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Foreword 

The Seventh Workshop on Research in Turbulence and Transition will be held at ETSEIAT 
(Terrassa School of Industrial and Aeronautical Engineering), in Terrassa (Barcelona, Spain) on 
October 14th, 2013. These Workshops have been conducted since 2003 at the initiative of 
CIMNE, Iberian-East and Iberian-West Pilot Centres of the European Research Community on 
Flow, Turbulence and Combustion (ERCOFTAC), and is a Europe-wide organization that 
promotes research on topics related to fluid dynamics, turbulence and combustion, and their 
industrial applications. 
 
The aim of this Workshop is to contribute to a better knowledge of the activities carried out by 
various Iberian research groups in any field relevant to the turbulence or/and transition. The 
papers presented correspond to groups from Barcelona, Terrassa and Tarragona. 

The organizers of the Workshop want to thank the ETSEIAT at Technical University of 
Catalonia. 
 
How to arrive 
Terrassa School of Industrial and Aeronautical Engineering 
Terrassa Campus, Building TR5. C. Colom, 11 08222 Terrassa 
http://www.etseiat.upc.edu/contact 
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Numerical simulation of heat transfer and temperature distribution in a 
Printed Circuit Board enclosure 

S. Varelaa, G. Userab, A. Verneta and J.A. Ferrèa

a Departament d’Enginyeria Mecànica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, 
Spain

b Instituto de Mecánica de los Fluidos, Facultad de Ingeniería, Universidad de la República, J.H. Reissig 
565, 11300, Montevideo, Uruguay

ABSTRACT

The heat  transfer  analysis and temperature distribution inside Printed Circuit  Board (PCB) enclosures  for different  
geometries was investigated. Herein, the computational fluid dynamic (CFD) solver caffa3d.MB [1] was employed to 
simulate the 3D incompressible Navier-Stokes equations. The numerical method uses a spatial discretization based on 
block-structured,  non-orthogonal  body  fitted  grids.  Numerical  simulations  for  two  different  PCB  geometry 
configurations are analyzed using eight Reynolds numbers. The temperature field is practically the same above the plate 
encasing the PCB, differences appear below the plate. While analyzing the plane just below for the open geometry the 
main consideration is the presence of a hot zone. The greater  heat transfer  is obtained in the top channel for both 
geometries. In turn in the bottom channel the heat transfer is greater in the closed geometry than the open one. The 
calculating results show that the cooling of the PCB is more efficient for the closed geometry.
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Analysis of a confined laminar reactive flow in a cylindrical cavity using 
PLIF and PIV
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Department of Mechanical Engineering. University Rovira i Virgili

Av. Països Catalans, 26 43007-Tarragona. Spain

Ph. +34 977 558 451, e-mail: irene.sancho@urv.cat

ABSTRACT

In the last years, the studies of macro- and micromixing have advanced to determine where and in which degree these  
two mixing scales are present in a chemical reaction and therefore improve its throughput. Most of the studies apply the  
PLIF (Planar Laser Induced Fluorescence) and PIV (Particle Image Velocimetry) techniques to quantify, respectively,  
the degree of mixing and the concentration fields, and the velocity fields in reactive and non-reactive flows [1,2]. The 
great majority of authors perform their studies, experimental and computational, in turbulent regime. The comparison of 
experimental and computational results in turbulent flows is not trivial.

Confined flows show a great interest both in basic research and on diverse technological applications. Over the years,  
the  cylindrical  lid-driven  cavities  have  been  extensively  studied;  indeed  the  flow  behaviour  has  been  totally 
characterized [3], varying the velocity of rotating end wall and the aspect ratio. Even though the velocity fields and the 
formation of vortices have been studied applying the PIV technique [4].

The aim of this study is to analyse an axisymmetric confined, reactive and laminar flow in a cylindrical cavity with a  
rotating  end  wall  varying  its  aspect  ratio  and  the  angular  velocity  of  the  rotating  wall,  experimentally,  applying  
simultaneously the PIV and PLIF techniques, and computationally. The lack of information of confined, reactive and 
laminar flows make this study interesting, taking into account that even it is a laminar flow there are breakdowns 
keeping the steady state of the flow [3]. Moreover, the laminar flow allows a less complex comparison between the 
experimental  and  computational  results  than  in  turbulent  flow,  making  the  characterisation  of  the  PIV and  PLIF 
techniques possible. Finally, the cylindrical lid-driven cavity study, which has the flow behaviour characterized, enables 
us focus in the topic that actually we are interested; the degree of mixing in a chemical reaction.

The  experimental  technique  is  based  on  the  combined  PIV  and  PLIF  system.  PIV  is  applied  to  measure  the 
instantaneous  velocity  fields  and  PLIF  is  applied  to  measure  the  instantaneous  concentration.  Figure  1  shows  a 
schematic sketch of the experimental setup.

The experimental setup consists of a PMMA cylindrical container of inner radius R=0.04 m with a rotating wall at the 
top (Fig. 1).  The rotating wall is driven by an electronically controlled DC motor,  operating with angular velocity 
between ω=6.25-14.38 rad/s. The height (H) of the flow domain, and therefore the aspect ratio (H/R) can be varied. In  
this work, three different aspect ratios H/R: 1, 1.5 and 2 were considered. In this case, the traditional lid-driven has been 
modified introducing an inlet in the center  of the bottom wall  with an inner diameter  of 3 mm, where one of the 
reactants is released inside the cylindrical cavity.

                                                        

R

H

CH3COOH 0.1 M

NH4OH 
0.01 M

rotating wall

motor

Figure 1 Sketch of experimental setup.
The chemical reaction considered is a neutralization acid-base reaction, i.e:
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3 4 3 4 2CH COOH NH OH CH COONH H O+ → +
This is a rapid irreversible second-order reaction. The reaction rate constant is in the order of 10 8 m3/mol·s and the 
concentration of the Acetic Acid (A) and Ammonium Hydroxide (B) are, respectively, 0.1 M and 0.01 M.

The base solution is inside the cylindrical cavity. The acid solution is released inside the cavity by the bottom inlet with  
the help of a pump. The fluorescent dye (Sodium Fluorescein) is added to the acid with a concentration of 0.08 g/l. The  
velocity inlet of the acid solution is between vi =1.6-3.2 mm/s. These velocities are between 50 and 100 times less than 
the average velocity of the rotating top wall and do not affect the velocity fields of the cylindrical cavity.

The preliminary numerical results are computed for an aspect ratio and a velocity inlet of H/R=2 and v i=3.2 mm/s, 
respectively. Figure 2 shows the cross-stream velocity vectors fields at  x=0 for different angular velocity of rotating 
wall.  These angular  velocities correspond to a Reynolds number (Re) between 1000 and 2300 ( 2Re ·Rω ν= ).  As 
indicated by Escudier [3], with a H/R=2 and Re=1500, a breakdown can be observed (Fig. 2b). Figures 2c and 2d show 
two breakdowns. Figure 3 shows the contours of concentration of the base solution (B) at different reaction time (t). The 
acid solution enters to cavity up to t=15 min (Fig. 3c), when the half of acid solution volume has entered. The base  
solution is in excess. Figure 3d shows the consumption of reactive B, that is slowly disappearing. It can be observed that 
the contours of concentration of base solution have butterfly wings shape during the reaction.
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Figure 2 Cross-stream velocity vectors fields at x=0 for (a) ω=6.25 rad/s (Re=1000), (b) ω=9.38 rad/s (Re=1500), 
(c) ω=12.5 rad/s (Re=2000) and (d) ω=14.38 rad/s (Re=2300).
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Figure 3 Contours of concentration of base solution at x=0 and ω=6.25 rad/s (Re=1000). (a) t=5 min, (b) t=10 min, 
(c) t=15 min and (d) t=20 min.

