu-Washizu variational principle [61]
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Figure 3: a) Finite element mesh of the RVE corresponding to the poous metal material.
b) Cumulative probability distribution followed by the length of the por e major axes.

implicit) backward-Euler scheme.

9.3. Sampling of parameter space

x 10
7 =
m———
6 [
% 5L <
,a | _ (I M )xy
L 4r (*w)=0
3 ('w), =0
3 3+
S
3
E 2 7
1 7
B ,
Time step
v Y - M ¥ !
Longitudinal stretching Transversal stretching Shear
(50 snaphots) (50 snaphots) (50 snaphots)

Figure 4: Macro-strain trajectories used for generating the distpcement and stress snap-
shots.
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The rst step in the process of constructing the reduced basis ihe
sampling of the input parameter spacewe saw in Sectiori_3]1 that, in the
ne-scale BVP, this process amounts to seleatepresentative macroscopic
strain histories. The three macroscopic strain historiesnfs; = 3) used in the
case under study are depicted in gurél4. In each of these strairajectories,
one of the (independent) strain components follows a linear ascamgl path
while the magnitude of the other two components is set to zero. Theme
domain for each strain history is discretized intang, = 50 equally spaced
steps, resulting in a total number ofng,, = Npst Ngp = 150 snapshots.

Remark 9.1. The task of sampling the input parameter space is somehow
akin to the experimental process whereby material parameteof standard
phenomenological models are calibrated in a laboratory. this analogy, the
RVE plays the role of the corresponding experimental spe@mn whereas the
macro-strain training trajectories represent the loadingpaths of the pertinent
calibration tests. Hindsight and elementary physical coldgrations can there-
fore aid in restricting the number of strain histories (and Bnce of snapshots)
necessary to characterize the response. For instance, ifetbehavior of the
materials that compose the RVE is governed by rate-indepemd constitutive
models (as in the case at hand), we know beforehand that it st mecessary
to study the response under varying rates of deformation.

Strategies for e ciently sampling the input parameter spacein general
model reduction contexts can be found in Refs. [12,/13, 15]42

9.4. Dimensionality reduction: a priori error analysis

The nite element displacement uctuation and stress elds compuéd at
each time step of the input strain trajectories shown above are ttiplied
by their corresponding weighting matrices N and W ) and stored, in
the snapshot matricesX , 2 R"¢ "s» (n d = 11825 2 = 23650) and
X 2 R"S "sw (n, s = 38984 4 = 155936), respectively. Then, these
matrices are subjected to the SVD-based, elastic/inelastic dimeanality
reduction process sketched in Sectign 3.2.1 |and described more iretil in
Appendix [B] in order to generate an optimal set of basis vectors fo both
the displacements uctuation and stress solution spaces.

To elucidate which of these basis vectors constitute the \esseritianodes
of the response, we plot in Figurgl5 the dimensionless POD truncati@nror
estimates de ned, for the displacement uctuations, as:
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Figure 5: POD truncation error estimates e, (for the displacement uctuations, see
Eq.(IIR)) and " (for the stresses, see EJ.{120)) versus number of basis vecsoem-
ployed in the approximation (n, and n , respectively). The portion between 6 and 11
modes is shown in magni ed form.

KXy X y(nu)ke
; 119

eu(ny) =

and for the stresses:

kX X 7 (n)ke
kX ke ’

& (n ) = (120)

X ,(ny) and X ? (n ) being the orthogonal projection ofX , and X onto
the span of the rst n, and n basis vectors, respectively. It can be ob-
served in Figure[b that both error measures decrease monototigcavith
increasing order of truncation [this is a mere consequence of theptimality
properties of the SVD|, and at approximately the same rate; the decay is
more pronounced from 1 to 6 modes, and becomes more gradu&réafter,
tending asymptotically to zero as the number of modes increasesheltrun-
cation error for both stresses and displacement uctuations at = n, =6
is around 5%. In terms of dimensionality reduction, this means thathie
data contained in the snapshot matrices can be \compressed" tofactor of
(Ny=nsnp) 100 = (6=150) 100 = 4% and still retain 95% of the informa-
tion [the essentialinformation. The rst 6 basis functions (3 elastic and
3 inelastic) for both stresses and displacement uctuations, thefore, are
to be regarded asessentialmodes in the characterization of the mechanical
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a) 1st basis i c) 3rd basis

d) 4th basis i f) 6th basis

Figure 6: Contour plots of the euclidean norm of the rst 6 displacenment uctuations
modes k ik, i =1;2:::5). Deformed shapes are scaled up by a factor of 15.

