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Preface

The multilayer perceptron is an important model of neural network, and
much of the literature in the field is referred to that model. The multilayer
perceptron has found a wide range of applications, which include function re-
gression, pattern recognition, time series prediction, optimal control, optimal
shape design or inverse problems. All these problems can be formulated as
variational problems. That neural network can learn either from databases
or from mathematical models.

Flood is a comprehensive class library which implements the multilayer
perceptron in the C++ programming language. It has been developed follow-
ing the functional analysis and calculus of variations theories. In this regard,
this software tool can be used for the whole range of applications mentioned
above. Flood also provides a workaround for the solution of function opti-
mization problems. The library has been released as the open source GNU
Lesser General Public License.

The user’s guide is organized as follows. Chapter 1 describes the most
basic data structures of Flood. In Chapter 2, a brief introduction to the
principal concepts of neural networks and the multilayer perceptron is given.
Chapters 3, 4, 5 and 6 state the learning problem for the multilayer percep-
tron and provide a collection of related algorithms. In Chapters 7, 8, 9, 10, 11
and 12 the most important learning tasks for that neural network are formu-
lated and several practical applications are also solved. Appendixes A and B
present some activities related to the software engineering process of Flood.
Finally, Appendix C introduces some numerical integration algorithms.
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List of symbols

The symbols used for the most common quantities in this user’s guide are
listed below:

Lower case letters

a(·) activation function
b bias
c(·) combination function
d parameters number
e(·) error function
f(·) objective function
h hidden layers number
l constraints number
m outputs number
n inputs number
p population size
q instances number
r recombination size
s hidden layer size
t target
w synaptic weight
x input
y(·) output function
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Lower case bold letters

c(·) layer activation function
b layer biases

c(·) layer combination function
d training direction
f population evaluation
l lower bound
s selection vector
t target vector
x input vector

y(·) several variables output function
u upper bound
w perceptron synaptic weights

Upper case letters

C[·] constraint functional
E[·] error functional
F [·] objective functional
I independent parameters
L layer
N neural parameters
R Minkowski parameter
V function space

Upper case bold letters

C Confusion matrix
G inverse Hessian approximation
H Hessian matrix
J Jacobian matrix
P population matrix
W layer synaptic weights
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Lower case greek letters

γ conjugate gradient parameter
δ delta quantity
ζ parameter
η training rate
µ mean
ν regularization weight
ρ penalty term weight
σ standard deviation
ϕ(·) boundary condition function

Lower case greek bold letters

ζ parameter vector
µ mean vector
σ standard deviation vector
φ fitness vector
ϕ(·) several variables boundary condition function

Upper case greek letters

Ω[·] regularization functional

Other symbols

· scaling
·̂ boundary conditions
·̃ lower-upper bounding
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Chapter 1

Preliminaries

The Flood namespace allows to group all the entities in the library under a
name. On the other hand, the Flood library includes its own Vector and Matrix
container classes. That classes contain high level constructors, operators and
methods which allow abstraction from some hard details of C++.

1.1 The Flood namespace

Each set of definitions in the Flood library is ‘wrapped’ in the namespace
Flood. In this way, if some other definition has an identical name, but is in a
different namespace, then there is no conflict.

The using directive makes a namespace available throughout the file where
it is written [16]. For the Flood namespace the following sentence can be
written:

using namespace Flood ;

1.2 The Vector class

The Vector class is a template, which means that it can be applied to different
types [16]. That is, we can create a Vector or int numbers, MyClass objects,
etc.

Members

The only members of the Vector class are:

- The size of the vector.
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14 CHAPTER 1. PRELIMINARIES

- A double pointer to some type.

That two class members are declared as being private.

File format

Vector objects can be serialized or deserialized to or from a data file which
contains the member values. The file format is of XML type.

<Flood version=’3.0’ class=’Vector’>

<Size>

size

</Size>

<Display>

display

</Display>

<Data>

element_0 element_1 ... element_N

</Data>

Constructors

Multiple constructors are defined in the Vector class, where the different con-
structors take different parameters.

The easiest way of creating a vector object is by means of the default
constructor, wich builds a vector of size zero. For example, in order to
construct an empty Vector of int numbers we use

Vector<int> v ;

The following sentence constructs a Vector of 3 double numbers.

Vector<double> v ( 3 ) ;

If we want to construct Vector of 5 bool variables and initialize all the
elements to false, we can use

Vector<bool> v (5 , fa l se ) ;

It is also possible to construct an object of the Vector class and at the
same time load its members from a file. In order to do that we can do

Vector<int> v ( ‘ Vector . dat ’ ) ;

The file ‘Vector.dat’ contains a first row with the size of the vector and
an aditional row for each element of the vector.

The following sentence constructs a Vector which is a copy of another
Vector,
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Vector<MyClass> v ( 3 ) ;
Vector<MyClass> w( v ) ;

Operators

The Vector class also implements different types of operators for assignment,
reference, arithmetics or comparison.

The assignment operator copies a vector into another vector,

Vector<int> v ;
Vector<int> w = v ;

The following sentence constructs a vector and sets the values of their
elements using the reference operator. Note that indexing goes from 0 to
n− 1, where n is the Vector size.

Vector<double> v ( 3 ) ;
v [ 0 ] = 1 . 0 ;
v [ 1 ] = 2 . 0 ;
v [ 2 ] = 3 . 0 ;

Sum, difference, product and quotient operators are included in the Vector
class to perform arithmetic operations with a scalar or another Vector. Note
that the arithmetic operators with another Vector require that they have the
same sizes.

The following sentence uses the vector-scalar sum operator,

Vector<int> v (3 , 1 . 0 ) ;
Vector<int> w = v + 3.1415926 ;

An example of the use of the vector-vector multiplication operator is given
below,

Vector<double> v (3 , 1 . 2 ) ;
Vector<double> w(3 , 3 . 4 ) ;
Vector<double> x = v∗w;

Assignment by sum, difference, product or quotient with a scalar or an-
other Vector is also possible by using the arithmetic and assignent operators.
If another Vector is to be used, it must have the same size.

For instance, to assign by difference with a scalar, we migh do

Vector<int> v (3 , 2 ) ;
v −= 1 ;

In order to assign by quotation with another Vector, we can write

Vector<double> v (3 , 2 . 0 ) ;
Vector<double> w(3 , 0 . 5 ) ;
v /= w;
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Equality and relational operators are also implemented here. They can
be used with a scalar or another Vector. For the last case the same sizes are
assumed.

An example of the equal to operator with a scalar is

Vector<bool> v (5 , fa l se ) ;
bool i s e q u a l = ( v == fa l se ) ;

The less than operator with another Vector can be used as follows,

Vector<int> v (5 , 2 . 3 ) ;
Vector<int> w(5 , 3 . 2 ) ;
bool i s l e s s = ( v < w) ;

Methods

Get and set methods for each member of this class are implemented to ex-
change information among objects.

The method get size returns the size of a Vector.

Vector<MyClass> v ( 3 ) ;
int s i z e = v . g e t s i z e ( ) ;

On the other hand, the method set size sets a new size to a Vector. Note
that the element values of that Vector are lost.

Vector<bool> v ( 3 ) ;
v . s e t s i z e ( 6 ) ;

If we want to initialize a vector at random we can use the initialize uniform
or initialize normal methods,

Vector<double> v ( 5 ) ;
v . i n i t i a l i z e u n i f o r m ( ) ;
Vector<double> w( 3 ) ;
w. i n i t i a l i z e n o r m a l ( ) ;

The Vector class also includes some mathematical methods which can be
useful in the development of neural networks algorithms and applications.

The calculate norm method calculates the norm of the vector,

Vector<double> v (5 , 3 . 1415927 ) ;
double norm = v . ca l cu la te norm ( ) ;

In order to calculate the dot product between this Vector and another
Vector we can do

Vector<double> v (3 , 2 . 0 ) ;
Vector<double> w(3 , 5 . 0 ) ;
double dot = v . dot (w) ;
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We can calculate the mean or the standard deviation values of the el-
ements in a Vector by using the calculate mean and calculate standard deviation
methods, respectively. For instance

Vector<double> v (3 , 4 . 0 ) ;
double mean = v . ca l cu la te mean ( ) ;
double s t anda rd dev i a t i on = v . c a l c u l a t e s t a n d a r d d e v i a t i o n ( ) ;

Finally, utility methods for serialization or loading and saving the class
members to a file are also included. In order to obtain a std :: string represen-
tation of a Vector object we can make

Vector<bool> v (1 , fa l se ) ;
s td : : s t r i n g s e r i a l i z a t i o n = v . t o s t r i n g ( ) ;

To save a Vector object to a file we can do

Vector<int> v (2 , 0 ) ;
v . save ( ‘ Vector . dat ’ ) ;

The first row of the file ‘Vector.dat’ is the size of the vector and the other
rows contain the values of the elements of that vector.

If we want to load a Vector object from a data file we could write

Vector<double> v ;
v . load ( ‘ Vector . dat ’ ) ;

Where the format of the ‘Vector.dat’ file must be the same as that de-
scribed above.

1.3 The Matrix class

As it happens with the Vector class, the Matrix class is also a template [16].
Therefore, a Matrix of any type can be created.

Members

The Matrix class has three members:

- The number of rows.

- The number of columns.

- A double pointer to some type.

That members are private. Private members can be accessed only within
methods of the class itself.
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File format

The member values of a matrix object can be serialized or deserialized to or
from a data file of XML type.

<Flood version=’3.0’ class=’Matrix’>

<RowsNumber>

rows_number

</RowsNumber>

<ColumnsNumber>

columns_number

</ColumnsNumber>

<Display>

display

</Display>

<Data>

element_00 ... element_0M

...

element_N0 ... element_NM

</Data>

Constructors

The Matrix class also implements multiple constructors, with different param-
eters.

The default constructor creates a matrix with zero rows and zero columns,

Matrix<MyClass> m;

In order to construct an empty Matrix with a specified number of rows
and columns we use

Matrix<int> m(2 , 3 ) ;

We can specify the number of rows and columns and initialize the Matrix
elements at the same time by doing

Matrix<double> m(1 , 5 , 0 . 0 ) ;

To build a Matrix object by loading its members from a data file the
following constructor is used,

Matrix<double> m( ‘ Matrix . dat ’ ) ;

The format of a matrix data file is as follows: the first line contains the
numbers of rows and columns separated by a blank space; the following data
contains the matrix elements arranged in rows and columns. For instance,
the next data will correspond to a Matrix of zeros with 2 rows and 3 columns,
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2 3
0 0 0
0 0 0

The copy constructor builds an object which is a copy of another object,

Matrix<bool> a ( 3 , 5 ) ;
Matrix<bool> b( a ) ;

Operators

The Matrix class also implements the assignment operator,

Matrix<double> a ( 2 , 1 ) ;
Matrix<bool> b = a ;

Below there is an usage example of the reference operator here. Note that
row indexing goes from 0 to rows number−1 and column indexing goes from 0
to columns number−1.

Matrix<int> m(2 , 2 ) ;
m[ 0 ] [ 0 ] = 1 ;
m[ 0 ] [ 1 ] = 2 ;
m[ 1 ] [ 0 ] = 3 ;
m[ 1 ] [ 1 ] = 4 ;

The use of the arithmetic operators for the Matrix class are very similar
to those for the Vector class. The following sentence uses the scalar difference
operator,

Matrix<double> a (5 , 7 , 2 . 5 ) ;
Matrix<double> b = a + 0 . 1 ;

Also, using the arithmetic and assignment operators with the Matrix class
is similar than with the Vector class. For instance, to assign by sum with
another Matrix we can write

Matrix<double> a (1 , 2 , 1 . 0 ) ;
Matrix<double> b (1 , 2 , 0 . 5 ) ;
a += b ;

The not equal to operator with another Matrix can be used in the following
way,

Matrix<std : : s t r i ng> a (1 , 1 , ‘ h e l l o ’ ) ;
Matrix<std : : s t r i ng> b (1 , 1 , ‘ good bye ’ ) ;
bool i s n o t e q u a l t o = ( a != b ) ;

The use of the greater than operator with a scalar is listed below

Matrix<double> a (2 , 3 , 0 . 0 ) ;
bool i s g r e a t e r t h a n = ( a > 1 . 0 ) ;
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Methods

As it happens for the Vector class, the Matrix class implements get and set
methods for all the members.

The get rows number and get columns number methods are very useful,

Matrix<MyClass> m(4 , 2 ) ;
int rows number = m. get rows number ( ) ;
int columns number = m. get columns number ( ) ;

In order to set a new number of rows or columns to a Matrix object, the
set rows number or set columns number methods are used,

Matrix<bool> m(1 , 1 ) ;
m. set rows number ( 2 ) ;
m. set columns number ( 3 ) ;

A Matrix can be initialized with a given value, at random with an uniform
distribution or at random with a normal distribution,

Matrix<double> m(4 , 2 ) ;
m. i n i t i a l i z e ( 0 . 0 ) ;
m. i n i t i a l i z e u n i f o r m (−0.2 , 0 . 4 ) ;
m. i n i t i a l i z e n o r m a l (−1.0 , 0 . 2 5 ) ;

A set of mathematical methods are also implemented for convenience.
For instance, the dot method computes the dot product of this Matrix with a
Vector or with another Matrix,

Matrix<double> m(4 , 2 , 1 . 0 ) ;
Vector<double> v (4 , 2 . 0 ) ;
Vector<double> dot product = m. dot ( v ) ;

Finally, string serializing, printing, saving or loading utility methods are
also implemented. For example, the use of the print method is

Matrix<bool> m(1 , 3 , fa l se ) ;
m. p r i n t ( ) ;



Chapter 2

Introduction

There are many different types of neural networks, from which the multilayer
perceptron is an important one. Most of the literature in the field is referred
to that neural network. Here we formulate the learning problem and describe
some learning tasks which a multilayer perceptron can solve.

2.1 Learning problem

The multilayer perceptron is characterized by a neuron model, a network
architecture and associated objective functionals and training algorithms.
The learning problem is then formulated as to find a multilayer perceptron
which optimizes an objective functional by means of a training algorithm.

Perceptron

A neuron model is a mathematical model of the behavior of a single neuron
in a biological nervous system. The characteristic neuron model in the mul-
tilayer perceptron is the so called perceptron. The perceptron neuron model
receives information in the form of numerical inputs. This information is
then combined with a set of parameters to produce a message in the form of
a single numerical output.

Although a perceptron can solve some very simple learning tasks, the
power of neural networks comes when many of that neuron models are con-
nected in a network architecture.

Multilayer perceptron

In the same way a biological nervous system is composed of interconnected
biological neurons, an artificial neural network is built up by organizing ar-
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22 CHAPTER 2. INTRODUCTION

tificial neurons in a network architecture. In this way, the architecture of a
network refers to the number of neurons, their arrangement and connectivity.
The characteristic network architecture in the multilayer perceptron is the
so called feed-forward architecture.

The multilayer perceptron can then be defined as a network architec-
ture of perceptron neurons. This neural network represents a parameterized
function of several variables with very good approximation properties.

Objective functional

The objective functional plays an important role in the use of a neural net-
work. It defines the task the neural network is required to do and provides a
measure of the quality of the representation that the network is required to
learn. The choice of a suitable objective functional depends on the particular
application.

Function regression and pattern recognition problems share the same ob-
jective functionals. They are based on the sum squared error. On the other
hand a concrete objective functional must be derived when solving optimal
control, optimal shape design or inverse problems.

Training algorithm

The procedure used to carry out the learning process is called training al-
gorithm, or learning algorithm. The training algorithm is applied to the
network to in order to obtain a desired performance. The type of training
is determined by the way in which the adjustment of the parameters in the
neural network takes place.

One of the most suitable training algorithms for the multilayer perceptron
is the quasi-Newton method. However, noisy problems might require an
evolutionary algorithm. The first cited training algorithm is several orders
of magnitude faster than the second one.

Learning activity diagram

The learning problem in the multilayer perceptron is formulated from a vari-
ational point of view. Indeed, learning tasks lie in terms of finding a function
which causes some functional to assume an extreme value. The multilayer
perceptron provides a general framework for solving variational problems.

Figure 2.1 depicts an activity diagram for the learning problem. The
solving approach here consists of three steps. The first step is to choose a
suitable multilayer perceptron which will approximate the solution to the
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problem. In the second step the variational problem is formulated by se-
lecting an appropriate objective functional. The third step is to solve the
reduced function optimization problem with a training algorithm capable of
finding an optimal set of parameters.

Figure 2.1: Learning problem for the multilayer perceptron.

2.2 Learning tasks

Learning tasks for the multilayer perceptron can be classified according to
the way in which they can be applied for a particular purpose. The learning
problem is stated in terms of variational calculus. In this way, some classes
of learning tasks of practical interest are function regression, pattern recog-
nition, optimal control, optimal shape design or invers problems. Here the
neural network can learn from dabases and from mathematical models.

Function regression

Function regression is the most popular learning task for the multilayer per-
ceptron. It is also called modelling. The function regression problem can be
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regarded as the problem of approximating a function from a database con-
sisting of input-target instances [24]. The targets are a specification of what
the response to the inputs should be [8]. While input variables might be
quantitative or qualitative, in function regression target variables are quan-
titative.

Objective functionals for function regression are based on a sum of errors
between the outputs from the neural network and the targets in the training
data. As the training data is usually defficient, some specialities might be
required in order to solve the problem correctly.

An example is to design an instrument that can determine serum choles-
terol levels from measurements of spectral content of a blood sample. There
are a number of patients for which there are measurements of several wave-
lengths of the spectrum. For the same patients there are also measurements
of several cholesterol levels, based on serum separation [15].

Pattern recognition

The learning task of pattern recognition gives raise to artificial intelligence.
That problem can be stated as the process whereby a received pattern, char-
acterized by a distinct set of features, is assigned to one of a prescribed
number of classes [24]. Pattern recognition is also known as classification.
Here the neural network learns from knowledge represented by a training data
set consisting of input-target instances. The inputs include a set of features
which characterize a pattern, and they can be quantitative or qualitative.
The targets specify the class that each pattern belongs to and therefore are
qualitative [8].

Classification problems can be, in fact, formulated as being modelling
problems. As a consequence, objective functionals used here are also based
on the sum squared error. Anyway, the learning task of pattern recognition
is more difficult to solve than that of function regression. This means that a
good knowledge of the state of the technique is recommended for success.

A typical example is to disinguish hand-written versions of characters.
Images of the characters might be captured and fed to a computer. An
algorithm is then seek to which can distinguish as reliably as possible between
the characters [8].

