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Abstract

A novel model-order reduction technique for the solution of the �ne-scale
equilibrium problem appearing in computational homogenization is presented.
The reduced set of empirical shape functions is obtained using a partitioned
version |that accounts for the elastic/inelastic character of the solution|
of the Proper Orthogonal Decomposition (POD). On the other hand, it is
shown that the standard approach of replacing the nona�ne termby an
interpolant constructed using only POD modes leads to ill-posed formula-
tions. We demonstrate that this ill-posedness can be avoided by enriching
the approximation space with the span of the gradient of the empirical shape
functions. Furthermore, interpolation points are chosen guided,not only by
accuracy requirements, but also by stability considerations. The approach is
assessed in the homogenization of a highly complex porous metal material.
Computed results show that computational complexity is independent of the
size and geometrical complexity of the representative volume element. The
speedup factor is over three orders of magnitude |as compared with �nite
element analysis| whereas the maximum error in stresses is less than10%.
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1. Introduction

1.1. Motivation and goal

The major challenge in the macro-scale continuum description of het-
erogeneous materials such as composites and polycrystalline metals(that
exhibit a clear heterogeneouscomposition at the the micro-, or meso-, scale,
but that can be regarded, for practical purposes, ashomogeneousat the the
macro-scale) lies in the determination of a constitutive connection,between
macro-stresses and macro-strains, that accurately reects the properties and
geometrical arrangement of the distinct phases at the �ner scale. It is well-
known [34] that, under the hypotheses of eitherperiodicity or statistical ho-
mogeneity, on the one hand; andscale separation, on the other hand, this
constitutive link can be systematically established by solving, foreachpoint
at the coarse scale, a boundary value problem (BVP) on a certain represen-
tative microscopic subdomain. In a strain-driven formulation of thisBVP,
the macro-strain at a given point acts as \loading parameter", in the form
of appropriate essential boundary conditions, whereas the associated macro-
stress is obtained through volume averaging |i.e.,homogenization| of the
corresponding micro-stress �eld.

Methods dealing with the solution of this BVP range from purely ana-
lytical approaches todirect computational methods, such as the two-level, Fi-
nite Element (FE2) method [29]. Analytical approaches are computationally
inexpensive, but only valid for certain types of geometrically and constitu-
tively simple micro-structures. By contrast, direct computational methods
have no other limitation in scope than the imposed by the aforementioned
hypotheses of statistical homogeneity and scale separation |in these meth-
ods, the microscopic BVP at each coarse-scale point is attacked using no
other approximation than the spatial discretization of the pertinent solution
strategy, thus, circumventing the need for introducingad-hoc, simplifying as-
sumptions regarding the topological arrangement of the micro-phases and/or
their collective constitutive behavior. Needless to say, the versatility of di-
rect computational homogenization comes at a signi�cant price: itsenormous
computational cost.
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Between these two extremes (purely analytical and direct computational
methods), there are homogenization strategies that can be termed semi-
analytical, since they combine analytical results with numerical computa-
tions. Such is the case of theTransformation Field Analysis (TFA) [25]
and variants thereof [49, 50, 56, 30], which are based on thepre-computation
of certain characteristic operators (strain localization and inuence tensors)
using the information obtained from solving a carefully chosen battery of
�ne-scale BPVs. Although these methods have notably widen the scope
of classical analytical approaches |while maintaining their low computa-
tional cost|, they are still predicated, to a lesser or greater extent, on
ad-hoc assumptions connected with the constitutive description of the in-
volved phases. Consideration of new materials with unstudied compositions
using semi-analytical approaches, thus, requires additional research e�orts
by specialists in the �eld and eventual modi�cations of the corresponding
mathematical and numerical formulations |in contrast to direct computa-
tional homogenization approaches, such as the FE2 method, in which the
formulation is \material-independent", and hence more versatile.

The current state of a�airs in the �eld of two-scale homogenizationseems
to call, thus, for a uni�ed homogenization approach that combines some-
what the advantages of direct computational homogenization andanalytical
and semi-analytical techniques. It would be desirable to have a homogeniza-
tion method with a computational cost virtually independent of the geomet-
ric complexity of the considered representative volume, as in analytical and
semi-analytical techniques. At the same time, it would be also interesting to
arrive at a method whose mathematical formulation dispenses withad-hoc,
simplifying assumptions related with the composition of the heterogeneous
material; i.e, one enjoying the versatility, unrestricted applicability and \user-
friendliness" |insofar as it would totally relieve the modeler from the often
exceedingly di�cult task of visualizing such assumptions | of direct compu-
tational homogenization methods. The goal of the present paperis to show
that these desirable attributes can be achieved, for arbitrarily complex het-
erogeneous materialswell into the inelastic range, by using the so-called [47]
Reduced-Basis(RB) approximation in the solution of the �ne-scale BVPs.

1.2. The reduced-basis method

Generally speaking, the reduced-basis approximation is a class ofGalerkin
approximation procedure that employs, as opposed to the FE method, but
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similarly to classical Rayleigh-Ritz solution techniques [19],globally sup-
ported basis functions. The main di�erence with respect to classical Rayleigh-
Ritz schemes is that these basis functionsor modesare not constructed from
either polynomials or transcendental functions (sines, cosines ...),but rather
are determined from a larger set ofpreviously computed |using the �nite
element (FE) method or other classical solution techniques| solutions of
the BVP at appropriately selected values of the input of interest. These
functions are commonly termedempirical basis functions[41], the quali�er
empirical meaning \derived from computational experiments".

1.2.1. Dimensionality reduction
As noted earlier, the input of interest or \loading" parameter in the�ne-

scale problem is the macro-scale strain tensor. Accordingly, the starting
point for constructing the basis functions consists in solving, usingthe FE
method, a battery of BVPs for various, representativemacro-strain histories.
The outcome of these FE calculations is a data set comprising an ensemble of
hundred or even thousand (depending on the number of time stepsinto which
the strain histories are discretized) displacement �eld solutions (also called
snapshots). Were all these snapshots barely correlated with each other, the
dimension of the manifold spanned by them would prove overly high, render-
ing the entire approach impractical |it would no longer qualify as a truly
reducedbasis method. Fortunately, as we show in the present paper, in gen-
eral, most of these snapshots do display strong linear correlationsbetween
each other |i.e., they have redundant information|, and, in addition , con-
tain deformation modes that areirrelevant to the quality of coarse-scale
predictions. All that is required to obtain a much lower dimensional repre-
sentation of the solution data set, and therewith the desired reduced basis, is
an automatic means to identify and remove this redundant and irrelevant in-
formation, while preserving, as much as possible, itsessential features. The
problem of removing unnecessary complexity from huge data sets so as to
uncover dominant patterns is the central concern of disciplines such as dig-
ital image compression [60] and patter recognition [8], to name but a few,
and thereby many e�cient dimensionality reduction (or data compression,
in more common parlance) algorithms already exist to deal with it. In the
present work, we employ one of the simplest and most popular of these di-
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mensionality reduction algorithms: the Proper Orthogonal Decomposition1

(POD).
It may be inferred from the above that the proposed homogenization

method, like analytical and semi-analytical strategies, does introduce sim-
pli�cations in solving the �ne-scale BVP. However, as opposed to analytical,
and to a lesser extent, semi-analytical procedures, these simpli�cations are
not introduced by the modeler, but rather are automatically carried out by
the abovementioned dimensionality reduction methods (in an o�ine stage,
prior to the overall multiscale analysis). In other words, in the proposed
method, the task of discerning what is essential and what is not2 is entirely
delegated to the computeritself, and hence, its success does not depend upon
the depth of insight, experience, and knowledge base of the modeler |only
some discretion is to be exercised in choosing appropriate strain paths for
the o�ine FE analyses. This feature naturally confers the advantages of
versatility and \user-friendliness" enjoyed by direct computational methods.

1.2.2. Numerical integration
Once the global shape functions have been determined, the next step

is to introduce an e�cient method for numerically evaluating the integrals
appearing in the weak form of the cell BVP. Of course one can simply use
the same Gauss quadrature formulae and the same sampling points (a total
number ofng = O(n), n being the number of mesh nodes) as the underlying
�nite element model. But this would be akin to integrating, say, a third-
order polynomial function using thousand of sampling points|a proigate
waste of computational resources. Since displacement solutions for the cell
BVP are constrained to lie in a reduced-order space of dimensionnu << n ,
it is reasonable to expect that the corresponding stresses, internal forces
and Jacobians will also reside in reduced-order spaces of dimensionsof order
O(nu), and consequently,only p = O(nu) << n g sampling points would
su�ce in principle to accurately evaluate the corresponding integrals. The
challenging questions that have to be confronted are where to locate these
p sampling points and, loosely speaking, how to determine their associated

1By constraining the cell to deform only into the deformation modes determined by
the POD, one automatically obtains a genuinereduced-order model(ROM) of the cell.

2Discerning what is essential and what is not is, according to M.Ashby [4], the key
to any successful computational model (i.e., one that strikes theright balance between
accuracy and simplicity)

5



weighting functions so that maximum accuracy in the integration is attained.
Approaches found in the model reduction literature that, directlyor indi-

rectly, deal with these fundamental questions can be broadly classi�ed either
asinterpolatory methods [7, 33, 54, 18, 5] orGauss-type quadraturestrategies
[3, 39]. In both types of approaches, the integrand or part of theintegrand is
approximated by a linear combination of a reduced set of empirical modes.
In interpolatory approaches, the coe�cients in this approximation are ob-
tained by interpolation at a set of pre-selected sampling points; the criterion
for choosing the location of such points is theminimization of the interpo-
lation error over the �nite element snapshots. In Gauss-type quadrature
procedures, on the other hand, the selection of sampling points and the cal-
culation of the accompanying weighting factors aresimultaneously carried
out, guided by a criterion ofminimum integration error over the snapshots.

In the BVP under consideration, theoutput of interest is the volume av-
erage of the stresses over the cell domain and, therefore, accuracy is required
not only in the integration of the equilibrium equation, but also on the ap-
proximation of the stresses themselves. This is the reason why attention is
focused here on interpolatory integration strategies, the variable subject to
spatial interpolation being precisely the stresses.

1.3. Originality of this work
The idea of exploiting the synergistic combination of multiscale model-

ing and reduced basis approximation is admittedly not new. In the speci�c
context of two-scale homogenization, it has been recently explored by Boy-
aval [10], Yvonnet et al. [62], and Monteiro et al. [51]. Traces of this idea
can also be found in articles dealing with more general hierarchical multi-
scale techniques |that do not presuppose either scale separationor peri-
odicity/statistical homogeneity, or both|, namely, in the multiscale �nite
element method[53, 26, 27], in theheterogeneous multiscale method[2, 1],
and in multiscale approaches based on the Proper Generalized Decomposi-
tion (PGD)[21]. However, it should be noted that none of the above cited
papers confronts the previously described, crucial question of how to e�-
ciently integrate the resulting reduced-order equations, simply because, in
most of them [10, 53, 26, 27, 2, 1], integration is not an issue | the �ne-scale
BVPs addressed in these works bear ana�ne relation with the corresponding
coarse-scale, input parameter, as in linear elasticity, and, consequently, all
integrals can bepre-computed, i.e., evaluatedo�ine , with no impact in the
online computational cost. Thus, the development of reduced-order models
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endowed with e�cient, mesh-size independent integration schemes|able to
handle any material composition| is a research area that, to the best of the
authors' knowledge, still remains uncharted.

1.3.1. Main original contributions
The theory underlying reduced-order models (ROMs) that incorporate

e�cient interpolatory integration schemes is still at its embryonic stage of
development |the �rst general proposal for parametrized BVPs dates back
to 2004 [7]| and many fundamental issues remain to be addressed. Fore-
most among these is the crucial question ofwell-posednessof the resulting
system of algebraic equations: does the replacement of the integrand, ornon-
a�ne term in the integrand, by a reduced-order interpolant always lead to
a well-posed, discrete problem ? Examination of the reduced basis literature
indicates that apparently no researcher has so far been confronted with ill-
posed reduced-order equations, a fact that might certainly promote the view
that uniqueness of solution can be taken for granted whenever the full-order
model is well-posed. Unfortunately, this is not always so: we demonstrate in
this paper that the choice of the reduced-order space in which theinterpolant
of the integrand resides has a profound impact on the well-posedness of the
discrete problem. In particular, we show that, in the case of the �ne-scale
boundary-value problem, the widely adopted [33] approach of determining
the basis functions for this space from (converged) FE snapshots leads in-
variably to ill-posed, discrete formulations. Themain original contribution
of the present work to the �eld of reduced-order modeling is the development
of an interpolatory integration method that safely overcomes this type of ill-
posedness. The gist of the method is toexpand the interpolation space so
that it embraces, aside from the span of the POD stress basis functions,
the space generated |and herein lies the novelty| by the gradient of the
(reduced-order) shape functions. Furthermore, it is shown that, in contrast
to the situation encountered when using standard interpolatory schemes in
other parametrized BVPs [33], in the BVP under consideration, thenumber
and particular placement of sampling points within the integration domain
inuence notably the spectral properties(positive de�niteness) of the Jaco-
bian matrix of the governing equation, and therefore, theconvergence charac-
teristics of the accompanying Newton-Raphson solution algorithm. Another
innovative ingredient of the present paper is a points selection algorithm that
does acknowledge this peculiarity and chooses the desired sampling points
guided, not only by accuracy requirements (minimization of the interpolation
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error over the FE stress snapshot), but also by stability considerations.

2. RVE equilibrium problem

In this section, we present the variational statement and �nite element
discretization of the �ne-scale equilibrium problem, which, recall, is the pa-
rameterized BVP we wish to e�ciently solve using the reduced-basis approx-
imation.

2.1. Preliminaries
Let 
 � Rd (d = 2; 3) be a subvolume of characteristic lengthl << l M

( lM is the characteristic length of the macro-continuum 
M , see Figure 1)
that is representativeof the heterogeneous material as a whole. In micro-
structures that exhibit statistical homogeneity, this domain receives the name
of Representative Volume Element(RVE), whereas in micro-structures that
display periodicity, it is commonly known as repeating unit cell (RUC), or
simply unit cell [24]. In the sequel, the acronym RVE will be used to refer
to 
.