response of the concerned RVE. By way of illustration, we plot in Figa
the contour plots of the euclidean norm of such éssential displacement
uctuations modes (k ik, i =1;2:::6).

9.5. Sampling points

9.5.1. Basic sampling points

Once the stress and displacement uctuation basis vectors havedn de-
termined, the nexto ine step consists in the selection |among the full set
of nite element Gauss points|of an optimal set of sampling points Fol-
lowing the strategy described in Sectiof 7.2, we carry out such a smien
by rst computing the location of what we have calledbasic sampling points
fXi @)X @ :::X (p)9. To assess the e ciency of the employed Hierar-
chical Interpolation Points Method, abbreviated HIPM, we plot in Figure[4
the estimates for both the POD truncation (shown previously in Figte [5)
and total stress error versus the number of stress modas (in using this
algorithm, it is assumed thatp = n ). The total stress error estimate is
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Figure 7: Estimates for the POD truncation (€"" , see Eq.(120)) and total @, see
Eq.(121)) stress error versus number of basis vectors employed the approximation (n ).
The total error estimate is computed using only the set ofbasic sampling points(e =
e (n ;I ), with p = n ). The portion between 6 and 11 modes is shown in magni ed
form.

de ned as

kX X (n ;I )ke
kX kg

e(n;l ):= (121)

whereX (n ;1 ) denotes theoblique projection (calculated using sampling
points | ) of X onto the span of the rst n basis vectors ( 1; 2::: ).

It can be appreciated in Figure 7 that both the total error and thetrun-

cation error curves are practically coincident, a fact that indicate that the

contribution of the reconstruction error:

P——— kX?(n) X (n:l ke

gec = e grun 2 = X kF (122)

( the error introduced as a result of using onlyp sampling points instead of
the entire set of nite element Gauss points, see Section 7.1.1)negligible
in comparison to the discrepancies due to truncation of the@D basis For
n = p = 6, for instance, the reconstruction error is less than 3% of the
total stress error. In view of these results, it becomes clear thdurther
re nements in the algorithm for selecting the basic samplinpoints are in
principle not necessary: the employed HIPM optimization gbrithm, however
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heuristic, satisfactorily ful lls this purpose If one wishes to lower the stress
approximation error, it is far more e ective to simply increase the lesl of
truncation.

9.5.2. Stabilizing sampling points
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Figure 8: a) Factor f¢ (de ned in EqQ.(99)) versus number of stabilizing sampling points

ps for varying numbers of basic sampling pointsp (with p = n

= ny). b) Minimum

eigenvalue K, (over all time steps and iterations for eachp ) of the symmetric part of
the reduced-order Jacobian matrixK  versus number of stabilizing sampling pointspg .

Concerning what we have termed \stabilizing sampling points”, Figure
8.a contains the graphs, for varying levels of truncation, of faatd r de ned
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in EQ.(100) as a function of the number of stabilizing sampling pointpg .
To study the in uence of including such points on the spectral progrties |
positive de neteness| of the sti ness matrix, these graphs are @companied,
see gure 8.b, by the plots of the minimum eigenvaluek,,, (over all time steps
and iterations for each case) of the symmetric part of the reduderder Ja-
cobian matrix K versuspg. It can be seen thatf ¢ decreases monotonically
as the number of stabilizing sampling points increases, and such amese is
re ected, as theoretically anticipated in Section 6.4.1, in the improvaent of
the spectral properties of the reduced-order Jacobian matrikigher K. as
pg raises). For clarity, the minimum number of stabilizing sampling points
required, for each level of truncation, to render positive de nitek is plot-
ted in Figure 9. From this plot, it can be gleaned that, roughly, the higer

No. of stab. samp. points

o P N W A~ 0 o N
i T

8 9 10 11

IN
a1
o
~

Level of truncation ()

Figure 9: Minimum number of stabilizing sampling points required to make the Jacobian
matrix K de nite positive for each level of truncation n = n, = p (deduced from
Figure 8).

the level of truncation (and thus the number of basic sampling pois}, the
more stabilizing sampling points appear to be needed to ensure thespiive
de niteness of K . Forn = p = 6, adding just one stabilizing sampling
points su ces, while forn = p =11, 7 points are required.