A detailed experimental and computational analysis of the mixing degree and the velocity and concentration fields of  
the confined, laminar and reactive flow in a cylindrical lid-driven cavity will be included in the final version of the 
paper varying the aspect ratio and the angular velocity of the container.
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ABSTRACT 
 
 
Hydraulic machines are faced with increasingly severe performance requirements. The need to design smaller and more 
powerful machines rotating at higher speeds in order to provide increasing efficiencies has to face a major limitation: 
cavitation. 
 
A two-dimensional numerical approach, by means of Computational Fluid Dynamics (CFD), has been developed for 
studying the effect of cavitation in the volumetric efficiency of external gear pumps. Several cavitation models and grid 
deformation algorithms have been studied, and a method for simulating the contact between solid boundaries has been 
developed. The velocity field in the inlet chamber has also been experimentally measured by means of Time-Resolved 
Particle Image Velocimetry (TRPIV) and results have been compared to the numerical ones in order to validate the 
accuracy of the model. 
 
Our two-dimensional model is not able to predict the real volumetric efficiency of the pump, since several 
simplifications are involved in it. Nevertheless, this model shows to be valid to understand the complex flow patterns 
that take place inside the pump and to study the influence of cavitation on volumetric efficiency. The influence of the 
rotational speed of the pump has been analyzed, as well as the effect the working pressure. 
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INTRODUCTION

Gravity-driven bubbly flow is a complex phenomenon which is dif-
ficult to understand, predict and model. The modelling of averaged
properties of two-phase flows has traditionally suffered from the lack
of detailed and reliable data against which closure models can be val-
idated. Direct Numerical Simulations (DNS) of multiphase flows by
interface tracking techniques have now advanced to the point that they
are able to provide such data for bubbly flow systems.

In this work, a numerical method is introduced for DNS of bubbly
flows, which is integrated in a finite-volume framework on collocated
unstructured grids of arbitrary element type. The location, geometry and
the movement of the discontinuities are described by the conservative
level-set method (CLS). The CLS method is validated with experimen-
tal results of the bouyant rise of an isolated bubble, and finally the
method is applied to simulate the gravity-driven bubbly flow. In gen-
eral, a good agreement is found between the current simulations and
results reported in the literature.

DESCRIPTION OF NUMERICAL METHOD

The conservation of momentum and mass of two immiscible incom-
pressible fluids are described by the Navier-Stokes equations:
{

∂
∂t (ρv)+∇ · (ρvv) =−∇p+∇ ·µ

(

∇v+(∇v)T
)

+ρg+σκδΓn,

β = β1HΓ +β2(1−HΓ) with β ∈ {ρ,µ}.
(1)

∇ ·v = 0 (2)

whereρ andµ denote the density and dynamic viscosity of the fluids,v
is the velocity field,g is the gravity acceleration,p is the pressure,σ is
the coefficient of surface tension,n is the interface normal,κ is the in-
terface curvature,δΓ andHΓ are the Dirac delta function and Heaviside
step function localized at the interface,Γ(t).

In the conservative level-set method (CLS) [2] a regularized indica-
tor function is used for interface capturing:

φ(x,t) =
1
2

(

tanh

(

d(x,t)
2ε

)

+1

)

(3)

whered(x,t) = sign(x,t)min{||x − xΓ(t)||} is a signed distance func-
tion, xΓ ∈ Γ, ε is a parameter that sets the thickness of the profile,φ
takes the value 0 in one fluid and the value 1 in the other fluid. The
interface,Γ, is defined by the location of theφ = 0.5 iso-surface. The
interface transport equation can be written in conservative form pro-
vided the velocity field is solenoidal:

∂φ
∂t

+∇ ·φv = 0 (4)

Furthermore, an additional re-initialization equation isintroduced to
keep the profile and thickness of the interface constant,

∂φ
∂τ

+∇ ·φ(1−φ)nτ=0 = ∇ ·ε∇φ (5)

This equation is advanced in pseudo-timeτ, it consists of a compressive
flux φ(1−φ)nτ=0 that aims at sharpening the profile, and of a diffusion
term∇ ·ε∇φ that ensure the profile remains of characteristic thicknessε.
Geometrical information on the interface (n andκ) is obtained through:

n =
∇φ
‖∇φ‖

κ(φ) =−∇ ·n (6)

In order to avoid the appearance of numerical instabilitiesnear the inter-
face, surface tension force is smoothed over a finite thickness by using
the CSF model [1],σκnδΓ = σκ∇φ, and fluid properties are regularized
by the level-set functionφ, β(φ) = β1φ+β2(1−φ).

The governing equations have been discretised on a collocated un-
structured grid arrangement by means of the finite-volume method. To
avoid unphysical oscillations in the level set function, a TVD Superbee
limiter, is used to discretize the convective term in advection Eq. (4).
Central difference scheme, is used to discretize both the convective and
compressive terms of momemtum Eq. (1) and re-initialization Eq. (5)
respectively. The velocity-pressure coupling has been solved by means
of a classical fractional step projection method. For the temporal dis-
cretization, explicit Adams-Bashforth scheme is used for the momem-
tum equation, while for the pressure-gradient term an explicit first-order
scheme has been used. Advection Eq. (4) and Re-initialization Eq. (5)
are integrated in time with a 3-step third-order accurate TVD Runge-
Kutta method.

RESULTS

To validate the numerical method, the bouyant rise of a single bubble
is first simulated. For bubbles rising freely in infinite media a general-
ized graphical correlation is given by Grace [4]. This diagram shows
the shape regimes and terminal velocities in terms of Eötvösnum-
berEo= gd2∆ρ/σ, Morton numberM = gµ4

1∆ρ/(ρ2
1σ3) and Reynolds

numberRe= ρ1UTd/µ1. Here,UT is used to denote the terminal veloc-
ity of the bubble,∆ρ = ρ1−ρ2 specifies the density difference between
the fluid phases, the subscript 1 refers to the heavier fluid and the sub-
script 2 to the lighter fluid.

Computational domain consists of a cylinder of diameterD= 6d and
heightH = 8d, whered is the initial diameter of the bubble. Initially
the spherical bubble is located on the symmetric axis at distanced from
the bottom wall. Both liquid and bubble are assumed initially quiescent.
No-slip boundary conditions are applied on top, side and bottom walls.

The density and viscosity ratios are specified respectivelyas
ρ1/ρ2 = 100 andµ1/µ2 = 100. The time step size is fixed to∆t∗ = 5.0×
10−5 (t∗ = t(g/d)1/2). An interface thickness parameter,ε = 0.5h0.9, is
used in all simulations of this work, whereh is the characteristic grid
size. In the numerical experiments we have observed that 25cv/d is
enough for accurate capturing of shape and terminal velocity of the
bubbles. Hence, the computational domain has been discretized by 2.3
million control volumes, with a grid densified around the symmetry axis
of the cylinder to maximize the bubble resolution (25cv/d).

1



Numerical results for various values ofEo number andM number
are shown in Fig. 1. The dimensionless numbers reported hereare
evaluated at the initial stage using the droplet diameterd. From the
simulations presented in Fig. (1), it can be concluded the current nu-
merical method is robust enough to predict the various bubble shapes
under a wide range of flow regimes. The comparison of the terminal
Reynolds numbers for the experiment and simulation cases islisted in
Table 1. The results from simulations agree with those of experiments
very well.

Figure 1: Bubble diagram of Grace for the shape and terminal velocities
of gas bubbles in quiescent viscous liquids, reproduced from Clift et al.
(1978) [4]. The simulated cases are indicated with capitals.

Bubble regime M Eo ReG ReC Case
Spherical 1.26×10−3 1.0 1.7 1.68 A
Ellipsoidal 1.00×100 10.0 1.7 1.75 B
Ellipsoidal Cap. 1.00×103 97.1 1.5 1.58 C
Ellipsoidal 9.71×10−4 10.0 22.0 23.0 D
Skirted 9.71×10−1 97.1 20.0 18.7 E

Table 1: Simulation of rising bubble for different regimes according
to the bubble diagram of Grace [4].ReG represents the experimental
Reynolds number obtained from the Grace diagram andReC represents
the predicted Reynolds number.