MW
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RVE or !cell"

Cell equilibrium
problem

Figure 1: First-order homogenization.

In the homogenization approach adopted in this work |commonly known
as �rst-order homogenization [32, 40]|, the strain �eld � (x) at any point
x 2 
 is assumed to be decomposed into macroscopic and uctuating contri-
butions; under the hypothesis of in�nitesimal deformations, this decomposi-
tion can be written as:

� (x) = � M + r su(x): (1)
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Here, � M stands3 for the macroscopic strain tensor (theinput parameter in
the problem) and r su denotes the symmetric gradient of thedisplacement
uctuation �eld (this �eld is, in turn, the basic unknownof the problem).

Implicit in the scale separation assumption is the fact that �ne-scalede-
formations only inuence coarse-scale behavior through its volumeaverage
over the RVE. It can be shown (see, for instance, Ref. [22]) that this im-
plies that the boundary conditions (BCs) prescribed on the RVE must be
homogeneous (i.e.,A 0u = 0 on @
, A 0 being a certain linear operator).
The natural choice for a repeating unit cell is to employperiodic boundary
conditions (See Refs. [9, 48] for more details on how to prescribe this type of
BCs). In statistically homogeneous micro-structures, by contrast, there is a
certain latitude in the choice of boundary conditions (vanishing uctuations,
uniform tractions, quasi-periodic conditions . . . ). In the examplesshown
later, vanishing boundary conditions are used (u = 0 on @
).

2.2. Variational formulation

2.2.1. Trial and test spaces
The trial space, i.e., theset of kinematically admissible displacement uc-

tuation �elds, is de�ned formally as

Vu =
�

u 2 H 1(
) d j A 0u = 0; on @

	

; (2)

where H 1(
) d stands for the Sobolev space of functions possessing square
integrable derivatives over 
. Note that this set forms avector space. Since
the test functions � appearing in the variational statement shown in the
following are kinematically admissible variations(� := u � v ; u; v 2 Vu ),
Vu having structure of vector space implies that, in the RVE equilibrium
problem, the spaces of trial and test functions coincide.

2.2.2. Formal statement
Consider a time discretization of the interval of interest [t0; t f ] =

S nstp
n=1 [tn ; tn+1 ].

The current value of the microscopic stress tensor� n+1 at eachx 2 
 is pre-
sumed to be entirely determined by, on the one hand, the current value of the

3Macroscopic variables will be identi�ed by appending a subscript \M", while variables
associated to the �ne scale will be designated by bare symbols. For instance, we shall
write � M and � (x) to denote the macroscopic strain tensor and the �ne-scale strain �eld,
respectively.
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microscopic strain tensor� n+1 (x) = � M n+1 + r su n+1 (x), and, on the other
hand, a set of microscopic internal variables� n+1 |that encapsulate the his-
tory of microscopic deformations. The relationship between these variables
is established by (phenomenological) rate constitutive equations; these equa-
tions may vary from point to point within the RVE (multiphase materials).
Likewise, the considered RVE may contain also voids distributed all over the
domain. The (incremental) RVE equilibrium problem at time tn+1 can be
stated as follows (see Ref. [22]): given theinitial data f u n (x); � M n ; � n(x)g
and the prescribed macroscopic strain tensor� M n+1 , �nd u n+1 2 Vu such
that Z



r s� : � n+1 (� M n+1 + r su n+1 ; � n+1 ) d
 = 0 ; (3)

for all � 2 Vu. The actual output of interest in this �ne-scale BVP is not
the displacement uctuation �eld per se, but rather the macroscopic stress
tensor � M jn+1 , which is de�ned as the volume average over the RVE of the
microscopic stresses:

� M jn+1 :=
1
V

Z



� n+1 d
 ; (4)

where V stands for the volume of the RVE. In order to keep the notation
uncluttered, the superindex \n+1" will be hereafter dropped outand all
quantities will be assumed to be evaluated at timetn+1 ; only when confusion
is apt to show up, the pertinent distinction will be introduced.

2.3. Finite element formulation

Let 
 =
S ne

n=1 
 e be a �nite element discretization of the RVE. It will
be assumed that this discretization is �ne enough to consider the exact and
FE approximated solutions indistinguishable at the accuracy level ofinter-
est. Let f N1(x); N2(x) : : : Nn (x)g (n denotes the number of nodes of the
discretization) be a set ofshape functionsassociated to this discretization.
Now we approximateu 2 Vu and � 2 Vu as

u(x; � M ) � u (h)(x; � M ) =
nX

I =1

N I (x)U I (� M ); (5)

� (x) � � ( h ) (x) =
nX

I =1

N I (x)� I ; (6)
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where U I 2 Rd and � I 2 Rd (I = 1; 2: : : n) denote the nodal values of the
displacement uctuations and test functions, respectively. Inserting these
approximations in Eq.(3), and exploiting the arbitrariness of coe�cients � I

(I = 1; 2: : : n), one arrives at the following set of discrete equilibrium equa-
tions (repeated indices implies summation):

Z




@NI
@xj

� ij (� M + r su (h) ; � ) d
 = 0 ( i = 1 : : : d; I = 1 : : : n): (7)

Introducing Voigt's notation4, the above equation can be expressed in matrix
format as: Z



B T � (� M + BU ; � ) d
 = 0; (8)

As usual, numerical evaluation of the integral in Eq.(8) is carried outby
Gaussian quadrature:

Z



B T � d
 �

ngX

g=1

wgB T(xg)� (xg; ; ) = 0: (9)

Here, ng = O(n) stands for the total number of Gauss points of the mesh;
wg denotes the weight associated to theg � th Gauss pointxg (this weight
includes both the quadrature weight itself and the corresponding Jacobian
determinant.); and B (xg) and � (xg; ; ) stand for the B-matrix and the stress
vector at Gauss pointxg, respectively.

3. Computation of reduced basis

A basic, intuitive picture of the strategy for computing the reduced basis
onto which to project the RVE equilibrium equation (3) was already given
in the introductory section. In the following, we put the idea behind this
strategy on a more rigorous footing. We begin by noting that, froma func-
tional analysis standpoint, the term model reduction is conceptually akin

4Here, it is convenient to use the so-calledmodi�ed Voigt's notation rather than the
standard one. In the modi�ed Voigt's notation, both stress � and strain � tensors are
represented as column vectors (f � g and f � g, respectively ) in which the shear components
are multiplied by

p
2. The advantage of this notation over the conventional, engineering

Voigt's notation is the equivalence between norms; viz.,k� k =
p

� : � = k f � g k =q
f � gT f � g. The reader is urged to consult [20] for further details on this notation.
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to the more common termmodel discretization, since both connotetransi-
tions from higher-dimensional to lower-dimensional solution spaces. Whereas
model discretizationis used to refer to the (classical) passage from the in�nite
dimensional spaceVu to the �nite element subspaceVh

u � V u, model reduction
denotes a transition from this �nite dimensional spaceVh

u to a signi�cantly
smaller manifoldV�

u � V h
u |the reduced-orderspace. This latter transition

is not carried out directly, but in two sequential steps, namely,sampling of
the input parameter spaceand dimensionality reduction.

3.1. Sampling of the input parameter space

In constructing the �nite element space ofkinematically admissible func-
tions Vh

u , the only restrictions placed on the motion of the mesh nodes are
those imposed at the boundaries. The �nite element solution space,thus,
does not presuppose any constraint on the motion of theinterior nodes of
the mesh.

However, in actuality, interior nodes cannotuctuate freely, indepen-
dently from each other, but they rather move according todeformational
patterns dictated by the constitutive lawsthat govern the mechanical behav-
ior of the distinct phases in the RVE5. This means that the solution of the
�nite element equilibrium equation (3) for given values of the macro-strain
tensor � M actually lives in a smaller subspaceV�

u � V h
u (in the parlance

of model reduction [47, 57],V�
u is the manifold induced by the parametric

dependence of the BVP on the input variables).
Yet, in general, this subspace cannot be precisely determined; onehas to

be content to construct anapproximation of it as the span of the displace-
ment uctuation solutions obtained for a judiciously chosen set ofnhst input
strain histories f t � M

1; t � M
2; : : : t � M

nhst g. Suppose, for simplicity, that each
of these strain histories is discretized into equal number of stepsnstp , and let

u k(x) = u(x; t � M j
i ); k = ( i � 1)nhst + j (10)

denote the displacement uctuation solution at thej � th time step of the
i � th strain history (i = 1; 2: : : nhst , j = 1; 2: : : nstp). The approximating
space forV�

u , henceforth called thesnapshots space, is then de�ned as:

5As noted by Lubliner [45], constitutive laws can be regarded asinternal restrictions
on the kinds of deformation a body can su�er
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Vsnp
u = span

�
u 1(x); u 2(x); : : :u nsnp (x)

	
� V �

u; (11)

nsnp = nstpnhst being the total number of snapshots. The matrix containing,
in columns, the nodal values of these displacement uctuations solutions:

X u =
�
U 1 U 2 � � � U nsnp

�
2 Rn�d� nsnp (12)

will correspondingly be termed the (displacement uctuations)snapshot ma-
trix .

3.2. Dimensionality reduction

The next and de�nitive step in the transition from the high-dimensional
�nite element spaceVh

u to the desired reduced-order spaceV�
u |in which

the �ne-scale BVP is to be �nally posed| is the dimensionality reduction
process, in which, as pointed out in the introductory section, the dominant
deformational patterns of the RVE response are identi�ed and unveiled by
washing out the \inessentials". To accomplish this central task, weemploy
here a partitioned version of theProper Orthogonal Decomposition6.

3.2.1. Elastic/Inelastic reduced basis functions
The Proper Orthogonal Decomposition is nothing but a multidimensional

data �tting procedure intended to obtain a sequence of orthogonal basis func-
tions whose span best approximate the space of snapshots. As such, the POD
is a purely data-drivenprocess |it is \agnostic" to the physical origin of the
data. For instance, for POD basis construction purposes, it is completely
immaterial whether a given snapshot corresponds to a purely linearelastic
solution or to a solution well into the inelastic regime. The task of discrimi-
nating which features of the RVE response areessentialand which are not is
exclusively guided by statistical considerations: if the elastic response hap-
pens to be poorly represented within the snapshot ensemble, the POD may
regard as unimportant the contribution of these snapshots, and, as a conse-
quence, the basis functions with largest associated singular values|i.e., the
essential modes| would hardly contain any information of this range. To
accurately replicate the apparently trivial linear elastic behavior, thus, one
may be forced to take a relatively large number of basis functions, and this

6See Appendix A for a brief description of the POD.
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may translate into a signi�cant increase in the overallonline computational
cost. This fact certainly places the POD-based reduced basis approach at
a competitive disadvantage compared with semi-analytical homogenization
approaches such as the Nonlinear Transformation Field Analysis [50],which
do capture exactly (and e�ortlessly) the linear elastic response ofthe RVE.

To eliminate this shortcoming, we propose here a slightly di�erent strat-
egy for constructing the reduced basis. The essence of the proposal is to
partition the space of snapshotsVsnp

u into elastic (Vsnp
u;el ) and inelastic (Vsnp

u;inel )
subspaces:

Vsnp
u = Vsnp

u;el � V snp
u;inel ; (13)

(� symbolizes direct sum of subspaces [55]) and then obtain the reduced
basis as theunion of the bases for both subspaces. Below, we describe this
strategy more in detail.

The �rst step is to determine an orthogonal basis forVsnp
u;el . One can do this

by simply performing me independent, linear elastic �nite element analysis
of the RVE (me = 6 for 3D problems7, and me = 3 for plane strain), and
then orthonormalizing the resulting displacement uctuation �elds. These
me elastic modes will be considered as the �rstme basis functions of the
reduced basis:

spanf � 1; � 2; : : : ; � meg = Vsnp
u;el : (14)

Once we have at our disposal this set of elastic basis functions, we compute
the (orthogonal) projection of each snapshotu k onto the orthogonal comple-
ment of Vsnp

u;el (which is precisely the aforementionedinelastic spaceVsnp
u;inel ):

u k
inel := u k �

meX

i =1



� i ; u k

�
L 2 (
)

� i ; k = 1; 2: : : nsnp : (15)

It is now on this ensemble ofinelastic snapshotsf u k
inel g

nsnp

k=1 that the pre-
viously described POD is applied to obtain the remainingnu � me basis
functions. Thus, we �nally have:

V�
u = Vsnp

u;el � V snp
u;inel = spanf

Elastic modesz }| {
� 1; � 2; : : : ; � 6;

\Essential" Inelastic modesz }| {
� 7; : : : ; � nu g: (16)

7Strictly speaking, the proposed decomposition is only valid for materials governed by
rate-independent constitutive equations.
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for 3D problems, and

V�
u = spanf

Elastic modesz }| {
� 1; � 2; � 3;

\Essential" inelastic modesz }| {
� 4; : : : ; � nu g: (17)

for plane strain. In placing theme elastic modes within the �rst me posi-
tions, the reduced-order model is guaranteed to deliver linear elastic solutions
with the same accuracy as the underlying (full-order) �nite elementmodel
(obviously, provided that nu � me).

Further details concerning the numerical implementation of this appar-
ently novel |to the best of the authors' knowledge| basis constr uction
strategy can be found in Appendix B.

4. Galerkin projection onto the reduced subspace

We now seek to pose the boundary-value problem represented by Eq.(3) in
the reduced-order spaceV�

u � V h
u spanned by the basis functionsf � 1; � 2; : : : ; � nu g.

