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Application of molecular dynamics simulations for the generation of dense concrete
mesoscale geometries
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Abstract

The problem of polydisperse sphere packings is applied to concrete mesoscale geometries in nite sized specimens. Realist
sphere diameter distributions are derived from concrete grading curves. An event-driven molecular dynamics simulation using grow
ing particles is introduced. Compared to the widely used random sequential addition algorithm, it reaches denser aggregate packin
and saves computation time at high volume fractions.

A minimal distance between particles strongly in uences the maximum aggregate content. It is essential to obtain undistorted
elements when meshing the geometry for nite element simulations. The algorithm maximizes this value and produces meshabl

concrete mesostructures with more th@3oaggregate content.
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1. Introduction

The random packing of spherical particles is a common problem in research and industry, e.g. packaging, solidi cation processe
and material science. The particle volume fractionescribes the ratio between particle and specimen volume. The maximum
value nax for a given con guration depends on the particle size distribution and the specimen size, and is of high interest in these
applications. For a random monodisperse size distribution and a in nite specimen, the maximumpglue 64%is established
[1]. Bidisperse and polydisperse size distributions are characterized by numerous parameters. This makes a general understanding
the underlying processes dif culRJand 4« is discussed only for certain types and parameters of size distributions, e.g. log-normal
distributions with varying width parameter[3].

In this paper, the special case of concrete aggregates is investigated. The size distribution is characterized by grading curves tt
specify the mass fraction of aggregates passing through sieves of varying sizes. An optimization of the grading curve is an importar
part of modern concrete desigfi [ For a thorough understanding of the macroscopic concrete properties, it is important to consider
the in uence of the heterogeneous structure. For a realistic model of concrete on the mesoscale, the size, position and orientatic
of aggregates can be either determined experimentgllgr[simulated numericallyd]. Modeling concrete as a three-component
composite consisting of aggregates embedded in the mortar matrix with a special modeling of the interface zone makes it possible |
use relatively simple constitutive models for each individual component resulting in a complex macroscopic re§pémse st
approximation, aggregates can be approximated as spherical inclusions.

The focus of the paper is the generation of geometries for particle reinforced composites such as concrete, where the size dist

bution is polydisperse. Typical volume fractions of concrete particles are in the range &0  80%, which is relatively close
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(a) The RSA algorithm xes a particle's positions, once it is place@b) Movable particles allow rearrangements. In combination with

(solid). All possible positions for new particles (dashed) will overlagrowing particles, this can lead to jammed packings.

with existing ones.

Fig. 1: Main advantages of moving particle methods over RSA methods at high particle volume fractions

to the maximum packing. For the numerical simulation, a two stake-and-placelgorithm is commonly used[ 9]. In the take
phase, the particles are generated based on the prescribed grading curve, the particle volume &radttbhe specimen volume. In
theplacephase, the particles are positioned within the specimen.

A very common algorithm for the particle placement is the random sequential addition (RSA) algorithm introduced by Widom in
1966 [10]. The particles are randomly placed into the specimen - one after another - starting with the largest ones. Separation check
with previously placed particles are carried out to ensure a non-overlapping packing. There are several ways do deal with overlap:
In the classic algorithm, a particle is only placed into the specimen when it is not overlapping with previously inserted particles -
otherwise a new random position is calculated. In a stochastic-heuristic algorithm, the particles are slightlylrjovaddther
alternative is the drop-down algorithm, where a random position at the upper surface of the specimen is picked. The particle fall
down and remains where it rst touches another partit@.[

The simplicity of random sequential addition and its high ef ciency at low particle densitiage huge advantages of this
algorithm. The main problem of this algorithm is the fact that a placed particle always remains at its initial position. For high particle
densities, it is very likely that previously placed particles block the next ones. The remaining gaps cannot be lled resulting in a
loosely packed state (see Fig).

In 1959, Alder and Wainwright introduced the idea of event-driven molecular dynamics (EQU8|D9f ef cient simulations
of molecule interactions in dilute systems. All particles in the system are constantly moving via free- ight dynamics and collisions
between them or the walls are fully elastic. The extension of this algorithm to growing particles by Lubachevsky and Stillinger in
1990 allowed to reach a random close packing of discs in 4D [The advantage of this approach is shown in Hig. Several
improvements of the algorithms and growing PC performance allowed the simulation of larger systems in higher spacial dimensions
Kansal et al. used this algorithm to simulated maximally random jammed (MRJ) packings of equal spBerasith varying
growth rates, they also investigated bidisperse packibgls They used a RSA algorithm for a initial sphere distribution at 35%
to speed up the simulation. MRJ packings of hyperspher& in: R’ were created by Skoge et all][ Besides for the packing
problem, the EDMD algorithm is used in various applications, i.e. shock dynafiihpmopolymers18] and hard sphere glasses
[29].