The oblique coalescence of two rising bubbles in an initially qui-
escent liquid is explored. Numerical parameters are the same as in
previous cases. A sequence of shapes for coalescence process of two
bubbles is presented in Fig. 3. Bubbles start to rise due to buoy-
ancy, subsequently, a vortice is created in the wake of the upper bubble.
The suction by the top bubble produce the collision between them and
the thin liquid film between the bubbles is squeezed out and ruptured.
Finally, the two bubbles merge into a single bubble, completing the co-
alescence process. The numerical prediction match faily well in terms
of bubble shapes with the experimental results reported by Brereton and
Korotney [5].

Figure 2: Oblique bubble coalescence of two initially spherical bubbles.
HereM = 0.0002,Eo= 16,ρ1/ρ2 = 100,µ1/µ2 = 100.

With the confidence from validating the CLS method, the modelis
used to explore the gravity-driven bubbly flow. A set of 30 rising bub-

bles with the same diameterd is simulated in a cylindrical duct, for
ρ1/ρ2 = 10, µ1/µ2 = 10, Eo= 2.25 andM = 6× 10−4. Bubbles are
initially placed in the domain in a random pattern. The volume fraction
occupied by bubbles in the whole domain is 0.034%, and the minimal
distance between the bubbles at initial state is 1.25d. Computational
domain is discretized by 12.6×106cv≡ 30cv/d. The simulation results
are performed by using a time step∆t∗ = 2.0×10−4. Periodic bound-
ary condition is applied at the top and bottom of the domain, whereas
no-slip boundary condition is applied at the side wall.

Fig. 3 shows the pattern of bubbly flow. Bubbles rise due the
bouyancy force, and form its own wake. The dynamic interaction pro-
cess of bubbles is dominated by wake effects. A bubble movingin the
wake of another bubble is attracted toward the leading bubble. The
strength of influence depends of distance between bubbles. Coalescence
processes are observed as the time is increased, and large bubbles are
formed, which then induces a stronger flow field that affect the neigh-
bor bubbles. The bubbles in this regime flow moves through thecenter
of the cylindrical duct, which indicates that bubbles near the symmetry
axis are moving faster.

t∗ = 11.2 t∗ = 14.0

Figure 3: Bubbly flow: M = 6.0× 10−4, Eo = 2.25, ρ1/ρ2 = 10,
µ1/µ2 = 10.

In the final paper the main features of the flow for differentEo and
M numbers, will be discussed in detail.
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INTRODUCTION

The flow around airfoils in full stall is a problem of great interest
in aerodynamics and specifically for the design of turbo-machines (tur-
bines, propellers, wind turbines, etc.). However, mechanisms of quasi-
periodic oscillation observed near stall and stall behaviour, which affect
airfoil efficiency, remain still not fully understood. Thus, the study of
the separation mechanism and the correct prediction of boundary layer
transition are both key aspects for improving engineering designs.

The advances in computational fluid dynamics together with the in-
creasing capacity of parallel computers have made possible to tackle
such complex turbulent problems by using high-performance numerical
techniques such as direct numerical simulation (DNS) [1, 2]. DNS has a
key role for improving the understanding of the turbulence phenomena
and for the simulation of transitional flows in complex geometries In the
present work DNS of the flow past a NACA0012 airfoil at Re = 5×104

and angles of attack of 5◦, 8◦, 9.25◦ and 12◦ (the last one correspond to
a full-stall situation) have been carried out. This work aims at investi-
gating the mechanisms of separation and the prediction of the transition
to turbulence in the separated shear-layer while at the same time to gain
insight into coherent structures formed in the separated zone at lo-to-
moderate Reynolds numbers.

DESCRIPTION OF NUMERICAL METHOD

The Navier-Stokes and continuity equations can be written as

Mu = 0 (1)
∂u
∂t

+C(u)u+νDu+ρ−1Gp = 0 (2)

where u and p are the velocity vector and pressure, respectively; ν is the
kinematic viscosity and ρ the density. Convective and diffusive terms
in the momentum equation for the velocity field are given by C(u) =
(u ·∇) and D=−∇2 respectively. Gradient and divergence (of a vector)
operators are given by G= ∇ and M= ∇·, respectively.

The governing equations have been discretised on a collocated
unstructured grid arrangement by means of second-order spectro-
consistent schemes [3]. Such schemes are conservative, i.e. they
preserve the kinetic energy equation. These conservation properties
are held if, and only if the discrete convective operator is skew-
symmetric (Cc (uc) = −Cc

∗ (u)), the negative conjugate transpose of
the discrete gradient operator is exactly equal to the divergence opera-
tor (−(ΩcGc)

∗ =Mc) and the diffusive operator Dc, is symmetric and
positive-definite (the sub-index c holds for the cell-centred discretisa-
tion). For the temporal discretization of the momentum equation, a
two-step linear explicit scheme on a fractional-step method has been
used [4], while for the pressure-gradient term an explicit first-order
scheme has been used. The velocity-pressure coupling has been solved
by means of a classical fractional step projection method,

up = un+1 +G p̃ (3)

where p̃ = pn+1∆tn/ρ is the pseudo-pressure, up the predicted veloc-
ity, n + 1 is the instant where the temporal variables are calculated,
and ∆tn is the current time step (∆tn = tn+1 − tn). Taking the di-
vergence of (3) and applying the incompressibility condition yields a
discrete Poisson equation for p̃: L p̃ = M up. The discrete laplacian
operator L ∈ Rm×m is, by construction, a symmetric positive definite
matrix (L ≡ MΩ−1M∗). Once the solution of pn+1 is obtained, p̃ re-
sults from equation 3. Finally the mass-conserving velocity at the faces
(Msun+1

s = 0) is obtained from the correction,

un+1
s = up

s −Gs p̃ (4)

where Gs represents the discrete gradient operator at the CV faces.
This approximation allows to conserve mass at the faces. However,
when the fractional step method on a collocated arrangement is used,
there are two sources of errors in the kinetic energy conservation: i) due
to interpolation schemes and, ii) due to inconsistency in the pressure
field in order to ensure mass conservation. While the first one can be
eliminated through the use of conservative schemes such as those used
in the present work, the latter equals to [5, 6]:

εke = (p̃c)
∗Mc(Gc −Gs)p̃c (5)

This contribution of the pressure gradient term to the evolution of the
kinetic energy can not be eliminated. Felten & Lund [6] have conducted
a study to determine its scaling order. They have shown that the spatial
term of the pressure error scales as O(∆x2) and the temporal term scales
as O(∆t), i.e. pressure errors are of the order of O(∆x2 ∆t). However, in
their work they have proven that pressure errors do not have a significant
impact on the results at grid resolutions and time-steps used in LES
and in DNS. The methodology used have been proven to yield accurate
results and have been previously used for solving the flow over bluff
bodies with massive separation in [7] and [8].

RESULTS

All computed flows are around a NACA-0012 airfoil extended to
include sharp trailing edge. All coordinates are referred to body axes
unless remarked. The x axis is chord-wise, y is in the plane of the airfoil
and z is spanwise direction. Solutions are obtained in a computational
domain of dimensions 40C× 40C× 0.2C with the leading edge of the
airfoil placed at (0,0,0).The boundary conditions at the inflow consist
of a uniform velocity profile (u,v,w)=(Ure f cosAOA, Ure f sinAOA,0).
As for the outflow boundary, a pressure-based condition is imposed.
No-slip conditions on the airfoil surface are prescribed. Periodic bound-
ary conditions are used in the spanwise direction.