To this end, we approximate both test� 2 Vu and trial u 2 Vu functions by
the following linear expansions:

u (x; � M ) � u � (x; � M ) =
nuX

i =1

� i (x)U�
i (� M ); (18)

� (x) � � � (x) =
nuX

i =1

� i (x)� �
i ; (19)

u � (x) and � � (x) being the low-dimensional approximations of trial and test
functions, respectively (hereafter, asterisked symbols will be used to denote
low-dimensional approximations of the associated variables). Inserting Eqs.
(18) and (19) into Eq.(3), and exploiting the arbitrariness of coe�cients � �

i
(i = 1; 2: : : nu), we arrive at the following set ofnu equilibrium equations:

Z



r s� i (x) : � (x; � M + r su � ; � ) d
 = 0 ; i = 1; 2: : : nu: (20)

Expressing now the reduced basis functions in the above equation interms of
�nite element shape functions (through expression� i (x) =

P n
I =1 N I (x)� I i ),

we get (in Voigt's notation):
Z



B �

i
T(x) � (x; � M + B � U � ; � ) d
 = 0; i = 1; 2: : : nu ; (21)
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or more compactly:
Z



B � T(x) � (x; � M + B � U � ; � ) d
 = 0: (22)

Here, U � =
�
U�

1 U�
2 � � � U�

nu

� T
2 Rnu denotes the vector containing the

reduceddisplacement uctuations |the basic unknowns of the reduced-order
problem| and B � : 
 ! Rs� nu stands for thereduced \B-matrix", de�ned
as:

B � (x) := B (x)� : (23)

This matrix connects the gradient of the displacement uctuation �eld with
the vector of reduced displacement uctuations:

r su � =
nuX

i =1

B �
iU

�
i =

B �

z }| {�
B �

1 B �
2 : : : B �

nu

�

U �

z }| {2

6
6
6
4

U�
1

U�
2
...

U�
nu

3

7
7
7
5

= B � U � = B � U � :

(24)

For implementational purposes, it is more expedient to express Eq.(23) in
terms of elementalB � matrices. To this end, we write:

B (x) =
�

B e(x); if x 2 
 e

0; otherwise
(25)

whereB e 2 Rs� d� �ne denotes the localB-matrix of element 
 e (�ne, in turn, is
the number of nodes in 
e). Thus,

B � (x) = B (x)� = B e(x)� e: (26)

In the above equation,� e 2 Rd�ne � nu represents the block matrix of� corre-
sponding to the �ne nodes of �nite element 
 e (e = 1; 2: : : ne).

5. Stress approximation space

To arrive at an e�cient, mesh-size independent integration scheme, two
crucial questions have to be addressed, namely, the determination of the
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vector space (hereafter denoted byVapr
� ) in which the low-dimensional ap-

proximation of the stress �eld8 should lie in order to obtain an accurate and
at the same time well-posed ROM; and the calculation of the optimal loca-
tion of the sampling or integration points. Attention here and in the next
section is con�ned to the aspect related to the stress approximation space;
the issue related to the selection of sampling points, on the other hand, is
examined in Section 7.

5.1. The reduced-order subspace of statically admissible stresses (V�
� )

At �rst sight, the problem of constructing a O(nu)-dimensional repre-
sentation of the stress �eld seems quite similar to the problem addressed in
Section 3 concerning the reduced basis for the displacement uctuations: we
have to �nd a set of orthogonal basis functionsf 	 1(x); 	 2(x) : : : 	 n � (x)g
(n� = O(nu)) such that its span accurately approximates the set of all possi-
ble stress solutions|that is, the set of all statically admissible stresses. Ac-
cordingly, following the procedure described in Section 3, we �rst compute
�nite element, stress distributions over the RVE for representative macro-
strain histories9. Then, the elastic/inelastic dimensionality reduction process
set forth in Section 3.2.1 is applied to the resulting ensemble of stresssolu-
tions f � 1(x); � 2(x) : : : � nsnp (x)g, in order to identify both the elastic and the
essential inelastic stress modes. The space spanned by these modes will be
denoted hereafter byV�

� and termed thereduced-order subspace of statically
admissible stresses:

V�
� = spanf

Elastic stress modesz }| {
	 1(x); 	 2(x); : : : ; 	 me (x);

\Essential", inelastic stress modes
z }| {
	 me+1 (x); 	 me+2 (x); : : : ; 	 n � (x)g:

(27)

8It was mentioned in the introductory section that the central idea of e�cient inter-
polatory approaches for numerical integration of reduced-order BVPs is to replace the
nona�ne term in the the integrand by low-dimensional interpolants. In our case, a glance
at the reduced-order equilibrium equation (21) readily reveals thatsuch \o�ending", non-
a�ne term is the stress �eld |the reduced B -matrix B � = B � (x ) is independent of the
input parameter � M and hence need not be subject to approximation.

9The most practical and somehow consistent choice regarding these strain trajectories
is to use the same as in the computation of the displacement uctuations snapshots
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5.2. Ill-posedness of the HP-ROM
Let us now try to construct the low-dimensional approximation of the

stress �eld, denoted by10 � � , as a linear combination of the above described
stress reduced basis| hence makingVapr

� = V�
� |; i.e.,

� (x; � M ; U � ) � � � (x; � M ; U � ) =
n �X

i =1

	 i (x)ci (� M ; U � ); (28)

where ci 2 R (i = 1; 2: : : n� ). This strategy of approximating the o�end-
ing, nona�ne term in the BVP by a linear combination of pre-computed
basis functions |obtained, in turn, from samples of the nona�ne term eval-
uated at the solution| has been successfully applied by several authors, with
no apparent |or at least not reported| computational pitfalls, to a wide
gamut of problems: nonlinear monotonic elliptic and nonlinear parabolic
BPVs [46, 33], nonlinear miscible viscous �ngering in porous media [17, 18],
uncertainty quanti�cation in inverse problems [31], and nonlinear heat con-
duction problems [5, 6], to cite but a few.

However, a closer examination of the the RVE equilibrium problem reveals
that, in this case, this \standard" strategy proves completely fruitless, for it
leads to patently ill-posed reduced-order equations. To show this, let us �rst
substitute approximation (28) into Eq.(21):

Z



B � T (x) � (x; � M ; U � ) d
 �

Z



B � T (x) � � (x; � M ; U � ) =

n �X

i =1

� Z



B � T (x)	 i (x) d


�
ci (� M ; U � ) = 0:

(29)

By virtue of Eq.(23), the bracketed integral in the preceding equation can be
rephrased as:

Z



B � T (x)	 i (x) d
 = � T

� Z



B T (x)	 i (x) d


�
; i = 1; 2: : : n� : (30)

Each basis function	 i (x) ( i = 1; 2: : : n� ) is, by construction, a linear com-
bination of the stress snapshots collected during the o�ine, �nite element

10Notice that, in keeping with the notational convention introduced in Section 4, the
low-dimensional approximation of the stress �eld is represented byattaching an asterisk
to the stress symbol.
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analysis; thus, we can write	 i =
P nsnp

j =1 � ij � j (i = 1; 2: : : n� ), � ij 2 R being
the corresponding coe�cients in the linear combination. Inserting the above
equation into Eq.(30) and considering that� j (j = 1; 2: : : nsnp) are �nite
element stress solutions |and therefore ful�ll the �nite element equilibrium
equation (8)|, we �nally arrive at:

� T
nsnpX

j =1

� ij

=0z }| {� Z



B T � j d


�
= 0; i = 1; 2: : : n� ; (31)

that is, the integral (30) appearing in the equilibrium equation (29),and
hence, the left-hand side of the equation itself, vanishes identicallyregardless
of the value of the modal coe�cientsci 2 R (i = 1; 2: : : n� ), and therefore,
regardless of the value of the reduced displacement uctuationsU � |hence
the ill-posedness.

5.3. Proposed remedy: the expanded space approach
It is clear from the foregoing discussion that the root cause of theill-

posedness lies in the fact that the set of all admissible stress �elds (V� )
forms a vector space, and, consequently, the POD stress modes	 i 2 V �

(i = 1; 2: : : n� ) |and any linear combination of them| turn out to be self-
equilibrated �elds. Thus, for the reduced-order problem to be well-posed,
the approximation spaceVapr

� cannot be only formed by statically admissible
stresses, butit must also include statically inadmissible �elds|i.e. stress
functions that do not satisfy the reduced-order equilibrium equation (21).

One plausible route for determining a low-dimensional approximation
space that embraces both statically admissible and statically inadmissible
stresses might be to collect, during the o�ine �nite element calculations, not
only converged stresses, but also the unconverged ones |i.e., those gener-
ated during the corresponding iterative algorithm|, and then perform the
POD-based dimensionality reduction over the whole ensemble of snapshots.
In the present work, however, we pursue an approach that precludes the ne-
cessity of undertaking this computationally laborious and in some aspects
objectionable |there is no guarantee that the span of selected, unconverged
stress snapshots covers the entire space of statically inadmissiblestresses|
process. The idea behind the employed approach was originally conceived,
but not fully developed, by the authors in a recent monograph [35]. Here,
the theory underlying such an idea is further elaborated and cast into the
formalisms of functional analysis.
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5.3.1. Continuum formulation
To originate our considerations from a general standpoint, it proves con-

venient �rst to rephrase the left-hand side of the reduced-order equilibrium
equation Eq.(21) as the action of a certain linear operatorG : L2(
) s ! Rnu

on the stress �eld over the RVE:
Z



B �

i
T � d
 = hB �

i; � i L 2(
) = ( G[� ])i i = 1; 2: : : nu : (32)

Invoking now the orthogonal decomposition ofL2(
) s induced by this oper-
ator, one obtains:

L2(
) s = N (G) � spanf B �
ig

nu
i =1 ; (33)

whereN (G) stands for the nullspace ofG. Since the RVE equilibrium equa-
tion has a vanishing right-hand side term, it follows thatN (G) is actually
the space ofstatically admissible stress �elds. Its orthogonal complement,
spanf B �

ig
nu
i =1 , can be therefore construed as the abovementionedspace of

statically inadmissible stresses. The key fact here is that such a space is
inherently nu-dimensional and, thus, there is no need to perform any dimen-
sionality reduction whatsoever overunconvergedsnapshots to arrive at the
desired basis: the strain-displacement functionsf B �

1; B �
2: : : B �

nu
g themselves

are linearly independent (albeit not orthogonal) and can thereby serve this
very purpose.

According to the preceding decomposition, any� 2 L2(
) s can be re-
solved as (see Figure 2):

� = � ad + � in ; with


� ad; � in

�
L 2 (
)

= 0; (34)

where� ad 2 N (G) and � in 2 spanf B �
ig

nu
i =1 stand for the statically admissible

and statically inadmissible components of� , respectively. Following the
standard approach, the statically admissible component� ad |i.e., the stress
solution we wish to calculate for a given input� M | is forced to lie in the span
of the POD modes	 i (i = 1; 2: : : n� ) obtained from converged snapshots:

� ad � � � =
n �X

i =1

	 i cad
i ; (35)

cad
i 2 R (i = 1; 2: : : n� ) being the corresponding modal coe�cients. The non-

equilibrated component� in , on the other hand, resides naturally in the span
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of the reduced strain-displacement functions, so we can directly write|i.e.,
without introducing further approximations|:

� in =
nuX

i =1

B �
ic

in
i ; (36)

with cin
i 2 R (i = 1; 2: : : nu). The low-dimensional approximation re-

quired in the proposed integration method, denoted in what follows by � ex�

(the appended superscript \ex" means \stress approximated in the expanded
space"), is �nally obtained as the sum of Eq.(35) and Eq.(36) :

� ex� =
n �X

i =1

	 i cad
i +

nuX

j =1

B �
jc

in
j : (37)

Substituting the above approximation into the equilibrium equation, one

* * *
1 2span( , ... )

unB B B

!

ad!

in!

1 2span( , ... )n" " "
s

(Space of statically
admissible stresses)

(Space of statically
inadmissible stresses)

(POD stress modes)

Figure 2: Expanded space approach. The stress approximation space is expanded so that
it embraces, not only the span of the stress POD modes, but also the span of the reduced
strain-displacement functionsf B �

1; B �
2: : : B �

n u
g. The reduced-order RVE equilibrium prob-

lem boils down to �nd the reduced displacement uctuations vector U � that makes the
non-equilibrated component � in to vanish (� in (U � ; � M ) = 0 ).

gets:
Z



B �

i
T � ex� =

nuX

j =1

� Z



B �

i
TB �

j d

�

cin
j = 0; i = 1; 2: : : nu: (38)

Sincef B �
1; B �

2: : : B �
nu

g are linearly independent functions, it becomes imme-
diately clear that the above equations holds only if:

cin
j (� M ; U � ) = 0 ; j = 1; 2: : : nu ; (39)
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i.e., if the nu coe�cients multiplying B �
i 2 L2(
) s (i = 1; 2: : : nu) are identi-

cally zero. In adopting the proposed integration approach, thus,the reduced-
order RVE equilibrium problem (21) is transformed into the problem of�nd-
ing, for a given input macroscopic strain tensor� M , the reduced displacement
uctuations vector U � 2 Rnu that makes the non-equilibrated component� in

(de�ned in Eq.(36)) to vanish.
In a nutshell, the ill-posedness exhibited by the discrete problem when

adopting the standard approach of using only POD modes is eliminated by
expanding the stress approximation space so that it embraces also the span of
the reduced strain-displacement functions(or strain modes11) B �

i 2 L2(
) s

(i = 1; 2: : : nu):

Vapr
� = V�

� � spanf B �
ig

nu
i =1 = spanf

n � stress modesz }| {
	 1; 	 2 : : : 	 n � ;

nu strain modesz }| {
B �

1; B �
2: : : B �

nu
g: (40)

5.3.2. Discrete formulation
In typical �nite element implementations, both stresses and gradients

of shape functions are only calculated and stored at the Gauss points of
the underlying spatial discretization. For practical reasons, thus, it proves
imperative to reformulate the above explainedexpanded spacestrategy and
treat both magnitudes as spatially discrete variables, de�ned only at such
Gauss points.