Optimal control

Optimal control is playing an increasingly important role in the design of
modern engineering systems. The aim here is the optimization, in some
defined sense, of a physical process. More specifically, the objective of these
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problems is to determine the control signals that will cause a process to
satisfy the physical constraints and at the same time minimize or maximize
some performance criterion [29] [4].

The knowledge in optimal control problems is not represented in the form
of a database, it is given by a mathematical model. A different objective
functional must be derived for every different system to be controlled. These
obejctive functionals are often defined by integrals, ordinary differential equa-
tions or partial differential equations. In this way, and in order to evaluate
them, we might need to apply Simpon methods, Runge-Kutta methods or
finite element methods.

As a simple example, consider the problem of a rocket launching a satellite
into an orbit around the earth. An associated optimal control problem is to
choose the controls (the thrust attitude angle and the rate of emission of the
exhaust gases) so that the rocket takes the satellite into its prescribed orbit
with minimum expenditure of fuel or in minimum time.

Optimal shape design

Optimal shape design is a very interesting field for industrial applications.
The goal in these problems is to computerize the development process of
some tool, and therefore shorten the time it takes to create or to improve
the existing one. Being more precise, in an optimal shape design process one
wishes to optimize some performance criterium involving the solution of a
mathematical model with respect to its domain of definition [10].

As in the previous case, the neural network here learns from a mathemat-
ical model, and an objective functional must be derived for each shape to
be designed. Evaluation of the objective functional here might also need the
integration of functions, ordinary differential equations or partial differen-
tial equations. Optimal shape design problems defined by partial differential
equations are challenging applications.

One example is the design of airfoils, which proceeds from a knowledge
of computational fluid dynamics [18] [38]. The performance goal here might
vary, but increasing lift and reducing drag are among the most common.
Other objectives as weight reduction, stress reinforcement and even noise
reduction can be obtained. On the other hand, the airfoil may be required
to achieve this performance with constraints on thickness, pitching moment,
etc.
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Inverse problems

Inverse problems can be described as being opposed to direct problems. In
a direct problem the cause is given, and the effect is determined. In an
inverse problem the effect is given, and the cause is estimated [30] [48] [46].
There are two main types of inverse problems: input estimation, in which the
system properties and output are known and the input is to be estimated; and
properties estimation, in which the the system input and output are known
and the properties are to be estimated. Inverse problems can be found in
many areas of science and engineering.

This type of problems is of great interest from both a theoretical and
practical perspectives. Form a theoretical point of view, the multilayer per-
ceptron here needs both mathematical models and experimental data. The
objective is usually formulated as to find properties or inputs which make a
mathematical model to comply with the experimental data. From a practi-
cal point of view, most numerical software must be tuned up before being on
production. That means that the particular properties of a system must be
properly estimated in order to simulate it well.

A typical inverse problem in geophysics is to find the subsurface inhomo-
geneities from collected scattered fields caused by acoustic waves sent at the
surface and a mathematical model of soil mechanics.

Tasks companion diagram

The knoledge for a multilayer perceptron can be represented in the form of
databases or mathematical models. The neural network learns from databases
in function regression and pattern recognition; it learns from mathematical
models in optimal control and optimal shape design; and it learns from both
mathematical models and databases in inverse problems. Please note that
other possible variational applications can be added to these learning tasks.

Figure 2.2 shows the learning tasks for the multilayer perceptron de-
scribed in this section. As we can see, that neural network is capable of
dealing with a great range of applications. Any of that learning tasks is
formulated as being a variational problem. All af them are solved using the
three step approach described in the previous section. Modelling and classi-
fication are the most traditional; optimal control, optimal shape design and
inverse problems can be as well very useful.
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Figure 2.2: Learning tasks for the multilayer perceptron.
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Chapter 3

The perceptron

A neuron model is the basic information processing unit in a neural network.
They are inspired by the nervous cells, and somehow mimic their behaviour.
The perceptron is the characteristic neuron model in the multilayer percep-
tron.

3.1 Neuron model

Following current practice [53], the term perceptron is here applied in a more
general way than by Rosenblatt, and covers the types of units that were later
derived from the original perceptron. Figure 3.1 is a graphical representation
of a perceptron [24].

Figure 3.1: Perceptron neuron model.

Here we identify three basic elements, which transform a vector of inputs
x = (x1, . . . , xn) into a single output y [6]: (i) A set of parameters consisting

29
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of a bias b and a vector of synaptic weights w = (w1, . . . , wn); (ii) a com-
bination function c(·); and (iii) an activation function or transfer function
a(·).

Example 1 The perceptron neuron model in Figure 3.2 has three inputs. It
transforms the inputs (x1, x2, x3) into an output y. The combination function
c(·) merges that inputs with the bias b and the synaptic weights (w1, w2, w3).
The activation function a(·) takes that net input to produce the output from
the neuron.

Figure 3.2: Perceptron example.

3.2 Perceptron parameters

The parameters of the perceptron are a set (b,w) ∈ R×Rn, where b ∈ R is
called the bias and w ∈ Rn is called the synaptic weight vector [24]. Note
then that the number of neuron parameters of this neuron model is 1 + n,
where n is the number of inputs.

Example 2 Consider the perceptron of Example 1. That neuron model has
a bias and three synaptic weights, since the number of inputs is three. The
number of parameters here is therefore four.

If the bias and the synaptic weights are set to b = −0.5 and w = (1.0,−0.75, 0.25),
respectively, then the set of parameters is

(w, b) = (−0.5, 1.0,−0.75, 0.25) ∈ R4
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3.3 Combination function

The combination function c : X → C, with X ⊆ Rn and C ⊆ R takes the
input vector x and the neuron parameters (b,w) to produce a combination
value, or net input. In the perceptron, the combination function computes
the bias plus the dot product of the input and the synaptic weight vectors,

c(x; b,w) = b+ w · x (3.1)

Note that the bias increases or reduces the net input to the activation
function, depending on whether it is positive or negative, respectively. The
bias is sometimes represented as a synaptic weight connected to an input
fixed to +1.

Example 3 Consider the perceptron of Example 1. If the inputs are set to
x = (−0.8, 0.2,−0.4) and the neuron parameters are set to b = −0.5 and
w = (1.0,−0.75, 0.25), then the combination value of this perceptron is

c(−0.8, 0.2,−0.4; b = −0.5, 1.0,−0.75, 0.25) = −0.5 + 1.0 · −0.8− 0.75 · 0.25 · −0.4

= −1.55

3.4 Activation function

The activation function or transfer function a : C → Y , with C ⊆ R and
Y ⊆ R, will define the output from the neuron in terms of its combination.
In practice we can consider many useful activation functions [15]. Some of
the most used are the threshold function, the symmetric threshold function,
the logistic function, the hyperbolic tangent or the linear function [24].

Threshold function

The threshold activation function a : C → [0, 1], with C ⊆ R, limits the
output of the neuron to 0 if the combination is negative, or to 1 if the
combination is zero or positive,

a(c) =

{
0 c < 0,
1 c ≥ 0.

(3.2)

This activation function is represented in Figure 3.3.
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Figure 3.3: Threshold activation function.

Example 4 Consider a perceptron with threshold activation function. If the
combination value to that perceptron is c = −1.55, the activation value from
that perceptron will be

a(−1.55) = 0.

Symmetric threshold

The symmetric threshold activation function a : C → [−1, 1], with C ⊆ R, is
very similar to the threshold function, except that its image is [−1, 1] instead
of [0, 1],

a(c) =

{
−1 c < 0,

1 c ≥ 0.
(3.3)

The shape of this function is represented in Figure 3.4.

Example 5 If a perceptron has a symmetric threshold activation function,
the activation value for a combination value c = −1.55 is

a(−1.55) = −1.
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Figure 3.4: A symmetric threshold activation function.

Logistic function

The logistic function a : C → (0, 1), with C ⊆ R, has a sigmoid shape. This
activation function is a monotonous crescent function which exhibits a good
balance between a linear and a non-linear behavior. It is defined by

a(c) =
1

1 + exp (−c)
. (3.4)

The logistic function is widely used when constructing neural networks. This
function is represented in Figure 3.5.

Example 6 A perceptron with logistic activation and combination c = −1.55
will have an activation

a(−1.55) =
1

1 + exp (1.55)
= 0.175.

Hyperbolic tangent

The hyperbolic tangent a : C → (0, 1) with C ⊆ R, is also a sigmoid function
very used in the neural networks field. It is very similar to the logistic
function. The main difference is that the image of the hyperbolic tangent
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Figure 3.5: Logistic function.

is (−1, 1), while the image of the logistic function is (0, 1). The hyperbolic
tangent is defined by

a(c) = tanh (c). (3.5)

The hyperbolic tangent function is represented in Figure 3.6.

Example 7 The value of the activation for a combination c = −1.55 in the
case of a perceptron with hyperbolic tangent activation function is

a(−1.55) = tanh (−1.55)

= −0.914.

Linear function

For the linear activation function, a : C → A, with C ⊆ R and A ⊆ R, we
have

a(c) = c. (3.6)

Thus, the output of a neuron model with linear activation function is
equal to its combination.

The linear activation function is described in Figure 3.7.
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Figure 3.6: Hyperbolic tangent function.
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Figure 3.7: Linear function.

Example 8 Consider a linear perceptron. The activation for a combination
c = −1.55 is

a(−1.55) = −1.55.
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3.5 Perceptron function

In this section we write down an explicit expression of the output from a
perceptron as a function of the inputs to it, y : X → Y , with X ⊆ Rn and
Y ⊆ R. Here the combination is first computed as the bias plus the dot
product of the the synaptic weights and the inputs, to give

c(x; b,w) = b+ w · x. (3.7)

The output from the neuron is obtained transforming the combination in
Equation (3.7) with an activation function a to give

y(x; b,w) = a (b+ w · x) . (3.8)

Thus, the output function is represented in terms of composition of the
activation and the combination functions,

y = a ◦ c. (3.9)

Figure 3.8 is an activity diagram of how the information is propatated in
the perceptron.

Figure 3.8: Propagation in the perceptron.
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Mathematically, a perceptron spans a function space V from an input
X ⊂ Rn to an output Y ⊂ R. Elements of V are therefore of the form
y : X → Y . That functions are parameterized by the bias and the vector of
synaptic weights of the neuron. In this way the dimension of V is d = 1 + n.

Distinct activation functions cause distinct families of functions which a
perceptron can define. Similarly, distinct sets of neuron parameters cause
distinct elements in the function space which a specific perceptron defines.

Example 9 Let P be a logistic perceptron with number of inputs n = 2. Let
set the bias to b = −0.5 and the synaptic weights to w = (1.0, 0.25). The
function represented by that perceptron y : X → (0, 1), with X ⊆ Rn, is given
by

y(x1, x2;−0.5, 1.0, 0.25) =
1

1 + exp (−(−0.5 + 1.0x1 + 0.25x2))
.

The output for an input x = (−0.2, 0.5) is

y(−0.2, 0.5;−0.5, 1.0, 0.25) =
1

1 + exp (−(−0.5 + 1.0 · −0.2 + 0.25 · 0.5))
= 0.36.

3.6 Activation derivative

There might be some cases when we need to compute the activation derivative
a′ : C → Y ′, where C ⊆ R and Y ′ ⊆ R of the neuron,

a′(c) ≡ da

dc
. (3.10)

Threshold function derivative

The threshold activation function is not differentiable at the point c = 0.

Symmetric threshold derivative

The symmetric threshold activation function is neither differentiable at the
point c = 0.
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Logistic function derivative

The logistic function derivative, a′ : C → (0, 0.25], with C ⊆ R, is given by

a′(c) =
exp (−c)

(1 + exp (−c))2
. (3.11)

This derivative function is represented in Figure 3.9.
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Figure 3.9: Logistic derivative.

Example 10 Let P be a logistic perceptron. The activation derivative for a
combination c = −1.55 is

a′(−1.55) =
exp (−1.55)

(1 + exp (−1.55))2

= 0.14.

Hyperbolic tangent derivative

The derivative of the hyperbolic tangent activation function a′ : C → (0, 1],
with C ⊆ R, is given by

a′(c) = 1− tanh2 (c), (3.12)

The hyperbolic tangent function derivative is represented in Figure 3.10.
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Figure 3.10: Hyperbolic tangent derivative.

Example 11 The activation derivative of an hyperbolic tangent perceptron
for a combination c = −1.55 is

a′(−1.55) = 1− tanh2 (−1.55)

= 0.16.

Linear function derivative

For the linear function, the activation derivative, a′ : C → 1, with C ⊆ R, is
given by

a′(c) = 1, (3.13)

The linear activation function derivative is described in Figure 3.11.

Example 12 Let P be a perceptron with linear activation. If the combina-
tion value is c = −1.55, the activation derivative is

a′(−1.55) = 1.
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Figure 3.11: Linear derivative.

3.7 Activation second derivative

There also might be some ocasions when we need to compute the second
derivative of the activation function, a′ : C → Y ′′, where C ⊆ R and Y ′′ ⊆ R,

a′′(c) ≡ d2a

dc2
. (3.14)

Threshold function second derivative

The threshold activation function is not differentiable at the point c = 0.

Symmetric threshold second derivative

The symmetric threshold activation function is neither differentiable at the
point c = 0.

Logistic function second derivative

The second derivative of the logistic function, a′′ : C → C ′, with C,C ′ ⊆ R,
is given by

a′′(c) = − exp (−c)
(1 + exp (−c))2

+ 2
(exp (−c))2

(1 + exp(−c))3
(3.15)
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This function is represented in Figure 3.12.
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Figure 3.12: Logistic second derivative.

Example 13 Consider a logistic perceptron P . The activation second deriva-
tive for a combination c = −1.55 is

a′′(−1.55) = − exp (−1.55)
exp (−1.55)− 1

(exp (−1.55 + 1))3

= 0.87.

Hyperbolic tangent second derivative

The second derivative of this activation function, a′′ : C → C ′′, with C,C ′′ ⊆
R, is given by

a′′(c) = −2 tanh (c)(1− tanh2 (c)). (3.16)

The hyperbolic tangent function second derivative is represented in Figure
3.13.

Example 14 Consider a perceptron P with hyperbolic tangent activation
function. The activation second derivative produced for a combination c =
−1.55 is
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Figure 3.13: Hyperbolic tangent function second derivative.

a′′(−1.55) = −2 tanh (−1.55)(1− tanh2 (−1.55))

= 0.30.

Linear function second derivative

The second derivative of the linear function, a′′ : C → 0, with C ⊆ R, is
given by

a′′(c) = 0. (3.17)

The linear activation function second derivative is described in Figure
3.14.

Example 15 If P is a logistic perceptron which produces a combination c =
−1.55, then the activation second derivative is

a′′(−1.55) = 0

3.8 The Perceptron class

Flood includes the class Perceptron to represent the concept of perceptron
neuron model.
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Figure 3.14: Linear second derivative.

Constructors

The Perceptron class implements a number of constructors with different ar-
guments. The default activation function is the hyperbolic tangent.

The default constructor creates a perceptron object with zero inputs. The
default activation function is hyperbolic tangent. It is called using

Perceptron p ;

To construct a Perceptron object with a given number of inputs we use the
following sentence

Perceptron p ( 3 ) ;

That objects has bias and synaptic weights values chosen at random from
a normal distribution with mean 0 and standard deviation 1, and activation
function set by default to hyperbolic tangent.

The following constructor builds a Perceptron object with a given number
of inputs and with neuron parameters initialized to a given value,

Perceptron p (1 , 0 . 0 ) ;

To create a neuron by loading its members from a file we use the file
constructor in the following way

Perceptron p ( ‘ Perceptron . dat ’ ) ;

The copy constructor builds a Perceptron object by copying all the mem-
bers from another object of that class,
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Perceptron p ( 2 ) ;
Perceptron q (p ) ;

Members

That class contain the following members:
-The activation function.
-The number of inputs.
-The neuron’s bias.
-The neuron’s synaptic weights.

All that members are private, and get and set methods are implemented
for each.

Methods

As it has been said, the Perceptron implements get and set methdos for every
single member of that class.

We use the get inputs number method to obtain the number of inputs of a
neuron,

Perceptron p ( 5 ) ;
int inputs number = p . get inputs number ( ) ;

Similarly, the get bias and get synaptic weights methods return the bias and
the synaptic weights of a Perceptron object, respectively

Perceptron p ( 1 ) ;
double b ia s = p . g e t b i a s ( ) ;
Vector<double> synapt i c we i gh t s = p . g e t s y n a p t i c w e i g h t s ( ) ;

The get activation function method returns the activation function of the
neuron,

Perceptron p ;
Perceptron : : Act ivat ionFunct ion a c t i v a t i o n f u n c t i o n
= p . g e t a c t i v a t i o n f u n c t i o n ( ) ;

We can set the number of inputs, bias, synaptic weights and activation
function of a Perceptron object by writing

Perceptron p (2 , 0 . 0 ) ;
p . se t inputs number ( 5 ) ;
p . s e t b i a s ( 1 . 0 ) ;
Vector<double> synapt i c we i gh t s (5 , 3 . 1415927 ) ;
p . s e t s y n a p t i c w e i g h t s ( synapt i c we i gh t s ) ;
p . s e t a c t i v a t i o n f u n c t i o n ( Perceptron : : L inear ) ;
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There are several initialization methods for the neuron parameters. The
folloing sentence initializes the bias and the synaptic weight values from a
normal distribution with mean 1 and standard deviation 2,

Perceptron p ( 1 0 ) ;
p . i n i t i a l i z e n o r m a l ( 1 . 0 , 2 . 0 ) ;

The calculate combination computes the combination of the inputs and the
neuron parameters,

Perceptron p (2 , 0 . 0 ) ;
Vector<double> input (2 , 0 . 0 ) ;
double combination = p . ca l cu l a t e comb ina t i on ( input ) ;

The method calculate activation computes the activation of the neuron for
a given combination value. For instance,

Perceptron p ;
double a c t i v a t i o n = p . c a l c u l a t e a c t i v a t i o n ( 1 . 0 ) ;

The calculate output method implements the composition of the calculate combination
and the calculate activation methods,

Perceptron p (4 , 0 . 0 ) ;
Vector<double> input (2 , 0 . 0 ) ;
double output = p . c a l c u l a t e o u t p u t ( input ) ;

In order to calculate the activation first and second derivatives of a neuron
for a given combination we use the calculate activation derivative and the
calculate activation second derivative methods, respectively.