There are other approaches for the concrete geometry creation that are mentioned here, but not further investigated. Son
et al. increased the ef ciency of the RSA for two dimensional specim@@k [Instead of choosing the new particle positions
randomly, a level set function is used that indicates valid, non-overlapping positions. A geometric method is used by Jeg# et al. [
Particles are placed on the nodes and edges of a previously generated mesh. Geometrically complex structures can be lled with tk
technique. However, the particle size distribution is restricted to the underlying mesh. A popular approach using moving particles is
the discrete/distinct element method (DEM). It was introduced by Cundall and Strack and is based on time driagh dDrng
a xed time step, overlapping of particles is allowed and results in a separation force that is considered in the next time step. An
application to concrete mesostructure can be foun@3 [

In this paper, the RSA and the EDMD algorithm for the packing of polydisperse spherical particles is compared. The procedure
for the conversion of a mass distribution from real mix designs for concrete into a diameter distribution is presented in Bections
and3. Afterwards, implementation details and a complexity analysis of the RSA and EDMD algorithm are presented in 8ections
and5. In a nal section, numerical examples are discussed. The EDMD implementation is validated in a monodisperse jammed
packing setup. Then, polydisperse size distributions are investigated. The maximal particle volume fraction for both algorithms is
determined and the computational ef ciency is discussed. The paper concludes with a general comparison of different sampling

procedures to build mesoscale models for concrete.

2. Particle size distribution

The aim of the following procedure is to create a random parsidedistribution that matches a given partictessdistribution
[7]. This method can easily be applied to given particle volume distributions as well.

The particle mass distribution is given by a grading curve that consists of different mineral size icla&seg contain particle
sizes in the diameter range df;in i d < dmax;- Their summed mass; is calculated with the functiofk, (d) in Eq. (1)
describing the mass ratio of particles smaller than the diardeted the massiy Of all particles. Therefordsy, (d) is a cumulative

distribution function (CDF) of the particle mass
Mi = Miotal [Fm (dmax i ) Fm(dmin i ) 1)
Inside each mineral classthe mass CDFFp,,; (d) is assumed to be linear on a logarithmic scale

8
§° if d < dminy;
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if dmini  d <dmax;i; 2
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This function is monotonically increasing:i (dmin i) = 0 andFny; (dmax:i) = 1. Thus it ful lls the requirements of a CDF inside
each mineral size class.

Based on the mass COF,; (d) in the mineral size clads an equivalent CDF of the particle numb&y;; (d) can be computed.
Particles are generated accordindrig; until the massn; of the mineral size cladsis reached.

The derivative of Eq.2) in the intervaldmin i ; dmax i ] i the probability density function (PDF) of the particle mégg (d)
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Thus, the terrm;f ;i (d) is the expected mass of particles with the diamdteDividing this by the massg(d) of a single

particle
ms(d) = O/%d3 (4)

leads to the expected number of partialéd) in the differential intervald; d + d d]

Mifm;i (d) .

D= e@

®)

In an arbitrary diameter interv@d ; do] with dmin;i  di <dz  dmax:i, the total number of particlds is obtained by integrating
n(d)
A2 A
N(di;d2) =  n(d)dd= m;
d1 dl

£ m (d)
ms(d)

dd: (6)

The CDF of the particle numbéty.; (d) describes the ratio of the number of particles smaller ttham the total number of

particles in the mineral size class. Thus, itis de ned by

N (dmin ;i ; d)
Fni ()= —————1 7
i () N (dmin ;i ; Amax;i ) "
Substituting Eqgs.3) and @) into Eq. (7) yields

1

A2 i B 1 1
Fri (d) = max ;i ¥'min ;i =+ (8)

I d?nax i d?nin i dﬁﬂn i a

The diameted is a random variable with its CDy;; (d). The probability integral transform states that Fy; (d) is uniformly
distributed random variable in the interval [0,1]. Consequently, the distribagtioan be calculated by the inverse formulation of
Eqg. @) as

d= Fy'(U) )

d= dmax i dmin i . (10)
d?nax;i (1 U )+ dy U

min ;i

w D

The total volume within a mineral size claiss obtained by generating uniformly distributed random numbers and calculating
the diameter according to EdL@) until the total volume of the mineral size class is reached. The corresponding mass distribution is
then in accordance with EQR), The last particle of each mineral class exceeds the massd the mass difference is subtracted
from the mass of the next mineral size class. This procedure is summarized in Algrithm

Fuller's curve de nes a special CDF for the particle mass

d q
P(d= — (11)
dmax
wherednmax is the largest particle diameter a@ick g < 1is a parameter that characterizes the shape of the particle distribution. For
lower values ofy, the mass fraction of smaller particles increases and the distribution gets ner. Special size distributions for concrete
on the basis of Fuller's curves with,ax = 16 mm are speci ed in DIN 1045-2: A16y=0:7), B16 (Q=0:35 and C16 4= 0:22).

These discontinuous grading curves are de ned piecewise in terihyg.0f , dmin ;i andm; and provide the input for Algorithr.



Algorithm 1: Take Phase

Input: grading curve de ned bymax i , Amin ;i , M;
Output: array of particle diameterd ]

foreach mineral size classdo

Miarget += M; - Myift

while Merget  Mactuado

U = uniform random number

dmax i Din
d[] - n max ;i Gmin ;i
3 d?nax i QU )+ diwm i u

Mactual += % o

end

Maiff = Mactual~ Mtarget

end

In simulations that use Fuller's curi(d), the algorithm's input is obtained by dividing the continuous curve into suf ciently small
classes according to EdL)(with Fr, (d) = P (d).