The discrete counterparts of the continuously de�ned �elds� 2 L2(
) s

and B �
i 2 L2(
) s (i = 1; 2: : : nu) will be denoted by S 2 Rng �s and B � =�

B �
1 B �

2 � � � B �
n u

�
2 Rng �s� nu , and termed the global stress vector, and

the global matrix of strain modes, respectively. Theglobal stress vectorS
is constructed by stacking the stress vectors� (xg; �) 2 Rs (g = 1; 2: : : ng) at
the Gauss points of the �nite element grid into a single column vector:

S :=
�
� T (x1; �) � T (x2; �) � � � � T (xng ; �)

� T
: (41)

Similarly, the global matrix of strain modesB � is constructed as:

B � :=
�
B � T (x1) B � T (x2) � � � B � T (xng )

� T
: (42)

11 Indeed, functions B �
i 2 L 2(
) s (i = 1 ; 2 : : : nu ) can be viewed as uctuating strain

modes, since they are the symmetric gradient of the displacement uctuation modes, see
Eq. 23.

22



Having de�nitions (41) and (42) at hand, the approximation of Eq.(22)
by Gauss quadrature can be written as:

Z



B �

i
T(x)� (x; �) d
 �

ngX

g=1

wgB �
i

T(xg)� (xg; �) = 0

) B �
i

T W S = 0; i = 1; 2: : : nu;

(43)

whereW is a diagonal matrix containing the weights at each Gauss point:

W :=

2

6
6
6
4

w1I 0 0 � � � 0
0 w2I 0 � � � 0
...

...
...

...
...

0 0 0 0 wng I

3

7
7
7
5

(44)

(here, I denotes thesx s identity matrix). Assuming that wg > 0 (g =
1; 2: : : ng) |Gauss quadrature rules with negative weights are excluded from
our considerations|, and using the Cholesky decomposition ofW (W =
W 1=2W 1=2), one can reexpress Eq.(43) as

B � T W S = ( B � T W 1=2)(W 1=2S) = 0: (45)

De�ning now the weightedglobal stress vector andweightedmatrix of strain
modes as

� := W 1=2S =
� p

w1� T (x1; �)
p

w2� T (x2; �) � � � p wng � T (xng ; �)
� T

;
(46)

and

B� := W 1=2B � =
� p

w1B � T (x1)
p

w2B � T (x2) � � � p wng B � T (xng )
� T

(47)

respectively, and inserting these de�nitions into Eq.(41), one �nallyarrives
at:

B� T � = 0; (48)

or equivalently,
B�

i
T � = 0; i = 1; 2: : : nu; (49)

which shows that any statically admissibleweightedstress vector is orthog-
onal, in the sense of the standard euclidean inner product, to theweighted
strain modesB�

i
T (i = 1; 2: : : nu).
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Comparing Eq.(48) with Eq.(32), it becomes clear thatB� T plays the
same role as operatorG in Eq.(32). In analogy with Eq.(33), thus, we can
write

Rng �s = N (B� T ) � Range(B� ) (50)

whereN (B� T ) and Range(B� ) denote the null space and the range (or column
space) ofB� T and B� , respectively, and consequently decompose any� 2
Rng �s as

� = � ad + � in (51)

with � ad 2 N (B� T ) and � in 2 Range(B� ). As in the continuous case (see
Eq.(35)), the statically admissible component� ad is now approximated by
a linear combination of POD basis vectors obtained from converged stress
snapshots12:

� ad � � � =
n �X

i =1

cad
i 	 i = 	 cad; (52)

where 	 =
�
	 1 	 2 � � � 	 n �

�
denotes the (weighted) stress basis matrix

and cad 2 Rn � stands for the vector of modal coe�cients associated to such
a basis matrix. Likewise, since the non-equilibrated component� in pertains
to the column space ofB� , we can directly write

� in = B� cin ; (53)

wherecin 2 Rnu . The low-dimensional (weighted) stress vector� ex� required
in the proposed integration method is �nally obtained as the sum of Eq.(53)
and Eq.(52).

� � � ex� = 	 cad + B� cin ; (54)

or in a more compact format:

� ex� = 	 exc: (55)

where
	 ex :=

�
	 B�

�
; (56)

12The methodology for obtaining these modes using the SVD is similar to that explained
in Section 3.2 for the displacement uctuation modes.
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and

c =
�
cad

cin

�
: (57)

The matrix 	 ex 2 Rng �s� (nu + n � ) de�ned by Eq.(56) will be hereafter called
the expandedbasis matrix for the (weighted) stresses, whereasc 2 Rn � + nu

will be correspondingly termed theexpandedvector of modal coe�cients.
Inserting approximation (54) into Eq.(48), and considering thatB� T 	 = 0
and that B� T is a full rank matrix, one �nally arrives at the same equilibrium
condition derived in the continuum case (see Eq. 39):

cin (U � ; � M ) = 0: (58)

Once the above equation is solved forU � , the desired equilibrated stress
vector � � is obtained by evaluating Eq.(52):

� � = 	 cad(U � ; � M ): (59)

6. The High-Performance ROM

The next step in the development of the proposed integration scheme is to
deduce closed-form expressions for the vectors of modal coe�cients cad 2 Rn �

and cin 2 Rnu in terms of the stress values computed at a set ofp = O(nu)
pre-speci�ed sampling points(to be chosen among the set of Gauss points of
the underlying �nite element mesh). To this end, we need �rst to introduce
some notation and terminology.

6.1. Gappy vectors

Let I = fI 1; I 2 : : : I pg � f 1; 2 � � � ngg denote the set of indices of sampling
points. Notationally, we write �̂ (I ) 2 Rp�s to designate the subvector of�
containing the rows associated to these sampling points; viz.:

�̂ (I ) :=
� p

wI 1 �
T (x I 1 ; �)

p
wI 2 �

T (x I 2 ; �) � � � p wI p � T (x I p ; �)
� T

(60)

(When confusion is not apt to arise, the parenthetical subscript indicating
the set of sampling indices will be dropped, and we shall simply writê� ).
It proves conceptually advantageous to regard thisrestricted or \gappy" |
a terminology that goes back to the work of Everson et al. [28]| stress
vector �̂ (I ) as the result of the application of a certain boolean operator
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P (I ) : Rng �s ! Rp�s over the full vector � (i.e., �̂ = P (I ) � ). We call P (I )

the selection operatorassociated to sampling indicesI . This operator can
be of course applied to anyY 2 Rng �s� z (z 2 N). For instance, the restricted
matrix of weighted strain modes is de�ned aŝB� := P (I )B� . Furthermore, it
is straighforward to show that

P (I )P
T
(I ) = I ; (61)

(here I is the (ng � s)x(ng � s) identity matrix) and that

P (I )(AY ) = ( P (I )A P T
(I ))(P (I )Y ) (62)

for any A 2 Rng �s� ng �s and Y 2 Rng �s� z.

6.2. Least-squares �t
In the spirit of classical polynomial quadrature, such as Newton-Cotes

formulae [36], the modal coe�cientscad 2 Rn � and cin 2 Rnu are determined
by �tting the low-dimensional approximation (54) to the weighted stresses
calculated at the pre-speci�ed sampling points. It should be noticedthat,
the variable subject to approximation |the stress| being a vector -valued
function, the total number of discrete points to be �tted does not coincide
with the number of spatial sampling points (p), but rather is equal to the
product of such a number times the number of stress components(s). The
well-posedness of the �tting problem, thus, demands thatp� s � n� + nu, i.e.,
the number of discrete points must be equal or greater than the number of
parameters to be adjusted. For the equality to hold, bothn� + nu and p have
to be multiple of s; thus, an exact �t is in general not possible for arbitrary
values ofn� and nu, and recourse to anapproximate �t is to be made. In
this respect, we follow here the standard approach of using aleast-squares,
best-�t criterion, i.e., minimization of the squares of the deviations between
\observed" (�̂ ) and �tted ( �̂

ex�
= 	̂ a + B̂� b) values (in our context, \ob-

served" signi�es \calculated through the pertinent constitutive equation").
This minimization problem can be stated as:

c =
�
cad

cin

�
= arg min

a2 Rn � ;b2 Rn u
k�̂ �

�
	̂ a + B̂� b

�
k (63)

where k � k stands for the standard euclidean norm. Let̂	 ex = P (I ) 	 ex =
[	̂ B̂� ] be the gappyexpanded basis matrix, and suppose that the sampling
indicesI have been chosen so that̂	 ex has full rank, i.e.:

rank(	̂ ex ) = rank([ 	̂ B̂� ]) = n� + nu: (64)
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Then, it can be shown (see, for instance, Ref. [23]) that the solution of
this standard, least-squares problem is provided by the following vector of
coe�cients:

c =
�
cad

cin

�
= 	̂

exy
�̂ ; (65)

where

	̂
exy

:=

M̂
� 1

z }| {
(	̂ ex T

	̂ ex )� 1 	̂ ex T
(66)

is the so-calledpseudo-inverseof matrix 	̂ ex .
Recall that our ultimate aim is to derive closed-form expressions forcin

and cad as functions of �̂ . Thus, it remains to extricate these two sub-
vectors from expression (65). This can be done by �rst partitioning both

M̂ = 	̂ ex T
	̂ ex and 	̂ ex T

in terms of the gappy stress basis matrix̂	 and
the gappy matrix of strain modesB̂� :

c =
�
cad

cin

�
=

"
	̂

T
	̂ 	̂

T
B̂�

B̂� T
	̂ B̂� T

B̂�

#� 1 "
	̂

T

B̂� T

#

�̂ : (67)

Invoking the blockwise inverse formula for 2x2 block symmetric matrices [11],
and upon tedious algebra |that has been relegated to Appendix C| one
�nally arrives at the following expressions forcad and cin

cad = 	̂
y
(�̂ � B̂� cin ); (68)

cin = S� 1B̂� T
�

I � 	̂ 	̂
y
�

�̂ ; (69)

where 	̂
y

denotes the pseudoinverse of the gappy stress basis matrix	̂ :

	̂
y

= ( 	̂
T
	̂ )� 1	̂

T
(70)

and S := B̂� T
(I � 	̂ 	̂

y
) (note that S is invertible by virtue of the hypothesis

represented by Eq.(64)).

6.2.1. Reconstruction matrix
Let us �rst examine expression (68) for the modal coe�cientscad |those

that multiply the statically admissiblecomponent of the global stress vector.
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Since, at the solution,cin = 0, we have that:

cad = 	̂
y
(�̂ � B̂�

= 0z}|{
cin ) = 	̂

y
�̂ :

(71)

(Notice that this result can also be obtained by directly solving minimization
problem (63) with b = 0). Substitution of this equation into Eq.(59) yields:

� � = 	 cad =

Rz}| {
	 	̂

y
�̂ = R �̂ ; (72)

where
R := 	 	̂

y
= 	 (	̂

T
	̂ )� 1	̂

T
: (73)

Inspection of Eq.(72) reveals that the matrixR 2 Rng �s� p�s de�ned above is
the operator that allows one toreconstruct the (weighted) statically admissi-
blestress vector� � 2 Rng �s using only the (weighted) stress values (̂� 2 Rp�s)
calculated at the pre-selected sampling pointsI . For this reason, we shall use
the term weighted reconstruction matrix(or simply reconstruction matrix)
to refer to this operator. It must be emphasized here that this matrix only
depends on the POD stress basis matrix	 and on the selected sampling
indices I |i.e., it is independent of the input parameter, the macro-strain
� M |and, therefore, it can be pre-computed o�ine .

6.3. \Hyperreduced" RVE equilibrium equation
As for the expression for the set of \statically inadmissible" coe�cients

cin 2 Rnu , we know that, at the solution, these coe�cients must vanish; thus,
from Eq.(69), we have

cin (U � ; � M ) = S� 1B̂� T
�

I � 	̂ 	̂
y
�

�̂ (U � ; � M ) = 0: (74)

SinceS is a nonsingular matrix, the above condition is equivalent to

B̂� T
�

I � 	̂ 	̂
y
�

�̂ (U � ; � M ) = 0: (75)

Furthermore, examination of Eq.(73) and Eq.(75) readily shows that the

bracketed term 	̂ 	̂
y

in Eq.(75) is nothing but the submatrix of the recon-
struction matrix R formed by the rows associated to sampling pointsI , i.e.:

	̂ 	̂
y

= P (I )(	 	̂
y
) = P (I )R = R̂ : (76)
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Substitution of expression (76) into Eq.(75) �nally leads to:

B̂� T
(I � R̂ )�̂ (U � ; � M ) = 0: (77)

As previously noted (see Figure 2), the purpose of enforcing condition
cin (U � ; � M ) = 0 is to ensure that the stress solution lies entirely in the
space of equilibrated stresses. Equation (77) can be viewed, thus, as the
\hyperreduced" form of the original RVE equilibrium equation.

Observation 6.1. The \hyperreduced" quali�er |coined by D. Ryckelynck
[58, 59]| is used here to indicate that Eq.(77) is the result of two subsequent
steps of complexity reduction: �rstly, in the number of degrees of freedom
(when passing from the �nite element model to the ROM that employs stan-
dard Gauss quadrature), and, secondly, in the number of integration points
(when passing from this standard ROM to what we have baptized13 \High-
Performance" ROM ). This double complexity reduction can bebetter appre-
ciated by rephrasing both Eq.(77) and the FE equation (9) in aformat similar
to that of Eq.(48), viz.:

B̂�� T

z }| {
B̂� T

(I � R̂ ) �̂ = B̂�� T
�̂ = 0; (78)

and
ngX

g=1

wgB T(xg)� (xg; ; ) = BT � = 0; (79)

respectively (here,B 2 Rng �s� n�d is the �nite element counterpart ofB� , de-
�ned in Eq.(42)). With Eq.(79), Eq.(48) and Eq.(78) at our disposal, the
abovementioned process of complexity reduction can be symbolically repre-
sented as

FEMz }| {
BT � = 0

1st reduc.
n � d ! nu

=)

Stand. ROMz }| {
B� T � = 0

2nd reduc.
ng ! p
=)

HP-ROMz }| {
B̂�� T

�̂ = 0; (80)

13 The term High-Performance, Reduced-Order Model(HP-ROM) is used to highlight
the tremendous gains in performance that a�ords this model overthe standard ROM, let
alone over the full-order, �nite model. In the numerical example shown in Section 9, we
report speedup factors of above three order of magnitudes.
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the relation betweenB 2 Rng �s� n�d, B� 2 Rng �s� nu and B̂�� 2 Rp�s� nu being
B� = B� and

B̂�� := ( I � R̂ )B̂� = ( I � R̂ )P (I )B� ; (81)

with p = O(nu) << n g = O(n). It is interesting to see how the reduction
in complexity of the RVE equilibrium equation is reected inthe gradual
reduction of the dimensions of the \B" operators that act on the weighted
vector of stresses.