Perceptron p ;
double a c t i v a t i o n d e r i v a t i v e
= p . c a l c u l a t e a c t i v a t i o n d e r i v a t i v e ( −0 .5) ;
double a c t i v a t i o n s e c o n d d e r i v a t i v e
= p . c a l c u l a t e a c t i v a t i o n s e c o n d d e r i v a t i v e ( −0 .5) ;

File format

A perceptron object can be serialized or deserialized to or from a data file
which contains the member values. The file format of an object of the
Perceptron class is of XML type.

<Flood version=’3.0’ class=’Perceptron’>

<InputsNumber>

inputs_number

</InputsNumber>

<ActivationFunction>

activation_function

</ActivationFunction>

<Bias>

bias
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</Bias>

<SynapticWeights>

synaptic_weight_1 ... synaptic_weight_n

</SynapticWeights>

<Display>

display

</Display>



Chapter 4

The multilayer perceptron

Perceptron neurons can be combined to form a multilayer perceptron. Most
neural networks, even biological ones, exhibit a layered structure. Here layers
and forward propagation are the basis to determine the architecture of a
multilayer perceptron. This neural network represent an explicit function
wich can be used for a variety of purposes.

4.1 Network architecture

Neurons can be combined to form a neural network. The architecture of
a neural network refers to the number of neurons, their arrangement and
connectivity. Any network architecture can be symbolized as a directed and
labeled graph, where nodes represent neurons and edges represent connectiv-
ities among neurons. An edge label represents the parameter of the neuron
for which the flow goes in [6].

Most neural networks, even biological neural networks, exhibit a layered
structure. In this work layers are the basis to determine the architecture of
a neural network [53]. Thus, a neural network typically consists on a set of
sensorial nodes which constitute the input layer, one or more hidden layers
of neurons and a set of neurons which constitute the output layer.

As it was said above, the characteristic neuron model of the multilayer
perceptron is the perceptron. On the other hand, the multilayer perceptron
has a feed-forward network architecture.

Feed-forward architectures contain no cycles, i.e., the architecture of a
feed-forward neural network can then be represented as an acyclic graph.

Hence, neurons in a feed-forward neural network are grouped into a se-
quence of h+1 layers of neurons L(1), . . . , L(h), L(h+1), so that neurons in any
layer are connected only to neurons in the next layer.

47
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The input layer consists of n external inputs and is not a layer of neu-
rons; the hidden layers L(1), . . . , L(h) contain s(1), . . . , s(h) hidden neurons,
respectively; and the output layer L(h+1) is composed of m output neurons.

Figure 4.1 shows the network architecture of a multilayer perceptron, with
n inputs, h hidden layers with s(i) neurons, for i = 1, . . . , h, and m neurons
in the output layer. In this User’s Guide, superscripts are used to identify
layers.

Figure 4.1: Multilayer perceptron.

Some basic information related to the input and output variables of a
multilayer perceptron includes the name, description and units of that vari-
ables. That information will be used to avoid errors such as interchanging
the role of the variables, misunderstanding the significance of a variable or
using a wrong units system.

Communication proceeds layer by layer from the input layer via the hid-
den layers up to the output layer. The states of the output neurons represent
the result of the computation [53].

In this way, in a feed-forward neural network, the output of each neuron
is a function of the inputs. Thus, given an input to such a neural network,
the activations of all neurons in the output layer can be computed in a
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deterministic pass [8].

Example 16 The multilayer perceptron of Figure 4.2 has number of inputs
n = 5, number of hidden layers h = 2, size of first hidden layer s(1) = 4, size
of second hidden layer s(2) = 6 and number of outputs m = 3.

Figure 4.2: Multilayer perceptron example.

4.2 Multilayer perceptron parameters

Two types of parameters can be found in a multilayer percepton, neural
parameters and independent parameters. The first group defines the output
from the neural network for a given input. The second group provides some
separate sort of information.



50 CHAPTER 4. THE MULTILAYER PERCEPTRON

Neural parameters

The neural parameters of a multilayer perceptron involve the parameters of
each perceptron in the network architecture.

A bias vector b is defined for each layer of neurons. The size of this vector
is the layer size,

b(L) =
(
b

(L)
1 , . . . , b

(L)

s(L)

)
, (4.1)

for i = 1, . . . , h+ 1 and with s(0) = n and s(h+1) = m.
Similarly, a weight matrix W can be considered for every layer in the

neural network. The rows number is the layer size and the columns number
is the layer inputs number,

W(L) =


w

(L)
1,1 · · · w

(L)

1,s(L−1)

...
. . .

...

w
(L)

s(L),1
· · · w

(L)

s(L),s(L−1)

 (4.2)

with s(0) = n and s(h+1) = m.
The number of parameters in a given layer is the number of biases plus

the number of synaptic weights,

d(L) = s(L)(1 + s(L−1)). (4.3)

The number of neural parameters in a multilayer perceptron is the sum
of the number of parameters in each layer,

d(N) =
h+1∑
i=1

d(i), (4.4)

where the superscript (N) stands for neural parameters.
The neural parameters can be grouped together in a d(N)-dimensional

vector ζ(N) ∈ RdN ,

ζ(N) = (ζ
(N)
1 , . . . , ζ

(N)
d ). (4.5)

We can express the norm of the neural parameters vector as
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‖ζ(N)‖ =

√√√√ dN∑
i=1

ζ
(N)2
i . (4.6)

Example 17 Consider the multilayer perceptron in Example 16, which as 5
inputs, 4 neurons in the first hidden layer, 6 neurons in the second hidden
layer and 3 output neurons.

The bias vector of the first hidden layer is of the form

b(1) =
(
b

(1)
1 , . . . , b

(1)
4

)
,

and the synaptic weight matrix,

W(1) =

 w
(1)
1,1 · · · w

(1)
1,5

...
. . .

...

w
(1)
4,1 · · · w

(1)
4,5

 .

The number of parameters in the firs hiden layer is then

d(1) = 4(1 + 5)

= 24.

Similarly, the bias vector of the second hidden layer is

b(2) =
(
b

(2)
1 , . . . , b

(2)
6

)
,

and the synaptic weight matrix of that layer

W(2) =

 w
(2)
11 · · · w

(2)
14

...
. . .

...

w
(2)
61 · · · w

(2)
64


In this way, the number of parameters in the second hidden layer is

d(2) = 6(1 + 4)

= 30.
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The bias vector of the output layer is

b(3) =
(
b

(3)
1 , . . . , b

(3)
3

)
,

and the synaptic weight matrix

W(3) =

 w
(3)
11 · · · w

(3)
16

...
. . .

...

w
(3)
31 · · · w

(3)
36

 .

Therefore, the number of parameters in the output layer is

d(3) = 3(1 + 6)

= 21.

The number of neural parameters is the sum biases and synaptic weights
in the hidden and the output layers,

d(n) = 24 + 30 + 21

= 75.

All the biases and synaptic weights can be grouped together in the neural
parameters vector

ζ(N) = (ζ
(N)
1 , . . . , ζ

(N)
75 ).

The norm of that vector can be computed as

‖ζ(N)‖ =

√√√√ 75∑
i=0

ζ
(N)2
i .

Independent parameters

If some information not related to input-output relationships is needed, then
the problem is said to have independent parameters. They are not a part of
the neural network, but they are associated to it.
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The independent parameters can be grouped together in a d(I)-dimensional
vector ζ(I) ∈ Rd(I)

ζ(I) = (ζ
(I)
1 , . . . , ζ

(I)

d(I)). (4.7)

To calculate the norm of the independent parameters vector we use the
following expression

‖ζ(I)‖ =

√√√√ d(I)∑
i=1

ζ
(I)2
i . (4.8)

Example 18 Let MLP be a multilayer perceptron with 0 inputs, 0 hidden
layers and 0 outputs. If we associate 10 independent parameters to that neural
network, the independent parameters vector is

ζ(I) = (ζ
(I)
1 , . . . , ζ

(I)
10 ),

and the norm of that vector is

‖ζ(I)‖ =

√√√√ 10∑
i=1

ζ
(I)2
i .

Parameters

The total set of parameters ζ ∈ Rd(N) × Rd(I)
in a multilayer perceptron is

composed by the biases and synaptic weights and the independent parame-
ters,

ζ = (ζ(N), ζ(I)). (4.9)

The number of parameters is then the number of neural parameters plus
the number of independent parameters,

d = d(N) + d(I). (4.10)

The norm of the parameters vector is defined in the usual way,
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‖ζ‖ =

√√√√ d∑
i=1

ζ2
i . (4.11)

Example 19 Consider a multilayer perceptron with 5 inputs, 2 hidden layers
with 4 and 6 neurons, 3 output neurons and 10 independent parameters.

The number of neural parameters is 75, and the number of independent
parameters is 10. The parameters vector here is of the form

ζ = (ζ
(N)
1 , . . . , ζ

(N)
75 , ζ

(I)
1 , . . . , ζ

(N)
10 ).

The number of parameters of that neural network is

d = 75 + 10

= 85.

Finally, the parameters norm is given by the quantity

‖ζ(I)‖ =

√√√√ 85∑
i=1

ζ2
i .

4.3 Layer combination function

The layer combination function c : X(L) → C(L), with X(L) ⊆ Rs(L−1)
and

C(L) ⊆ Rs(L)
, takes an input vector to that layer to produce a combination

vector, or net input vector. The layer combination function computes the
combination of each perceptron,

c
(L)
i = b

(L)
i + w

(L)
i x(L), (4.12)

for i = 1, . . . , s(L). Here b
(L)
i and w

(L)
i are the bias and synaptic weights of

neuron i in layer L, respectively.

Example 20 Consider a layer of perceptrons L with size s(L) = 2 and num-
ber of inputs s(0) = 3. Let the bias vector be b(L) = (0, 0) and the synaptic
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weight matrix be W(L) = (0.1 0.2 0.3; −0.1 −0.2 −0.3). If the input to that
layer is x = (1, 2, 3), the combination will be

c1 = 0 + 0.1 · 1 + 0.2 · 2 + 0.3 · 3
= 1.4

c2 = 0− 0.1 · 1− 0.2 · 2− 0.3 · 3
= −1.4.

4.4 Layer activation function

The activation function of a layer in a multilayer perceptron, a(L) : C(L) →
A(L), takes that layer’s combination, C(L) ⊆ Rs(L)

, to produce a layer’s ac-
tivation , A(L) ⊆ Rs(L)

. The activation values are those computed by each
single perceptron,

a
(L)
i (c(L)) = ai(c

(L)
i ), (4.13)

for i = 1, . . . , s(L).

Layer threshold function

This layer activation function a(L) : C(L) → [0, 1]s
(L)

, with C(L) ⊆ Rs(L)
,

computes the threshold function for each perceptron in that layer,

a
(L)
i (c(L)) =

{
0 c

(L)
i < 0,

1 c
(L)
i ≥ 0,

(4.14)

for i = 1, . . . , s(L).
Threshold activation functions are usually found in the output layer of a

multilayer perceptron, and not in the hidden layers.

Example 21 Consider a layer L of size s(L) = 3 and with threshold acti-
vation function. If the combination of that layer is c(L) = (−1, 0.5, 1.5), the
activation will be

a(L)(−1, 0.5, 1.5) = (0, 1, 1).
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Layer symmetric threshold

The symmetric threshold layer activation function a(L) : C(L) → [−1, 1]s
(L)

,

with C(L) ⊆ Rs(L)
is given by

a
(L)
i (c(L)) =

{
−1 c

(L)
i < 0,

1 c
(L)
i ≥ 0,

(4.15)

for i = 1, . . . , s(L).
As it happens with the threshold function, the symmetric threshold is

usually found in the output layer, rather than in the hidden layers, of a
multilayer perceptron.

Example 22 Let L be a layer with 3 neurons and symmetric threshold ac-
tivation function. The activation of that layer for a combination c(L) =
(−1, 0.5, 1.5) will be

a(L)(−1, 0.5, 1.5) = (−1, 1, 1).

Layer logistic function

A layer’s logistic function, a(L) : C(L) → (0, 1)s(L)
, with C(L) ⊆ Rs(L)

, com-
putes a logistic activation function for each layer’s perceptron,

a
(L)
i (c(L)) =

1

1 + exp (−c(L)
i )

. (4.16)

for i = 1, . . . , s(L).
Logistic activation functions are usually found in the hidden layers of a

multilayer perceptron. Nevertheless they can be also found in the output
layer.

Example 23 Consider a layer of perceptrons L with size s(L) = 3 and logis-
tic activation function. The combination of that layer is c(L) = (−1, 0.5, 1.5).
Then, the activation of that layer will be

a(L)(−1, 0.5, 1.5) = (0.269, 0.622, 0.818).
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Layer hyperbolic tangent

The hyperbolic tangent layer activation function, a(L) : C(L) → (−1, 1)s(L)
,

with C(L) ⊆ Rs(L)
, is very symilar to the logistic, but the images of that two

functions are different. For this case it is given by

a
(L)
i (c(L)) = tanh (c

(L)
i ). (4.17)

Hyperbolic tangent activation functions are usually found in the hidden
layers of a multilayer perceptron. although sometimes they are also found in
the hidden layers.

Example 24 Let L be am hyperbolic tangent layer of size s(L) = 3. If the
combination of that layer is c(L) = (−1, 0.5, 1.5), then activation will be

a(L)(−1, 0.5, 1.5) = (−0.762, 0.462, 0.905).

Layer linear function

Finally, a layer’s linear activation function, a(L) : C(L) → A(L), with C(L) ⊆
Rs(L)

and A(L) ⊆ Rs(L)
, is simply given by

a
(L)
i (c(L)) = c

(L)
i , (4.18)

for i = 1, . . . , s(L).
Linear activation functions are usually found in the output layer of neural

networks.

Example 25 Consider a layer of perceptrons called L with size s(L) = 3
and linear activation function. The activation for a combination c(L) =
(−1, 0.5, 1.5) is

a(L)(−1, 0.5, 1.5) = (−1, 0.5, 1.5).

4.5 Layer output function

The output function of a layer y : X(L) → Y (L), with X(L) ⊆ Rs(L−1)
and

Y (L) ⊆ Rs(L)
is given by the output function of each individual neuron,



58 CHAPTER 4. THE MULTILAYER PERCEPTRON

y
(L)
i = a

(L)
i (b

(L)
i + w

(L)
i · x(L)), (4.19)

for i = 1, . . . , s(L).

Example 26 Let L be a layer of 2 hyperbolic tangent perceptrons with 3
inputs. Let the bias vector be b(L) = (0, 0), and the synaptic weight matrix
be W(L) = (0.1 0.2 0.3; −0.1 − 0.2 − 0.3). It the input to that layer is x(L) =
(−2,−1, 0, 1, 2), the output from it will be

y
(L)
1 = tanh (0 + 0.1 · 1 + 0.2 · 2 + 0.3 · 3)

= 0.885,

y
(L)
2 = tanh (0− 0.1 · 1− 0.2 · 2− 0.3 · 3)

= −0.885.

4.6 Multilayer perceptron function

In Section 3.5 we considered the space of functions that a perceptron neuron
model can define. As it happens with a single perceptron, a multilayer per-
ceptron neural network may be viewed as a parameterized function space V
from an input X ⊂ Rn to an output Y ⊂ Rm. Elements of V are of the form
y : X → Y . They are parameterized by the neural parameters, which can be
grouped together in a d-dimensional vector ζ = (ζ1, . . . , ζd). The dimension
of the function space V is therefore d.

We can write down the analytical expression for the elements of the func-
tion space which the multilayer perceptron shown in Figure 4.1 can define
[8].

For the first hidden layer L(1), the combination function is obtained by
adding to the biases the dot product of the synaptic weights and the inputs,
to give

c(1) = b(1) + W(1) · x. (4.20)

The output of that layer is obtained transforming the combination with
an activation function a(1),

y(1) = a(1)
(
c(1)
)
. (4.21)
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Similarly, for the last hidden layer, L(h), the combination function is given
by

c(h) = b(h) + W(h) · y(h−1). (4.22)

The output of that layer is found by using an activation a(h),

y(h) = a(h)
(
c(h)
)
, (4.23)

The outputs of the neural network are obtained by transforming the out-
puts of the last hidden layer by the neurons in the output layer L(h+1). Thus,
the combination of the output layer is of the form

c(h+1) = b(h+1) + W(h+1) · y(h) (4.24)

The output of the output layer is obtained transforming the combination
of that layer with an activation a(h+1) to give

y(h+1) = a(h+1)
(
c(h+1)

)
, (4.25)

Combining Equations (4.20), (4.21), (4.22), (4.23), (4.24) and (4.25), we
obtain an explicit expression for the function represented by the neural net-
work diagram in Figure 4 of the form

y = a(h+1)
(
b(h+1) + W(h+1) · a(h)

(
b(h) + W(h)a(h−1)

(
· · · a(1)

(
b(1) + W(1) · x

))))
.(4.26)

In that way, the multilayer perceptron functions are represented in terms
of the composition of the layer output functions,

y = y(h+1) ◦ y(h) ◦ · · · ◦ y(1). (4.27)

Figure 4.3 is an activity diagram of how the information is propagated
in the multilayer perceptron. As there is no recurrence, that is forward-
propagated.

In this way, the multilayer perceptron can be considered as a function of
many variables composed by superposition and addition of functions of one
variable. Distinct activation functions cause distinct families of functions
which a multilayer perceptron can define. Similarly, distinct sets of neural
parameters cause distinct elements in the function space which a specific
multilayer perceptron defines.
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Figure 4.3: Forward-propagation in the multilayer perceptron.

Example 27 Let MLP be a multilayer perceptron with network architec-
ture (1, 1, 1) and activation functions (tanh, linear). The bias and synaptic
weights of the hidden and the output layers are b(1) = (1), W(1) = (2),
b(2) = (3) and W(2) = (4), respectively. Let apply an input x = −0.5 to the
neural network. The output of the hidden layer is

y(1) = tanh (1 + 2 · −0.5)

= 0,

and the output of the neural network is

y = 3 + 4 · 0
= 3.
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4.7 Universal approximation

A multilayer perceptron with as few as one hidden layer of sigmoid neurons
and an output layer of linear neurons provides a general framework for ap-
proximating any function from one finite dimensional space to another up to
any desired degree of accuracy, provided sufficiently many hidden neurons
are available. In this sense, multilayer perceptron networks are a class of
universal approximators [27].