For carrying out the computations at the same grid has been used
for the different AoA. Flow around an airfoil is mostly laminar with

1



Figure 1: Instantaneous snapshots of vortical structures at different AoA

the exception of a zone close to the surface of the airfoil (suction side)
and in the wake of it. When performing DNS, it must be ensured that
the grid size is enough to solve the smallest flow scales well in the tur-
bulent zones. Furthermore, within laminar zones, boundary layer must
also be well-solved. Taking into account that the accuracy of the re-
sults is highly grid dependent, specially in the region of the separated
shear-layer where transition to turbulence occurs, care must be taken
when the computational grid is constructed. Another critical region is
the near wake of the airfoil, where a poor grid resolution may cause
notable upstream flow distortions. With these criteria, more control vol-
umes have been clustered in these zones, but although the grid used is
unstructured, it has been constructed as uniform as possible in the re-
gions of interest. Thus, the results presented in the paper have been
performed on a grid of about 46.6 million CVs (340526× 128 planes)
which covers the whole domain.

For obtaining the numerical results presented, the simulation starts
from an initially homogeneous flow field which introduces some nu-
merical disturbances as it is not the solution of the governing equa-
tions. These disturbances eventually causes the flow became three-
dimensional and triggers transitions to turbulence. Then, simulation
has been advanced in time until statistical stationary flow conditions
have been achieved and the initial transient is completely washed out.

In order to gain insight into the coherent structures developed in
the separated zone, instantaneous Q-iso surfaces have been depicted in
figure 1 for the different AOA. The flow separates laminarly from the
airfoil surface near the leading edge as can be inferred from the two-
dimensional shear-layer developed. Vortex breakdown occurs at the end
of the laminar shear-layer as a consequence of the instabilities devel-
oped by the action of a Kelvin-Helmholtz mechanism (see figure 1).
These instabilities are high frequency fluctuations in the velocity which
grow in magnitude as the distance from the leading edge increases and
eventually causes shear layer to roll-up and undergo transition to turbu-
lent flow, where these instabilities in the shear layer can be clearly seen,
and how they increase their amplitude until finally transition to turbu-
lence occurs). This mechanism of transition is similar to that observed
in shear-layers developed in other bluff bodies such as the flow past a
sphere [8].

Figure 2 shows the resulting energy spectra for the streamwise ve-
locity fluctuations for AoA 12◦ of several probes located on the suction
side and in the near wake. The energy spectra exhibit different ranges
and fundamental frequencies, from transition to turbulent flow observed
in the bottom curve (corresponding with probe P0) to the regular de-
cay of slope close to −5/3 as the flow approaches the airfoil aft and
flows into the wake (probe P5). This is indicative of the presence of
an inertial subrange for more than a decade of frequencies. As for the
significant frequencies, the spectrum for P0 shows a broadband peak at
fSL = 9.74 (St = f sin(AOA)C/U = 2.025, here Strouhal is based on the
airfoil projection on a cross-stream plane). This peak corresponds with

Figure 2: Energy spectra of the streamwise velocity fluctuations for
AOA = 12◦.

the frequency of the shear-layer instabilities and disappears as the flow
moves downstream and the separated shear layer becomes turbulent.
Note that it has only been captured by the probe located at (x/C = 0.2;
y/C = 0.125) which is close to the separated shear layer.

In the final paper the main features of the flow for AoA of 5◦, 8◦,
9.25◦ and 12◦, including power spectra of a set of selected monitoring
probes at different positions in the suction side and in the near-wake of
the airfoil will be discussed in detail.
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Abstract The incompressible Navier-Stokes equations constitute anexcellent mathematical modelization of turbulence. Unfortu-
nately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers. Therefore, dynamically less complex
mathematical formulations are necessary for coarse-grainsimulations. Eddy-viscosity models for Large-Eddy Simulation (LES) is an
example thereof: they rely on differential operators that should be able to capture well different flow configurations (laminar and 2D
flows, near-wall behavior, transitional regime...). In thepresent work, several differential operators are derived from the criterion that
vortex-stretching mechanism must stop at the smallest gridscale. Moreover, since the discretization errors may play an important role
a novel approach to discretize the viscous term with spatially varying eddy-viscosity is used. It is based on basic operators; therefore,
the implementation is straightforward even for staggered formulations.

INTRODUCTION

We consider the simulation of the incompressible Navier-Stokes (NS) equations. In primitive variables they read

∂tu+ C(u,u) = Du−∇p, ∇ · u = 0, (1)

whereu denotes the velocity field,p represents the pressure, the non-linear convective term isgiven by C(u,v) =
(u · ∇)v, and the diffusive term readsDu = ν∆u, whereν is the kinematic viscosity. Direct simulations at high
Reynolds numbers are not feasible because the convective term produces many scales of motion. Hence, in the foreseeable
future numerical simulations of turbulent flows will have toresort to models of the small scales. The most popular example
thereof is the Large-Eddy Simulation (LES). Shortly, LES equations result from filtering the NS equations in space

∂tu+ C(u,u) = Du −∇p−∇ · τ(u) ; ∇ · u = 0, (2)

whereu is the filtered velocity andτ(u) is the subgrid stress tensor and approximates the effect of the under-resolved
scales,i.e. τ(u) ≈ u⊗ u − u ⊗ u. Then, the closure problem consists on replacing (approximating) the tensoru⊗ u

with a tensor depending only onu (and notu). Because of its inherent simplicity and robustness, the eddy-viscosity
assumption is by far the most used closure model

τ(u) ≈ −2νeS(u), (3)

whereνe denotes the eddy-viscosity andτ(u) is considered traceless without the loss of generality.

RESTRAINING THE PRODUCTION OF SMALL SCALES

The essence of turbulence are the smallest scales of motion.They result from a subtle balance between convective
transport and diffusive dissipation. Numerically, if the grid is not fine enough, this balance needs to be restored by a
turbulence model. Hence, the success of a turbulence model depends on the ability to capture well this (im)balance. Let
us consider an arbitrary part of the domain flow,Ω, with periodic boundary conditions. The inner product is defined in the
usual way:(a, b) =

∫
Ω
a · bdΩ. Then, taking theL2 inner product of (1) with−∆u leads to the enstrophy equation

1/2‖ω‖2
t
= (ω, C(ω,u))− ν(∇ω,∇ω), (4)

where‖ω‖2 = (ω,ω) and the convective term contribution(C(u,ω),ω) = 0 vanishes because of the skew-symmetry of
C. Following [3], the vortex-stretching term can be expressed in terms of the invariantR = −1/3tr(S3) = −det(S)

(ω, C(ω,u)) = −
4

3

∫

Ω

tr(S3)dΩ = 4

∫

Ω

RdΩ = 4R̃, (5)

whereas the diffusive terms may be bounded in terms of the invariantQ = −1/2tr(S2)

(∇ω,∇ω) = −(ω,∆ω) ≤ −λ∆(ω,ω) = 4λ∆

∫

Ω

QdΩ = 4λ∆Q̃, (6)

whereλ∆ < 0 is the largest (smallest in absolute value) non-zero eigenvalue of the Laplacian operator∆ onΩ and (̃·)
denotes the integral overΩ. However, it relies on the accurate estimation ofλ∆ onΩ. The latter may be cumbersome,



especially on unstructured grids. Alternatively, it may be(numerically) computed directly from(∇ω,∇ω) or, even

easier, by simply noticing that(∇ω,∇ω) = 4
∫
Ω
Q(ω)dΩ = 4Q̃(ω). However, from a numerical point-of-view, these

integrations are not straightforward. Instead, recallingthat∇ × ∇ × u = ∇(∇ · u) − ∆u and∇ · u = 0, a more
appropriate expression can be obtained as follows

(∇ω,∇ω) = −(ω,∆ω) = (ω,∇×∇× ω) = (∇× ω,∇× ω) = (∆u,∆u) = ‖∆u‖2. (7)