6.3.1. Physical interpretation
Aside from a \compressed" version of the original, full-order cell condi-

tion, the hyperreducedequation (77) can be alternatively interpreted as a
balance between \observed" and \�tted" internal forces at theselected sam-
pling points. Such an interpretation becomes readily identi�able by realizing
that the product R̂ �̂ appearing in Eq.(77) is but the (weighted) vector of
�tted stresses at the selected sampling points. Indeed, by virtue of Eq.(72)
and, considering the properties of the selection operatorP (I ) , we have that

R̂ �̂ = P (I )(R �̂ ) = P (I ) � � = �̂
�
: (82)

Using the above equality, Eq.(77) is expressible aŝB� T
�̂ = B̂� T

�̂
�
, or, re-

verting to the original, summation notation as
X

j 2I

wj B � T(x j )� (x j ; �) =
X

j 2I

wj B � T(x j )� � (x j ; �): (83)

Note that both sides of the above equation represent the same physical
quantity, namely, the sum of internal forces, in reduced coordinates, at the
sampling Gauss pointsf x I 1 ; x I 2 � � � x I p g. The di�erence lies in the stresses
employed for computing these internal forces. In the left-hand side, they are
calculated using \observed" stresses� |stresses that arises directly from
evaluating the corresponding constitutive equation|, whereas, inthe right-
hand side, \�tted" stresses � � are used |that is, stresses obtained from
�tting the approximation constructed using the POD stress basis functions
	 1; 	 2 : : : 	 n � to the observed data. Thus, the HP-ROM equilibrium con-
dition (83) is telling us that, at the solution, the sum of internal forces |at
the pre-selected sampling points| computed using either observed or �tted
stresses14 must coincide.

14It should be mentioned in this respect that, in general, � � (x j ; �) 6= � (x j ; �) since the
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6.4. Jacobian matrix
Needless to say, the dependence of the stresses on the reducedvector of

reduced displacement uctuationsU � is in general non-linear, and, thereby,
an iterative method is required for solving Eq.(77). Here we employ the stan-
dard Newton-Raphsonprocedure. The iterative scheme corresponding to this
procedure is given by the following expression (the parenthetical superscript
indicates iteration number):

U � (k+1) = U � (k) � K � (k) � 1
F � (k) ; (84)

where
F � (k) = B̂� T

(I � R̂ ) �̂ (� M ; U � (k)) (85)

and

K � (k) = B̂� T
(I � R̂ ) Ĉ(� M ; U � (k)) B̂� : (86)

In the above equation,Ĉ 2 Rp�s� p�s denotes a block diagonal matrix contain-
ing the algorithmic, constitutive tangent matrices at each sampling point:

Ĉ :=

2

6
6
6
4

C (x I 1 ; �) 0 0 � � � 0
0 C (x I 2 ; �) 0 � � � 0
...

...
...

...
...

0 0 0 0 C (x I p ; �)

3

7
7
7
5

: (87)

6.4.1. Positive de�niteness
Because of its relevance in the overall robustness of the proposed method,

it is worthwhile at this point to digress and discuss thoroughly the spectral
properties of the Jacobian matrix represented by Eq.(86). In particular, it
would be interesting to ascertain whetherpositive de�nitenessof the algorith-
mic tangent matricesC (x I 1 ; �); C (x I 2 ; �); � � � C (x I p ) at the selected sampling
points, and thus of matrix Ĉ, ensures positive de�niteness of the Jacobian
matrix K � |as it occurs when using classical Gauss quadrature rules with
positive weights|, and, if not, which remedies can be applied to obtainsuch
desirable property.

number of data items to be �tted ( p� s) is always greater than the number of stress modes
(n� ). Observed and �tted stresses coincide only when the stress vector � one wishes to
approximate pertains to the column space of the stress basis matrix 	
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Positive de�niteness of the Jacobian matrix (86) requires that thefunction
de�ned as

F (U ) = U T K � U = ( B̂� U )T (I � R̂ ) Ĉ(B̂� U ) (88)

be positive for all non-zeroU 2 Rnu . SinceB̂� is a full rank matrix |by
virtue of Eq.(64)|, condition F (U ) > 0 is equivalent to:

G(V ) = V T (I � R̂ ) Ĉ V > 0 (89)

for all non-zeroV 2 Range(̂B� ).
To go further, we need to demonstrate thatR̂ 2 Rng �s� ng �s |recall that

R̂ is the matrix that maps the vector of \observed" stresseŝ� to the vector
of �tted stresses�̂

�
| actually represents an orthogonal projection15 onto

the column space of the gappy stress basis matrix̂	 . This can be shown by
simply noting that R̂ is, on the one hand, symmetric:

R̂
T

= ( 	̂ (	̂
T
	̂ )� 1	̂

T
)T = 	̂ (	̂

T
	̂ )� T 	̂

T
= R̂ (90)

and, on the other hand, idempotent:

R̂
2

= ( 	̂ 	̂
y
)2 = 	̂

= Iz }| {
(	̂

T
	̂ )� 1	̂

T
	̂ (	̂

T
	̂ )� 1	̂

T
= 	̂ (	̂

T
	̂ )� 1	̂

T
= R̂ :

(91)
With this property at hand, we can decompose anyV 2 Range(̂B� ) as

V = V jj + V ? (92)

whereV jj = R̂ V 2 Range(̂	 ) |the component of V along the column space
of 	̂ | and V ? = ( I � R̂ )V |the component of V along the orthogonal
complement of Range(̂	 ). Introducing the above decomposition into Eq.(89),
we arrive at

G = V ? T
ĈV ? + V ? T

ĈV jj : (93)

While the �rst term V ? T ĈV ? in the preceding equation is, in virtue of
the positive de�niteness ofĈ, eminently positive for all nonzeroV ? 2 Rp �s,
nothing can be said in principle about the second termV ? T ĈV jj : numerical
experience shows that the sign and relative magnitude of this term depends
further on the chosenset of sampling indicesI .

15 R̂ is the so-called \hat" matrix of linear regression models [52].
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Remark 6.1. From the above observation, it follows that the positive de�-
niteness of the Jacobian matrixK � is determined, not only by the spectral
properties ofĈ, but |not surprisingly| also by the number and the location
within the RVE of the sampling points employed in the integration.

The foregoing remark naturally leads to wonder whether it is possible
to select the sampling indicesI so as to ensure the positive de�niteness of
K � (assuming, obviously, thatĈ enjoys this property). To shed light on this
question, let us �rst divide Eq.(93) by V ? T ĈV ? (notice that hypothesis (64)
precludes the possibility ofV ? being zero)

�G =
G

V ? T ĈV ?
= 1 +

V ? T ĈV jj

V ? T ĈV ?
: (94)

Suppose now, for the sake of argument, that̂C is also symmetric. Such being
the case, the above equation can be legitimately rewritten as:

�G = 1 + cos(V ? ; V jj )Ĉ
kV jj kĈ

kV ? kĈ

; (95)

where

cos(V ? ; V jj )Ĉ =



V ? ; V jj

�
Ĉ

kV ? kĈkV jj kĈ

: (96)

In the above equation,h�; �i Ĉ symbolizes the inner product de�ned bŷC (i.e.,
hx; y i Ĉ = xT Ĉy), whereask � kĈ denotes the norm associated to such an
inner product (kxk2

Ĉ
= hx; xi Ĉ). From Eq.(94), it can be deduced that a

su�cient (yet not necessary) condition for �G > 0, and thus for K � to be
positive de�nite, is that

kV jj kĈ

kV ? kĈ

< 1 (97)

for all nonzeroV 2 Range(̂B� ), or equivalently (setting V = B̂� U ):

kR̂ B̂� U kĈ

k(I � R̂ )B̂� U kĈ

< 1 (98)

for all nonzeroU 2 Rnu .
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Useful guidelines on how to chooseI so as to make positive de�nite the
Jacobian matrix K � can be inferred from inequality (98). Firstly, given a
�xed number of sampling pointsp, expression (98) indicates that such points
should be selected so that the columns of the gappystrain basis matrix B̂� =
P (I )B� = [ B̂�

1 B̂�
2 : : : B̂�

nu
] are, loosely speaking, \as orthogonal as possible" to

Range(R̂ ) = Range(	̂ ) |the column space of the gappy stressbasis matrix
	̂ = P (I ) 	 . In so doing, the factor de�ned as

f Ĉ :=

s
nuX

i =1

kR̂ B̂�
i k2

Ĉ

s
nuX

i =1

k(I � R̂ )B̂�
i k2

Ĉ

; (99)

would diminish, and so would, consequently, the left-hand side of inequality
Eq.(98). In practice, however, factorf Ĉ cannot be used as a criterion for
guiding the selection of sampling points, simply because it is de�ned in terms
of the norm induced byĈ, and this matrix virtually changes at every time
step and iteration. One has to be content to estimate this factor using other
norm; for instance, employing the standard euclidean normk � k, one gets

f Ĉ � f F :=

s
nuX

i =1

kR̂ B̂�
i k2

s
nuX

i =1

k(I � R̂ )B̂�
i k2

=
kR̂ B̂� kF

k(I � R̂ )B̂� kF

; (100)

wherek � kF stands for the Frobenius norm.
Aside from seeking orthogonality between̂B� and R̂ , expression (99) sug-

gests that another way of lowering factorf F may be to reduce the ratio
de�ned as

� F :=
kR̂ kF

kI � R̂ kF

: (101)

SinceR̂ and, consequently,I � R̂ are matrices representing orthogonal projec-

tions, we have thatkR̂ kF =
q

rank(R̂ ) =
p

n� and kI � R̂ kF =
p

p � s � n� .
Therefore,

� F =
r

n�

p � s � n�
: (102)
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Observation 6.2. From the above expression, thus, one can conclude that
increasing the number of sampling pointsp while keeping the number of
stress modesn� constant also contributes to reduce factorf F in Eq.(98),
and, hence, to improve the spectral properties (positive de�neteness) of the
Jacobian matrix K � . Notice that this property is totally consistent with the
fact that, in the limiting case of taking all Gauss points (p = ng), the reduced
matricesR̂ and B̂� degenerate into their full order counterpartsR and B� , for
which the conditionR B� = 0 holds |they span subspaces that are mutually
orthogonal|, hence making f F = f Ĉ = 0.

7. Selection of sampling points

The last theoretical issue to be discussed in the present work is these-
lection |among the full set of Gauss points of the underlying �nite element
mesh| of appropriate sampling or interpolation points. At the very least,
the set of sampling indicesI = f i1; i2 : : : ipg must be chosen so that thegappy
expanded basis matrix has full rank (see section 6.2):

rank(	̂
ex
(I )) = rank([ 	̂ (I ) B̂�

(I ) ]) = n� + nu: (103)

Any set of sampling indices ful�lling this necessary condition is said to be
admissible.

7.1. Optimality criteria
7.1.1. Accuracy

As in any other model reduction problem, the overriding concern when
choosing the sampling points is theaccuracy of the approximation: we would
like to position such points so that maximum similarity between the \high-
�delity", �nite element solution and its reduced-order counterpart is ob-
tained. More speci�cally, since the output of interest in our BVP is the
macroscopicstress response, the aim is to �nd the set of sampling pointsI
that minimizes the following error estimate:

EM;� (	 ; I ) :=

vu
u
t

nsnpX

i =1

k� M
i � � M

� i (	 ; I )k2; (104)

where � M
i = � M ( t � M k

j ) denotes the �nite element, macroscopic stress
response corresponding to the thek � th (k = 1; 2: : : nstp) time step of the
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\training" 16 strain trajectory t � M
j (j = 1; 2: : : nhst ); and � M

� i (	 ; I ) its
low-dimensional approximation.

Using the Cauchy-Schwarz inequality, and approximating the pertinent
integrals by Gauss quadrature, we can write

EM;�
2 �

1
V

nsnpX

i =1

Z



k� i (x) � � � i (x; 	 ; I )k2 d


�
1
V

nsnpX

i =1

ngX

g=1

k
p

wg� i (xg) �
p

wg� � i (xg; 	 ; I )k2

=
1
V

nsnpX

i =1

k� i � � � i (	 ; I )k22 =
1
V

kX � X � (	 ; I )k2
F

(105)

whereX =
�
� 1 � 2 � � � � nsnp

�
and X � (	 ; I ) = R (I )(P (I )X ). The error

estimate for the macroscopic stresses de�ned in Eq.(104) is, thus, bounded
above by the Frobenius norm of the di�erence between the (weighted) stress
snapshot matrix X and its oblique projection, X � , onto Range(	 ). This
bound, hereafter designated bye� , admits the following decomposition17

e�
2 =

1
V

kX � X �? (	 )k2
F +

1
V

kX �? (	 ) � X � (	 ; I )k2
F ; (106)

X �? being theorthogonal projection of X onto the range of	 , i.e., X �? =
		 T X . Note that the �rst term of the right-hand side of Eq.(106) only
depends on the stress basis matrix, but not on the employed sampling indices;
it provides, thus, an estimate of thestress truncation error. The term that
actually measures the quality, in terms of accuracy, of a given set of admissible
sampling points is the second one|it provides an (a priori) estimate ofthe
stress reconstruction error. We shall denote this term byerec

� :

erec
� :=

1
V

kX �? (	 ) � X � (	 ; I )kF : (107)

For this reason |and also because the cost of evaluating expression Eq.(107)

16The term \training", which, incidentally, is borrowed from the neura l network litera-
ture [38], is used throughout the text to refer to the o�ine genera tion of snapshots.