However, for further analytic considerations, it is useful to perform the previously shown derivations with the continuous func-

tion P (d) in the whole diameter interv@dimin ; dmax ], instead of splitting it up into small classes. For example, the expected number
of particles in this interval is obtained by evaluating E). (

Fax
1 d
N (dmin ; dmax) = Miotal ms(d) %dd (12)
dm\n
6q
=V d %ax (q 3) d(r]nin3 dﬁwag : (13)

All the patrticle size distributions used in this paper are shown inZEig.

3. Manipulation of the mass CDF

particle mass CDIF,

The simulation of the total particle magsy, is impossible, since the number of particles tends to in nity g, ! O.

Consequently, the particle mass CDF must be cut adfgt > 0 and the mase o Of all particles smaller thadn,, is neglected.
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Fig. 2: The simulated particle size distributions (dashed black lines) obtained by Algdrighenin agreement with the red target curves. A16 and B16 are speci ed
in DIN 1045-2, the markers show the limits of the mineral size clad3éd) is Fuller's curve (Eq.11)) with g = 0:5; dmax = 16 mm.
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Fig. 3: The piecewise de ned grading curves A16 and B16 are approximated with Fuller's curvegwh7 andq = 0 :35. The effective particle volume fraction

e denedin Eq. (L7) decreases with growindmin since all the particles smaller than are neglected. The number of particles= N (dmin ; dmax ) IS

determined analytically by Eq18) for a cubic specimen with an edge lengtk- 150 mm and the mixture particle volume fractiofy = 70%.

According to Eq. {), this is obtained from
Meutoft = MiotalFm (Amin ) (14)

Thus, a distinction between the particle volume fractign according to the mix design

Miotal
= — 1
M %V (15)
and the effective volume fraction
Migtal M ff
off - total %V cuto (16)
= ™M [1 Fm (dmin )] (17)

is needed, wher&is the particle density and the specimen volume.

Depending on the area of application, eithgr or ¢ are of interest. For the simulation of concrete on the mesoscale, the total
volume fraction y, of the mixture is important, since this value is the prescribed parameter in the mix design. However, packing
algorithms discussed in literature usually use the effective volume fractiprin the following sections, it is important to carefully
distinguish between these values.

In concrete geometry simulations, a common choice for the cutoff diametifiis= 2 mm [7]. All particles smaller than
2 mm are sand grains that are assumed to be represented by the homogenized mortar matrix. Accordidg)tair (nass is
subtracted from the total mass and the effective volume fractigmeduces. In the common case qf = 70%, which represents
the aggregate volume fraction that is physically lled in the concrete mixer, and the grading curve B16, the volume fraction that is
actually resolved by the mesoscale geometry model4s= 40:6%. For a cubic specimen with an edge lengthact 150 mm,
the number of simulated particles reduces from in nitj,g, = 0)toN  40000(dmin = 2mm). For the grading curve A16, the
corresponding values areg = 53:3%andN 44 00Q In this case, the geometry creation of A16 is more challenging than the one
for B16, since the relative particle volume is larger and more particles have to be simulated. A more general dependency of the cuto
diameterdn,i, on e andN is shown in Fig.3 for the corresponding Fuller's curve approximations of A16 and B16.

Another problem is related to the meshing of the generated particle geometries and the subsequent simulation using nite ele

ments. For numerical reasons, highly distorted elements should be avoided. Especially for dynamic simulations of concrete usin



explicit time integration schemes, like wave propagation or dynamic crack propagation, the critical time step is strongly in uenced
by the smallest element length. For this purpose, a minimal distanideetween any two particles is enforced. Consequently, an
increase in dallows a coarser spatial and temporal discretization of the governing equations. Physically, this minimum distance can
be interpreted as a thin mortar Im around each parti@ld.[ Experiments show a coating of mortar around each particle. Schlagen
and van Mier suggests a minimal distancd = 0:1(d; + d;)=2 between the particles with diametetsandd, [25]. Wang et al.

uses the minimal distanced = min(d;;d,;) and depends on the particle volume fractidj.[In this study, d = dnin=2is

used, unless stated otherwise.

4. Random sequential addition

The RSA algorithm is commonly used for the geometry creation of the concrete mesostructure. Our implementation of the
algorithm is as follows. All particles are sorted according to their volume and the place process is started with the largest particle
Uniform random numbers are generated for all coordinates. In the case of axis-aligned box-shaped specimens, boundary collisio
can be eliminated by the right choice of the random number interval. For other specimen shapes such as cylinders, a check fc
boundary collisions is performed.

The check for collisions with already placed particles is done by a simple sphere separation check. If the particle overlaps witt
previously placed particles, a new random position is chosen. Nffefailed placement attempts of a single particle, the algorithm
aborts (stopping criterion).