Observation 9.1. The values shown in Figure 9 correspond to the minimum
ps that leads to positive de niteK when the prescribed strain path coincides
with any of the \training" strain trajectory (displayed in Figure 4 ). Unfor-
tunately, there is no guarantee that the Jacobian matrix wialso exhibit this
desirable property for prescribed strain histories di emat from the training
ones. Thus, in view of such uncertainty, and in the interestfaobustness,
it is preferable to stay on the side of \caution" in this regat and use more
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Figure 10: Location within the RVE of the nite elements (marked in re d) that contains
the rst p = pg =6 basic and stabilizing sampling points.

stabilizing sampling points that the minimum number indi¢ad by the analy-
sis based on the training strain trajectories. It is the autbrs' experience that
a \safe" estimate for pg is to simply takepg = p |[that is, equal number
of basic and stabilizing sampling points. In adopting suchrale, the au-
thors have not observed any convergence failures whatspeneither in the
example under consideration nor in other cases not shown &er

The location of the rst p = 6 basic sampling points and the correspond-
ing pg = 6 stabilizing sampling points is depicted in Figure 10.

9.6. A posteriori errors: consistency analysis

The error measures displayed previously in Figures 5 and 7 only deden
on the outcome of the SVD of the snapshot matrices; they can balculated,
thus, before actually constructing the reduced-order model. Error analyses
based on such measures serve the useful purpose of providingrgt hint
of how many stress and displacement uctuations modes are nedde sat-
isfactorily replicate the full-order, nite element solution, and theeby, of
prospectively evaluating theviability of the reduced basis approach itself.

However, thesea priori error estimates do not tell the whole story. Ex-
pression (121) for the stress approximation error presumes thihe stress
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solution at the chosen sampling points is the one provided by the nitele-
ment model, thus ignoring the fact that, actually, in the reduced-@er model,
and for the general case of nonlinear, dissipative materials, thaesds infor-
mation at such points at a given time step is already polluted by trundan
(in displacement uctuations and stresses) and reconstructionn stresses)
errors originated in previous time steps. To quantify the extent towvhich
this amalgam of accumulated errors a ects the predictions furnigd by the
HP-ROM, it is necessary to perform aconsistency analysis

Generally speaking, a reduced basis approximation is said to tensistent
if, in the limit of no truncation, it introduces no additional error in the
solution of the same problem for which the data used in constructintpe
basis functions were acquired [14]. In the BVP under consideratiothus,
consistency implies that, when using as input macro-strain paths ¢hsame
trajectories employed in the \training" process, results obtainedvith the
HP-ROM should converge, a: and n, increase, to the solution furnished
by the full-order, nite element model. This condition can be checkedby

N w
[6)] o
w
a5

— A priori estimation (&9

)
o T = T

— A priori estimation (&0)

~ — A posteriori estimation (§5°") — - A posteriori estimation (&6°")

s
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-
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Disp. fluctuation error (%)

(&)]

o

6 10 14 18 22 26 30 34 9 6 10 14 18 22 26 30 34
Level of truncation (n, =n,) Level of truncation(n, =n,)
(@) (b)

Figure 11: Comparison of the evolution of a priori and a posteriori &or measures versus

the level of truncation (usingny, = n = p = pg). a) Displacement uctuations (see Egs.
119 and 123). b) Stresses (see Egs. 121 and 124)

studying the evolution of the error measures de ned as

ROM

kX X (nu;n ;1)ke
FOM (ng;n ;1) = —2 u ! ; 123
oM (nuin 1) X k. (123)
for the displacement uctuations, and
ROM . .
eROM (nu;n 'l ):= kX X (nu|n || )kF’ (124)

kX ke
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Figure 12: Ratio eR°M =e between the a posteriori and a priori measures for the stress
approximation error against the level of truncation (usingny, = n =p = pg).