17This decomposition follows easily from the Pythagorean theorem (just notice that
	 T (X � X �? ) = 0 ).
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is independent of the number of Gauss points18, and therefore signi�cantly
lower than in the case of the original error estimateEM;� |, we shall use
in what follows erec

� as error estimator for guiding the selection of sampling
points.

7.1.2. Spectral properties
Yet the optimality of a given set of sampling points cannot be measured

only in terms of accuracy of the approximation. As demonstrated inSec-
tion 6.4, the number and particular placement of such points inuence also
the spectral properties(positive de�niteness) of the Jacobian matrix of the
equilibrium equation, and therefore, the convergence characteristics of the
accompanying Newton-Raphson algorithm. We saw that, to preserve the
positive de�niteness of the full-order Jacobian matrix, one should strive to
choose the sampling indicesI so as to make the factor |de�ned previously
in Eq.(100)|:

f F (	 ; B� ; I ) =
kR̂ (I )B̂�

(I )kF

k(I � R̂ (I ))B̂�
(I )kF

(108)

as small as possible.

7.2. Optimization approach: basic and stabilizing sampling points

Unfortunately, the minimization of the approximation error represented
by expression Eq.(107) and the minimization of Eq.(108) are in general con-
icting goals. For instance, numerical experiments show that whenthe selec-
tion is driven exclusively by accuracy considerations, the resulting Jacobian
matrix becomes inde�nite at certain states of deformation |especially when
inelastic deformations are severe|, leading occasionally to convergence fail-
ures. These goals must be therefore balanced in order to arrive atan accurate
and at the same time robust solution scheme.

To accomodate these conicting requirements, we propose here aheuristic
strategy that basically consists in treating the minimization of Eq.(107) and

18Indeed, since	 is column-wise orthogonal, minimizing Eq.(107) is equivalent to min-
imizing the di�erence between the coe�cients of the respective projections. The number
of coe�cients is equal to the number of snapshots, which is normallymuch lower than the
number of Gauss points.
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Eq.(108) as two separated, sequential problems |in the spirit of the so-
called \greedy" optimization algorithms19 [44]. The set of sampling points is
assumed to be divided into two disjoint subsetsI � and I B :

I = I � [ I B : (109)

The �rst subset I � = f i1; i2; � � � ip� g is obtained as the minimizer of the error
estimation given in Eq.(107), viz.:

I � = arg min
K�f 1;2:::n g g

erec
� (	 ; K): (110)

Once the setI � is determined, the remaining sampling indicesI B = f j 1; j 2 � � � j pB g
(p� + pB = p) are calculated as

I B = arg min
K�f 1;2:::n g g

f F (	 ; B� ; I � [ K ): (111)

Remark 7.1. It must be noted here that the minimization problem repre-
sented by Eq.(110) is in essence the same problem addressed in (standard)
interpolatory-based, model reduction approaches for determining, given a set
of empirical basis functions, the optimal location of associated interpolations
points. For this reason, we shall refer to the set of points arising from solving
this minimization problem as thestandard or basic sampling points|these
are the Best Interpolation Points of Nguyen et al. [54], or the \magic points"
of Maday et al. [46].. By contrast, the necessity of introducing points that
attempt to solve problem (111) is a consequence of expandingthe stress ap-
proximation space in the �rst place |the main innovative feature of our
approach|, and it is therefore not present in other model reduction strate-
gies. We shall callf x I B (1) ; xI B (2) : : : x I B (pB )g the set of stabilizing sampling
points.

The number ofbasic sampling pointsmust satisfy the necessary condition
p� � n� =s. In general, taking p� = n� su�ces to ensure highly satisfactory
approximations. How many, on the other hand,stabilizing sampling points
have to be added to safely render positive de�nite the Jacobian matrix |
for at least a representative range of macroscopic state deformations| is a

19A greedy method is any algorithm that solves the problem by making the locally
optimal choice at each step with the hope of �nding the global optimum.
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question that can only be answered empirically. In the examples presented
in the next section, it has been found that a conservative answer isto use as
many stabilizing sampling points as displacement basis modes (pB = nu).

To deal with the discrete minimization problem (110), we have used here
the Hierarchical Interpolation Points (HPI) method proposed by Nguyen et
al. [54]. The essence of this method is to construct, in agreedyfashion, the set
of indices by solving asequenceof one-dimensional minimization problems.
The minimization problem (111) is also addressed using a heuristic based
on the greedy paradigm. In particular, thek � th (k = 1; 2: : : pB ) index is
selected by solving the following, one-dimensional minimization problem:

I B (k) = arg min
j 2f 1;2:::n g g

f F (	 ; B� ; K(j )) (112a)

K = I � [ fI B (1); I B (2) � � � I B (k � 1); j g: (112b)

8. Summary

Lastly, for the reader's convenience and easy reference, the online reduced-
order problem, along with the o�ine steps that leads to the the hyperreduced
operators appearing in the online problem, are summarized in Boxes 8.1 and
8.2.

9. Numerical results

This section is intended to illustrate the performance and assess the e�-
ciency of the proposed model reduction strategy in solving the �nescale BVP
corresponding to a porous metal materialunder plane strain conditions.

9.1. Microstructure description
The voids are elliptical in shape (with eccentricity equal to 0.3), randomly

distributed (with porosity equal to 0.3), and have aligned major axes ranging
in length |according to the cumulative probability distribution displaye d in
�gure 3.b| from 0.2 to 1.5 mm. The mechanical behavior of the metal matrix
is modeled by a rate-independent, Von Mises elastoplastic model endowed
with the following non-linear, isotropic hardening saturation law (consult
Ref. [61] for details on the implementation of this elastoplastic model):

� u(� ) = � 0 + �H� + ( � 1 � � 0)(1 � exp(� �� )) : (118)
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1. Compute FE displacement uctuations and stress snaphots forrepre-
sentative, input macro-strain histories. Apply |see Appendix B| th e
elastic/inelastic POD to the resulting snapshot matrices to obtain the
displacement uctuation and stress basis matrices (� 2 Rn�d� nu and
	 2 Rng �s� n � , respectively).

2. Calculate the weighted matrix of uctuating strain modes B� 2
Rng �s� n � using Eqs. (26) and (47).

3. Select a setI of sampling indices optimal for the basis matrices	 and
B� following the procedure sketched in Section 7.

4. Finally, using 	 , B� and I , construct the hyperreduced-order matrices
B̂�� 2 Rp�s� nu and T 2 Rs� p�s; the expressions for these matrices read:

B̂�� = ( I � R̂ )B̂� = ( I � P (I )R )(P (I )B� ) (113)

and
T :=

1
V

� p
w1I

p
w2I � � � p wng I

�
R (114)

whereR = 	 (	̂
T
	̂ )� 1	̂

T
and 	̂ = P (I ) 	 .

Box 8.1: O�ine stage. Pre-computation of reduced basis and hyperreduced
operators.

Here, � u stands for the yield stress,� � 0 denotes the equivalent plastic
strain; and � 0 = 75:0 MP a, � 1 = 100:0 MP a, � = 2500:0 and �H = 5000
MP a are material constants. The Young's modulus and Poisson's coe�cient,
on the other hand, are equal toEm = 75 GP a and � m = 0:3, respectively
(these material constants corresponds approximately to Aluminum).

9.2. RVE and �nite element discretization

The size of the RVE was determined by conducting �nite element anal-
yses on square domains of increasing size subject to vanishing displacement
uctuations boundary conditions. It was found that the macroscopic stress
responses calculated under representative macroscopic strain paths (stretch-
ing along the longitudinal and transversal directions, and shearing) of all
samples above 20x20mm2 were practically indistinguishable. This fact indi-
cates that any subvolume of 20x20mm2 (or greater) can be considered as a
Representative Volume Element (RVE) of the porous material under study.
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1. Initial data : U �
n 2 Rnu (reduced vector of displacement uc-

tuations at tn ), � M n (macroscopic strain vector at tn ), and
f � n(x I 1 ); � n(x I 2 ); : : : � n(x I p )g (internal variables at tn at the selected
sampling points).

2. Input data: � M n+1 (macroscopic strain vector attn+1 )
3. Given the above initial and input data, �nd U �

n+1 2 Rnu such that

B̂�� T
�̂ (� M n+1 ; U �

n+1 ) = 0; (115)

where

�̂ =
� p

wI 1 � T (x I 1 ; �)
p

wI 2 �
T (x I 2 ; �) � � � wI p � T (x I p ; �)

� T
(116)

(here,� (x I i ; �) denotes the stress vector evaluated at thei � th sampling
point through the corresponding constitutive equation).

4. Output data: Once Eq.(116) has been solved forU �
n+1 , update the

macroscopic stress vector as

� M jn+1 = T �̂ (� M n+1 ; U �
n+1 ): (117)

Box 8.2: Online stage (solution of the hyperreduced-order RVE equilibrium
problem for given macroscopic strains).

The �nite element discretization corresponding to the particular 20x20
mm2 RVE employed in the ensuing simulations is shown in �gure 3.a. The
number of (four-node bilinear) elements isne = 9746, and the number of
nodesn = 11825. The employed quadrature formula, on the other hand,
is the standard 2x2 Gauss rule, the total number of Gauss points amount-
ing thus to ng = 4 ne = 38984. To overcome incompressibility issues while
maintaining the displacement-based formulation presented in the preceding
sections, the commonly known as \B-bar" approach is adopted20. The con-
stitutive di�erential equations are integrated in time using the classical (fully

20This means that, in this case, the reduced \B-matrix" B � (x ) appearing in the for-
mulation of the HP-ROM is not constructed using the gradients of the shape functions,
as indicated by Eq.(23), but rather using the modi�ed \B-matrix" em anating from the
three-�eld Hu-Washizu variational principle [61]
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Figure 3: a) Finite element mesh of the RVE corresponding to the porous metal material.
b) Cumulative probability distribution followed by the length of the por e major axes.

implicit) backward-Euler scheme.

9.3. Sampling of parameter space
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Figure 4: Macro-strain trajectories used for generating the displacement and stress snap-
shots.
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The �rst step in the process of constructing the reduced basis is the
sampling of the input parameter space; we saw in Section 3.1 that, in the
�ne-scale BVP, this process amounts to selectrepresentative macroscopic
strain histories. The three macroscopic strain histories (nhst = 3) used in the
case under study are depicted in �gure 4. In each of these strain trajectories,
one of the (independent) strain components follows a linear ascending path
while the magnitude of the other two components is set to zero. Thetime
domain for each strain history is discretized intonstp = 50 equally spaced
steps, resulting in a total number ofnsnp = nhst � nstp = 150 snapshots.

Remark 9.1. The task of sampling the input parameter space is somehow
akin to the experimental process whereby material parameters of standard
phenomenological models are calibrated in a laboratory. Inthis analogy, the
RVE plays the role of the corresponding experimental specimen, whereas the
macro-strain training trajectories represent the loadingpaths of the pertinent
calibration tests. Hindsight and elementary physical considerations can there-
fore aid in restricting the number of strain histories (and hence of snapshots)
necessary to characterize the response. For instance, if the behavior of the
materials that compose the RVE is governed by rate-independent constitutive
models (as in the case at hand), we know beforehand that it is not necessary
to study the response under varying rates of deformation.

Strategies for e�ciently sampling the input parameter spacein general
model reduction contexts can be found in Refs. [12, 13, 15, 42].

9.4. Dimensionality reduction: a priori error analysis

The �nite element displacement uctuation and stress �elds computed at
each time step of the input strain trajectories shown above are multiplied
by their corresponding weighting matrices (�M and W 1=2) and stored, in
the snapshot matrices �X u 2 Rn�d� nsnp (n � d = 11825 � 2 = 23650) and
X 2 Rng �s� nsnp (ng � s = 38984 � 4 = 155936), respectively. Then, these
matrices are subjected to the SVD-based, elastic/inelastic dimensionality
reduction process sketched in Section 3.2.1 |and described more in detail in
Appendix B| in order to generate an optimal set of basis vectors for both
the displacements uctuation and stress solution spaces.

To elucidate which of these basis vectors constitute the \essential" modes
of the response, we plot in Figure 5 the dimensionless POD truncationerror
estimates de�ned, for the displacement uctuations, as:
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Figure 5: POD truncation error estimates ~eu (for the displacement uctuations, see
Eq.(119)) and ~etrun

� (for the stresses, see Eq.(120)) versus number of basis vectors em-
ployed in the approximation (nu and n� , respectively). The portion between 6 and 11
modes is shown in magni�ed form.

~eu(nu) :=
k �X u � �X �

u(nu)kF

k �X ukF
; (119)

and for the stresses:

~etrun
� (n� ) :=

kX � X �? (n� )kF

kX kF
; (120)

�X �
u(nu) and X �? (n� ) being the orthogonal projection of �X u and X onto

the span of the �rst nu and n� basis vectors, respectively. It can be ob-
served in Figure 5 that both error measures decrease monotonically with
increasing order of truncation |this is a mere consequence of the optimality
properties of the SVD|, and at approximately the same rate; the decay is
more pronounced from 1 to 6 modes, and becomes more gradual thereafter,
tending asymptotically to zero as the number of modes increases. The trun-
cation error for both stresses and displacement uctuations atn� = nu = 6
is around 5%. In terms of dimensionality reduction, this means that the
data contained in the snapshot matrices can be \compressed" to afactor of
(nu=nsnp) � 100 = (6=150) � 100 = 4% and still retain 95% of the informa-
tion |the essential information. The �rst 6 basis functions (3 elastic and
3 inelastic) for both stresses and displacement uctuations, therefore, are
to be regarded asessentialmodes in the characterization of the mechanical
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Figure 6: Contour plots of the euclidean norm of the �rst 6 displacement uctuations
modes (k� i k, i = 1 ; 2 : : : 5). Deformed shapes are scaled up by a factor of 15.

response of the concerned RVE. By way of illustration, we plot in Figure
6 the contour plots of the euclidean norm of such 6essential displacement
uctuations modes (k� i k, i = 1; 2: : : 6).