The complexity of the collision checks of a single particled$N ), since it must be checked against Hll already placed
particles. With a cell method, these numerical costs can be reduced. The specimen is divitlegd,intd\ cells and the collision
checks are only performed within a small number of cells. In the best case of monodisperse particles, each cell contains about or
particle and a constant complexity ©{1) can be reached.

The high polydispersity of concrete particles would cause performance problems, if the cell size is kept constant. A coarse cel
structure causes an increased number of particles per cell and lowers the ef ciency. A ne cell structure can ensure one particle pe
cell. However, the addition of a particle that is much bigger than a single cell requires a collision check in many cells.

In the current implementation, this problem is addressed by using a variable cell size. The place process starts with the large:
particles and a large cell size related to the particle diameter. Consequently, about one particle ts in a cell and a near optima
performance is achieved. As the particles get smaller, the number of particles per cell increases and the method would becon
inef cient. Thus, when the particle diameter reaches half of the starting particle diameter, all the cells are rebuild with a smaller cell
size. The previously placed particles are added to the new cells and the place process continues. Despite the overhead for add
existing particles in the newly built cells, this technique adapts the cell size to the particle size and ensures only a small number o

particles per cell.

5. Event-driven molecular dynamics

Lubachevsky and Stillinger used a two dimensional EDMD algorithm with growing particles to simulate dense monodisperse
circle packings. Kansal et al. used a modi ed version with the following charifgskirst, they transferred the problem to spheres

in the three dimensional space. Second, instead of starting with zero volume spheres, they used an RSA algorithm for an initic



spacial distribution aty;  35% Third, the growth rate for each sphere was set to be proportional to its initial diameter. With these
modi cations, bidisperse and polydisperse sphere distributions were simulated in periodic specimens.

In our implementation, rigid walls are used as boundaries. A nal size distribution is calculated for a given set of parameters
de ned by the grading curve, the specimen size and the particle volume fragionAs stated above, the RSA excels at lower
particle volume fractions. Therefore, the nal particle diameters are reduced, hence the volume fraction is reduced as well. The
modi ed particles are ef ciently placed into the specimen using the RSA algorithm to provide an initial spacial particle distribution.

A random initial velocity and a growth rate is given to each particle and the system evolves in time. The growth rate of each
individual particle is set in a way that all particles reach their nal diameter at the samedigmeConsequently, the resulting size
distribution is in accordance with the desired grading curve.

The details of the diameter reduction and the choice of the growth rate vary in the numerical experiments and are discussed i

Section6. In the following, the implementation of our EDMD algorithm is shown in detail.

5.1. Collidable description

All the physical objects of the simulation are organizectatlidablesC. They are either static planar walWd or movable
spherical particle® . Cylindrical walls are also implemented. Their collision detection and collision physics are a combina®ion of
andw .

The description of the walls surfad®' is in point-normal form -wg is one point of the wall anehy, a normalized vector

perpendicular to the wall, pointing inwards. Every poinbn the wall satis es
(W wpo) nw =0: (18)

The time dependent particle positigrft) of a particleP depends on its current positigpy and its velocityv. The particle is

constantly growing, and its radiugt) depends on an initial radiug and its growth rate

P()= po+ vt (19)
r(t)=ro+ t (20)

5.2. Collision detection

The time until impact for two collidable§2 andCP is calculated by solving for the distance functidrto vanish
tc D (t;C?%CP=0: (21)

Particles are the only movable collidables. Thus, the rst collid&ieof every collision is a particleG? ! P?). For the particle-

particle collisionsC®! PP) the distance functioB is
D(tP%P?) = p(t) p°(t)  ra)+ r’t) : (22)

It results in a quadratic equation foy. The distance functio® for the particle-wall collisionsC? !  WP) reduces to a linear

equation

D(LPHWP) = p*(t) wg ny  ri(): (23)



5.3. Collision physics

The collision of two collidables causes their velocities to change. During wall collisions, the incoming velocity westor

re ected at the walls normal vector,y, and results in the outgoing vecto?

0_

vi=v  2(V nw)nw: (24)

The three dimensional particle-particle collisions are reduced to one dimensional collisions of their normal vetpcifidwir

tangential velocities; remain unchanged

a b
Va=(n v) with n= 2o Po (25)

g pai
Vi=V  Vpn: (26)
The post-collision normal velocitieg) are obtained by a fully elastic collision depending on the particle massascording to
Eq. @)
b — mav2 + mPyP Lab- 1)
ma + mbP "
The new velocities °are then given as

vO= v+ VOn: (28)

An alternative for calculating the post-collision normal velocitigss used by Kansal et al., where the sphere masses are assumed

to be equal and Eq2{) reduces to
a0 = v (29)
However, they suggest that this detail does not in uence the generated packéhgs [

5.4. Algorithm

The main loop of an EDMD program is shown in Algoriti2nThe previously de ned operations for the collision detection and
the collision processing are nested in several loops. Additional operations are required for the handling of an event list and the syste
update after each collision.