A detailed statement of the universal approximation theorem for the mul-
tilayer perceptron is out of the scope of this work, so that it is not included
here. The interested reader can find this theorem, as well as its demonstra-
tion, in [27].

The universal approximation capability of the multilayer perceptron im-
plies that any lack of success in an application must arise from a wrong
number of hidden neurons, the lack of the objective functional or inadequate
training.

4.8 Scaling and unscaling

Scaling might be useful or necessary under certain circumstances, e.g. when
variables spam different ranges. In a multilayer perceptron scaling might
be applied to the input variables, the output variables or the independent
parameters.

Inputs and outputs scaling

In practice it is always convenient to scale the inputs in order to make all
of them to be of order zero. In this way, if all the neural parameters are of
order zero, the outputs will be also of order zero. On the other hand, scaled
outputs are to be unscaled in order to produce the original units.

There are several scaling or processing methods. Two of the most used are
the mean and standard deviation and the minimum and maximum methods.

The input scaling function x : X → X, with X,X ⊆ Rn processes
the inputs to the neural network so that they are of order zero. The most
important input scaling methods are the meand and standard deviation and
the minimum and maximum methods.

With the mean and standard deviation method the inputs are scaled so
that they will have mean µ = 0 and standard deviation σ = 1,

x =
x− µ(0)

σ(0)
, (4.28)
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where x are the inputs, x are the scaled inputs, and µ(0) and σ(0) are an
estimation of the mean and the standard deviation of the input variables,
respectively.

Note that inputs whose standard deviation is zero cannot be scaled.

Example 28 Let MLP be a multilayer perceptron with n = 3 inputs. The
mean and the standard deviation of the input variables are µ(0) = (−1, 0, 1)
and σ(0) = (2, 1, 4), respectively. The scaled input for an input x = (0, 0, 0)
is

x =
(0, 0, 0)− (−1, 0, 1)

(2, 1, 4)

= (0.5, 0, 0.25).

The minimum and maximum scaling function processes the inputs so that
their minimum and maximum values are min = −1 and max = 1,

x = 2
x−min(0)

max(0) −min(0)
− 1, (4.29)

where x is the input, x is the scaled input, and min(0) and max(0) are an
estimation of the minimum and the maximum values of the input variables,
respectively.

Note that variables whose minimum and maximum values are equal can-
not be scaled.

Example 29 Consider a multilayer perceptron MLP with number of inputs
n = 3. Let the minimum and maximum of the input variables be min(0) =
(−1,−2,−3) and max(0) = (2, 4, 6). The scaled input for an input x =
(0, 0, 0) is

x = 2
(0, 0, 0)− (−1,−2,−3)

(2, 4, 6)− (−1,−2,−3)
− 1

= (−0.333,−0.333,−0.333).

The output unscaling function y : Y → Y , with Y, Y ⊆ Rm processes
the scaled outputs from the neural network to produce the unscaled outputs,
which are in the original units. The most important output unscaling meth-
ods are the mean and standard deviation and the minimum and maximum.
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The mean and standard deviation method unscales the outputs in the
following manner,

y = µ(h+1) + σ(h+1)y, (4.30)

where y is the output, y is the unscaled output, and µ(h+1) and σ(h+1) are an
estimation of the mean and the standard deviation of the output variables,
respectively.

Example 30 Let MLP be a multilayer perceptron with m = 2 outputs . The
mean and standard deviation of the output variables are µ(h+1) = (−1, 2)
and σ(h+1) = (−2, 3), respectively. The output from the neural network for a
scaled output y = (−1, 1) is

y = (−1, 2) + (−2, 3)(−1, 1)

= (1, 5).

The minimum and maximum unscaling function takes the scaled output
from the neural network to produce the output

y = 0.5 (y + 1)
(
max(h+1) −min(h+1)

)
+ min(h+1), (4.31)

where y are the outputs, y are the unscaled outputs, and min(h+1) and
max(h+1) are an estimation of the minimum and the maximum values of the
output variables, respectively.

Example 31 Consider a multilayer perceptron MLP with outputs number
m = 1, output variables minimum min(h+1) = (−1000) and output variables
maximum max(h+1) = (1000). If the scaled output from the neural network
is y = (0.1), the unscaled output will be

y = 0.5 ((0.1) + 1) ((1000)− (−1000)) + (−1000)

= (100).
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Independent parameters scaling

As it happens with the input and output variables, the independent param-
eters are usually scaled and unscaled

The independent parameters scaling function ζ
(I)

: Z → Z, with Z,Z ⊆
Rd(I)

processes the independent parameters so that they are of order zero.
The mean and standard deviation scaling function for the independent

parameters is given by

ζ
(I)

=
ζ(I) − µ(I)

σ(I)
. (4.32)

where ζ(I) are the unscaled independent parameters, ζ
(I)

are the scaled inde-
pendent parameters, µ(I) are the mean values of the independent parameters
and σ(I) are the standard deviation values of the independent parameters.

The minimum and maximum method is of the form

ζ
(I)

= 2
ζ(I) −min(I)

max(I) −min(I)
− 1. (4.33)

where ζ(I) are the unscaled independent parameters, ζ
(I)

are the scaled in-
dependent parameters, min(I) are the minimum values of the independent
parameters and max(I) are the maximum values of the independent param-
eters.

The independent parameters unscaling function ζ
(I)

: Z → Z, with
Z,Z ⊆ Rd(I)

postprocesses the scaled independent parameters to obtain val-
ues in the original ranges.

The mean and standard deviation method is

ζ
(I)

= µ(I) + σ(I)ζ(I), (4.34)

where ζ(I) and ζ
(I)

are the unscaled and scaled independent parameteres and
µ(I) and σ(I) are the independent parameters mean and standard deviation.

Finally, the minimum and maximum unscaling function for the indepen-
dent parameters is

ζ
(I)

= 0.5(ζ(I) + 1
(
max(I) −min(I)) + min(I),

(4.35)

where min(I) and max(I) are the independent parameters minimum and
maximum, respectively.
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4.9 Boundary conditions

If some outputs are specified for given inputs, then the problem is said to
include boundary conditions. A boundary condition between some input
x = a and some output y = ya is written y(a) = ya.

In order to deal with boundary conditions the output from the neural
network can be post-processed with the boundary conditions function ŷ :
Y → Ŷ , with Y, Ŷ ⊆ Rm, defined by

ŷ = ϕ0(x) +ϕ1(x)y, (4.36)

where y is the raw output and ŷ is the output satisfying the boundary con-
ditions. The function ϕ0(x) is called a particular solution term and the
function ϕ1(x) is called an homogeneous solution term.

The particular solution term, ϕ0 : X → Φ0, with X ∈ Rn and Φ0 ∈ Rm

must hold ϕ0(a) = ya if there is a condition y(a) = ya. The homogeneous
solution term ϕ1 : X → Φ1, with X ∈ Rn and Φ1 ∈ Rm must hold ϕ1(a) = 0
if there is a condition y(a) = ya.

It is easy to see that the approach above makes all the elements of the
function space to satisfy the boundary conditions. Please note that the ex-
pressions of the particular and homogeneous solution terms depend on the
problem at hand. The particular and homogeneous solution terms might be
difficult to derive if the number of input and output variables is high and the
number of boundary conditions is also high.

Example 32 Consider a multilayer perceptron MLP with one input, n = 1,
one output, m = 1, and one boundary condition, y(a) = ya. A possible set of
particular and homogeneous solution terms could be

ϕ0(x) = a,

ϕ1(x) = x− a,

which indeed satisfy ϕ0(a) = ya and ϕ1(a) = 0. The output from that neural
network is then

ŷ = a+ (x− a)y,

which holds y(a) = ya.
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Example 33 Let MLP be a multilayer perceptron with inputs number n =
1, outputs number m = 1 and boundary conditions y(a) = ya and y(b) = yb.
The particular and homogeneous terms could be

ϕ0(x) = ya +
yb − ya

b− a
x,

ϕ1(x) = (x− a)(x− b).

which satisfy ϕ0(a) = ya, ϕ0(b) = yb, ϕ1(a) = 0 and ϕ1(b) = 0. In that way
the output is given by

ŷ = ya +
yb − ya

b− a
x+ (x− a)(x− b)y.

4.10 Lower and upper bounds

Lower and upper bounds are an essential issue for that problems in which
some variables or some independent parameters are restricted to fall in an
interval. Those problems could be intractable if bounds are not applied.

Output variables bounds

If some output variables are restricted to fall in some interval, then the
problem is said to have lower and upper bounds in the output variables. An
easy way to treat lower and upper bounds is to post-process the outputs from
the neural network with the bounding function ỹ : Y → Ỹ , with Y, Ỹ ⊆ Rm,
given by

ỹ =


l(h+1), y < l(h+1),
y, l(h+1) ≤ y ≤ u(h+1),
u(h+1), y > u(h+1),

(4.37)

where y is the unbounded output and ỹ is the bounded output. The vec-
tors l(h+1) and u(h+1) represent the lower and upper bounds of the output
variables, respectively.

Example 34 Let MLP be a multilayer perceptron with m = 3 outputs. Let
also l(h+1) = (0, 0, 0) and u(h+1) = (∞, 1,∞) be the lower and upper bounds
of the outpus. The bounded output for an unbounded output y = (−1, 0, 1) is

ỹ = (0, 0, 1).
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Independent parameters bounds

Similarly, if some independent parameters are bounded they can be post-

processed with the bounding function ζ̃
(I)

: Z → Z̃, with Z, Z̃ ⊆ Rd(I)
,

ζ̃
(I)

=


l(I), ζ(I) < l(I),

ζ(I), l(I) ≤ ζ(I) ≤ u(I),

u(I), ζ(I) > u(I),

(4.38)

where ζ(I) are the unbounded independent parameters and ζ̃
(I)

are the bounded
independent parameters. l(I) and u(I) represent the lower and upper bounds,
respectively.

Example 35 Let MLP be a multilayer perceptron with d(I) = 2 independent
parameters. Let also l(I) = (−1,−1) and u(h+1) = (1, 1) be the lower and
upper bounds of the independent parameters. The bounded output for an
unbounded output ζ(I) = (−2, 2) is

ζ̃
(I)

= (−1, 1).

4.11 Multilayer perceptron activity diagram

Following the contents of this chapteer, an activity diagram for the input-
output process in a multilayer perceptron can be drawn as in Figure 4.4. Here
the input to the neural network is first scaled using the scaling function. The
scaled input is forward propagated through the layers of perceptrons to ob-
tain the scaled output. That is then unscaled by means of the unscaling
function. If some boundary conditions must be satisfied, that unscaled out-
put is postprocessed with the particular and homogeneous solution terms.
That unbounded output is finally bounded to obtain the proper output.

4.12 Layer activation derivative

Up to now the function represented by a multilayer perceptron has been
considered. In this section and some succeeding ones the derivatives of that
function shall be studied.

The activation derivative of a layer of perceptrons, a′(L) : C(L) → A′(L),
with C(L), A′(L) ⊆ Rs(L)

defines the derivative of each neuron’s activation
with respect to the combination,
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Figure 4.4: Input-output process in the multilayer perceptron.

a
′(L)
i =

da
(L)
i

dc
(L)
i

, (4.39)

for i = 1, . . . , s(L).

Layer threshold function derivative

The threshold function is not derivable at the point c = 0.
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Layer symmetric threshold derivative

The symmetric threshold activation function is neither derivable at c = 0.

Example 36

Layer logistic function derivative

This layer activation function derivative, a′ : C → (0, 0.25]s
(L)

, with C ⊆
Rs(L)

, is given by

a
′(L)
i (c(L)) =

exp (−c(L)
i )

(1 + exp (−c(L)
i ))2

, (4.40)

for i = 1, . . . , s(L).

Example 37 Let L be a layer of logistic perceptrons and let s(L) = 2 be the
size of that layer. The activation derivative for a combination c(L) = (−5, 5)
is

a(L) = (0.006, 0.006).

Layer hyperbolic tangent derivative

The hyperbolic function activation derivative of a layer of perceptrons, a′ :
C → (0, 1]s

(L)
, with C ⊆ Rs(L)

, is given by

a
′(L)
i (c(L)) = 1− tanh2 (c

(L)
i ), (4.41)

for i = 1, . . . , s(L).

Example 38 A layer L with size s(L) = 2 and hyperbolic tangent activation
function with combiantion c(L) = (−5, 5) has the following activation

a′(L) = (1.81 · 10−4, 1.81 · 10−4).
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Layer linear function derivative

The layer linear function derivative a′ : C → Y ′, with C(L), A′(L) ⊆ Rs(L)
, is

given by

a
′(L)
i (c(L)) = c

(L)
i , (4.42)

for i = 1, . . . , s(L).

Example 39 Consider a layer L with size s(L) = 2 and linear activation. If
the combination of that layer is c(L) = (−5, 5), then the activation derivative
is

a′(L) = (1, 1).

4.13 Layer Jacobian matrix

Consider the derivatives of the outputs of a layer with respect to its inputs.
That derivatives can be grouped together in the layer Jacobian matrix, which
is given by

J(L) =



∂y
(L)
1

∂x
(L)
1

· · · ∂y
(L)
1

∂x
(L)

s(L−1)

...
. . .

...

∂y
(L)

s(L)

∂x
(L)
1

· · ·
∂y

(L)

s(L)

∂x
(L)

s(L−1)


, (4.43)

where each such derivative is evaluated with all other inputs held fixed.
The element (i, j) of that matrix can be evaluated as

J
(L)
ij = a′i

(L)w
(L)
ij . (4.44)

4.14 Multilayer perceptron Jacobian matrix

The Jacobian matrix for the multilayer perceptron groups together the deriva-
tives of the neural network outputs with respect to the neural network inputs,
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Jy(x) =


∂y1

∂x1

· · · ∂y1

∂xn
...

. . .
...

∂ym

∂x1

· · · ∂ym

∂xn

 , (4.45)

where each such derivative is evaluated with all other inputs held fixed.
Please note that the use of scaling and unscaling, boundary conditions

and lower and upper bounds will affect the derivative values of the Jacobian
matrix.

The Jacobian matrix can be evaluated either by using a forward-propagation
procedure, or by means of numerical differentiation.

Forward-propagation for the Jacobian matrix

The chain rule for the derivative provides us with a direct expression of the
Jacobian matrix for the multilayer perceptron as

J = J(h+1) · J(h) · . . . · J(1), (4.46)

where J(L) is the Jacobian matrix of layer L.

Numerical differentiation for the Jacobian matrix

The Jacobian matrix for the multilayer perceptron can also be evaluated
using numerical differentiation [8]. This can be done by perturbing each input
in turn, and approximating the derivatives by using forward differences,

∂yj

∂xi

=
yj(xi + ε)− yj(xi)

ε
+O(ε), (4.47)

for i = 1, . . . , n, j = 1, . . . ,m and for some small numerical value of ε.
The accuracy of the forward differences method can be improved signifi-

cantly by using central differences of the form

∂yj

∂xi

=
yj(xi + ε)− yj(xi − ε)

2ε
+O(ε2), (4.48)

also for i = 1, . . . , n, j = 1, . . . ,m and for some small numerical value of ε.
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4.15 Layer activation second derivative

We can also consider the activation second derivative of a layer of perceptrons,
a′′(L) : C(L) → A′′(L), with C(L), A′′(L) ⊆ Rs(L)

. That function is defined by

a
′′(L)
i (cL) =

d2a
(L)
i

dc
(L)2
i

(4.49)

for i = 1, . . . , s(L).

Layer threshold function second derivative

The threshold function is not derivable at the point c = 0.

Layer symmetric threshold second derivative

The symmetric threshold activation function is neither derivable at the point
c = 0.

Layer logistic function second derivative

The second derivative of this activation function a′′(L) : C(L) → C ′′s
(L)

, with
C(L) ⊆ Rs(L)

, is given by

a
′′(L)
i (c(L)) = − exp (c

(L)
i )

exp (c
(L)
i )− 1(

exp (c
(L)
i + 1)

)3 , (4.50)

for i = 1, . . . , s(L).

Example 40 Consider a layer of logistic perceptrons L with size s(L) = 2.
The activation second derivative for a combination c(L) = (−1, 1) is

a(L) = (0.232, 0.011).

Layer hyperbolic tangent second derivative

The second derivative of the hyperbolic tangent is similar to that for the
logistic function a′′(L) : C(L) → C ′′s

(L)
, with C(L) ⊆ Rs(L)

, is

a′′i
(L)(c(L)) = −2 tanh (c

(L)
i )(1− tanh2 (c

(L)
i )), (4.51)

for i = 1, . . . , s(L).
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Example 41 Let L be a layer of s(L) = 2 perceptrons with hyperbolic tangent
activation function. If the combination of that is c(L) = (−1, 1) the activation
second derivative will be

a(L) = (0.639,−0.639).

Layer linear function second derivative

Finally, a linear layer has second derivative a′′(L) : C(L) → 0s(L)
, with C(L) ⊆

Rs(L)
,

a
′′(L)
i (c(L)) = 0. (4.52)

for i = 1, . . . , s(L).

Example 42 The activation second derivative of a linear layer of percep-
trons L of size s(L)=3 for the combination c(L) = (−1, 0, 1) is

a′′(L)(−1, 0, 1) = (0, 0, 0).

4.16 The MultilayerPerceptron class

Flood implements a multilayer perceptron with an arbitrary number of hid-
den layers of perceptrons and an output layer of perceptrons in the class
MultilayerPerceptron. This neural network can approximate any function [27].

The MultilayerPerceptron class is the bigest one in Flood, having many
different members, constructors and methods.

Members

This class contains:
- The number of inputs.
- The size of the hidden layers.
- The number of outputs.
- A vector of vectors of hidden perceptrons.
- An vector of output perceptrons.
- The activation functions of the hidden layers.
- The activation function of the output layer.
- The name of the input and output variables.
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- The units of the input and output variables.
- The description of the input and output variables.
- The mean and the standard deviation of the input and output variables.
- The minimum and maximum values of the input and output variables.
- The lower and upper bounds of the output variables.
- The input variables scaling and output variables unscaling methods.
- The independent parameters vector.
- The name of the independent parameters.
- The units of the independent parameters.
- The description of the independent parameters.
- The mean and the standard deviation of the independent parameters.
- The minimum and maximum values of the independent parameters.
- The lower and upper bounds of the independent parameters.
- The independent parameters scaling and unscaling method.

All that members are declared as private, and they can only be used with
their corresponding get or set methods.