for the stresses. ( The superscript \ROM" is appended to highlighthat,
unlike X , andX in Egs. (119) and (121)X /"°™ andX ROM are matrices
of displacement uctuation and stress snapshots computed usirtbe HP-
ROM). Figures 11.a and 11.b contain the graphs of theseposteriori error
measures, along with their respectiva priori counterpartse; (Eq. 119) and
e (Eq. 121), versus the level of truncation. It becomes clear frothese
graphs that consistency, in the sense given above, is observed eénnts of
both displacement uctuations and stresses: the a posteriori l@r measures
ef°M and e*°M mimic essentially the decreasing tendency of their a priori
counterparts e; and e, respectively. It can be seen also that tha priori
error estimations €, and e constitute (rather tight) lower boundsfor their
a posteriori counterparts €2°™ and e*°M | respectively. This can be better
appreciated, for the stresses, in Figure 12, where the rat@f°¥ =e versus
the level of truncation is plotted.

The degree of approximation that can be achieved using the progas
HP-ROM is quanti ed in a more \engineering" fashion in Figure 13, whes
we plot, for the case of the rst training strain history (stretching in the
longitudinal direction), the longitudinal, macroscopic stress-strain curves
computed using the FE model, on the one hand, and the HP-ROM with
ng = = 6;7; 8 modes, on the other hand. Observe that the maximum de-
viation from the FE response when using 6 modes (3 elastic and 3 inélgs
takes place at the onset of plastic yielding and is below 8%; remarkabfs
deformation continues, this deviation gradually diminishes, being pcécally
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Figure 13: Longitudinal macroscopic stress versus longitudinal meroscopic strain com-
puted using FEM and HP-ROM with n = ny, =6,7;8.

(* w), (MPa)

a) Finite element model b) HP-ROM (nS =n, = 6)

Figure 14: Contour plot of transversal stresses computed at th end of the rst \training"
strain history using a) FEM (b) HP-ROM with n = ny = 6. Deformed shapes are
exaggerated (by a factor of 20).

negligible at the end of the process. Furthermore, by just increag the or-
der of truncation ton = n, = 8, di erences between the HP-ROM and the
FEM responses become virtually imperceptible at all levels of defortian.
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Resemblance between HP-ROM and FEM results can also be appreeditn
terms of stress distribution in the contour plots shown in Figure 14Visually,
there are no discernible di erences between the two contour plots

9.7. \Training" errors

The studies presented in the preceding subsections were aimed xdre-
ining the errors incurred in approximating thesnapshot solution spaceV;"
by the reduced-order subspac¥, 2 V3"° spanned by the POD basis vectors
lin the terminology of Section 3.1|, and to check thatwhen V, !V 5", the
solution provided by the HP-ROM converges to that obtained with tie FEM.
But recall that the snapshot spaceV;"™ is but a (presumably representative)
subspace oW, the manifold of V! induced by the parametric dependence
of the ne-scale BVP on the prescribed macroscopic strain histaryConse-
qguently, in general |for an arbitrary input strain trajectory| th e HP-ROM
solution will not converge to the solution provided by the FEM. To corplete
the error assessment analysis, thus, it is necessary to estimaksoahe errors
inherent to the sampling of the parameter space |we call themtraining er-
rors| and judge whether the selected training strain trajectories gererate
a snapshot subspace that is indee@presentativeof such a solution spacé
V,.