The tripleht; C?; CPi is called event and describes a single collision. All collisions are handled in an event list that is ordered
by the collision timet.. The components of this list are addressedithyC?; CPi;. Even though at least one of the collidab®?% or
CP" is a particleP, the more general notation is used here.

If the simulation reaches the timie= tgng the desired particle size distribution will be reached. If the change of the simulation
time tis smaller than a value dfduring 1000 events, the simulation will abort unsuccessfully.

The single steps of Algorithr@ (basic implementation) including the optimization are implemented as follows:

Input: Before the main loop starts, an initial event list is built by cross checking every particle against every other particle. A binary

tree is used for the event list.

In the basic implementation, the number of events per particle depends on the number of partithass, the length of the
event list is in the order dD(N 2). The use of theell method (explained in Step 5) reduces the number of events per particle

to a constant value and the length of the event li€D{tN ).



Algorithm 2: Basic implementation

Input: Event list agt.; C?; CPi;
while t; <t epngdo
Step 1:Find lowest timé&. and the corresponding
eventtt.; C2; CPi
Step 2:Update system to tinbg

foreach ParticleP do
Po = Po *+ Volc

end
Step 3:Perform collisioht; CZ; CPi
Step 4:Delete invalid events G2 andC?
foreach ht; C2; CPi; do
if C2 or Cisint; C2;CPi then
deletett; C2; CPi
end
end
Step 5:Predict new collision timég of C2 andC?
foreach collidableC' do
solve distance equation:
t2 D (t;C&CH)=0
€ D (t;CEC)=0
Step 6:  Store the evenit]d; C2; C'i (sorted)
Store the eventt?; C?; C'i (sorted)
end

end

Step 1 Find next event: Since the event list is sorted by time, the rst element in this list is the next event.

Step 2 System update:The position of all spheres at the current simulation time must be known for the collision checks. In a
synchronized system, like in the basic implementation, all particle positions are updated after each collision. This causes ai
additional loop over all particles with memory writes. ldl@layed statesimulation, the particles are usually out of sy@é][

They store the time of their last update and at each collision check their position is recalculated. The cost intensive memory

writes for every particle are omitted.

Step 3 Collision: The collision is performed according to the collision physics in sedi@n In the delayed statesimulation, the

two colliding particles must be synchronized beforehand.

Step 4 Event deletion: All stored events that contain the previously collided particles are now invalid and must be deleted. It is

required to search the entire event list for these events. Since the event list is sorted by time and not by particles, the tre

structure of the event list cannot be used.

10



In our implementation, all particles list their events ioaal event list (with constant length). These local events are then
deleted from the global event list. Now, the time-based tree structure of the global event list can be used, since the collisior

time is known from the local event. Thus, the deletion taR¢log N ) time per event.

Step 5 Event prediction: New collision times for the collided particles must be calculated. In the basic implementation, this requires
a collision check with all other particles and a complexityOdiN ).
In the paper of Alder and Wainwright in which the EDMD was introduced, they also proposed the cell method for more
ef cient collision checks 13]. The specimen is divided into much smaller disjunct cells that keep track of the particles inside.
If a sphere is in the transition from one cell to another, it is temporarily owned by two (or more) cells. Collision checks are
only performed inside a cell. Since the number of cells is chosen to be in the order of the particle number, the numerical cost:
for collisions checks are constaf@®(1)). The overhead caused by cell transfer events reduces as particles grow. In a densely

packed state, the marginal sphere movement causes almost no transfer events.

Step 6 Event storage: The insert operation has@(log N) complexity in the tree-like event list. The overall complexity depends

on the number of new event® (N logN ) or O(log N) with thecell method).

The complexity of each step is summarized in TableWith all these optimization, the algorithm has a theoretical overall
complexity ofO(log N). This is in agreement with numerical simulations. A systenNofmonodisperse particles with the same
growth rate developed for ve million events to ensure a quite dense packing. Afterwards, the time for the next one million events
was measured, averaged and the results are shown ia.Fig.

Inserting and deleting events consumes a lot of time, depending on the length of the event list. tithedarier is used to
keep the event list short. Events that occur after a certain time barrier are not inserted into the event list. When the simulation tim
reaches the time barrier, the event list is cleared and rebuild. With the right choice of the time barrier, the overhead of rebuilding the
entire event list can be compensated and the overall performance increases signi cantly (by a constant factor). In our simulation, th

time barrier was chosen to be approximatetimes the time required to rebuild the event list.

5.5. Further optimization
For experiments with a system size of abouti0* particles), the performance of the presented algorifiog n) is satisfying.