Then, to prevent a local intensification of vorticity,i.e. ‖ω‖t ≤ 0, the inequalityHΩ ≤ ν(∆u,∆u)/(ω, Sω) must be
satisfied, whereHΩ denotes the overall damping introduced by the model in the (small) part of the domainΩ. Additionally,
the dynamics of the large scales should not be significantly affected by the (small) scales contained within the domain
Ω, i.e. (ω, Sω) < 0. Then, from Eq.(5) and noticing that0 < HΩ ≤ 1, a proper definition of the overall damping

factor followsHΩ = min
{
ν‖∆u‖2/|R̃|, 1

}
. An eddy-viscosity model,τ(u) = −2νeS(u), adds the dissipation term

(∇ω, νe∇ω) to the enstrophy equation. In this case, the eddy-viscosity, νe, results

νe = max
{
(4|R̃| − ν‖∆u‖2)/‖∆u‖2, 0

}
. (8)

This analysis can be extended further for other differential operators. For instance,τ ′(u) = 2ν′
e
S(∆u) andτ ′′(u) =

−2ν′′
e
S(∆2

u), where∆2 ≡ ∆∆ is the bi-Laplacian, lead to the following hyperviscosity terms in the enstrophy equation
−(∇ω, ν′

e
∇∆ω) and(∇ω, ν′′

e
∇∆2

ω) . Then, following similar reasonings,ν′
e

andν′′
e

follow

ν′
e
= max

{
−(4|R̃| − ν‖∆u‖2)/(∆u,∆2

u), 0
}

and ν′′
e
= max

{
(4|R̃| − ν‖∆u‖2)/‖∆2

u‖2, 0
}
. (9)

DISCRETIZING THE VISCOUS TERM WITH SPATIALLY VARYING EDDY-VISCOSITY

The NS equations (1) with constant physical properties are discretized on a staggered grid using a fourth-order symmetry-
preserving discretization [4]. Here we propose to apply thesame ideas to discretize the eddy-viscosity model (3) for
LES (2). To obtain the Eq.(1) (withν replaced byν + νe) from Eqs.(2)-(3) with constantνe notice that2∇ · S(u) =
∇·∇u+∇·(∇u)T and recall the vector calculus identity∇·(∇u)T = ∇(∇·u) to cancel out the second term. However,
for non-constantνe, the discretization of∇ · (νe(∇u)T ) needs to be addressed. This can be quite cumbersome especially
for staggered formulations. The standard approach consiston discretizing the term∇ · (νe(∇u)T ) directly. However,
this implies manyad hocinterpolations that tends to smear the eddy-viscosity,νe. This may (negatively?) influence the
performance of eddy-viscosity especially near the walls. Instead, an alternative form was proposed in [2]. Shortly, with the
help of vector calculus it can be shown that∇· (νe(∇u)T ) = ∇(∇· (νeu))−∇· (u⊗∇νe). Then, recalling that the flow
is incompressible, the second term in the right-hand-side can be written as∇· (u⊗∇νe) = (u ·∇)∇νe = C(u,∇νe), i.e.

∇ · (νe(∇u)T ) = ∇(∇ · (νeu))− C(u,∇νe). (10)

In this way, consistent approximations of Eqs.(2)-(3) can be constructed without introducing new interpolation operators.

CONCLUDING REMARKS AND FUTURE RESEARCH

In the context of LES, three eddy-viscosity-type models have been obtained. Namely, (i)τ(u) = −2νeS(u), (ii) τ ′(u) =
2ν′

e
S(∆u) and (iii) τ ′′(u) = −2ν′′

e
S(∆2

u), whereνe, ν′e andν′′
e

are given by Eqs.(8) and (9), respectively. Notice that,
apart fromR, these models can be straightforwardly implemented by re-using the discrete diffusive operator. They can
be related with already existing approaches. Firstly, the model (i) is almost the same than the recently proposedQR-
model [3]. Essentially, they only differ on the calculationof the diffusive contribution to the enstrophy equation: instead
of making use of the equality (7) it is bounded by means of the inequality (6), therefore, the eddy-viscosity is given by
νe ∝ λ−1

∆
|R̃|/Q̃ instead of Eq.(8). Regarding the models (ii) and (iii) they can be respectively related to the well-known

small-large and small-small variational multiscale methods [1] by noticing thatu′ = −(ǫ2/24)∆u + O(ǫ4). All these
models switch off (R → 0) for laminar (no vortex-stretching), 2D flows (λ2 = 0 → R = 0) and near the wall (R ∝ y1).
To test the performance of these new turbulence models in conjunction with the new discretization approach is part of our
research plans. In particular, we plan to test them for a turbulent channel flow and square duct atReτ = 1200.
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INTRODUCTION

The flow past a circular cylinder is associated with various

instabilities which involve the wake, separated shear layer and

boundary layer.It is well known that when Reynolds numbers

is about 2×105 the boundary layer undergoes a transition from

laminar to turbulent regime. The range of critical Reynolds

numbers up to ∼ 5× 105 is characterised by a rapid decrease

of the drag coefficient with the Reynolds numbers. Other

features characterise this regime, such a the presence an asym-

metric laminar separation bubble as reported experimentally

by Bearman [1]. This work aims at shed some light into the

complex physics present at these critical Reynolds numbers by

means of large-eddy simulations of the flow.

DESCRIPTION OF NUMERICAL METHOD

In the quest for a correct modelling of Navier-Stokes equa-

tions, they can be filtered spatially as in Large-Eddy Simula-

tions (LES),

Mu = 0 (1)

Ω
∂u

∂t
+ C (u)u+ νDu+ ρ−1ΩGp = C (u)u− C (u)u

≈ −MT (2)

where u ∈ R3m and p ∈ Rm are the filtered velocity vector

and pressure, respectively (here m applies for the total num-

ber of control volumes (CV) of the discretised domain), ν is

the kinematic viscosity and ρ the density. Ω ∈ R3m is a ma-

trix with the cell control volumes. Convective and diffusive

operators in the momentum equation for the velocity field are

given by C (u) = (u · ∇) ∈ R3m×3m, D = −∇2 ∈ R3m×3m

respectively. Gradient and divergence (of a vector) operators

are given by G = ∇ ∈ R3m×m and M = ∇· ∈ Rm×3m re-

spectively. The last term indicates some modelisation of the

filtered non-linear convective term. T is the SGS stress tensor,

which is defined as,

T = −2νsgsSij + (T : I)I/3 (3)

where Sij = 1
2
[G(u) + G∗(u)], and G∗ is the transpose

of the gradient operator. To close the formulation, a suit-

able expression for the subgrid-scale (SGS) viscosity must

be introduced. LES studies have been performed using the

wall-adapting local-eddy viscosity model within a variational

multi-scale framework (VMS-WALE) [2, 3]. The variational

multi-scale (VMS) approach was originally formulated for the

Smagorinsky model by Hughes [3] is used here with the small-

small strategy is used in conjunction with the wall-adapting

eddy viscosity (WALE) model [2]. In VMS three classes

of scales are considered: large, small and unresolved scales.

If a second filter with filter length ˆ̀ is introduced (usually

called test filter), a splitting of the scales can be performed,

f
′
= f−f̂ . For the large-scale parts of the resolved u a general

governing equation can be derived,

∂u

∂t
+ C (u)u+ νDu+ ρ−1ΩGp = −

∂T̂
∂xj

−
∂T ′

∂xj
(4)

Neglecting the effect of unresolved scales in the large-scale

equation (T̂ ≈ 0), it is only necessary to model the T ′
.

T
′

= −2νsgsSij
′
+

1

3
T

′
δij (5)

νsgs = (Cvms
w `)2

(Vij
′
: Vij

′
)
3
2

(Sij
′
: Sij

′
)
5
2 + (Vij

′
: Vij

′
)
5
4

Sij
′

=
1

2
[G(u′) + G∗(u′)]

Vij
′

=
1

2
[G(u′)2 + G∗(u′)2]−

1

3
(G(u′)2I)

where Cvms
w is the equivalent of the WALE coefficient for the

small-small VMS approach and in the finite volume context

its value lies in the range between 0.3 and 0.5. In our studies

a value of 0.325 is used.