Ideally, one should carry out this error assessment by picking upuiged
by some sound, statistically-based procedure, a su ciently largees of strain
paths and by comparing the solutions computed by the FEM and HP-BM
under such input strain paths for varying levels of truncation. Suta degree
of rigor, however, is beyond the scope of the present work. Heree limit
ourselves here to analyze the quality of the HP-ROM approximationbdained
for two di erent input strain histories, nhamely, a uniaxial compression test
and abiaxial loading/unloading test

21To put it in less mathematical terms |by appealing to the the analogy, introduced
in Remark 9.1, between the training of the RVE reduced-order modeand the calibra-
tion of standard phenomenological models| we have \calibrated" ou r HP-ROM using the
training tests displayed previously in Figure 4, and we have shown thathe model is able
to exactly replicate the behavior of the RVE in these tests whenn, = n is su ciently
large. Similarly to the situation encountered when dealing with standad phenomenolog-
ical models, it remains now to assess the capability of the proposed HROM to predict
the behavior of the RVE under conditions di erent from those used in the \calibration"
(training) process.
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Figure 15: a) First strain trajectory employed for assessing traifing errors. b) Plot of the
macroscopic error estimatorEf‘,\?M (see Eq.(125)) corresponding to this testing trajectory
versus level of truncation (0 = ny)

9.7.1. Uniaxial compression

The rst strain path employed for the assessment is displayed in Fige
15.a; it represents a monotonic compression in the transversalatition (the
model, see Figure 4, was trained using only stretching and sheart bot com-
pression, tests). For purposes of evaluating the quality of the HROM ap-
proximation, it is convenient to introduce the following macroscopfé stress
error estimate:

I”Z‘stlp Ky Mi;ROM (n Nyl k2. (125)
Pt : ,
in:ST K v ik2

o<

ROM ._
EROM =

where y ' and M“ROM denote the macroscopic stress at the th time step
computed by the FEM and the HP-ROM, respectively. This error egtate
is plotted in Figure 15.b versus the level of truncatiom, = n . Observe
that the error goes to zero as the number of employed modes irase. In
this particular case, thus,there is no additional error due to sampling of the

2?Recall that the output of interest in solving the ne-scale BVP is the macroscopic
stress tensor; thus, the error estimate de ned in Eq.(125) E'?,\S,)M ) provides a more mean-
ingful indication of the quality of the approximation than the stress error measure de ned
previously in Eq.(124) (€R°M ). The latter is more suited for examining convergence prop-
erties of the HP-ROM approximation, since the minimization problem that underlies the
SVD is posed in terms of the Frobenis norm.
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parameter space

Remark 9.2. This simple example ttingly illustrates one of the acclaied
advantages of POD/Galerkin reduced-order approaches owblack box" meth-
ods such as arti cial neural networks |that are also based orthe partitioned
o ine-online computational paradigm|: POD/Galerkin redu ced-order ap-
proaches preserve the \physics" of the problem one wishesrtodel and, as a
consequence, are able to make physically-based extrapiat For instance,
in this case, the reduced-order model is able to exactly iepte (for su -
ciently largen, = n ) the macroscopic compressive behavior of the RVE, even
though no information regarding this deformational stateds been supplied
to the model in the calibration (training) phase; the HP-ROMs \aware",
guratively speaking, that the matrix material in the RVE ekibits similar
behavior in tension and compression (J2 plasticity).

9.7.2. Biaxil loading/unloading test

-3
x 10
47

Macroscopic strain

- 1 1 1 1 1 1 1 1 1 1
AO 20 40 60 80 100 120 140 160 180 200
Time step

Figure 16: Second strain trajectory employed for assessing traing errors.

A more severe test for assessing errors associated to the tragnpmocess is
provided by the strain trajectory shown in Figure 16. Indeed, whiléhe train-
ing strain histories of Figure 4 only included monotonic, uniaxial strehing,
the strain history displayed in Figure 16 consists of a cycle diaxial, load-
ing/unloading stretching (time steps 1 to 100) and biaxial loading/unloading
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Figure 17: a) Macroscopic error estimatorEf‘,\?M (see EQq.(125)) versus level of truncation
(n = ny) for the case of testing trajectory shown in Figure 16,. b) Local peedup factor
Siec (de ned in Eq.(126)) reported for this case versus level of trunation. This plot is
accompanied by the graph of the rationg=p, where ng = 38984 is the total number of
Gauss points of the nite element mesh, andp = 2n the number of sampling points
employed for numerically integrating the HP-ROM.