Constructors

There are several constructors for the MultilayerPerceptron class, with different
arguments. The default activation function for the hidden layers is the hyper-
bolic tangent, and for the output layer is the linear. No default information,
statistics, scaling, boundary conditions or bounds are set.

The easiest way of creating a multilayer perceptron object is by means
of the default constructor, which creates a multilayer perceptron without
network architecture and without independent parameters.

Mult i l ayerPercept ron mlp ;

To construct a multilayer perceptron object with, for example, 1 input, a
single hidden layer of 3 neurons and an output layer with 1 neuron, we use
the one hidden layer constructor

Mult i l ayerPercept ron mlp ( 1 , 6 , 1 ) ;

All the neural parameters in the multilayer perceptron object that we
have constructed so far are initialized with random values chosen from a
normal distribution with mean 0 and standard deviation 1.

In order to construct a neural network with more hidden layers the num-
ber of hidden neurons for each layer must be specified in a vector of integers.
For instance, to construct a multilayer perceptron with 1 input, 3 hidden
layers with 2, 4 and 3 neurons and an output layer with 1 neuron we can
write
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Vector<int> h i d d e n l a y e r s s i z e ( 3 ) ;
h i d d e n l a y e r s s i z e [ 0 ] = 2 ;
h i d d e n l a y e r s s i z e [ 1 ] = 4 ;
h i d d e n l a y e r s s i z e [ 2 ] = 3 ;
Mul t i l ayerPercept ron mlp (1 , h i d d e n l a y e r s s i z e , 1 ) ;

The neural parameters here are also initialized at random.
The independent parameters constructor creates a multilayer perceptron

object with no network architecture and a given number of independent
parameters,

Mult i l ayerPercept ron mlp ( 3 ) ;

It is possible to construct a multilayer perceptron by loading its members
from a data file. That is done in the following way,

Mult i l ayerPercept ron mlp ( ‘ Mul t i l ayerPercept ron . dat ’ ) ;

Please follow strictly the format of the multilayer perceptron file. If that
is not correct, Flood will launch an error and terminate the program.

Finally, the copy constructor can be used to create an object by copying
the members from another object,

Mult i l ayerPercept ron mlp1 ( 2 , 4 , 3 ) ;
Mul t i l ayerPercept ron mlp2(&mlp1 ) ;

Methods

This class implements get and set methods for each member.
The get inputs number, get hidden layers size and get outputs number methods

return the number of inputs, the size of the hidden layers and the number of
outputs, respectively.

Mult i l ayerPercept ron mlp (2 , 4 , 3 ) ;
int inputs number = mlp . get inputs number ( ) ;
Vector<int> h i d d e n l a y e r s s i z e = mlp . g e t h i d d e n l a y e r s s i z e ( ) ;
int outputs number = mlp . get outputs number ( ) ;

The number of neural parameters of the multilayer perceptron above can
be accessed as follows

int neural parameters number = mlp . get neura l parameters number ( ) ;

The activation functions can be changed by doing

Vector<Mult i l ayerPercept ron : : LayerAct ivat ionFunct ion>
h i d d e n l a y e r s a c t i v a t i o n f u n c t i o n (3 , Mul t i l ayerPercept ron : : L o g i s t i c ) ;
mlp . s e t h i d d e n l a y e r s a c t i v a t i o n f u n c t i o n
( h i d d e n l a y e r s a c t i v a t i o n f u n c t i o n ) ;
mlp . s e t o u t p u t l a y e r a c t i v a t i o n f u n c t i o n
( Mul t i l ayerPercept ron : : Hyperbol icTangent ) ;
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To set the mean, the standard deviation, the minimum and the maximum
values of the input and output variables we can use the set statistics method.
For instance, the sentences

Mult i l ayerPercept ron mlp ( 1 , 3 , 1 ) ;

Vector<double> output var iab le s mean (1 , 0 . 0 ) ;
Vector<double> o u t p u t v a r i a b l e s s t a n d a r d d e v i a t i o n (1 , 1 . 0 ) ;

Vector<double> input var iables minimum (1 , −1.0) ;
Vector<double> input variables maximum (1 , 1 . 0 ) ;

Vector<double> output variables minimum (1 , −1.0) ;
Vector<double> output variables maximum (1 , 1 . 0 ) ;

Vector< Vector<double> > s t a t i s t i c s ( 6 ) ;

s t a t i s t i c s [ 0 ] = input var i ab l e s mean ;
s t a t i s t i c s [ 1 ] = i n p u t v a r i a b l e s s t a n d a r d d e v i a t i o n ;
s t a t i s t i c s [ 2 ] = output var iab le s mean ;
s t a t i s t i c s [ 3 ] = o u t p u t v a r i a b l e s s t a n d a r d d e v i a t i o n ;
s t a t i s t i c s [ 4 ] = input var iables minimum ;
s t a t i s t i c s [ 5 ] = input variables maximum ;

mlp . s e t s t a t i s t i c s ( s t a t i s t i c s ) ;

set the mean and standard deviation of both input and output variables to
0 and 1, and the minimum and maximum of the input and output variables
to −1 and 1.

By default, a multilayer perceptron has not assigned any scaling and
unscaling method. In order to use the mean and standard deviation inputs
scaling method we can write

Mult i l ayerPercept ron mlp ( 2 , 3 , 4 ) ;
mlp . s e t i n p u t s s c a l i n g m e t h o d
( Mul t i l ayerPercept ron : : MeanStandardDeviation ) ;

In the same way, if we want to use the minimum and maximum outputs
unscaling method we can use

Mult i l ayerPercept ron mlp ( 4 , 3 , 2 ) ;
mlp . s e t output s unsca l ing method
( Mul t i l ayerPercept ron : : MinimumMaximum ) ;

The neural parameters can be initialized with a given value by using the
initialize method,

Mult i l ayerPercept ron mlp ( 4 , 3 , 2 ) ;
mlp . i n i t i a l i z e ( 0 . 0 ) ;
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To calculate the output Vector of the network in response to an input
Vector we use the method calculate output. For instance, the sentence

Vector<double> input ( 1 ) ;
input [ 0 ] = 0 . 5 ;
Vector<double> output = mlp . c a l c u l a t e o u t p u t ( input ) ;

returns the network’s output value y = y(x) for an input value x = 0.5.
To calculate the Jacobian Matrix of the network in response to an input

Vector we use the method the method calculate Jacobian. For instance, the
sentence

Matrix<double> Jacobian = mlp . c a l c u l a t e J a c o b i a n ( input ) ;

returns the network’s output derivative value ∂y(x)/∂x for the same input
value as before.

A set of independent parameters can be associated to the multilayer per-
ceptron using the set independent parameters number. For example,

Mult i l ayerPercept ron mlp ;
mlp . set independent parameters number ( 2 ) ;

We can save a multilayer perceptron object to a data file by using the
method save. For instance,

Mult i l ayerPercept ron mlp ;
mlp . save ( ‘ Mul t i l ayerPercept ron . dat ’ ) ;

saves the multilayer perceptron object to the file MultilayerPerceptron.dat.
We can also load a multilayer perceptron object from a data file by using

the method load. Indeed, the sentence

Mult i l ayerPercept ron mlp ;
mlp . load ( ‘ Mul t i l ayerPercept ron . dat ’ ) ;

loads the multilayer perceptron object from the file MultilayerPerceptron.dat.

File format

A multilayer perceptron object can be serialized or deserialized to or from a
data file which contains the member values. The file format of an object of
the MultilayerPerceptron class is of XML type.

<Flood version=’3.0’ class=’MultilayerPerceptron’>

<InputsNumber>

inputs_number

</InputsNumber>

<HiddenLayersNumber>

hidden_layers_number

</HiddenLayersNumber>

<HiddenLayersSize>

hidden_layer_size_1 ... hidden_layer_size_h
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</HiddenLayersSize>

<OutputsNumber>

outputs_number

</OutputsNumber>

<IndependentParametersNumber>

independent_parameters_number

</IndependentParametersNumber>

<HiddenLayersActivationFunction>

hidden_layer_activation_function_1 ... hidden_layer_activation_function_h

</HiddenLayersActivationFunction>

<OutputLayerActivationFunction>

output_layer_activation_function

</OutputLayerActivationFunction>

<NeuralParameters>

neural_parameters_1 ... neural_parameters_d^N

</NeuralParameters>

<InputVariablesName> input_variable_name_1 ... input_variable_name_n

</InputVariablesName>

<InputVariablesUnits>

input_variable_units_1 ... input_variable_units_n

</InputVariablesUnits>

<InputVariablesDescription>

input_variable_description_1 ... input_variable_description_n

</InputVariablesDescription>

<OutputVariablesName>

output_variable_name_1 ... output_variable_name_m

</OutputVariablesName>

<OutputVariablesUnits>

output_variable_units_1 ... output_variable_units_m

</OutputVariablesUnits>

<OutputVariablesDescription>

output_variable_description_1 ... output_variable_description_m

</OutputVariablesDescription>

<InputVariablesMean>

input_variable_mean_1 ... input_variable_mean_n

</InputVariablesMean>

<InputVariablesStandardDeviation>

input_variable_standard_deviation_1 ... input_variable_standard_deviation_n

</InputVariablesStandardDeviation>

<InputVariablesMinimum>

input_variable_minimum_1 ... input_variable_minimum_n

</InputVariablesMinimum>

<InputVariablesMaximum>

input_variable_maximum_1 ... input_variable_maximum_n

</InputVariablesMaximum>

<OutputVariablesMean>

output_variable_mean_1 ... output_variable_mean_m

</OutputVariablesMean>

<OutputVariablesStandardDeviation>

output_variable_standard_deviation_1 ... output_variable_standard_deviation_m

</OutputVariablesStandardDeviation>

<OutputVariablesMinimum>

output_variable_minimum_1 ... output_variable_minimum_m

</OutputVariablesMinimum>

<OutputVariablesMaximum>

output_variable_maximum_1 ... output_variable_maximum_m

</OutputVariablesMaximum>

<OutputVariablesLowerBound>

output_variable_lower_bound_1 ... output_variable_lower_bound_m

</OutputVariablesLowerBound>

<OutputVariablesUpperBound>

output_variable_upper_bound_1 ... output_variable_upper_bound_m
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</OutputVariablesUpperBound>

<InputsScalingMethod>

inputs_scaling_method

</InputsScalingMethod>

<OutputsUnscalingMethod>

outputs_unscaling_method

</OutputsUnscalingMethod>

<IndependentParameters>

independent_parameter_1 ... independent_parameter_d^I

</IndependentParameters>

<IndependentParametersName>

independent_parameter_name_1 ... independent_parameter_name_d^I

</IndependentParametersName>

<IndependentParametersUnits>

independent_parameter_units_1 ... independent_parameter_units_d^I

</IndependentParametersUnits>

<IndependentParametersDescription>

independent_parameter_description_1 ... independent_parameter_description_d^I

</IndependentParametersDescription>

<IndependentParametersMean>

independent_parameter_mean_1 ... independent_parameter_mean_d^I

</IndependentParametersMean>

<IndependentParametersStandardDeviation>

independent_parameter_standard_deviation_1 ... independent_parameter_standard_deviation_d^I

</IndependentParametersStandardDeviation>

<IndependentParametersMinimum>

independent_parameter_minimum_1 ... independent_parameter_minimum_d^I

</IndependentParametersMinimum>

<IndependentParametersMaximum>

independent_parameter_maximum_1 ... independent_parameter_maximum_d^I

</IndependentParametersMaximum>

<IndependentParametersLowerBound>

independent_parameter_lower_bound_1 ... independent_parameter_lower_bound_d^I

</IndependentParametersLowerBound>

<IndependentParametersUpperBound>

independent_parameter_upper_bound_1 ... independent_parameter_upper_bound_d^I

</IndependentParametersUpperBound>

<IndependentParametersScalingMethod>

independent_parameters_scalingmethod

</IndependentParametersScalingMehtod>
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Chapter 5

The objective functional

In order to perform a particular task a multilayer perceptron must be asso-
ciated an objective functional, which depends on the variational problem at
hand. The learning problem in the multilayer perceptron is thus formulated
in terms of the minimization of the objective functional.

5.1 Unconstrained variational problems

An objective functional for the multilayer perceptron F : V → R, being V
the space of functions spanned by the neural network is of the form

F = F [y(x)]. (5.1)

The objective functional defines the task the that the neural network is
required to accomplish and provides a measure of the quality of the repre-
sentation that the neural network is required to learn. In this way, the choice
of a suitable objective functional depends on the particular application.

The learning problem for the multilayer perceptron can then be stated
as the searching in the neural network function space for an element y∗(x)
at which the objective functional F [y(x)] takes a maximum or a minimum
value.

The tasks of maximization and minimization are trivially related to each
other, since maximization of F is equivalent to minimization of −F , and vice
versa. On the other hand, a minimum can be either a global minimum, the
smallest value of the functional over its entire domain, or a local minimum,
the smallest value of the functional within some local neighborhood.

The simplest variational problems for the multilayer perceptron are those
in which no constraints are posed on the solution y∗(x). In this way, the

81
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general unconstrained variational problem for the multilayer perceptron can
be formulated as follows:

Problem 1 (Unconstrained variational problem) Let V be the space of
all functions y(x) spanned by a multilayer perceptron, and let d be the di-
mension of V . Find a function y∗(x) ∈ V for which the functional

F [y(x)],

defined on V , takes on a minimum value.

In other words, the unconstrained variational problem for the multilayer
perceptron is stated in terms of the minimization of the objective functional
associated to the neural network [34].

Example 43 (Geodesic problem) Given two points A = (xa, ya) and B =
(xb, yb) in a plane, find the shortest path between A and B. Figure 43 depicts
graphically the formulation for this case study.
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Figure 5.1: Geodesic problem statement.

The arc length between point A and point B of a curve y(x) is given by
the functional

L[y(x)] =

∫ xb

xa

√
1 + [y′(x)]2dx.
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The analytical solution to the geodesic problem in the plane is obviously
a straight line. For the particular case when A = (1, 0) and B = (0, 1), the
Euler-Lagrange equation provides the following function as the minimal value
for the arc length functional.

y∗(x) = 1− x, (5.2)

which gives L[y∗(x)] = 1.414214.

Example 44 Given a collection of data points (x1, y1), . . . , (xn, yn), find a
function which fits that data. Figure 44 shows the statement of this problem.
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Figure 5.2: Data modelling statement.

The sum squared error E of a curve y(x) with respect to the points
(x1, y1), . . . , (xn, yn) is a functional. The value E[y(x)] is given by

E[y(x)] =
n∑

i=1

(y(xi)− yi)
2 .

5.2 Constrained variational problems

A variational problem for the multilayer perceptron can be specified by a
set of constraints, which are equalities or inequalities that the solution y∗(x)
must satisfy. Such constraints are expressed as functionals. Thus, the gen-
eral constrained variational problem for the multilayer perceptron can be
formulated as follows:



84 CHAPTER 5. THE OBJECTIVE FUNCTIONAL

Problem 2 (Constrained variational problem) Let V be the space of
all functions y(x) spanned by a multilayer perceptron, and let d be the di-
mension of V . Find a function y∗(x) ∈ V such that

Ci[y
∗(x)] = 0,

for i = 1, . . . , l, and for which the functional

F [y(x)],

defined on V , takes on a minimum value.

In other words, the constrained variational problem for the multilayer
perceptron consists of finding a vector of parameters which makes all the
constraints to be satisfied and the objective functional to be an extremum.

A common approach when solving a constrained variational problem is
to reduce it into an unconstrained problem. This can be done by adding
a penalty term to the objective functional for each of the constrains in the
original problem. Adding a penalty term gives a large positive or negative
value to the objective functional when infeasibility due to a constrain is
encountered.

For the minimization case, the general constrained variational problem
for the multilayer perceptron can be reformulated as follows:

Problem 3 (Reduced unconstrained variational problem) Let V be the
space consisting of all functions y(x) that a given multilayer perceptron can
define, and let d be the dimension of V . Find a function y∗(x) ∈ V for which
the functional

F [y(x)] +
l∑

i=1

ρi ‖Ci[y(x)]‖2 ,

defined on V and with ρi > 0, for i = 1, . . . , l, takes on a minimum value.

The parameters ρi, for i = 1, . . . , l, are called the penalty term weights,
being l the number of constraints. Note that, while the squared norm of the
constrained is the metric most used, any other suitable metric can be used.

For large values of ρ, it is clear that the solution y∗(x) of Problem 3
will be in in a region where C[y(x)] is small. Thus, for increasing values of
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ρ, it is expected that the the solution y∗(x) of Problem 3 will approach the
constraints and, subject to being close, will minimize the objective functional
F [y(x)]. Ideally then, as ρ→∞, the solution of Problem 3 will converge to
the solution of Problem 2 [35].

Example 45 (Catenary problem) To find the curve assumed by a loose
string of length l hung freely from two fixed points A = (xa, fa) and B =
(xb, fb). Figure 5.3 graphically declares the catenary problem.
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Figure 5.3: Catenary problem statement.

The length of a chain y(x) is given by

L[y(x)] =

∫ xb

xa

√
1 + [y′(x)]2dx.

This chain is constrained to have length l, which can be written

EL[y(x)] =

∫ xb

xa

√
1 + [y′(x)]2dx− l

= 0. (5.3)

On the other hand, the shape to be found is that which minimizes the
potential energy. For a chain y(x) with uniformly distributed mass this is
given by

V [y(x)] =

∫ xb

xa

y(x)
√

1 + [y′(x)]2dx.
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The analytical solution to the catenary problem is an hyperbolic cosine.
For the particular case when l = 1.5, A = (0, 1) and B = (1, 1), it is written

y∗(x) = 0.1891 + 0.3082 cosh

(
x− 0.5

0.3082

)
. (5.4)

The potential energy of this catenary is V [y∗(x)] = 1.0460.

5.3 Reduced function optimization problem

As we saw in Section 5.1, the objective functional, F : V → R, with V the
multilayer perceptron function space, is of the form

F = F [y(x)]. (5.5)

That objective functional has an objective function associated, f : Rd →
R, with d the number of parameters in the neural network [34], which is of
the form

f = f(ζ). (5.6)

The objective function for the multilayer perceptron, represented as f(ζ),
can be visualized as a hypersurface, with ζ1, . . . , ζd as coordinates, see Figure
5.4.

The minimum or maximum value of the objective functional is achieved
for a vector of parameters at which the objective function takes on a mini-
mum or maximum value. Therefore, the learning problem in the multilayer
perceptron, formulated as a variational problem, can be reduced to a function
optimization problem [34].