More advanced optimization technigues to boost the algorithms performance for larger systems are

Table 1: Complexity of the process of a single event based on the number of paticlése basic implementation of Algorithéis compared to the optimized one

used in this paper.

complexity

Step Task basic ‘ optimized
1 Find next event o)
2 Systemupdate O(N) ‘ 0
3 Collision o)
4 Eventdeleton O(N?3) O(logN)
5 Event prediction O(N) Oo(1)
6 Eventstorage O(NlogN) | O(logN)

11
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Fig. 4: A system oN monodisperse particles with the same growth rate develops for ve million events to ensure a quite dense packing.tTbettim@ext one

million events is measured, averaged and shown in this diagram. Our algorithm GlflmgsN ) scaling for the process of a single event.

near neighbor list: The cell method is most ef cient with exactly one sphere per cell. In the case of high polydispersity, this cannot

be ensured. Therefore, more ef cient techniques, e.g. the near neighb@]isie available.

event list: The event list handling (Step 4+6) is the only task with non-constant complexity. With the use of a calendar queue for the
event handling, all operations on this queue require a constanQifhe[28]. This allows for the implementation of EDMD

algorithms, e.g. Dynam@p], where the execution of a single event is independent of the system size.

6. Numerical experiments

In this section, a validation of the EDMD is shown using the example of monodisperse sphere jamming. Next, a comparison
between the RSA and EDMD algorithm is performed in two different numerical experiments. In the rst one, the maximal particle
volume fraction ¢ for a given Fuller's curve is investigated. A real concrete specimen with grading curve A16 and a de ned distance

d between the particles is studied in the second experiment. Afterwards, the maximum valdasofvestigated for A16 and
B16 in combination with realistic volume fractions.
All calculations are performed on a single InteKeon® E5-2630L CPU a2:00 GHz.

6.1. Monodisperse particle jamming

The densest packing of equal (monodisperse) spheres can be achieved in regular lattices. The hexagonal close-packed (hcp)
the face-centered cubic (fcc) arrangements both reach74% A maximally random jammed (MRJ) packing describes the closest
packing of randomly arranged equal spheres. Unlike the long-range order of the lattice structures, the MRJ consists of short-rang
ordered clusters with changing orientations. For a three dimensional cell with periodic boundaries, the vaiae 0f64% has
been veri ed numerically 15, 1].

In our simulations, rigid boundaries for a realistic representation of the wall effect in real concrete specimen are used. As a
consequence, the particle density at the wallyiggz= 0, which reduces the maximum particle density. The in uence of this effect
decreases with a higher number of particles.

In the validation experiment, the initial particle distribution for the EDMD is obtained using the RSA algorithm witi80%.

The spheres grow with the same growth rate until the simulation aborts and a nal particle volume fragi®reached. The results

of these simulations for varying particle numbaksand a constant sized cubic specimen are shown ingkig.
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Fig. 5: Jamming o monodisperse particles. The simulations approach the MRJ limit with increasing number of particles.

A single particle can grow until its diameter reaches the edge length of the cubic specimen and the theoretical volume fractior
=4=3 (0:5)° = =6 52%is reached. For two particles, the densest arrangement is the placement in opposite corners of the
specimen. Since the other corners are empty, this causes a drop in the volume fraction. The same effect occurs for three or mo
particles, but its in uence reduces with higher number of particledN/At 23, the particle arrange in a simple cubic lattice that has
the same as the single particle. This ordered state is lostNor 33. In general, the particle volume fraction increases with the
number of particles and gets close tgrj. Additionally, these experiments show that the algorithm's performance is good enough

to reach a very jammed state.

6.2. Polydisperse particle jamming

The aim of the following numerical experiment is to compare the maximally reachable particle volume fraction and the perfor-
mance of the RSA and the EDMD algorithm. The polydisperse particle distribution is de ned by Fuller'sk(yeavith g = 0:5
anddmax = 16 mm. A minimal distance oflni, = 2 mm is chosen to ensure a reasonable number of particles for the simulation.
Since the maximal particle density is investigated, the effective volume fractjpis considered.

With increasing particle volume fractione, both algorithms are more likely to fail. This can be expressed as a success rate

( e). A successful attempt is de ned by not reaching a stopping criterion. Beginning:at 55%, the particle volume fraction
is increased in steps of ¢ = 0:5%. 50 random particle size distributions are calculated for eagland are used for both the RSA
and the EDMD algorithm. The total computation time of the 50 simulations is divided by the number of successful algorithm runs to
get the average time for a successful attempt

The RSA algorithm is applied straightforward with the stopping critétig, = 10% or NF = 10° (see Sectiod). In the EDMD
algorithm, the nal particle diameterd from the particle size distribution are scaled down by a factor ef 0:90 to the initial
diametersly = d. The scaled patrticles are now placed into the specimen using the RSA method. A relative growthrrate o
with = 0:1s ! is applied to each particle. If the simulation reaches the tighg the grown diameters will match the desired

particle distribution and the run is successful

! (30)

tend =

If the change in the simulation timet is below10 ¢ during 1000 events or the computation wall time reaches 20 minutes, the

algorithm will fail.
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Fig. 6: The particle with the biggest diamethrax is compared to the two specimen sizes used. The small box has an edgealen@ttdmay , for the large box

a=5 dmax -

All the simulations are carried out for two different cubic specimens. The edge leagtieschosen to be multiples of the largest
diameterdyax . The two specimens with = 2dmax = 32 mm anda = 5dmnax = 80 mm are shown in Fig6. The initial velocities
for the EDMD simulations were uniformly distributed betwee@:5: :: 0:5 mm=sin each coordinate.