compression (time steps 101 to 200). The graph of the macrosicogrror esti-
mator (125) corresponding to this input strain path as a function bthe level
of truncation is represented in Figure 17.a. It can be readily perceid that,
in this case, and in contrast to the situation encountered in the pugously
discussed input strain trajectory, the macroscopic stress doest go to zero
as the number of POD modes included in the basis increases. Rathtte
graph drops sharply from 24% to approximately 5% at = n, =5 (second
inelastic mode), and then uctuates erratically, with no apparent tend, be-
tween 3% and 10% |a level of accuracy that, nevertheless, may béeemed
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Figure 18: Longitudinal and transversal macroscopic stress veus longitudinal macro-
scopic strain computed using the FEM and the HP-ROM with n = ny = 6 (for the case
of the testing trajectory shown in Figure 16)

more than acceptable in most practical applications. A more clear pice
of the accuracy of the approximation for the particular case of = n, =6
can be obtained from the stress-strain diagrams shown in gure 18

9.8. Speedup analysis

Lastly, we turn our attention to one of the main concerns of the msent
work: the issue of computational e ciency. For a given error levelhow
many times can the proposed HP-ROM speed up the calculation of tiRVE
response with respect to the reference nite element model? Les dle ne
the local speedup factoras the ratio

tee (N; Ng)
trom (N ;Nu;P)’
where trg and tgrom denote the CPU times required to compute the FE

and HP-ROM macro-stress responses, respectively, induced bgigen input
strain history?® In Figure 17.b, we show the graph of the speedup factor

Sioc 1= (126)

23The computational cost associated to the o ine stage |generatio n of snapshots plus
the comparatively negligible expenses of applying the POD and selecti the sampling
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reported in the the case of the input strain path of Figure 16 as a mation

of the number of POD modes included in the analysis (recall in this respt
that n, = n = p=2). We plot also in Figure 17.b the rationg=p, i.e., the
relation between the total number of integration points in the nite element
model (ny = 38984) and in the reduced order modelp]. It can be gleaned
from Figure 17.b that the reported speedup factors are of the same order of
magnitude as the rationg=p; i.e.:

Sioc n_pg = ZnTg; (127)
(this indicates that the evaluation of the stresses at the integréin points
dominates the total computational cost). Although these resudtare no doubt
in uenced and biased by the particular programming language and ding

style employed |we use an in-house, non-vectorized Matlab progra operat-
ing in a Linux platform|, and, consequently, this trend may not be exactly

observed when using other programming languages and/or platfos, they
serve to provide an idea of the tremendougains in performancethat can be
achieved using the proposed ROM; fan = p = 6 modes, for instance, the
computational cost is reduced by a factor abow&600, while still capturing
95% of the full-order, high- delity information |the essential information

10. Concluding remarks

One of the the most striking features of the proposed reducedder model
is perhaps the conceptual simplicity of the RVE equilibrium equation in g
hyperreduced-order form: the sum of (reduced) internal foes at the pre-
selected sampling points must give identical result either calculatedsing
observedstresses ortted stresses. Although this condition appears, in hind-
sight, rather reasonable, even obvious |it ensures maximum resdotance
between reduced-order and full-order responses at the samplipgints| it
seems di cult to arrive at it without the bene t of the integration pr ocedure
|[based on the notion of expanded approximation spa¢edvocated in the
present paper.

points|has been deliberately ruled out from this speedup analysis because, in two-scale
homogenization contexts, the RVE equilibrium problem is to be solved asheer number of
times and, consequently, this overhead cost is quickly amortized.
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The hyperreduced form of the RVE equilibrium equation excels not tn
in its conceptual simplicity; the corresponding solution scheme is alsery
simple to implement. Taking as departure point an existing FE code, en
only has to replace the typical loop over elements in the FE code by aolm
over the pre-selected sampling pointbx, ;X ,;:::X;,9. The stress vectors
and corresponding constitutive tangent matrices obtained at eAstage of the
loop are stored in the gappy weighted vectof and the matrix €, respec-
tively, and, then the residual vector and the Jacobian matrix aremmputed as
B ""andB '€B, respectively. Notice thatno assembly process is needed
nor has one to worry about imposindpoundary conditions Once convergence
is achieved, the macroscopic stress value is simply calculated as = T".
It should be emphasized again that theperation count in both solving this
hyperreduced RVE equation and updating the macroscopicests vector de-
pends exclusively on the reduced dimensiong and p (number of uctuation
modes and number of sampling points, respectively). Likewisstorage of
history data (internal variables) is only required at the @-selected sampling
points. Computational savings accrue, thus, not only in terms of numbeof
operations, but also in terms of memory requirements.