The governing equations have been discretised on a collo-

cated unstructured grid arrangement by means of second-order

spectro-consistent schemes. Such schemes are conservative,

i.e. they preserve the symmetry properties of the continuous

differential operators and ensure both, stability and conser-

vation of the kinetic-energy balance even at high Reynolds

numbers and with coarse grids. For the temporal discretisa-

tion of the momentum equation (2) a two-step linear explicit

scheme on a fractional-step method has been used for the con-

vective and diffusive terms [4], while for the pressure gradient

term an implicit first-order scheme has been implemented.

This methodology has been previously used with accurate

results for solving the flow over bluff bodies with massive sep-

aration [5, 6].

RESULTS

We consider here the flow past a circular cylinder at critical

Reynolds numbers of ReD = 1.44 × 105, 2.6 × 105, 3.8 × 105

1



Figure 1: Vortical structures at different Reynolds numbers

(left) Re = 1.4× 105; (right) Re = 5.3× 105.

and 5.3 × 105. The cases have been solved in a computa-

tional domain of dimensions [-16D,16D];[-10D,10D];[0,0.5πD]

in the stream-, cross- and span-wise directions, respectively,

with a circular cylinder of diameter D at (0,0,0). The bound-

ary conditions at the inflow consist of a uniform velocity

(u,v,w)=(1,0,0), slip conditions in the top and bottom bound-

aries of the domain, while at the outlet a pressure-based con-

dition is used. At the cylinder surface, no-slip conditions are

prescribed. As for the span-wise direction, periodic boundary

conditions are imposed. As mentioned before, the governing

equations are discretised on an unstructured mesh generated

by the constant-step extrusion of a two-dimensional unstruc-

tured grid. Different grids have been used, depending on the

Reynolds numbers up to 387492× 128 (∼ 50MCV).

Figure 1 shows the isocontours of second invariant of the

velocity gradient tensor coloured by the velocity magnitude at

Reynolds numbers Re = 1.4× 105 and Re = 5.3× 105. While

the lower Reynolds numbers exhibits a flow topology similar

to that observed in the sub-critical regime, i.e. laminar flow

separation and transition to turbulence in the separated shear

layers, the flow at Re = 5.3 × 105 shows a narrow wake with

separation point moving towards the rear end of the cylinder.

The variation of the drag coefficient with the Reynolds

number is plotted in figure 2 together with reference data from

the literature. At these Reynolds numbers, the measured data

of the drag coefficient present a large scattering because of

the difficulties associated with the measurements, the flow is

very sensitive to the different turbulence intensities, end con-

ditions, surface roughness, etc. Even though this scattering in

the reference data, results obtained with the present simula-

tions shows a fair agreement. One interesting feature observed

in the present computations is the presence of an asymmet-

ric laminar bubble in the cylinder surface at Re = 2.6 × 105.

This asymmetric bubble which causes large fluctuations in the

cylinder forces with average lift Cl > 0, was observed by Bear-

man [1] in his experiments, but its difficult to detect as it

occurs in a narrow range of Reynolds numbers. At the larger

Reynolds, Re = 3.8×105 and Re = 5.3×105, two bubbles are

observed at each side of the cylinder surface, recovering the

symmetry of the flow. In the final version of the manuscript,

results of the different flow configurations observed at the

different Reynolds numbers will be given, together with mea-

surements of the local forces and characteristics frequencies of

the flow.
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ABSTRACT

Into the frame of the EU Project Flexicast, the Research Centre LABSON, in the UPC, is performing several numerical 
simulations of complex flows related to the iron casting process. In this workshop we present two of the simulations.

Firstly, the simulation of the pouring process in a tilting tank is simulated. The simulation has been performed with a  
moving reference frame, where the gravity vector is being rotated. Also the Coriolis and the centrifugal forces have  
been considered. 

Secondly, the filling of a mould with a vertical jet is simulated. The aim is to enhance the mixing process of some  
additives  in  the fluid jet.  RAS and LES turbulent  models  are  being tested,  and the results will  be validated with  
experimental tests.

These simulations are being performed with the Open Source package OpenFoam, with the VOF model for the two  
phase flows.
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INTRODUCTION

In the majority of hermetic reciprocating compressors valves are a
basic component of both the suction and discharge ports and, partic-
ularly, reed type valves are widely used for domestic or commercial
reciprocating compressors. The understanding of the behaviour of the
fluid flow through the valve plate and moreover the dynamic action of
the valve reed is essential to improve the compressor design and to
contribute in the efficiency optimization. Few works in the literature
consider a computational model to simulate the dynamics of reed type
valves of reciprocating compressors. Thus, the present paper attempts
the dynamic simulation of the fluid flow through the suction valve reed
including an inlet port valve condition according to valve movement
due to piston displacement and modelling the valve reed by means of a
specific law based on modal analysis of valve reed theory [1].

In the following study, the transient simulation of the fluid and valve
interaction is performed by means of the newly in-house implemented
CFD&HT and moving mesh coupled code TermoFluids [2, 3]. This
work extends previous studies, in which numerical experiments were
carried out considering static geometry and constant boundary condi-
tions [4]. As a preliminary approach, a simplified geometry of an axial
hole plus a rectangular valve reed is considered.

DESCRIPTION OF THE NUMERICAL METHOD

For the present work the governing equations correspond to the in-
compressible Navier-Stokes and continuity equations coupled with dy-
namic mesh, which have been discretized on a collocated unstructured
grid arrangement by means of second-order spectro-consistent schemes.
Such schemes are conservative, i.e. they preserve the kinetic energy
equation. For the temporal discretization of the momentum equation a
fully explicit second-order self-adaptive scheme [5] has been used for
the convective and difussive terms, while for the pressure gradient term
an implicit first-order scheme has been used. The velocity-pressure
coupling has been solved by means of a classical fractional step pro-
jection method. Large eddy simulation has been performed to model
the turbulent flow through the wall-adapting local-eddy viscosity model
(WALE) [6], available in TermoFluids.

A moving grid technique has been used in order to dynamically
adapt the computational mesh to the valve deformation. Such technique
is based on Radial Basis Function (RBF) interpolation (see [3]). The
CFD and dynamic mesh coupling has been carried out by means of the
so-called Space Conservation Law.

As a first approach we consider a simplified geometry of an ax-
ial hole plus a radial diffuser, which is considered like a flexible reed
valve. Then, referring to [1], the dynamic action of the valve is based
on a specific law according modal analysis of valve reed theory. This
methodology assumes that the valve motion results from the superpo-
sition of the valve vibration modes. Thus, the deflection function is

Figure 1: Computational mesh and domain. General view (left); zoom
view (right).

expressed as a combination of the natural modes of the reed valve,

w(x,y, t) =
∞

∑
m=1

qm(t)φm(x,y) (1)

The equation of motion leads to the following generalized equation,
considering a valve reed of arbitrary geometry with k port holes,

q̈(t)m +2ξωmq̇(t)m +ω
2
mq(t)m =

∆p(t)∑
k
m=1 φm(xi,yi)AF (w(xi,yi))∆Ai

Aρh∑
l
j=1 φ2

m(x j,y j)∆A j
(2)

where φm denote the shape of the natural modes, ωm the natural fre-
quencies, ∆p the pressure differential across the valve, ξ the damping
coefficient, AF the effective force area, δAi the area of the port hole at
location (xi,yi), A the total port area, ∆A j the area of the geometric dis-
cretizetion elements of the valve reed. In this study only the first main
natural mode is considered. The parameters of the valve dynamics are
ξ = 0.056, ω0 = 1132.15rad/s, φ(x1,y1) = 5.39 ·103, ρ = 7870kg/m3,
h = 2 · 10−4m and ∑

l
j=1 φ2(x j,y j)∆A j = 4.96 ·103m2. The effective

force area is extracted from the analytical method presented in (25).