The results of the simulations are shown in Fig.The success rate is close to= 1 for low particle volume fractions. At a
certain volume fraction, the success rates drop to0 and the average time for a successful attemgptcreases. For both specimen
sizes the EDMD method reaches the highest particle volume fraction and the RSA methdtFwitHL0° the lowest one. After a
break-even point ¢x;t ) & (60%;0:2s)in Fig. 7aand( ¢f;t ) & (62:5%; 4 s) in Fig. 7b, the EDMD algorithms performs faster
than the RSA algorithm.

For the larger specimen, the maximal volume fractigRepmp = 70% is 5:3% higher than ¢ rsa = 66:5%.

The overall reachable particle volume fraction for a specimen si32 ofm illustrated in Fig7ais below the one for a specimen
size 0f80 mm shown in Fig.7b for both algorithms. This is due to the wall effect. The ratio between the specimen volume and the
wall area is proportional to the edge lengthTherefore, the in uence of the wall effect decreases with larger specimens.

Even at low values of , the EDMD algorithm fails at some runs. The failure is caused by the stopping critetien” in an
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Fig. 7: Results of the polydisperse particle jamming experiment: The success rateshown in solid lines, the average time for a successful attemiptdashed
lines. The indexes stand for the stop crité¥i& = 105 andNF =106.

early stage of the simulation. This is caused by a few particles that get stuck and keep colliding with each other, for example nea
a corner. The larger specimen wiah= 80 mm has aboul6 times more particles, which increases the probability for these events.
However, they are ef ciently identi ed with the stopping criterion and barely in uence the average computation time.

The particle distribution foa = 80 mm and ¢ = 70% is illustrated in Fig.8. The RSA algorithm stopped after placiBd.66

of 9 367particles, whereas the EDMD was successful.

6.3. Meshable concrete specimen

In this numerical experiment, the particle size distribution of a real concrete specimens is simulated. The grading curve A16
according to DIN 1045-2 is chosen. As Sectibdescribes, only particles larger thdgi, =2 mm are considered and a distinction
between y and ¢ is important. Additionally, a minimal distance ofd = dmin =2 = 1 mm between the particles is enforced by
increasing their diameter byd during the particle placement.

The RSA algorithm is performed with the modi ed diametdrs  d. For the initial sphere distribution of the EDMD algorithm,
the RSA algorithm with d = 0 is used. The absolute growth ratg = 0:1 mm=s is applied to each particle and the EDMD
simulations runs untileng. Since the growth rate applies to the particle radius and not its diameter, the fa&tappears.

d
tend = zia (31)

A cubic specimen with edge lengéh=5 dmax is used. Similar to the previous section, the volume fraction is increased in steps
of m =0:5%, beginning at y = 40%. In each step50 size distributions are simulated and the success raed the timd  is

calculated.
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Fig. 8: Result of the simulation wita =5 dmax and an effective volume fraction of.s = 70% .

The results shown in Fi@ are qualitatively similar to Fig7. The smaller reachable particle volume is due to the minimum

distance d between any two particles. The EDMD algorithm is able to create concrete structurekl@timore particle volume

( mepmp = 53:5%, mprsa = 48%). Since the smalle21% of the particles mass are not explicitly modeled< d,n ), the

corresponding effective volume fractions arg epmp = 42% and ¢ rsa = 38%.

At v =53:5%, 90% of the EDMD runs were successful, the simulations had ab@0d0particles and tookk35s on average.

About 4 million events occurred®8% particle collisions,10:5% wall collisions andl:5% cell transfers (caused by the cell method).

The additional volume due tod, i.e. the layer coating each particle with the thicknesk2, has a volume fraction of 4 = 25%.

With the effective volume fraction of the simulation, this adds up to a total volume fracti6iA%f

effective volume fraction e
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Fig. 9: Results of the meshable concrete specimen experiment withaA2@B0 mm and a minimal distanced = dmin =2 = 1 mm between the particles. The

solid lines represent the success ratethe dashed lines the tinte . The indices stand for the stop criteNef =108 andNF = 108.
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Fig. 10: CPU time needed to reach a certaid. The grading curves A16 and B16 withy = 70% are investigated for different cutoff diametekgi, (indicated

by numbers [mm] in the graph).

6.4. Maximizing the particle distance

In the previous experiment and for the purpose of comparing the RSA and the EDMD algorithm, a dkesdprescribed and
m is varied. In a more practical approach, the highedtfor a given con guration is of interest. It can be connected directly

to a minimal element length in nite element simulations and, thus, gives an approximation for the expected number of degrees o
freedom.

Here, only the EDMD algorithm is used. Similar to the previous experiment, an initial size distribution that already matches the
desired grading curve is obtained by the RSA algorithm. Now, an absolute growth riatgiven to each particle. As the simulation
time t passes, the distanced grows. The simulation is carried out until the stopping criteriort €& 10 8s in 1000events) is
reached.

A cubic specimen with an edge lengih= 150 mm is used in all simulations. The grading curves A16 and B16, as well as the
mixture volume fraction y = 60% and \ = 70% are investigated. Additionally, the cutoff diametky;, is varied.