The success of the proposed homogenization strategy is predéchon the
assumption that displacement and stress elds induced by the pareetric
dependence on the input macroscopic strain can be approximatey (vela-
tively) low-dimensional functions. Numerical results shown in the gceding
section seem to suggest that, in general, this assumption may bepegted
to hold in the case ofmaterials governed by strain hardening laws in the
small strain regime |[regardless of the geometrical complexity, number and
distribution of heterogeneities within the RVE. However, it is by no mans
apparent that this conclusion can be easily extended to more (kinextically
and phenomenologically) complex scenarios, involving large deformoais,
strain localization, decohesion, etc. For instance, can the defoatironal be-
havior of an RVE a ected by multiple propagating cracks be represged
also in a parsimonious manner, as in the case of strain hardening? GHw
the number of modes necessary to accurately replicate its resgencombi-
natorially increase with the number of potential crack paths (i.e., wh the
geometrical complexity of the RVE)? Undoubtedly, in these complexon-
linear scenarios, the task of sampling the parameter space |i.e., ohoosing
the macro-strain histories at which to obtain the snapshots| will become
quite complicated, due to the richness of possible deformational tpans
(void closure, propagating discontinuities ...), and thus di cult to carry out
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on intuitive basis (as it has been done in the present paper). Theoeé, it
would be desirable to systematize this crucial task, as well as to prde some
statistical means tocertify, so to speak, the representativeness of the chosen
snapshots. Likewise, topological variations caused by these pberena may
render POD-based compression algorithms inappropriate for colkipg the
dimensions of the snapshots space; in such cases, nonlinear dimeadity
reduction methods such as the Isomap algorithm [43] may be moratable.
Research in these fronts is currently in progress and will be reped in forth-
coming publications.
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A. Proper Orthogonal Decomposition

The formal statement of the POD problem goes as follows: given the
ensemble of snapshotbu®;u?;:::u"s» g, nd a set of n, <n snp Orthogonal

basis functionsf 1; 2;::0 n,9( i 2 V™) such that the error de ned as
U
pXe (2
eu(ny) = ku P u®ky, (128)
k=1

is minimized. Here,P uk represents the projection ofi* onto the subspace
spanned by the basis functions g, , andk ki,y symbolizes thel, norm.
We shall denote by ; (i = 1;2:::n,) the column vector containing the
values of basis function ; at the nodes of the underlying nite element mesh.
Likewise, the matrix formed by such vectors, = 1 2 2 RNd nu
will be hereafter called thereduced basis matrix

The reduced basis matrix can be computed from the snapshot matrix
Xy by means of the Singular Value Decomposition (SVD) as follows (see
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Ref. [16] for more details). We rst de ne the matrix®*
Z

M,; = N, (X)N;(x)d 5 =1;2:::n: (129)

Let M = M'M be the Cholesky decomposition o1, and let X , denote
the matrix de ned as:
Xy =MXy: (130)

Then, we compute the reduced SVD [37] of ,, that is, the factorization
X,=USV'; (131)

whereV 2 R"w ' (r is the rank of X ;) and U 2 R"¢ " stand for the
matrices ofright and left singular vectors respectively; andS 2 R" ' is a
diagonal matrix containing the singular valuesof X ,. Thei th column of
the reduced basis matrix is nally related to the i th left singular vector
of X , through expression

=M ‘U i=1:2:0ng (132)

B. Elastic/Inelastic reduced basis matrix

This appendix is devoted to provide further details concerning thectual
numerical implementation of the elastic/inelastic partitioned stratgy, pre-
sented in Section 3.2.1, for the computation of theeduced basis matrices
(displacement uctuations). The steps to arrive at the desired maix basis

are summarized in the following.