Problem 4 (Reduced function optimization problem) Let Rd be the
space of all vectors ζ spanned by the parameters of a multilayer perceptron.
Find a vector ζ∗ ∈ Rd for which the function

f(ζ),

defined on Rd, takes on a minimum value.
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Figure 5.4: Geometrical representation of the objective function.

In this sense, a variational formulation for the multilayer perceptron pro-
vides a direct method for solving variational problems. The universal approx-
imation properties for the multilayer perceptron cause neural computation
to be a very appropriate paradigm for the solution of these problems.

Example 46 (De Jong’s function) Find a vector ζ∗ ∈ R12 for which the
function f : R12 → R defined by

f(ζ) =
12∑
i=1

ζ2
i ,

takes on a minimum value.
The De Jong’s function has minimal argument ζ∗ = (0, . . . , 0), which

gives a minimum value f(ζ∗) = 0.

5.4 Objective function gradient

We have seen that the objective functional for the multilayer perceptron,
F [y(x)], has an objective function associated, f(ζ), which is defined as a
function of the parameters of the neural network ; the learning problem in
the multilayer perceptron is solved by finding the values of the parameters
which make the objective function to be an extremum.

For a multilayer perceptron, the gradient of the objective function, de-
noted ∇f(ζ), is the vector of partial derivatives
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∇f(ζ) =

(
∂f

∂ζ1

, . . . ,
∂f

∂ζd

)
. (5.7)

The use of gradient information is of central importance in using training
algorithms which are sufficiently fast to be of practical use for large-scale
applications. Figure 5.5 represents the objective function gradient for the
hypothetical case of a multilayer perceptron with two parameters.
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Figure 5.5: Illustration of the objective function gradient.

Example 47 Consider the objective function f : R3 → R defined by

f(ζ) =
3∑

i=1

ζ2
i .

The partial derivatives ∂f/∂ζ are given by

∂f

∂ζi
= 2ζi,

for i = 1, . . . , 3. The gradient at ζ = (−1, 0, 1) is

∇f(−1, 0, 1) = (−2, 0, 2).

When the desired output of the multilayer perceptron for a given input
is known, the objective function gradient can usually be found analytically
using back-propagation. In some other circumstances exact evaluation of the
gradient is not possible and numerical differentiation must be used.
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The back-propagation algorithm for the objective function gradient

The back-propagation algorithm is a principal result in the neural networks
field. Here we obtain the objective function gradient for the multilayer per-
ceptron using that method.

We want to find a procedure to evaluate the partial derivatives ∂f/∂ζi,
for i = 1, . . . , d.

The first step is to obtain the combination, activation and activation
derivative of all hidden and output neurons by a consecutive applying of
Equations (4.12), (4.13) and (4.39). This process is called forward propa-
gation derivative, since it can be considered as a feed flow of information
through the neural network.

Consider now the evaluation of the derivative of the objective function
f with respect to some parameter ζ

(L)
ij , where L is the layer index, i is the

perceptron index and j is the input index.

The objective function f depends on the parameter ζ
(L)
ij only though the

combination c
(L)
i . We can then apply the chain rule for partial derivatives to

give, for layer L

∂f

∂ζ
(L)
ij

=
∂f

∂c
(L)
i

∂c
(L)
i

∂ζ
(L)
ij

, (5.8)

for i = 1, . . . , s(L) and j = 1, . . . , s(L−1).

We now introduce the notation

δ ≡ ∂f

∂c
, (5.9)

where the quantity δ is called delta and it is considered for each neuron in
the neural network. In this way

∂f

∂ζ
(L)
ij

= δ
(L)
i

∂c
(L)
i

∂ζ
(L)
ij

, (5.10)

for i = 1, . . . , s(L) and j = 1, . . . , s(L−1).

The evaluation of delta for the output neurons is quite simple. By defi-
nition,
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δ
(h+1)
i ≡ ∂f

∂c
(h+1)
i

=
∂f

∂a
(h+1)
i

∂ai
(h+1)

∂c
(h+1)
i

=
∂f

∂a
(h+1)
i

a
′(h+1)
i , (5.11)

for i = 1, . . . ,m.
To evaluate delta for the neurons in the last hidden layer we make use of

the chain rule for partial derivatives,

δ
(h)
i ≡ ∂f

∂c
(h)
i

=
m∑

j=1

∂f

∂c
(h+1)
j

∂c
(h+1)
j

∂c
(h)
i

= δ(h+1), (5.12)

for i = 1, . . . , s(h). Substituting the definition of delta for the neurons in the
output layer, and making use of (4.12), (4.13), and (4.39), we obtain

δ
(h)
i = a′i

(h)

m∑
j=1

ζ
(h+1)
ji δ

(h+1)
j , (5.13)

for i = 1, . . . , s(h).
Similarly, to evaluate delta for the first layer

δ
(1)
i = a′i

(1)

s(2)∑
j=1

ζ
(2)
ji δ

(2)
j , (5.14)

for i = 1, . . . , s(1).
The derivatives ∂c/∂ζ for the first hidden layer are given by

∂c
(1)
i

∂ζ
(1)
ij

= xi, (5.15)
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for i = 1, . . . , n and j = 1, . . . , s(1). Similarly, for the last hidden layer, the
derivatives ∂c/∂ζ are

∂c
(h)
j

∂ζ
(h)
ji

= y
(h−1)
j , (5.16)

for i = 1, . . . , s(h−1) and j = 1, . . . , s(h). Finally we can write the derivatives
∂c/∂ζ, for the output layer,

∂c
(2)
k

∂ζ
(2)
kj

= y
(1)
j , (5.17)

for j = 1, . . . , s(h) and k = 1, . . . , s(h). We then obtain, for the hidden layer

∂f

∂ζ
(1)
ji

= δ
(1)
j xi, (5.18)

for i = 1, . . . , n and j = 1, . . . , h1. Likewise, we obtain, for the output layer

∂f

∂ζ
(2)
kj

= δ
(2)
k y

(1)
j , (5.19)

for j = 1, . . . , h1 and k = 1, . . . ,m.
We now obtain

δ
(1)
j = a′(1)(c

(1)
j )

m∑
k=1

ζ
(2)
kj δ

(2)
k , (5.20)

for j = 1, . . . , h1. We can summarize the back-propagation procedure to eval-
uate the derivatives of the objective function with respect to the parameters
in just four steps:

Calculate forward propagation derivative Calculate output errors Calcu-
late hidden errors Calculate hidden layers error gradient Calculate output
layer error gradient

1. Apply an input x to the neural network and forward-propagate it to
find the activation of all hidden and output neurons.
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2. Evaluate the errors δ
(2)
k for all output neurons.

3. Back-propagate the errors δ
(2)
k by using to obtain δ

(1)
j for each hidden

neuron in the neural network.

4. Evaluate the required derivatives of the objective function with respect
to the parameters in the hidden and output layers, respectively.

Numerical differentiation for the objective function gradient

There are many applications when it is not possible to obtain the objective
function gradient using the back-propagation algorithm, and it needs to be
computed numerically. This can be done by perturbing each parameter in
turn, and approximating the derivatives by using the finite differences method

∂f

∂ζi
=
f(ζi + ε)− f(ζi)

ε
+O(ε), (5.21)

for i = 1, . . . , d and for some small numerical value of ε.
The accuracy of the finite differences method can be improved signifi-

cantly by using central differences of the form

∂f

∂ζi
=
f(ζi + ε)− f(ζi − ε)

2ε
+O(ε2), (5.22)

also for i = 1, . . . , d and for some small numerical value of ε.
In a software implementation, when possible, derivatives of the objective

function f with respect to the parameters in the neural network ζ should be
evaluated using back-propagation, since this provides the greatest accuracy
and numerical efficiency.

5.5 Objective function Hessian

There are some training algorithms which also make use of the Hessian matrix
of the objective function to search for an optimal set of parameters. The
Hessian matrix of the objective function f : Rd → R is written

Hf(ζ) =


∂2f

∂ζ2
1

· · · ∂2f

∂ζ1∂ζd
...

. . .
...

∂2f

∂ζd∂ζ1

· · · ∂2f

∂ζ2
d

 . (5.23)
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Example 48 Consider the objective function f : R3 → R defined by

f(ζ) =
3∑

i=1

ζ2
i .

The second derivatives ∂2f/∂ζ2 are given by

∂2f

∂ζ2
ij

=

{
2, i = j,
0, i 6= j,

for i, j = 1, . . . , 3. The Hessian at ζ = (−1, 0, 1) is

Hf(−1, 0, 1) =

 2 0 0
0 2 0
0 0 2


The most general scheme to calculate the Hessian matrix is to apply

numerical differentiation. However, there are some objective functions which
have an analytical solution for the Hessian matrix, which can be calculated
using a back-propagation algorithm [8].

Numerical differentiation for the objective function Hessian

As it happens for the gradient vector, there are many applications when
analytical evaluation of the Hessian is not possible, and it must be computed
numerically. This can be done by perturbing each argument element in turn,
and approximating the derivatives by using numerical differentiation.

The forward differences method for the Hessian matrix gives the following
expression

∂2f

∂ζi∂ζj

=
f(ζi + ε, ζj + ε)

4ε2
− f(ζi + ε, ζj − ε)

4ε2

− f(ζi − ε, ζj + ε)

4ε2
+
f(ζi − ε, ζj − ε)

4ε2
+O(ε2), (5.24)

The accuracy of forward differences can be improved by using central
differences,
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∂2f

∂ζi∂ζj

=
f(ζi + ε, ζj + ε)

4ε2
− f(ζi + ε, ζj − ε)

4ε2

− f(ζi − ε, ζj + ε)

4ε2
+
f(ζi − ε, ζj − ε)

4ε2
+O(ε2), (5.25)

for i, j = 1, . . . , d, and where d is the number of parameters in the neural
network.

5.6 Regularization theory

A problem is called well-possed if its solution meets existence, uniqueness
and stability. A solution is said to be stable when small changes in the
independent variable x led to small changes in the dependent variable y.
Otherwise the problem is said to be ill-possed.

An approach for ill-possed problems is to control the effective complexity
of the neural network [51]. This can be achieved by choosing an objective
functional F : V → R which adds a regularization term Ω : V → R to the
original functional F : V → R, being V the multilayer perceptron function
space [15]. The regularized objective functional then becomes

F [y(x)] = F [y(x)] + νΩ[y(x)], (5.26)

where the parameter ν is called the regularization term weight. The value
of the functional Ω depends on the function y(x), and if Ω[y(x)] is chosen
appropriately, it can be used to control ill-posseness [8].

One of the simplest forms of regularization term is called parameter decay
and consists on the sum of the squares of the parameters in the neural network
divided by the number of parameters [8].

Ω[y(x)] =
1

d

d∑
i=1

ζ2
i , (5.27)

where d is the number of parameters. Adding this term to the objective
function will cause the neural network to have smaller weights and biases,
and this will force its response to be smoother.
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The problem with regularization is that it is difficult to determine the
optimum value for the term weight ν. If we make this parameter too small, we
will not reduce ill-possenes. If the regularization term weight is too large, the
regularization term will dominate the objective functional and the solution
will not be correct. In this way, it is desirable to determine the optimal
regularization parameters in an automated fashion.

5.7 ObjectiveFunctional classes

Flood includes the ObjectiveFunctional abstract class to represent the concept
of objective functional. This class does not represent any concrete objective
functional, and derived classes must be implemented in order to define a
variational problem.

Members

That class contains:
- A relationship to a multilayer perceptron object.
- The objective weight.
- The regularization method.
- The regularization weight.
- An evaluation counter.
- A gradient counter.
- A Hessian counter.
- The numerical differentiation method.
- The numerical epsilon method.
- The numerical epsilon value.
- A display flag.

As usual, that members are private. They are accesed or modified by
using their corresponding get and set methods.

File format

The default file format of an objective functional class is listed below.

<Flood version=’3.0’ class=’ObjectiveFunctional’>

<RegularizationMethod>

regularization_method

</RegularizationMethod>

<ObjectiveWeight>

objective_weight

</ObjectiveWeight>

<RegularizationWeight>

regularization_weight
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</RegularizationWeight>

<CalculateEvaluationCount>

calculate_evaluation_count

</CalculateEvaluationCount>

<CalculateGradientCount>

calculate_gradient_count

</CalculateGradientCount>

<CalculateHessianCount>

calculate_Hessian_count

</CalculateHessianCount>

<NumericalDifferentiationMethod>

numerical_differentiation_method

</NumericalDifferentiationMethod>

<NumericalEpsilonMethod>

numerical_epsilon_method

</NumericalEpsilonMethod>

<NumericalEpsilon>

numerical_epsilon

</NumericalEpsilon>

<Display>

display

</Display>

Constructors

As it has been said, the choice of the objective functional depends on the
particular application. Therefore instantiation of the ObjectiveFunctional class
is not possible, and concrete classes must be derived.

Methods

Any derived class must implement the pure virtual calculate objective method.
This returns the objective term objective term of a multilayer perceptron for
some objective functional.

MockObject iveFunctional mof ;
double o b j e c t i v e = mof . c a l c u l a t e o b j e c t i v e ( ) ;

Note that the evaluation of the objective functional is the sum of the
objective and the regularization terms.

Derived classes might also implement the calculate objective gradient method.
By default, calculation of the gradient vector is performed with numerical
differentiation. Implementation of that method will override them and allow
to compute the derivatives analytically. The use of that method is as follows

MockObject iveFunctional mof ;
Vector<double> o b j e c t i v e g r a d i e n t = mof . c a l c u l a t e o b j e c t i v e g r a d i e n t ( ) ;

As before, the gradient of the objective functional is the sum of the ob-
jective gradient and the regularization gradient.

Similarly, the Hessian matrix can be computed using the calculate objective Hessian
method,
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MockObject iveFunctional mof ;
Matrix<double> o b j e c t i v e H e s s i a n = mof . c a l c u l a t e o b j e c t i v e H e s s i a n ( ) ;

The Hessian of the objective functional is also the sum of the objective
and the regularization matrices of second derivatives.

The objective functional is not regularized by default. To change that,
the set regularization method method is used

MockObject iveFunctional mof ;
mof . s e t r e g u l a r i z a t i o n m e t h o d ( Objec t iveFunct iona l : : NeuralParametersNorm ) ;

The default method for numerical differentiation is central differences. If
you want to use forward differences instead, you can write

MockObject iveFunctional mof ;
mof . s e t n u m e r i c a l d i f f e r e n t i a t i o n m e t h o d
( Objec t iveFunct iona l : : ForwardDi f f e rences ) ;

Derived classes

For data modeling problems, such as function regression or pattern recogni-
tion, Flood includes the classes SumSquaredError, MeanSquaredError, RootMeanSquaredError,
NormalizedSquaredError and MinkowskiError. Read Chapters 7 and 8 to learn
about modeling of data and the use of that classes.

On the other hand, other types of variational problems require program-
ming another derived class. As a way of illustration, Flood includes the ex-
amples GeodesicProblem, BrachistochroneProblem, CatenaryProblem and IsoperimetricProblem,
which are classical problems in the calculus of variations.

Examples for optimal control problems included are CarProblem,
CarProblemNeurocomputing, FedBatchFermenterProblem and AircraftLandingProblem,
see Chapter 9.

Regarding inverse problems, Flood includes the example PrecipitateDissolutionModeling.
Read Chapter 11 to see how this type of problems are formulated and how
to solve them by means of a neural network.

As an example of optimal shape design, the MinimumDragProblem example
is included. All these is explained in Chapter 10.

Finally, Flood can be used as a software tool for function optimization
problems. Some examples included are DeJongFunction, RosenbrockFunction,
RastriginFunction, PlaneCylinder and WeldedBeam. Please read Chapter 12 if you
are interested on that.
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Chapter 6

The training algorithm

The procedure used to carry out the learning process in a neural network is
called the training algorithm. There are many different training algorithms
for the multilayer perceptron. Some of the most used are the quasi-Newton
method or the evolutionary algorithm.

6.1 One-dimensional optimization

Although the objective function for the multilayer perceptron is multidimen-
sional, one-dimensional optimization methods are of great importance here.
Indeed, one-dimensional optimization algorithms are very often used inside
multidimensional optimization algorithms.

Consider an objective function of one parameter f : R→ R given by

f = f(η), (6.1)

continuous, derivable, and with continuous derivatives.
The function f is said to have a relative or local minimum at η∗ ∈ R

if f(η∗) ≤ f(η∗ + h) for all sufficiently small positive and negative values
of h. Similarly, a point η∗ ∈ R is called a relative or local maximum if
f(η∗) ≥ f(η∗ + h) for all values of h sufficiently close to zero.

The function f is said to have a global or absolute minimum at η∗ if
f(η∗) ≤ f(η) for all η ∈ R, and not just for all η close to η∗. Similarly, a
point η∗ will be a global maximum of f if f(η∗) ≥ f(η) for all η ∈ R in the
domain. Finding a global optimum is, in general, a very difficult problem
[56]. On the other hand, the tasks of maximization and minimization are
trivially related to each other, since maximization of f(η) is equivalent to
minimization of −f(η), and vice versa.

99
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In this regard, a one-dimensional optimization problem is one in which
the argument η∗ which minimizes the objective function f is to be found.

The necessary condition states that if the function f(η) has a relative
optimum at η∗ and if the derivative f ′(η) exists as a finite number at η∗,
then

f ′(η∗) = 0. (6.2)

The most elementary approach for one-dimensional optimization prob-
lems is to use a fixed step size or training rate. More sophisticated algorithms
which are are widely used are the golden section method and the Brent’s
method. Both of the two later algortims begin by bracketing a minimum.

Bracketing a minimum

Line minimization algorithms begin by locating an interval in which the
minimum of the objective function along occurs. A minimum is known to be
bracketed when there is a triplet of points a < b < c such that f(a) > f(b) <
f(c). In this case we know that f has a minimum in the interval (a, c).

Golden section

The golden section method brackets that minimum until the distance between
the two outer points in the bracket is less than a defined tolerance [45].

Brent’s method

The Brent’s method performs a parabolic interpolation until the distance
between the two outer points defining the parabola is less than a tolerance
[45].

6.2 Multidimensional optimization

As we saw in Chapter 5, the learning problem in the multilayer perceptron
is reduced to the searching in a d-dimensional space for a parameter vector
ζ∗ for which the objective function f takes a maximum or a minimum value.