COMPUTATIONAL DOMAIN, MESH AND BOUNDARY CONDITIONS

Figure 1 illustrates the computational mesh and domain containing
the rectangular reed type valve. In the figure the inlet port hole of the
suction valve is pointed out. The dimensions of the global domain are
L = 0.08m and H = 0.06m. The hole is centred at the bottom base,
and its diameter is d = 9.75 ·10−3m. The valve dimensions are: length
l = 0.026m, width w = 0.01m and thickness h = 2 ·10−4m. The height
of the axial hole is e = 3.6 ·10−3m. In the initial configuration the valve
is completely closed, i.e. is contained in the plane y = 3.6 ·10−3, and it
is translated t = 6 ·10−3m in the x direction. The computational mesh is
structured and has over 2.5 million CVs.

For the bottom inlet orifice a piston based inlet condition is assumed
(see Figure 2), which is defined with a frequency of 50Hz. A pressure
based boundary condition applies for the outlet fluid exit (lateral and
top walls). Non-slip boundary conditions are considered on solid walls

1



Figure 2: Piston based inlet boundary condition.

(bottom part amb valve reed). An immersed body procedure is used
to simulate solid parts inside the domain and, hence, to reproduce the
inlet and bottom boundaries. Therefore, the RBF method allows the
simulation from null valve deformation.

RESULTS

The results presented in this section pretend to be a preliminary il-
lustrative study of the transient and dynamic simulation of the fluid flow
through a suction valve reed subjected to a piston based inlet condition
and considering a modal model for the valve dynamics. In Figure 3
the hole centre deflection as function of time during a complete suction
valve opening cycle is depicted. The period of time in which the valve
reed remains opened corresponds with the period of existing inlet flux
(see Figure 2), although the valve reed appears to become completely
closed with a little delay. During the opened stage, three peaks of oscil-
lation can be appreciated, each of lower peak value than the one before,
what seems logical if the inlet velocity tends to decrease. The first max-
imum peak appears in agreement with the maximum inlet velocity.

The pressure, velocity and vorticity profiles for different states of
the valve movement cycle are shown in Figure 4, whereas Figure 5
depicts the pressure profiles along the valve reed. The flow phenom-
ena observed is consistent with previous studies [4] and accomplishes a
qualitative accurate transient simulation of the turbulent flow. In agree-
ment with the sudden increment of the inlet velocity according to the
piston based inlet condition, a considerable increase of velocity is appre-
ciated in the valve aperture when it starts to open. Hence, huge velocity
gradients and consequently high vorticity appear in this area, where the
mesh should be particularly fine to capture the smallest scales of the
flow. Referring to this, the RBF method allows that the mesh quality is
maintained in this region, provided that the initial mesh has sufficient
number of CVs below the valve plate and the parameter radius of the
RBF interpolation is chosen appropriately. Therefore, the CFD and dy-
namic mesh coupled code TermoFluids would be capable to carry out
successfully the transient simulation of the flow through the suction reed
valve, even with more complex geometries.

REFERENCES

[1] W. Soedel. Mechanics, simulation and design of compressor
valves, gas passages and pulsation mufflers. In Purdue University
Short Courses. IN, USA, 1992.

[2] O. Lehmkuhl, R. Borrell, C. D. Perez-Segarra, M. Soria, and
A. Oliva. TermoFluids: A new parallel unstructured CFD code
for the simulation of turbulent industrial problems on low cost PC

Figure 3: Hole centre deflection history during a valve cycle.

Figure 4: Pressure (left), velocity (middle) and vorticity (right) profiles
for two intermediate states of the valve opening cycle.

Figure 5: Adimensional pressure profile along the valve reed for the two
intermediate states of the valve opening cycle in Figure 6, respectively.

cluster. Parallel Computational Fluid Dynamics 2007, 67:275–282,
2009.

[3] O. Estruch, O. Lehmkuhl, R. Borrell, C. D. Perez-Segarra, and
A. Oliva. A parallel radial basis function interpolation method for
unstructured dynamic meshes. Computer and Fluids, 80:44–54,
2012.

[4] J. Rigola, O. Lehmkuhl, J. Ventosa, C. D. Perez-Segarra, and
A. Oliva. Numerical simulation of the turbulent fluid flow through
valves based on low mach models. International Compressor En-
gineering Conference at Purdue University, 60:116–134, 2011.

[5] F. X. Trias and O. Lehmkuhl. A self-adaptive strategy for the time
integration of navier-stokes equations. Numerical Heat Transfer,
Part B: Fundamentals, Indiana, USA, 2012.

[6] F. Nicoud and F. Ducros. Subgrid-scale stress modelling based on
the square of the velocity gradient tensor. Flow, Turbulence and
Combustion, 62:183–200, 1999.

2



WORKSHOP

Research in Turbulence and Transition

LARGE EDDY SIMULATION OF A TURBULENT JET DIFFUSION FLAME USING

UNSTRUCTURED MESHES
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INTRODUCTION

In this work a turbulent jet diffusion flame, the DLR Flame

A, is simulated numerically using Large Eddy Simulations

(LES). This flame uses a mixture of CH4/H2/N2 as fuel, has

a Reynolds number of 15200 and presents a low level of lo-

cal extinction. Three dimensional unstructured finite volume

meshes are used to discretise the domain. Discretisation of

the equations differential operators is performed by means of

kinetic energy preserving schemes. Closure for the momentum

turbulent stresses is performed by means of the QR subgrid

scales (sgs) model. The chemistry-turbulence interactions are

modelled using the Flamelet/Progress variable model [6], as

it is capable of representing the whole range of states from

ignition to extinction. Differential diffusion effects are taken

into account when constructing the flamelet libraries.

Flamelet based models assume that chemical kinetics are

much faster than mixing processes and that there exists uni-

versal flame structures at the smallest scales. In this context,

a good resolution of the flow structures and scalars transport

is critical to the correct prediction of combustion processes,

specially in mixing controlled regimes. Conservative discreti-

sations for the momentum equations, which as preserve kinetic

energy by formulation, are shown to yield accurate results.

DESCRIPTION OF NUMERICAL METHOD

Flow Model. The flow here considered presents a low Mach

number and high density variations, so the Low Mach Num-

ber approximation to the Navier Stokes is here considered, in

terms of Favre-filtered quantities

∂ρ

∂t
+ Mũ = 0 (1)

∂ρũ

∂t
= −C(ρũ)ũ+ (D + Dtu)ũ+ Gp+ ρg (2)

ρ
∂f̃

∂t
= −ρC(ũ)f̃ + (D + Dt,f )f̃ (3)

ρ
∂c̃

∂t
= −ρC(ũ)c̃+ (D + Dt,c)c̃+ ˜̇wc (4)

where C(ρũ) and ρC(ũ) represent the conservative and

non-conservative form of the convective operator, D repre-

sents the diffusive operator and Dt,u and Dt,φ represent the

modelled turbulent fluxes, G is the gradient operator and M

is the mass divergence operator.

In order to close the momentum turbulent transport term,

Dt,u, the QR [1] SGS model is employed. Closure for the

turbulent scalar-diffusivity αt,φ = Cφ∆2|S̃| is performed by a

dynamic procedure as performed by Pierce and Moin [2], being

S the strain tensor and ∆ representing the LES filter width.

A unity Lewis number assumption is used for the molecular

diffusivities.