1. Compute nite element stress solutions for representative, ingp macro-
strain histories.

2. Store the displacement uctuation solutions computed at eachirhe
step of these macro-strain trajectories in the displacement uagtions
snapshot matrixX , 2 R"d Nsw :

X,= Ul U? Y N (133)

24 Note that, except for the density factor, this matrix M is similar to the \mass matrix"
appearing in nite element implementations of dynamical problems. Fa implementational
purposes, one can simply use a lumped version of such a matrix.
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3. Pick up from X ; a minimum of me (M = 6 for 3D problems, and
me = 3 for plane strain) linearly independent columns corresponding
to purely elastic solutions. Store these columns in a matrix ©.

4. Perform thereduced singular value decompositiofsVD) of the matrix
de ned as y

z:=Mz® (134)

where M is the matrix of the Cholesky factorization ofM ( M =
MM ). A basis matrix for Rangeg &) is nally obtained as

pe:=M 'D® (135)

D2 Rnd me being the matrix of left singular vectors arising from the
SVD of Z£'. In principle, D ® may be used as the desired elastic basis
matrix . However,D ¢ does not enjoy any optimality property with
respect to X ,|it is only optimal with respect to the matrix Z ¢ of
chosen elastic snapshots.

5. For consistency in the approximation, thus, it is preferable to dive
from the the \elastic component" of X , |the orthogonal projection
of X , onto RangeD ®)|; the expression for this projection reads:

MX ) (136)

el

T
X s| — DeI(D el

The elastic basis matrix can be nally calculated fromX & as:

1 el

=M (137)

where ' is the matrix of left singular vectors emerging from the re-
duced SVD ofX & := MX & iex &= °©sdye’

6. Calculate the \inelastic component"X " of the snapshot matrix X
as:

Xn=x, Xx¢& (138)
that is, X {j‘ is the orthogonal projection ofX , onto the orthogonal
complement, in RangeX ,), of Range( ®).

7. Itis now on thisinelastic snapshot matrix X ‘u” that we apply the POD
in order to identify and unveil the essentialor most \energetic" inelastic
uctuation modes. This is done by rst carrying out the reduced S\D

of X, = MX ™M
Xin _ DinSinVinT: (139)



Thei th POD basis vector ofX ‘u” is then given by:
n=M 'D"; i=1;2:::n, me (140)

8. The desired basis matrix 2 R"9 "v adopts nally the form:

Elastig modes Essential inglastic modes
— el ing — el e:}I el{ z in in ﬂ in {
- [ ] - [ 1 2 Me 1 2 Ny me] (141)
C. Block matrix pseudoinverse of the expanded basis matrix

The inverse of a 2x2symmetric block matrix is given by the following
expression (see, for instance, Ref. [11]):

1

A B Al+A 1BS IBTA ! A 1BS !
M 1: BT C = SlBTA 1 Sl (142)
where
S=C B'A B (143)

is the so-called Schur complement ok in M. This formula can be used
to derive closed-form expressions for the modal coe cients®® and c" (see
Section 6.2). The departure point is equation Eq.(67):

" " #

1/\T

Cad AT A /\Té

=" BI" =

A .

B"" 878 B"

where ([* B ])Y designates the pseudo-inverse of tlgappy expanded basis
matrix. By setting:

o (144)

A=""" B=""B: Cc=B"8: (145)
and by inserting Eq.(142) into Eq.(144), one obtains upon expansion

cn=s1 BTA M4BT A (146)
and
cd= A l+A IBSIBTA L AT A lBs BT A
Z J { (147)

=AM "y ABST BTA M4BT A
=A TN+ A 1B
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By substituting back Eq.(145) into the above equation, and taking ito ac-
count that:

/\y:(/\T/\) 1InT (148)
one nally gets:
cad= "N By, (149)
cn=s1pg’ | N (150)
where
s=B"q ""MB: (151)
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