Consider an objective function f : Rd → R, defined by

f = f(ζ). (6.3)
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continuous, derivable, and with continuous derivatives.
The concepts of relative or local and absolute or global optima for the

multidimensional case apply in the same way as for the one-dimensional case.
The tasks of maximization and minimization are also trivially related here.

The necessary condition states that if the function f(ζ) has a relative
optimum at ζ∗ ∈ Rd and if the gradient ∇f(ζ) exists as a finite vector at ζ∗,
then

∇f(ζ∗) = 0. (6.4)

The objective function is, in general, a non linear function of the param-
eters. As a consequence, it is not possible to find closed training algorithms
for the minima. Instead, we consider a search through the parameter space
consisting of a succession of steps of the form

ζi+1 = ζi + diηi, (6.5)

where i labels the iteration step, or epoch. The vector diηi is called the
parameters increment. di is the training direction and ηi is the training
rate. Different training algorithms involve different choices for the training
direction and the training rate.

In this way, to train a multilayer perceptron we start with an initial
parameter vector ζ0 (often chosen at random) and we generate a sequence
of parameter vectors ζ1, ζ2, . . ., so that the objective function f is reduced
at each iteration of the algorithm, that is

f(ζi+1) < f(ζi), (6.6)

where the quantity f(ζi+1)− f(ζi) is called the evaluation improvement.
The training algorithm stops when a specified condition is satisfied. Some

stopping criteria commonly used are [15]:

1. The parameters increment norm is less than a minimum value.

2. Evaluation improvement in one epoch is less than a set value.

3. Evaluation has been minimized to a goal value.

4. The norm of the objective function gradient falls below a goal.

5. A maximum number of epochs is reached.
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6. A maximum amount of computing time has been exceeded.

A stopping criterium of different nature is early stopping. This method is
used in ill-possed problems in order to control the effective complexity of the
multilayer perceptron. Early stopping is a very common practice in neural
networks and often produces good solutions to ill-possed problems.

Figure 6.1 is a state diagram of the training procedure, showing states
and transitions in the training process of a multilayer perceptron.

Init free parameters

Evaluate objective function

Improve free parameters

Stopping criteria = true
Stopping criteria = false

Figure 6.1: Training process in the multilayer perceptron.

The training process is determined by the way in which the adjustment
of the parameters in the neural network takes place. There are many differ-
ent training algorithms, which have a variety of different computation and
storage requirements. Moreover, there is not a training algorithm best suited
to all locations [56].

Training algorithms might require information from the objective function
only, the gradient vector of the objective function or the Hessian matrix of
the objective function [45]. These methods, in turn, can perform either global
or local optimization.

Zero-order training algorithms make use of the objective function only.
The most significant zero-order training algorithms are stochastic, which in-
volve randomness in the optimization process. Examples of these are random
search and evolutionary algorithms [22] [20] or particle swarm optimization
[28], which are global optimization methods .
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First-order training algorithms use the objective function and its gradi-
ent vector [5]. Examples of these are gradient descent methods, conjugate
gradient methods, scaled conjugate gradient methods [39] or quasi-Newton
methods. Gradient descent, conjugate gradient, scaled conjugate gradient
and quasi-Newton methods are local optimization methods [35].

Second-order training algorithms make use of the objective function, its
gradient vector and its Hessian matrix [5]. Examples for second-order meth-
ods are Newton’s method and the Levenberg-Marquardt algorithm [23]. Both
of them are local optimization methods [35].

6.3 Gradient descent

Gradient descent, sometimes also known as steepest descent, is a local method
which requires information from the gradient vector, and hence it is a first
order training algorithm. It acts in a deterministic manner.

The method begins at a point ζ0 and, until a stopping criterium is satis-
fied, moves from ζi to ζi+1 along the line extending from ζi in the training
direction d = −∇f(ζi), the local downhill gradient. The gradient vector of
the objective function for the multilayer perceptron is described in Section
5.4.

Therefore, starting from a parameter vector ζ0, the gradient descent
method takes the form of iterating

ζi+1 = ζi −∇f(ζi) · ηi, (6.7)

for i = 0, 1, . . ., and where the parameter η is the training rate. This value
can either set to a fixed value or found by line minimization along the train
direction at each epoch. Provided that the train rate is well chosen, the value
of f will decrease at each successive step, eventually reaching to vector of
parameters ζ∗ at which some stopping criterium is satisfied.

The choose of a suitable value for a fixed train rate presents a serious
difficulty. If η is too large, the algorithm may overshoot leading to an increase
in f and possibly to divergent oscillations, resulting in a complete breakdown
in the algorithm. Conversely, if η is chosen to be very small the search can
proceed extremely slowly, leading to long computation times. Furthermore,
a good value for η will typically change during the course of training [8].

For that reason, an optimal value for the train rate obtained by line min-
imization at each successive epoch is generally preferable. Here a search is
made along the train direction to determine the optimal train rate, which
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minimizes the objective function along that line. Section 6.1 describes dif-
ferent one-dimensional minimization algorithms.

Figure 6.2 is a state diagram for the training process of a neural network
with gradient descent. Improvement of the parameters is performed by ob-
taining first the gradient descent train direction and then a suitable training
rate.

Init free parameters

Evaluate objective function

Improve free parameters
Get gradient descent train direction

Get train rate

Stopping criteria = true
Stopping criteria = false

Figure 6.2: Training process with the gradient descent training algorithm.

The gradient descent training algorithm has the severe drawback of re-
quiring many iterations for functions which have long, narrow valley struc-
tures. Indeed, the local downhill gradient is the direction in which the objec-
tive function decreases most rapidly, but this does not necessarily produce
the fastest convergence. See [35] for a detailed discussion of this optimization
method.

6.4 Newton’s method

The Newton’s method is a class of local algorithm which makes use of the
Hessian matrix of the objective function. In this way it is a second order
method. On the other hand, the Newton’s method behaves in a deterministic
fashion.

Consider the quadratic approximation of f at ζ0 ∈ Rd using the Taylor’s
series expansion
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f(ζ) = f(ζ0) +∇f(ζ − ζ0) +
1

2
(ζ − ζ0) ·Hf(ζ0) · (ζ − ζ0), (6.8)

where Hf(ζ0) is the Hessian matrix of f evaluated at the point ζ0. The
Hessian matrix of the objective function for the multilayer perceptron is
described in Section 5.5.

By setting ∇f(ζ) in Equation (6.8) equal to 0 for the minimum of f(ζ),
we obtain

∇f(ζ) = ∇f(ζ0) + Hf(ζ0) · (ζ − ζ0)

= 0. (6.9)

If Hf(ζ0) is not singular, Equation (6.9) leads to an expression for the
location of the minimum of the objective function,

ζ∗ = ζ0 −H−1f(ζ0) · ∇f(ζ0), (6.10)

where H−1f(ζ0) is the inverse of the Hessian matrix of f evaluated at the
point ζ0.

Equation (6.10) would be exact for a quadratic objective function. How-
ever, since higher order terms have been neglected, this is to be used itera-
tively to find the optimal solution ζ∗. Therefore, starting from a parameter
vector ζ0, the iterative formula for the Newton’s method can be written

ζi+1 = ζi −H−1f(ζi) · ∇f(ζi), (6.11)

for i = 0, 1, . . . and until some stopping criterium is satisfied.
The vector H−1f(ζ) · ∇f(ζ) is known as the Newton’s increment. But

note that this increment for the parameters may move towards a maximum
or a saddle point rather than a minimum. This occurs if the Hessian is not
positive definite, so that there exist directions of negative curvature. Thus,
the objective function evaluation is not guaranteed to be reduced at each
iteration. Moreover, the Newton’s increment may be sufficiently large that
it takes us outside the range of validity of the quadratic approximation. In
this case the algorithm could become unstable.

In order to prevent such troubles, the Newton’s method in Equation (6.4)
is usually modified as
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ζi+1 = ζi −H−1f(ζi) · ∇f(ζi) · ηi, (6.12)

where the training rate η can either set to a fixed value or found by line
minimization. See Section 6.1 for a description of several one-dimensional
minimization algorithms.

In Equation (6.12), the vector d = H−1f(ζ) · ∇f(ζ) is now called the
Newton’s train direction. The sequence of points ζ0, ζ1, . . . can be shown
here to converge to the actual solution ζ∗ from any initial point ζ0 sufficiently
close the to solution, and provided that H is nonsingular.

The state diagram for the training process with the Newton’s method is
depicted in Figure 6.3. Here improvement of the parameters is performed
by obtaining first the Newton’s method train direction and then a suitable
training rate.

Init free parameters

Evaluate objective function

Improve free parameters
Get Newton’s method train direction

Get train rate

Stopping criteria = true
Stopping criteria = false

Figure 6.3: Training process with the Newton’s method.

There are still several difficulties with such an approach, however. First,
an exact evaluation of the Hessian matrix is computationally demanding.
This evaluation would be prohibitively expensive if done at each stage of an
iterative algorithm. Second, the Hessian must be inverted, and so is also
computationally demanding. In [35] a complete description of the Newton’s
method can be found.



6.5. CONJUGATE GRADIENT 107

6.5 Conjugate gradient

Conjugate gradient is a local algorithm for an objective function whose gra-
dient can be computed, belonging for that reason to the class of first order
methods. According to its behavior, it can be described as a deterministic
method.

The conjugate gradient method can be regarded as being somewhat inter-
mediate between the method of gradient descent and Newton’s method [35].
It is motivated by the desire to accelerate the typically slow convergence as-
sociated with gradient descent while avoiding the information requirements
associated with the evaluation, storage, and inversion of the Hessian matrix
as required by the Newton’s method. In the conjugate gradient algorithm
search is performed along conjugate directions, which produces generally
faster convergence than steepest descent directions [15]. These train direc-
tions are conjugated with respect to the Hessian matrix. A set of vectors dk

are said to be conjugated with respect to the matrix H if only if

dT
i Hdj = 0, (6.13)

for all i 6= j and provided that H is not singular. An elemental property of
a set of conjugate directions is that these vectors are linearly independent.
Therefore, if the number of parameters is d, the maximum size of a set of
conjugate directions is also d.

Let denote d the train direction vector. Then, starting with an initial
parameter vector ζ0 and an initial train direction vector d0 = −∇f(ζ0), the
conjugate gradient method constructs a sequence of train directions from the
recurrence

di+1 = ∇f(ζi+1) + di · γi, (6.14)

for i = 0, 1, . . . and where γ is called the conjugate parameter.
The various versions of conjugate gradient are distinguished by the man-

ner in which the conjugate parameter is constructed.
For the Fletcher-Reeves update the procedure is [19]

γFRi =
∇f(ζi+1) · ∇f(ζi+1)

∇f(ζi) · ∇f(ζi)
, (6.15)

where γFR is called the Fletcher-Reeves parameter.
For the Polak-Ribiere update the procedure is



108 CHAPTER 6. THE TRAINING ALGORITHM

γPRi =

(
∇f(ζi+1)−∇f(ζi)

)
· ∇f(ζi+1)

∇f(ζi) · ∇f(ζi)
, (6.16)

where γPR is called the Polak-Ribiere parameter.
It can be shown that both the Fletcher-Reeves and the Polak-Ribiere

train directions indeed satisfy Equation (6.17).
The parameters are then improved according to the formula

ζi+1 = ζi + diηi, (6.17)

also for i = 0, 1, . . ., and where η is the train rate, which is usually found by
line minimization.

For all conjugate gradient algorithms, the train direction is periodically
reset to the negative of the gradient. The standard reset point occurs every
d epochs, the number of parameters in the multilayer perceptron [44].

There is some evidence that the Polak-Ribiere formula accomplishes the
transition to further iterations more efficiently: When it runs out of steam,
it tends to reset the train direction d to be down the local gradient −∇f(ζ),
which is equivalent to beginning the conjugate-gradient procedure again [45].

Figure 6.4 is a state diagram for the training process with the conjugate
gradient. Here improvement of the parameters is done by first computing
the conjugate gradient train direction and then a suitable train rate in that
direction.

Conjugate gradient methods have proved to more effective than gradient
descent or the Newton’s method in dealing with general objective functions.
A detailed discussion of the conjugate gradient method can be found in [35].

6.6 Quasi-Newton method

The quasi-Newton method can be classified as a local, first order and deter-
ministic training algorithm for the multilayer perceptron.

In Section 6.4 it was argued that a direct application of the Newton’s
method, as given by Equation (6.12), would be computationally prohibitive
since it would require too many operations to evaluate the Hessian matrix
and compute its inverse. Alternative approaches, known as quasi-Newton or
variable metric methods, are based on that, but instead of calculating the
Hessian directly, and then evaluating its inverse, they build up an approxi-
mation to the inverse Hessian over a number of steps.
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Init free parameters

Evaluate objective function

Improve free parameters
Get conjugate gradient train direction

Get train rate

Stopping criteria = true
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Figure 6.4: Training process with the conjugate gradient training algorithm.

The Hessian matrix is composed of the second partial derivatives of the
objective function. The basic idea behind the quasi-Newton or variable met-
ric methods is to approximate H−1f(ζ) by another matrix Gf(ζ), using only
the first partial derivatives of the objective function f . If H−1 is approxi-
mated by G, the Newton formula (6.12) can be expressed as

ζi+1 = ζi −Gf(ζi) · ∇f(ζi) · ηi, (6.18)

where the training rate η can either set to a fixed value or found by line
minimization.

Implementation of Equation (6.18) involves generating a sequence of ma-
trices Gf(ζ) which represent increasingly accurate approximation to the in-
verse Hessian H−1f(ζ), sing only information on the first derivatives of the
objective function. The problems arising from Hessian matrices which are
not positive definite are solved by starting from a positive definite matrix
(such as the unit matrix) and ensuring that the update procedure is such
that the approximation to the inverse Hessian is guaranteed to remain posi-
tive definite. The approximation of the inverse Hessian must be constructed
so as to satisfy this condition also.

The two most commonly used update formulae are the Davidon-Fletcher-
Powel (DFP) algorithm and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
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algorithm.
The DFP algorithm is given by

Gf(ζi+1) = Gf(ζi)

+
(ζi+1 − ζi)⊗ (ζi+1 − ζi)

(ζi+1 − ζi) · (gi+1 − gi)

+
[Gf(ζi) · (gi+1 − gi)]⊗ [Gf(ζi) · (gi+1 − gi)]

(gi+1 − gi) ·Gf(ζi) · (gi+1 − gi)
, (6.19)

Gi+1 = Gi

+
(ζi+1 − ζi)⊗ (ζi+1 − ζi)

(ζi+1 − ζi) · (gi+1 − gi)

+
[Gi · (gi+1 − gi)]⊗ [Gi · (gi+1 − gi)]

(gi+1 − gi) ·Gi · (gi+1 − gi)
, (6.20)

where ⊗ denotes the outer or direct product of two vectors, which is a matrix:
The ij component of u⊗ v is uivj.

The BFGS algorithm is exactly the same, but with one additional term

Gi+1 = Gi

+
(ζi+1 − ζi)⊗ (ζi+1 − ζi)

(ζi+1 − ζi) · (gi+1 − gi)

+
[Gi · (gi+1 − gi)]⊗ [Gi · (gi+1 − gi)]

(gi+1 − gi) ·Gi · (gi+1 − gi)

+ [(gi+1 − gi) ·Gi · (gi+1 − gi)] u⊗ u, (6.21)

where the vector u is given by

u =
(ζi+1 − ζi)

(ζi+1 − ζi) · (gi+1 − gi)

−
Gi · (g(i+1) − gi)

(gi+1 − gi) ·Gi · (gi+1 − gi)
. (6.22)

It has become generally recognized that, empirically, the BFGS scheme
is superior than the DFP scheme [45].

A state diagram of the training process of a multilayer perceptron is
depicted in Figure 6.5. Improvement of the parameters is performed by first
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Figure 6.5: Training process with the quasi-Newton method.

obtaining the quasi-Newton train direction and then finding a satisfactory
train rate.

The quasi-Newton method is the algorithm of choice in most of the ap-
plications included in this User’s Guide. This is discussed in detail in [35].

6.7 Random search

Random search is the simplest possible training algorithm for the multilayer
perceptron. It is a stochastic method which requires information from the
objective function only, and therefore a zero order optimization method.

Random search is based on generating a sequence of improved approx-
imations to the minimum, each derived from the preceding approximation.
Thus if ζi is the parameters vector in the ith epoch, the new parameters
vector is found from the relation

ζi+1 = ζi + ηidi, (6.23)

for i = 0, . . . and where η is a prescribed training rate and d is a unit training
direction vector. The training rate is reduced after all succesful improvements
of the objective function by a given reduction factor.
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Unfortunately, convergence is extremely slow in most cases, so this train-
ing algorithm is only in practice used to obtain a good initial guess for other
more efficient methods.

6.8 Evolutionary algorithm

A global training algorithm for the multilayer perceptron is the evolutionary
algorithm, or genetic algorithm. This is a stochastic method based on the
mechanics of natural genetics and biological evolution. The evolutionary al-
gorithm requires information from the objective function only, and therefore
is a zero order method.

The evolutionary algorithm can be used for problems that are difficult to
solve with traditional techniques, including problems that are not well defined
or are difficult to model mathematically. It can also be used when computa-
tion of the objective function is discontinuous, highly nonlinear, stochastic,
or has unreliable or undefined derivatives.

This Section describes a quite general evolutionary algorithm with fitness
assignment, selection, recombination and mutation. Different variants on
that training operators are also explained in detail.

Evolutionary algorithms operate on a population of individuals applying
the principle of survival of the fittest to produce better and better approx-
imations to a solution. At each generation, a new population is created by
the process of selecting individuals according to their level of fitness in the
problem domain, and recombining them together using operators borrowed
from natural genetics. The offspring might also undergo mutation. This pro-
cess leads to the evolution of populations of individuals that are better suited
to their environment than the individuals that they were created from, just
as in natural adaptation [43]. A state diagram for the training process with
the evolutionary algorithm is depicted in Figure 6.8.

Next the training operators for the evolutionary algorithm together with
their corresponding training parameters are described in detail.

Initial population

The evolutionary algorithm starts with an initial population of individuals,
represented by vectors of parameters and often chosen at random

Z0 =

 ζ11,0 . . . ζ1d,0
...

. . .
...

ζp1,0 . . . ζpd,0

 ,
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Create initial population
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Figure 6.6: Training process with the evolutionary algorithm.

where Z is called the population matrix. The number of individuals in the
population p is called the population size. Due to implementation issues, the
population size must be an even number equal or greater than four.