The mixture fraction variance is computed assuming local

homogeneity and local equilibrium for the subgrid scales, then,

an algebraic model is used to relate the subgrid variance of a

conserved scalar to the gradients of the resolved scalar field

ρf̃ ′′2 = Cv∆2ρ|∇f̃ |2 (5)

where Cv is calculated using the dynamic “LED” procedure

of Balarac [3]. For the dynamic evaluation of both turbulent

scalar-diffusivity and subgrid variance a top-hat test filter is

used, created by face connectivity, due to the use of unstruc-

tured meshes.

The temporal integration is performed by means of a 2nd

order two-step prediction-corrector scheme as shown in [4].

Focus on the preservation of the differential operators’

properties is placed on the numerical discretisation schemes

used for the momentum equations. For this reason the Sym-

metry Preserving scheme proposed by Verstappen [5] is used

to discretise the convective operator and a 2nd order central

difference is used to discretise the diffusive operator.

Combustion Model. A flamelet/progress-variable ap-

proach [6] is used in this work, which assumes that chemical

reactions take place in thin one dimensional sheets known as

flamelets. As shown in [7], solution of these one dimensional

flamelets can be expressed as a state relation. Favre-filtered

quantities are recovered from the flamelet solutions assuming

the statistical distributions. Statistical independence between

mixture fraction and the progress-variable is assumed. Ad-

ditionally, a β-pdf is assumed for the mixture fraction and a

δ-pdf is used for the progress-variable. The state relation is

then

φ̃ = z̃φ(f̃ , f̃ ′′2, c̃) (6)

STUDY CASE

The case of study is the axisymmetric jet flame known as

DLR Flame A [8, 9]. It consists of a D = 8mm wide jet

with a thinned rim at the exit. The inner jet is composed

of 33.2% H2, 22.1% CH4, and 44.7% N2 by volume and the

outer jet is regular air with 20.1% O2. The cold jet exit bulk

velocity is fixed to 42.15m/s resulting in a Reynolds number

of 15, 200. The jet was mounted concentrically to the coflow

nozzle, which had a diameter of 140mm and provided air at

0.3m/s. Both fuel and coflow air were at 300K.
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RESULTS

Time-averaged results using the meshes of 250,000CV and

1.8MCV are compared against the experimental data [8, 9].

Fig. 1 and 2 show the radial profiles of the mixture fraction

intensities and the axial velocity intensities respectively. Good

agreement is found between numerical computations and the

experimental data. However, the mixture fraction variance is

seen to be underpredicted at positions higher than y/D = 10.

Nonetheless, the models are seen to correctly capture the flow

behaviour using low order numerical schemes.
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Figure 1: Radial distribution of the mixture fraction intensi-

ties. Top y/D = 5, middle y/D = 20, bottom y/D = 40.
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Figure 2: Radial distribution of the axial velocity intensities.

Top y/D = 5, middle y/D = 20, bottom y/D = 40.

Figure 3 shows an instantaneous snapshot of the CO mass

fraction. It can be seen that chemical reactions take place

in thin regions of the flow and then the resulting species are

transported downstream. It is also worth of note that near

the nozzle there is a laminar region where differential diffusion

effects are noticeable.

Figure 3: Snapshot of the instantaneous YCO field. The ver-

tical axis is in [m] and 0.6m ≡ 75y/D
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2 Universitat Politècnica de Catalunya
Jordi Girona 1-3, Edifici C1, 08034, Barcelona, Spain

The variational multiscale (VMS) method was introduced in [4] as a framework for the devel-
opment of stabilization techniques, which aim to overcome numerical difficulties encountered when
using the standard Galerkin method, the finite element (FE) counterpart of centered finite differences
(FD), namely, the compatibility condition between the velocity and pressure FE spaces, which re-
quire the use of staggered grid in the FD context, and the nonphysical oscillations the could appear
in the convection dominated regime, when the mesh is not fine enough.

The VMS method was then used proposed as an implicit large eddy simulation (LES) tech-
nique in [5] although in these early approaches small scales were explicitly solved introducing a
Smagorinsky-type dissipative term. As a result, an important fraction of the degrees of freedom are
used for the small resolved scales whereas consistency is retained in the large resolved scales only.
ILES using a VMS approach with a resolved and a modeled subgrid scale (the setting that permits to
recover stabilized formulations) was suggested in [2] and excellent numerical results were obtained
in [1]. Compared to explicit LES, the VMS approach does not face difficulties associated with in-
homogeneous non-commutative filters in wall-bounded flows and retains numerical consistency in
the FE equations up to the interpolation order whereas e.g. the Smagorinsky model introduces a
consistency error of order h4/3.

The dissipative structure of variational multiscale methods has been analyzed in [6] where it is
compared to the physical based LES dissipative structure. Simple LES closures (e.g. Smagorinsky)
that could be used as an engineering design tool are purely dissipative whereas VMS methods can
predict more complex energy transfers. The way the energy is exchanged between coarse and fine
scales depends on the approximation performed on the fine scale equation. Dynamic and orthogonal
subgrid scales introduced in [2, 3] result in a formulation with important numerical properties such
as commutativity of space and time discretization or global conservation statements and a dissipative
structure that presents the correct behavior in the laminar limit and is able to predict backscatter.

Apart from a discussion of these properties, we present detailed numerical results of the sim-
ulation of the decay of homogeneous isotropic turbulence. We study the influence of the different
subgrid possibilities, the influence of the algorithmic constants in the stabilization parameters and
the computational costs of different approaches. Finally, we compare the results obtained using
VMS models against those obtained using classical LES based on filtering and the Smagorinsky
closure. We do so using the Galerkin approximation of the Navier Stokes equations with a Taylor-
Hood Q2/Q1 interpolation which satisfies the inf-sup condition, relying on the Smagorinsky term to
stabilize convection.
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Residual based variational multiscale methods (VMM) for turbulence modeling have proven to
give very good results for fully developed and transitional turbulent flows [2]. This approach con-
trasts to the classical LES models based on filtering (e.g. Smagorinsky) which introduce a physical
dissipation at the continuous level.

The main difference is precisely the way in which resolved and subgrid scales are defined. The
use of filtering as splitting mechanism gives rise to important difficulties and a degrading of the
convergence rate [2]. By contrast, VMM modeling is based on a projection splitting and the approx-
imation of the subgrid problem, which results in an optimally convergent method.

In this talk we present a VMS finite element approximation of thermally coupled low speed
flows[1]. The physical model is described by the low Mach number equa- tions, which are obtained
as a limit of the compressible NavierStokes equations in the small Mach number regime. In contrast
to the commonly used Boussinesq approximation, this model permits to take volumetric deformation
into account. Although the former is more general than the latter, both systems have similar mathe-
matical structure and their numerical approximation can suffer from the same type of instabilities.

Using this approach we study the approximation to thermal turbulence from a strictly numerical
point of view, without the use of any turbulence model. The main goal is to analyze the behavior of
our numerical method in the simulation of thermally coupled turbulent flows at low Mach number.
Our numerical method is a stabilized finite element approximation based on the VMS method, in
which a decomposition of the approximating space into a coarse scale resolvable part and a fine scale
subgrid part is performed. Modeling the subscale and taking its effect on the coarse scale problem
into account results in a stable formulation. The quality of the final approxima- tion (accuracy,
efficiency as turbulent numerical model) depends on the particular subscale model. The distinctive
features of our approach are to consider the subscales as transient and to keep the scale splitting in
all the nonlinear terms [3, 4].

Apart from a laminar testcase validation, we present results of the numerical simulation of the
turbulent channel flow with large temperature differences in the normal direction, a classical bench-
mark problem. The Reynolds number is 180 based on the channel half height and the mean friction
velocity. The behavior of the method is evaluated by comparison against results available in the
literature obtained using a classical Large Eddy Simulation (LES). The behavior of the method is
evaluated by comparison against results available in the literature obtained using a direct numerical
simulation (DNS). Besides, they are explained based on a careful analysis of the dissipative struc-
ture of the method, showing the physical interpretation of the subgrid scale method presented, as an
extension of the results for incompressible flows obtained in [5].
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