9.5. Sampling points

9.5.1. Basic sampling points
Once the stress and displacement uctuation basis vectors have been de-

termined, the next o�ine step consists in the selection |among the full set
of �nite element Gauss points|of an optimal set of sampling points. Fol-
lowing the strategy described in Section 7.2, we carry out such a selection
by �rst computing the location of what we have calledbasic sampling points
f x I � (1) ; x I � (2) : : : x I � (p� )g. To assess the e�ciency of the employed Hierar-
chical Interpolation Points Method, abbreviated HIPM, we plot in Figure 7
the estimates for both the POD truncation (shown previously in Figure 5)
and total stress error versus the number of stress modesn� (in using this
algorithm, it is assumed that p� = n� ). The total stress error estimate is
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Figure 7: Estimates for the POD truncation (~etrun
� , see Eq.(120)) and total (~e� , see

Eq.(121)) stress error versus number of basis vectors employedin the approximation ( n� ).
The total error estimate is computed using only the set ofbasic sampling points(~e� =
~e� (n� ; I � ), with p� = n� ). The portion between 6 and 11 modes is shown in magni�ed
form.

de�ned as

~e� (n� ; I � ) :=
kX � X � (n� ; I � )kF

kX kF
(121)

whereX � (n� ; I � ) denotes theobliqueprojection (calculated using sampling
points I � ) of X onto the span of the �rst n� basis vectors (	 1; 	 2 : : : 	 n � ).
It can be appreciated in Figure 7 that both the total error and thetrun-
cation error curves are practically coincident, a fact that indicates that the
contribution of the reconstruction error:

~erec
� =

p
~e2

� � ~etrun 2
� =

kX �? (n� ) � X � (n� ; I � )kF

kX kF
(122)

( the error introduced as a result of using onlyp� sampling points instead of
the entire set of �nite element Gauss points, see Section 7.1.1) isnegligible
in comparison to the discrepancies due to truncation of the POD basis. For
n� = p� = 6, for instance, the reconstruction error is less than 3% of the
total stress error. In view of these results, it becomes clear that further
re�nements in the algorithm for selecting the basic sampling points are in
principle not necessary: the employed HIPM optimization algorithm, however
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heuristic, satisfactorily ful�lls this purpose. If one wishes to lower the stress
approximation error, it is far more e�ective to simply increase the level of
truncation.

9.5.2. Stabilizing sampling points
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Figure 8: a) Factor f F (de�ned in Eq.(99)) versus number of stabilizing sampling points
pB for varying numbers of basic sampling pointsp� (with p� = n� = nu ). b) Minimum
eigenvalue� K

min (over all time steps and iterations for eachp� ) of the symmetric part of
the reduced-order Jacobian matrixK � versus number of stabilizing sampling pointspB .

Concerning what we have termed \stabilizing sampling points", Figure
8.a contains the graphs, for varying levels of truncation, of factor f F de�ned
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in Eq.(100) as a function of the number of stabilizing sampling pointspB .
To study the inuence of including such points on the spectral properties |
positive de�neteness| of the sti�ness matrix, these graphs are accompanied,
see �gure 8.b, by the plots of the minimum eigenvalue� K

min (over all time steps
and iterations for each case) of the symmetric part of the reduced-order Ja-
cobian matrix K � versuspB . It can be seen thatf F decreases monotonically
as the number of stabilizing sampling points increases, and such a decrease is
reected, as theoretically anticipated in Section 6.4.1, in the improvement of
the spectral properties of the reduced-order Jacobian matrix (higher � K

min as
pB raises). For clarity, the minimum number of stabilizing sampling points
required, for each level of truncation, to render positive de�niteK � is plot-
ted in Figure 9. From this plot, it can be gleaned that, roughly, the higher
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Figure 9: Minimum number of stabilizing sampling points required to make the Jacobian
matrix K � de�nite positive for each level of truncation n� = nu = p� (deduced from
Figure 8).

the level of truncation (and thus the number of basic sampling points), the
more stabilizing sampling points appear to be needed to ensure the positive
de�niteness of K � . For n� = p� = 6, adding just one stabilizing sampling
points su�ces, while for n� = p� = 11, 7 points are required.

Observation 9.1. The values shown in Figure 9 correspond to the minimum
pB that leads to positive de�niteK � when the prescribed strain path coincides
with any of the \training" strain trajectory (displayed in F igure 4 ). Unfor-
tunately, there is no guarantee that the Jacobian matrix will also exhibit this
desirable property for prescribed strain histories di�erent from the training
ones. Thus, in view of such uncertainty, and in the interest of robustness,
it is preferable to stay on the side of \caution" in this regard and use more
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Figure 10: Location within the RVE of the �nite elements (marked in re d) that contains
the �rst p� = pB = 6 basic and stabilizing sampling points.

stabilizing sampling points that the minimum number indicated by the analy-
sis based on the training strain trajectories. It is the authors' experience that
a \safe" estimate for pB is to simply takepB = p� |that is, equal number
of basic and stabilizing sampling points. In adopting such arule, the au-
thors have not observed any convergence failures whatsoever, neither in the
example under consideration nor in other cases not shown here.

The location of the �rst p� = 6 basic sampling points and the correspond-
ing pB = 6 stabilizing sampling points is depicted in Figure 10.

9.6. A posteriori errors: consistency analysis

The error measures displayed previously in Figures 5 and 7 only depend
on the outcome of the SVD of the snapshot matrices; they can be calculated,
thus, before actually constructing the reduced-order model. Error analyses
based on such measures serve the useful purpose of providing a �rst hint
of how many stress and displacement uctuations modes are needed to sat-
isfactorily replicate the full-order, �nite element solution, and thereby, of
prospectively evaluating theviability of the reduced basis approach itself.

However, thesea priori error estimates do not tell the whole story. Ex-
pression (121) for the stress approximation error presumes that the stress
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solution at the chosen sampling points is the one provided by the �niteele-
ment model, thus ignoring the fact that, actually, in the reduced-order model,
and for the general case of nonlinear, dissipative materials, the stress infor-
mation at such points at a given time step is already polluted by truncation
(in displacement uctuations and stresses) and reconstruction (in stresses)
errors originated in previous time steps. To quantify the extent towhich
this amalgam of accumulated errors a�ects the predictions furnished by the
HP-ROM, it is necessary to perform aconsistency analysis.

Generally speaking, a reduced basis approximation is said to beconsistent
if, in the limit of no truncation, it introduces no additional error in the
solution of the same problem for which the data used in constructingthe
basis functions were acquired [14]. In the BVP under consideration,thus,
consistency implies that, when using as input macro-strain paths the same
trajectories employed in the \training" process, results obtainedwith the
HP-ROM should converge, asn� and nu increase, to the solution furnished
by the full-order, �nite element model. This condition can be checkedby
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the level of truncation (using nu = n� = p� = pB ). a) Displacement uctuations (see Eqs.
119 and 123). b) Stresses (see Eqs. 121 and 124)

studying the evolution of the error measures de�ned as

~eROM
u (nu; n� ; I ) :=

k �X u � �X � ROM
u (nu; n� ; I )kF

k �X ukF
; (123)

for the displacement uctuations, and

~eROM
� (nu; n� ; I � ) :=

kX � X � ROM (nu ; n� ; I � )kF

kX kF
; (124)
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for the stresses. ( The superscript \ROM" is appended to highlightthat,
unlike �X �

u and X � in Eqs. (119) and (121), �X � ROM
u and X � ROM are matrices

of displacement uctuation and stress snapshots computed usingthe HP-
ROM). Figures 11.a and 11.b contain the graphs of thesea posteriori error
measures, along with their respectivea priori counterparts ~eu (Eq. 119) and
~e� (Eq. 121), versus the level of truncation. It becomes clear fromthese
graphs that consistency, in the sense given above, is observed in terms of
both displacement uctuations and stresses: the a posteriori error measures
~eROM

u and ~eROM
� mimic essentially the decreasing tendency of their a priori

counterparts ~eu and ~e� , respectively. It can be seen also that thea priori
error estimations ~eu and ~e� constitute (rather tight) lower boundsfor their
a posteriori counterparts ~eROM

u and ~eROM
� , respectively. This can be better

appreciated, for the stresses, in Figure 12, where the ratio ~eROM
� =~e� versus

the level of truncation is plotted.
The degree of approximation that can be achieved using the proposed

HP-ROM is quanti�ed in a more \engineering" fashion in Figure 13, where
we plot, for the case of the �rst training strain history (stretching in the
longitudinal direction), the longitudinal, macroscopic stress-strain curves
computed using the FE model, on the one hand, and the HP-ROM with
nu = n� = 6; 7; 8 modes, on the other hand. Observe that the maximum de-
viation from the FE response when using 6 modes (3 elastic and 3 inelastic)
takes place at the onset of plastic yielding and is below 8%; remarkably, as
deformation continues, this deviation gradually diminishes, being practically
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Figure 14: Contour plot of transversal stresses computed at the end of the �rst \training"
strain history using a) FEM (b) HP-ROM with n� = nu = 6. Deformed shapes are
exaggerated (by a factor of 20).

negligible at the end of the process. Furthermore, by just increasing the or-
der of truncation to n� = nu = 8, di�erences between the HP-ROM and the
FEM responses become virtually imperceptible at all levels of deformation.
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Resemblance between HP-ROM and FEM results can also be appreciated in
terms of stress distribution in the contour plots shown in Figure 14.Visually,
there are no discernible di�erences between the two contour plots.

9.7. \Training" errors

The studies presented in the preceding subsections were aimed at exam-
ining the errors incurred in approximating thesnapshot solution spaceVsnp

u

by the reduced-order subspaceV�
u 2 V snp

u spanned by the POD basis vectors
|in the terminology of Section 3.1|, and to check that when V�

u ! V snp
u , the

solution provided by the HP-ROM converges to that obtained with the FEM.
But recall that the snapshot spaceVsnp

u is but a (presumably representative)
subspace ofV�

u, the manifold of Vh
u induced by the parametric dependence

of the �ne-scale BVP on the prescribed macroscopic strain history. Conse-
quently, in general |for an arbitrary input strain trajectory| th e HP-ROM
solution will not converge to the solution provided by the FEM. To complete
the error assessment analysis, thus, it is necessary to estimate also the errors
inherent to the sampling of the parameter space |we call themtraining er-
rors| and judge whether the selected training strain trajectories generate
a snapshot subspace that is indeedrepresentativeof such a solution space21

V�
u.

Ideally, one should carry out this error assessment by picking up, guided
by some sound, statistically-based procedure, a su�ciently large set of strain
paths and by comparing the solutions computed by the FEM and HP-ROM
under such input strain paths for varying levels of truncation. Such a degree
of rigor, however, is beyond the scope of the present work. Here, we limit
ourselves here to analyze the quality of the HP-ROM approximation obtained
for two di�erent input strain histories, namely, a uniaxial compression test,
and a biaxial loading/unloading test.

21To put it in less mathematical terms |by appealing to the the analogy, introduced
in Remark 9.1, between the training of the RVE reduced-order model and the calibra-
tion of standard phenomenological models| we have \calibrated" ou r HP-ROM using the
training tests displayed previously in Figure 4, and we have shown that the model is able
to exactly replicate the behavior of the RVE in these tests whennu = n� is su�ciently
large. Similarly to the situation encountered when dealing with standard phenomenolog-
ical models, it remains now to assess the capability of the proposed HP-ROM to predict
the behavior of the RVE under conditions di�erent from those used in the \calibration"
(training) process.
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Figure 15: a) First strain trajectory employed for assessing training errors. b) Plot of the
macroscopic error estimator ~E ROM

�;M (see Eq.(125)) corresponding to this testing trajectory
versus level of truncation (n� = nu )

9.7.1. Uniaxial compression
The �rst strain path employed for the assessment is displayed in Figure

15.a; it represents a monotonic compression in the transversal direction (the
model, see Figure 4, was trained using only stretching and shear, but not com-
pression, tests). For purposes of evaluating the quality of the HP-ROM ap-
proximation, it is convenient to introduce the following macroscopic22 stress
error estimate:

~E ROM
�;M :=

vu
u
t

P n t
stp

i =1 k� M
i � � � i;ROM

M (n� ; nu; I )k2

P n t
stp

i =1 k� M
i k2

; (125)

where� M
i and � � i;ROM

M denote the macroscopic stress at thei � th time step
computed by the FEM and the HP-ROM, respectively. This error estimate
is plotted in Figure 15.b versus the level of truncationnu = n� . Observe
that the error goes to zero as the number of employed modes increase. In
this particular case, thus,there is no additional error due to sampling of the

22Recall that the output of interest in solving the �ne-scale BVP is the macroscopic
stress tensor; thus, the error estimate de�ned in Eq.(125) (~E ROM

�;M ) provides a more mean-
ingful indication of the quality of the approximation than the stress error measure de�ned
previously in Eq.(124) (~eROM

� ). The latter is more suited for examining convergence prop-
erties of the HP-ROM approximation, since the minimization problem that underlies the
SVD is posed in terms of the Frobenis norm.
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parameter space.

Remark 9.2. This simple example �ttingly illustrates one of the acclaimed
advantages of POD/Galerkin reduced-order approaches over\black box" meth-
ods such as arti�cial neural networks |that are also based onthe partitioned
o�ine-online computational paradigm|: POD/Galerkin redu ced-order ap-
proaches preserve the \physics" of the problem one wishes tomodel and, as a
consequence, are able to make physically-based extrapolations. For instance,
in this case, the reduced-order model is able to exactly replicate (for su�-
ciently largenu = n� ) the macroscopic compressive behavior of the RVE, even
though no information regarding this deformational state has been supplied
to the model in the calibration (training) phase; the HP-ROMis \aware",
�guratively speaking, that the matrix material in the RVE exhibits similar
behavior in tension and compression (J2 plasticity).

9.7.2. Biaxil loading/unloading test
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Figure 16: Second strain trajectory employed for assessing training errors.