For a speci ¢ set of parameters, the computation time needed to reach a cedt@érshown in Fig.10. When d reaches its
maximum, the slope of the curves increases dramatically and the calculation stops.

Two phenomena can be analyzed in Fig. First, with decreasinglnn , the computation time increases. This is due to the
growing number of simulated particles that causes more collisions and longer event lists. Second, B16 reaches a higher partic
distance d compared to Al16 - in this case about twice as much. Since B16 has a lower effective volume fraction than Al6, it

provides more space for the additional volume caused @y

4
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S 3l —o—A16-60% - o- A16-70%
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Fig. 11: Maximum d reachable at a certain cutoff diametkyi, for different grading curves and volume fractions. In the legend entries, the numbers indicate the

particle volume fraction py = 60% and y = 70% . The dotted red line represents the requiren2entl = dmin  used in the previous sections.
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Fig. 12: The EDMD algorithm can be performed with bounding spheres of diamigtéor each non-spherical particle. Arbitrary shapes e.g. a) based on spherical

harmonics 33], b) deformed cuboids or c) ellipsoids can be used.

As shown in Fig11, the second effect occurs for different cutoff diametkgg and different volume fractions. The B16 grading
curve meets the requirements ofl = dn,, =2 from the previous section for both volume fractiong = 60% and = 70%,
whereas the A16 grading curve does not. The only exceptidgiis= 0:5mm. Due to the grading curve design, the overall number
of particles is abou2:05 million for B16 and only0:82 million for A16 (see Fig.3). Each particle is coated with a layer of thickness

d=2. For a higher number of particles, this layer requires more volume. Consequently, the reactialdereases. Since the

number of particles grows with decreasing cutoff diameters, this dependence also explains the general decdease of

7. Non-spherical particles

Both algorithms in this paper use spherical particles. However, extensions to ellipsoidal particles are possible. A fast ellipsoid
separation check by Wang et aB(] allows an ef cient handling of those particles in an RSA algorithm. An implementation is done
by Hafner et al. B1]. In an EDMD algorithm for ellipsoids, their movement (including rotations), their collision behavior and their
collision prediction must be considered. The latter one involves solving a quartic equation, in contrast to a quadratic one for sphere:
This is ef ciently implemented by Donev et al27, 32].

The shape of real concrete aggregates, e.g. obtained by x-ray tomography, is more complex. Garboczi used spherical harmon
to characterize arbitrarily shaped particl@8][ The functional description of the corresponding geometry is very complex and
separation checks or collision predictions are dif cult to implement. With a slight modi cation of the present EDMD algorithm
these shapes can be represented as well. Itakephase, the non-spherical particles must be picked in accordance with the desired
grading curve. Each patrticle is embedded in a bounding sphere whose didgetatches the largest particle dimension. Their size
distribution is then used as the input for fhlacephase with the EDMD algorithm. In a post-processing step, illustrated inlBig.
the non-spherical particles are placed in their bounding spheres.

However, with higher particle asphericity, the reachable volume fraction drops, since the bounding spheres are not completel

lled. In this case, the previously described modi cations using ellipsoids are advantageous.

8. Conclusions

In this paper, the RSA and the EDMD algorithm are used to create realistic concrete mesoscale geometries based on a give

grading curve. Both methods are compared in terms of maximal reachable volume fraction and performance. For a xed set o
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parameters and varying volume fractions, the success rate and the average time for a successful geometry creation is measured.

In the RSA implementation, a cell method with variable cell sizes is used. At low volume fractions, it performs much faster than
the EDMD algorithm. However, near its maximum volume fraction, its performance drops under the EDMD performance, until it is
not able to create a valid geometry at all.

The present EDMD algorithm is a modi ed Lubachevski-Stillinger packing algorithm. A loosely packed initial state is obtained
by the RSA method. Several optimization techniques, like the delayed state, the cell method, local event lists and time barriers, ar
implemented. The process of a single event scales logarithmically with the number of particles and dense geometries with over tw
million particles are created. Depending on the speci ¢ grading curve used, the maximum volume fraction of the algorithm exceeds
the RSA value by up td1%

In real concrete specimens, a the minimal distandéetween particles is observable. Maximizing this distance is advantageous
for future nite element simulations. For this purpose, the presented EDMD algorithm is ideal. For the initial state a valid particle
con guration matching the prescribed grading curve but without a minimal distande=(0) can be obtained either using RSA or
EDMD. Using a constant growth rate ford, the particle distance is increased over time. A stopping criterion, e.g. the time increase
for 1000 events, indicates a con guration with maximum particle distande The particles are shrunk back to their original size
and now have a distanced between each other.

For the B16 grading curve and an aggregate volume fractiof0®%§ the EDMD algorithm reaches a value ofd = dqy, =2.

This value is excellent for meshing the resulting geometry.

An extension of this algorithm to ellipsoidal particles is planned for future work. With the more sophisticated optimization

techniques mentioned in this paper, the number of collision predictions can be further reduced and the complex ellipsoid movemer

and collision prediction becomes manageable.
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