A more severe test for assessing errors associated to the training process is
provided by the strain trajectory shown in Figure 16. Indeed, whilethe train-
ing strain histories of Figure 4 only included monotonic, uniaxial stretching,
the strain history displayed in Figure 16 consists of a cycle ofbiaxial, load-
ing/unloading stretching (time steps 1 to 100) and biaxial loading/unloading
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Figure 17: a) Macroscopic error estimator~E ROM
�;M (see Eq.(125)) versus level of truncation

(n� = nu ) for the case of testing trajectory shown in Figure 16,. b) Local speedup factor
Sloc (de�ned in Eq.(126)) reported for this case versus level of truncation. This plot is
accompanied by the graph of the rationg=p, where ng = 38984 is the total number of
Gauss points of the �nite element mesh, andp = 2 n� the number of sampling points
employed for numerically integrating the HP-ROM.

compression (time steps 101 to 200). The graph of the macroscopic error esti-
mator (125) corresponding to this input strain path as a function of the level
of truncation is represented in Figure 17.a. It can be readily perceived that,
in this case, and in contrast to the situation encountered in the previously
discussed input strain trajectory, the macroscopic stress doesnot go to zero
as the number of POD modes included in the basis increases. Rather,the
graph drops sharply from 24% to approximately 5% atn� = nu = 5 (second
inelastic mode), and then uctuates erratically, with no apparent trend, be-
tween 3% and 10% |a level of accuracy that, nevertheless, may bedeemed
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scopic strain computed using the FEM and the HP-ROM with n� = nu = 6 (for the case
of the testing trajectory shown in Figure 16)

.

more than acceptable in most practical applications. A more clear picture
of the accuracy of the approximation for the particular case ofn� = nu = 6
can be obtained from the stress-strain diagrams shown in �gure 18.

9.8. Speedup analysis
Lastly, we turn our attention to one of the main concerns of the present

work: the issue of computational e�ciency. For a given error level,how
many times can the proposed HP-ROM speed up the calculation of theRVE
response with respect to the reference �nite element model? Let us de�ne
the local speedup factoras the ratio

Sloc :=
tF E (n; ng)

tROM (n� ; nu; p)
; (126)

where tF E and tROM denote the CPU times required to compute the FE
and HP-ROM macro-stress responses, respectively, induced by agiven input
strain history23 In Figure 17.b, we show the graph of the speedup factor

23The computational cost associated to the o�ine stage |generatio n of snapshots plus
the comparatively negligible expenses of applying the POD and selecting the sampling
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reported in the the case of the input strain path of Figure 16 as a function
of the number of POD modes included in the analysis (recall in this respect
that nu = n� = p=2). We plot also in Figure 17.b the rationg=p, i.e., the
relation between the total number of integration points in the �nite element
model ( ng = 38984) and in the reduced order model (p). It can be gleaned
from Figure 17.b that the reported speedup factors are of the same order of
magnitude as the rationg=p; i.e.:

Sloc �
ng

p
=

ng

2n�
; (127)

(this indicates that the evaluation of the stresses at the integration points
dominates the total computational cost). Although these results are no doubt
inuenced and biased by the particular programming language and coding
style employed |we use an in-house, non-vectorized Matlab program operat-
ing in a Linux platform|, and, consequently, this trend may not be exactly
observed when using other programming languages and/or platforms, they
serve to provide an idea of the tremendousgains in performancethat can be
achieved using the proposed ROM; forn� = p = 6 modes, for instance, the
computational cost is reduced by a factor above3600, while still capturing
95% of the full-order, high-�delity information |the essential information.

10. Concluding remarks

One of the the most striking features of the proposed reduced-order model
is perhaps the conceptual simplicity of the RVE equilibrium equation in its
hyperreduced-order form: the sum of (reduced) internal forces at the pre-
selected sampling points must give identical result either calculated using
observedstresses or�tted stresses. Although this condition appears, in hind-
sight, rather reasonable, even obvious |it ensures maximum resemblance
between reduced-order and full-order responses at the samplingpoints| it
seems di�cult to arrive at it without the bene�t of the integration pr ocedure
|based on the notion of expanded approximation space| advocated in the
present paper.

points|has been deliberately ruled out from this speedup analysis because, in two-scale
homogenization contexts, the RVE equilibrium problem is to be solved asheer number of
times and, consequently, this overhead cost is quickly amortized.

58



The hyperreduced form of the RVE equilibrium equation excels not only
in its conceptual simplicity; the corresponding solution scheme is alsovery
simple to implement. Taking as departure point an existing FE code, one
only has to replace the typical loop over elements in the FE code by a loop
over the pre-selected sampling pointsf x I 1 ; x I 2 ; : : : x I p g. The stress vectors
and corresponding constitutive tangent matrices obtained at each stage of the
loop are stored in the gappy weighted vector̂� and the matrix Ĉ, respec-
tively, and, then the residual vector and the Jacobian matrix are computed as
B̂�� T

�̂ and B̂�� T
Ĉ B̂� , respectively. Notice thatno assembly process is needed,

nor has one to worry about imposingboundary conditions. Once convergence
is achieved, the macroscopic stress value is simply calculated as� M = T�̂ .
It should be emphasized again that theoperation count in both solving this
hyperreduced RVE equation and updating the macroscopic stress vector de-
pends exclusively on the reduced dimensionsnu and p (number of uctuation
modes and number of sampling points, respectively). Likewise,storage of
history data (internal variables) is only required at the pre-selected sampling
points. Computational savings accrue, thus, not only in terms of numberof
operations, but also in terms of memory requirements.

The success of the proposed homogenization strategy is predicated on the
assumption that displacement and stress �elds induced by the parametric
dependence on the input macroscopic strain can be approximated by (rela-
tively) low-dimensional functions. Numerical results shown in the preceding
section seem to suggest that, in general, this assumption may be expected
to hold in the case ofmaterials governed by strain hardening laws in the
small strain regime|regardless of the geometrical complexity, number and
distribution of heterogeneities within the RVE. However, it is by no means
apparent that this conclusion can be easily extended to more (kinematically
and phenomenologically) complex scenarios, involving large deformations,
strain localization, decohesion, etc. For instance, can the deformational be-
havior of an RVE a�ected by multiple propagating cracks be represented
also in a parsimonious manner, as in the case of strain hardening? Or will
the number of modes necessary to accurately replicate its response combi-
natorially increase with the number of potential crack paths (i.e., with the
geometrical complexity of the RVE)? Undoubtedly, in these complex, non-
linear scenarios, the task of sampling the parameter space |i.e., of choosing
the macro-strain histories at which to obtain the snapshots| will become
quite complicated, due to the richness of possible deformational patterns
(void closure, propagating discontinuities ...), and thus di�cult to carry out
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on intuitive basis (as it has been done in the present paper). Therefore, it
would be desirable to systematize this crucial task, as well as to provide some
statistical means tocertify, so to speak, the representativeness of the chosen
snapshots. Likewise, topological variations caused by these phenomena may
render POD-based compression algorithms inappropriate for collapsing the
dimensions of the snapshots space; in such cases, nonlinear dimensionality
reduction methods such as the Isomap algorithm [43] may be more suitable.
Research in these fronts is currently in progress and will be reported in forth-
coming publications.
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A. Proper Orthogonal Decomposition

The formal statement of the POD problem goes as follows: given the
ensemble of snapshotsf u 1; u 2; : : : u nsnp g, �nd a set of nu < n snp orthogonal
basis functionsf � 1; � 2; : : : � nu g (� i 2 V snp

u ) such that the error de�ned as

eu(nu) :=

vu
u
t

nsnpX

k=1

ku k � P � u kk2
L 2(
) (128)

is minimized. Here,P � u k represents the projection ofu k onto the subspace
spanned by the basis functionsf � i gnu

i =1 , and k�kL 2 (
) symbolizes theL2 norm.
We shall denote by� i (i = 1; 2: : : nu) the column vector containing the
values of basis function� i at the nodes of the underlying �nite element mesh.
Likewise, the matrix formed by such vectors,� =

�
� 1 � 2 � � �

�
2 Rn�d� nu ,

will be hereafter called thereduced basis matrix.
The reduced basis matrix� can be computed from the snapshot matrix

X u by means of the Singular Value Decomposition (SVD) as follows (see
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Ref. [16] for more details). We �rst de�ne the matrix24

M IJ :=
Z



N I (x)NJ (x) d
 I; J = 1; 2: : : n: (129)

Let M = �M T �M be the Cholesky decomposition ofM , and let �X u denote
the matrix de�ned as:

�X u := �M X u: (130)

Then, we compute the reduced SVD [37] of�X u, that is, the factorization

�X u = �U �S �V T ; (131)

where �V 2 Rnsnp � r (r is the rank of �X u) and �U 2 Rn�d� r stand for the
matrices of right and left singular vectors, respectively; and �S 2 Rr � r is a
diagonal matrix containing thesingular valuesof X u. The i � th column of
the reduced basis matrix� is �nally related to the i � th left singular vector
of �X u through expression

� i = �M � 1 �U i ; i = 1; 2: : : nu: (132)

B. Elastic/Inelastic reduced basis matrix

This appendix is devoted to provide further details concerning the actual
numerical implementation of the elastic/inelastic partitioned strategy, pre-
sented in Section 3.2.1, for the computation of thereduced basis matrices�
(displacement uctuations). The steps to arrive at the desired matrix basis
� are summarized in the following.

1. Compute �nite element stress solutions for representative, input macro-
strain histories.

2. Store the displacement uctuation solutions computed at each time
step of these macro-strain trajectories in the displacement uctuations
snapshot matrixX u 2 Rn�d� nsnp :

X u =
�
U 1 U 2 � � � U nsnp

�
(133)

24 Note that, except for the density factor, this matrix M is similar to the \mass matrix"
appearing in �nite element implementations of dynamical problems. For implementational
purposes, one can simply use a lumped version of such a matrix.
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3. Pick up from X u a minimum of me (me = 6 for 3D problems, and
me = 3 for plane strain) linearly independent columns corresponding
to purely elastic solutions. Store these columns in a matrixZ el

u .
4. Perform thereduced singular value decomposition(SVD) of the matrix

de�ned as
�Z el

u := �M Z el
u (134)

where �M is the matrix of the Cholesky factorization ofM ( M =
�M T �M ). A basis matrix for Range(Z el

u ) is �nally obtained as

D el := �M � 1 �D el (135)

�D el 2 Rn�d� me being the matrix of left singular vectors arising from the
SVD of �Z el

u . In principle, D el may be used as the desired elastic basis
matrix � el. However,D el does not enjoy any optimality property with
respect to X u |it is only optimal with respect to the matrix Z el

u of
chosen elastic snapshots.

5. For consistency in the approximation, thus, it is preferable to derive � el

from the the \elastic component" of X u |the orthogonal projection
of X u onto Range(D el)|; the expression for this projection reads:

X el
u = D el(D elT M X u) (136)

The elastic basis matrix can be �nally calculated fromX el
u as:

� el := �M � 1 �� el: (137)

where �� el is the matrix of left singular vectors emerging from the re-

duced SVD of �X el
u := �M X el

u ; i.e �X el
u = �� el �Sel

u
�V el

u

T
.

6. Calculate the \inelastic component"X in
u of the snapshot matrix X u

as:
X in

u = X u � X el
u ; (138)

that is, X in
u is the orthogonal projection ofX u onto the orthogonal

complement, in Range(X u), of Range(� el).
7. It is now on this inelastic snapshot matrixX in

u that we apply the POD
in order to identify and unveil theessentialor most \energetic" inelastic
uctuation modes. This is done by �rst carrying out the reduced SVD
of �X in

u = �M X in
u :

�X in
u = �D in �S in

u
�V in

u

T
: (139)
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The i � th POD basis vector ofX in
u is then given by:

� in
i = �M � 1 �D in

i ; i = 1; 2: : : nu � me: (140)

8. The desired basis matrix� 2 Rn�d� nu adopts �nally the form:

� = [ � el � in ] = [

Elastic modesz }| {
� el

1 � el
2 � � � � el

me

Essential inelastic modesz }| {
� in

1 � in
2 � � � � in

nu � me
] (141)

C. Block matrix pseudoinverse of the expanded basis matrix

The inverse of a 2x2symmetric block matrix is given by the following
expression (see, for instance, Ref. [11]):

M � 1 =
�

A B
B T C

� � 1

=
�
A � 1 + A � 1BS � 1B T A � 1 � A � 1BS � 1

� S� 1B T A � 1 S� 1

�
(142)

where
S = C � B T A � 1B (143)

is the so-called Schur complement ofA in M . This formula can be used
to derive closed-form expressions for the modal coe�cientscad and cin (see
Section 6.2). The departure point is equation Eq.(67):

�
cad

cin

�
= ([ 	̂ B̂� ])y�̂ =

"
	̂

T
	̂ 	̂

T
B̂�

B̂� T
	̂ B̂� T

B̂�

#� 1 "
	̂

T

B̂� T

#

�̂ ; (144)

where ([	̂ B̂� ])y designates the pseudo-inverse of thegappy expanded basis
matrix. By setting:

A = 	̂
T

	̂ ; B = 	̂
T

B̂� ; C = B̂� T
B̂� ; (145)

and by inserting Eq.(142) into Eq.(144), one obtains upon expansion:

cin = S� 1
�

� B T A � 1 	̂
T

+ B̂� T
�

�̂ (146)

and

cad =
� �

A � 1 + A � 1BS � 1B T A � 1
�

	̂
T

� A � 1BS � 1B̂� T
�

�̂

= A � 1 	̂
T

�̂ + A � 1B

cin

z }| {
S� 1

�
� B T A � 1 	̂

T
+ B̂� T

�
�̂

= A � 1 	̂
T

�̂ + A � 1Bcin :

(147)
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By substituting back Eq.(145) into the above equation, and taking into ac-
count that:

	̂
y

= ( 	̂
T
	̂ )� 1	̂

T
(148)

one �nally gets:

cad = 	̂
y
(�̂ � B̂� cin ); (149)

cin = S� 1B̂� T
�

I � 	̂ 	̂
y
�

�̂ ; (150)

where
S = B̂� T

(I � 	̂ 	̂
y
)B̂� : (151)
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