Evaluation

The objective function is evaluated for all the individuals

f0 =
(
f(ζ1,0), . . . , f(ζp,0)

)
, (6.24)

being f the so called the evaluation vector. The individual with best evalu-
ation ζ∗0 is then chosen and stored.
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Fitness assignment

If no stopping criterium is met the generation of a new population Z1 starts
by performing fitness assignment to the old population Z0,

φ0 = (φ1,0, . . . , φp,0) , (6.25)

where φ is called the fitness vector.
There are many methods of computing the fitness of the population. Pro-

portional fitness assignment gives each individual a fitness value dependent
on its actual objective function evaluation. In rank-based fitness assignment
the evaluation vector is sorted. The fitness assigned to each individual de-
pends only on its position in the individuals rank and not on the actual
objective function value. Rank-based fitness assignment behaves in a more
robust manner than proportional fitness assignment and, thus, is the method
of choice [2] [55].

Linear ranking assigns a fitness to each individual which is linearly pro-
portional to its rank [43]. This operator is controlled by a single parameter
called selective pressure, $. Linear ranking allows values for the selective
pressure in the interval [1, 2].

Consider p the number of individuals in the population, ri the rank of
some individual i in the population, where the least fit individual has r = 1
and the fittest individual has r = p, and p the selective pressure. The fitness
vector for that individual is calculated as

φi(ri) = 2−$ + 2($ − 1)
ri − 1

p− 1
, (6.26)

for i = 1, . . . , d.

Selection

After fitness assignment has been performed, some individuals in the pop-
ulation are selected for recombination, according to their level of fitness [3]
[2]. Selection determines which individuals are chosen for recombination and
how many offspring each selected individual produces,

ς0 = (ς1,0, . . . , ςp,0) , (6.27)

where ς is called the selection vector. The elements of this vector are boolean
values, that is, an individual can be either selected for recombination (1) or
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not (0). In this implementation of the evolutionary algorithm, the number
of individuals to be selected is half of the population size, i.e. d/2.

The simplest selection operator is roulette-wheel, also called stochastic
sampling with replacement [3]. The individuals are mapped to contiguous
segments of a line, such that each individual’s segment is equal in size to its
fitness. A random number is generated and the individual whose segment
spans the random number is selected. The process is repeated until the
desired number of individuals is obtained (called mating population). This
technique is analogous to a roulette wheel with each slice proportional in size
to the fitness, see Figure 6.7.

0 1

Pointer 1

Individual

Cumulative
fitness

1 2 3 4 5 6 7 8

0.25 0.47 0.62 0.75 0.84 0.92 0.97

Pointer 3Pointer 4Pointer 2Pointer 5

Figure 6.7: Illustration the roulette wheel selection method.

A better selection operator might be stochastic universal sampling [43].
The individuals are mapped to contiguous segments of a line, such that each
individual’s segment is equal in size to its fitness exactly as in roulette-wheel
selection. Here equally spaced pointers are placed over the line as many
as there are individuals to be selected. If the number of individuals to be
selected is 0.5d, then the distance between the pointers are 1/0.5d and the
position of the first pointer is given by a randomly generated number in the
range [0, 1/0.5d]. Figure 6.8 illustrates this method.
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0.25 0.47 0.62 0.75 0.84 0.92 0.97

Pointer 3 Pointer 4Pointer 2

Figure 6.8: Illustration of the stochastic universal sampling selection method.

If elitism is to be used in the selection operator, then the most fitted
individual will always be selected to perform recombination.
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Recombination

Recombination produces a population matrix by combining the parameters
of the selected individuals,

P =

 ζ11 . . . ζ1d

. . . . . . . . .
ζp1 . . . ζpd


There are also many operators to perform recombination. Two of the

most used are line recombination and intermediate recombination. Both line
and intermediate recombination are controlled by a single parameter called
recombination size, denoted d and with allowed values equal or greater than
0. In both operators, the recombination size defines the size of the area
for possible offspring. A value of d = 0 defines the area for offspring the
same size as the area spanned by the parents. Because most variables of the
offspring are not generated on the border of the possible area, the area for the
variables shrinks over the generations. This effect can be prevented by using
a larger recombination size. A value of d = 0.25 ensures (statistically), that
the variable area of the offspring is the same as the variable area spanned by
the variables of the parents.

In line recombination the parameters of the offspring are chosen in the
hyperline joining the parameters of the parents [43]. Offspring are therefore
produced according to

ζ
(offspring)
i = aζ

(parent1)
i + (1− a)ζ

(parent2)
i , (6.28)

for i = 1, . . . , d and with a chosen at random in the interval [−d, 1 + d].

Figure 6.9 illustrates the line recombination training operator.

Similarly, in intermediate recombination the parameters of the offspring
are chosen somewhere in and around the hypercube defined by the parameters
of the parents [43]. Here offspring is produced according to the rule

ζ
(offspring)
i = aiζ

(parent1)
i + (1− ai)ζ

(parent2)
i , (6.29)

for i = 1, . . . , d and with ai chosen at random, for each i, in the interval
[−d, 1 + d].

Figure 6.10 is an illustration of intermediate recombination.
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Figure 6.9: Illustration of line recombination.
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Figure 6.10: Illustration of intermediate recombination.

Mutation

Finally, some offspring undergo mutation in order to obtain the new genera-
tion,

P(1) =

 ζ
(1)
11 . . . ζ

(1)
1d

. . . . . . . . .

ζ
(1)
p1 . . . ζ

(1)
pd


The probability of mutating a parameter is called the mutation rate and
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denoted p [43]. The mutation rate allows values in the interval [0, 1]. On the
other hand, mutation is achieved by adding or subtracting a random quantity
to the parameter. In this way, each parameter ζi subject to mutation is
mutated to become ζ ′i,

ζ ′i = ζi + ∆ζi. (6.30)

The most common kinds of mutation procedures are uniform mutation
and normal mutation. Both the uniform and normal mutation operators are
controlled by a single parameter called mutation range, r, which allows values
equal or greater than 0.

In uniform mutation, ∆ζi is a number chosen at random in the interval
[0, r]. Figure 6.11 illustrates the effect of uniform mutation for the case of
two parameters.
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Figure 6.11: Illustration of uniform mutation.

In normal mutation, ∆ζi is a value obtained from a normal distribution
with mean 0 and standard deviation r. Figure 6.12 illustrates the effect of
normal mutation for the case of two parameters.

Example 49

Stopping criteria

The whole fitness assignment, selection recombination and mutation process
is repeated until a stopping criterium is satisfied. Some common stopping
criteria for the evolutionary algorithm are:
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Figure 6.12: Illustration of normal mutation.

1. Evaluation of the best individual ever reaches a goal value.

2. The mean evaluation of the population reaches a goal value.

3. The standard deviation of the evaluation vector reaches a goal value.

4. A maximum amount of computing time is exceeded.

5. A maximum number of generations is reached.

6.9 The TrainingAlgorithm classes

Flood includes the abstract class TrainingAlgorithm to represent the concept of
training algorithm. As this class is abstract, it cannot be instantiated, and
concrete training algorithms must be derived.

Constructors

The training algorithm class is abstract and it cannot be instantiated. The
concrete classes RandomSearch, GradientDescent, ConjugateGradient, NewtonMethod,
QuasiNewtonMethod and EvolutionaryAlgorithm represent the concepts of the dif-
ferent training algorithms described in this chapter.

To construct a concrete training algorithm object associated to a concrete
objective functional object we do the following

MockTrainingAlgorithm mock t ra in ing a lgor i thm (& m o c k o b j e c t i v e f u n c t i o n a l ) ;
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where mock objective functional is some concrete objective functional object.

Members

The training algorithm class contains:
- A relationship to an objective functional object.
- A set of training operators.
- A set of training parameters.
- A set of stopping criteria.

All members are private, and must be accessed or modified by means of
get and set methods, respectively.

Methods

Derived classes must implement the pure virtual train method. This starts
the training process and stops it when some stopping criterium is satisfied.
The use is as follows:

mock t ra in ing a lgor i thm . t r a i n ( ) ;

where mock training algorithm is some concrete training algorithm object.

File format

The default file format of a training algorithm object is of XML-type, and it
is listed below.

<Flood version=’3.0’ class=’TrainingAlgorithm’>

<TrainingRateMethod>

training_rate_method

</TrainingRateMethod>

<BracketingFactor>

bracketing_factor

</BracketingFactor>

<FirstTrainingRate>

first_training_rate

</FirstTrainingRate>

<TrainingRateTolerance>

training_rate_tolerance

</TrainingRateTolerance>

<WarningParametersNorm>

warning_parameters_norm

</WarningParametersNorm>

<WarningGradientNorm>

warning_gradient_norm

</WarningGradientNorm>

<WarningTrainingRate>

warning_training_rate

</WarningTrainingRate>

<ErrorParametersNorm>
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error_parameters_norm

</ErrorParametersNorm>

<ErrorGradientNorm>

error_gradient_norm

</ErrorGradientNorm>

<ErrorTrainingRate>

error_training_rate

</ErrorTrainingRate>

<MinimumParametersIncrementNorm>

minimum_parameters_increment_norm

</MinimumParametersIncrementNorm>

<MinimumEvaluationImprovement>

minimum_evaluation_improvement

</MinimumEvaluationImprovement>

<EvaluationGoal>

evaluation_goal

</EvaluationGoal>

<EarlyStopping>

early_stopping

</EarlyStopping>

<GradientNormGoal>

gradient_norm_goal

</GradientNormGoal>

<MaximumEpochsNumber>

maximum_epochs_number

</MaximumEpochsNumber>

<MaximumTime>

maximum_time

</MaximumTime>

<ReserveParametersHistory>

reserve_parameters_history

</ReserveParametersHistory>

<ReserveParametersNormHistory>

reserve_parameters_norm_history

</ReserveParametersNormHistory>

<ReserveEvaluationHistory>

reserve_evaluation_history

</ReserveEvaluationHistory>

<ReserveValidationErrorHistory>

reserve_validation_error_history

</ReserveValidationErrorHistory>

<ReserveGradientHistory>

reserve_gradient_history

</ReserveGradientHistory>

<ReserveGradientNormHistory>

reserve_gradient_norm_history

</ReserveGradientNormHistory>

<ReserveInverseHessianHistory>

reserve_inverse_Hessian_history

</ReserveInverseHessianHistory>

<ReserveTrainingDirectionHistory>

reserve_training_direction_history

</ReserveTrainingDirectionHistory>

<ReserveTrainingDirectionNormHistory>

reserve_training_direction_norm_history

</ReserveTrainingDirectionNormHistory>

<ReserveTrainingRateHistory>

reserve_training_rate_history

</ReserveTrainingRateHistory>

<ReserveElapsedTimeHistory>

reserve_elapsed_time_history

</ReserveElapsedTimeHistory>
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<Display>

display

</Display>

<DisplayPeriod>

display_period

</DisplayPeriod>

Derived classes

To construct a RandomSearch object associated to some concrete objective
functional object, we use the following sentence

RandomSearch random search(& m o c k o b j e c t i v e f u n c t i o n a l ) ;

where &mock objective functional is a reference to a concrete ObjectiveFunctional
object which has been previously constructed.

Some stopping criteria for the random search object are listed below

random search . s e t e v a l u a t i o n g o a l ( 0 . 0 0 1 ) ;
quasi newton method . set maximum time ( 1 0 0 0 . 0 ) ;

The method train trains a multilayer perceptron according to the random
search method.

random search . t r a i n ( ) ;

We can save or load a random search object to or from a XML-type file,
by using the methods save(char∗) and load(char∗), respectively.

random search . save ( ”RandomSearch . dat ” ) ;

The file format of a random search training algorithm XML-type file is
listed below.

<Flood version="3.0" class=’RandomSearch’>

<FirstTrainingRate>

first_training_rate

</FirstTrainingRate>

<TrainingRateReductionPeriod>

training_rate_reduction_period

</TrainingRateReductionPeriod>

<TrainingRateReductionFactor>

training_rate_reduction_factor

</TrainingRateReductionFactor>

<WarningParametersNorm>

warning_parameters_norm

</WarningParametersNorm>

<ErrorParametersNorm>

error_parameters_norm

</ErrorParametersNorm>

<EvaluationGoal>

evaluation_goal

</EvaluationGoal>

<MaximumEpochsNumber>

maximum_epochs_number

</MaximumEpochsNumber>
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<MaximumTime>

maximum_time

</MaximumTime>

<ReservePotentialParametersHistory>

reserve_potential_parameters_history

</ReservePotentialParametersHistory>

<ReserveParametersHistory>

reserve_parameters_history

</ReserveParametersHistory>

<ReservePotentialParametersNormHistory>

reserve_potential_parameters_norm_history

</ReservePotentialParametersNormHistory>

<ReserveParametersNormHistory>

reserve_parameters_norm_history

</ReserveParametersNormHistory>

<ReservePotentialEvaluationHistory>

reserve_potential_evaluation_history

</ReservePotentialEvaluationHistory>

<ReserveEvaluationHistory>

reserve_evaluation_history

</ReserveEvaluationHistory>

<ReserveElapsedTimeHistory>

reserve_elapsed_time_history

</ReserveElapsedTimeHistory>

<DisplayPeriod>

display_period

</DisplayPeriod>

<Display>

display

</Display>

GradientDescent

To construct a gradient descent object associated to a objective functional
object called mock objective functional we can do

GradientDescent g r a d i e n t d e s c e n t (& m o c k o b j e c t i v e f u n c t i o n a l ) ;

Next, some training operators, training parameters, stopping criteria and
training history members are set.

g r a d i e n t d e s c e n t . s e t t r a i n i n g r a t e m e t h o d ( GradientDescent : : BrentMethod ) ;
g r a d i e n t d e s c e n t . s e t t r a i n i n g r a t e t o l e r a n c e ( 1 . 0 e−6);
g r a d i e n t d e s c e n t . set minimum evaluation improvement ( 1 . 0 e−9);
g r a d i e n t d e s c e n t . s e t r e s e r v e e v a l u a t i o n h i s t o r y ( true ) ;

To train a the multilayer perceptron associated to that objective func-
tional we write

g r a d i e n t d e s c e n t . t r a i n ( ) ;

The methods save and load save or load a gradient descent object to or
from a XML-type file, respectively. The training history can also be saved
using the save training history method.

g r a d i e n t d e s c e n t . save ( ” GradientDescent . dat ” ) ;
g r a d i e n t d e s c e n t . s a v e t r a i n i n g h i s t o r y ( ” Tra in ingHis tory . dat ” ) ;
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The file format of this class is listed below.

<Flood version="3.0" class=’GradientDescent’>

<TrainingRateMethod>

training_rate_method

</TrainingRateMethod>

<BracketingFactor>

bracketing_factor

</BracketingFactor>

<FirstTrainingRate>

first_training_rate

</FirstTrainingRate>

<FirstTrainingRate>

training_rate_tolerance

</FirstTrainingRate>

<WarningTrainingRate>

warning_training_rate

</WarningTrainingRate>

<ErrorTrainingRate>

error_training_rate

<ErrorTrainingRate>

<MinimumParametersIncrementNorm>

minimum_parameters_increment_norm

</MinimumParametersIncrementNorm>

<EvaluationGoal>

evaluation_goal

</EvaluationGoal>

<EarlyStopping>

early_stopping

</EarlyStopping>

<MinimumEvaluationImprovement>

minimum_evaluation_improvement

</MinimumEvaluationImprovement>

<GradientNormGoal>

gradient_norm_goal

</GradientNormGoal>

<MaximumEpochsNumber>

maximum_epochs_number

</MaximumEpochsNumber>

<MaximumTime>

maximum_time

</MaximumTime>

<ReserveElapsedTimeHistory>

reserve_elapsed_time_history

</ReserveElapsedTimeHistory>

<ReserveParametersHistory>

reserve_parameters_history

</ReserveParametersHistory>

<ReserveParametersNormHistory>

reserve_parameters_norm_history

</ReserveParametersNormHistory>

<ReserveEvaluationHistory>

reserve_evaluation_history

</ReserveEvaluationHistory>

<ReserveValidationErrorHistory>

reserve_validation_error_history

</ReserveValidationErrorHistory>

<ReserveGradientHistory>

reserve_gradient_history

</ReserveGradientHistory>

<ReserveGradientNormHistory>

reserve_gradient_norm_history
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</ReserveGradientNormHistory>

<ReserveTrainingDirectionHistory>

reserve_training_direction_history

</ReserveTrainingDirectionHistory>

<ReserveTrainingDirectionNormHistory>

reserve_training_direction_norm_history

</ReserveTrainingDirectionNormHistory>

<ReserveTrainingRateHistory>

reserve_training_rate_history

</ReserveTrainingRateHistory>

<WarningParametersNorm>

warning_parameters_norm

</WarningParametersNorm>

<WarningGradientNorm>

warning_gradient_norm

</WarningGradientNorm>

<Display>

display

</Display>

<DisplayPeriod>

display_period

</DisplayPeriod>

Newton method

The constructor of the Newton method is used as follows

NewtonMethod Newton method(& m o c k o b j e c t i v e f u n c t i o n a l ) ;

To train the multilayer perceptron associated with that objective func-
tional we use

Newton method . t r a i n ( ) ;

The file format for saving or loading objects of this class is listed below.

<Flood version="3.0" class=’NewtonMethod’>

<TrainingRateMethod>

training_rate_method

</TrainingRateMethod>

<BracketingFactor>

bracketing_factor

</BracketingFactor>

<FirstTrainingRate>

first_training_rate

</FirstTrainingRate>

<TrainingRateTolerance>

training_rate_tolerance

</TrainingRateTolerance>

<WarningParametersNorm>

warning_parameters_norm

</WarningParametersNorm>

<WarningGradientNorm>

warning_gradient_norm

</WarningGradientNorm>

<WarningTrainingRate>

warning_training_rate

</WarningTrainingRate>

<ErrorParametersNorm>

error_parameters_norm
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</ErrorParametersNorm>

<ErrorGradientNorm>

error_gradient_norm

</ErrorGradientNorm>

<ErrorTrainingRate>

error_training_rate

</ErrorTrainingRate>

<MinimumParametersIncrementNorm>

minimum_parameters_increment_norm

</MinimumParametersIncrementNorm>

<MinimumEvaluationImprovement>

minimum_evaluation_improvement

</MinimumEvaluationImprovement>

<EvaluationGoal>

evaluation_goal

</EvaluationGoal>

<EarlyStopping>

early_stopping

</EarlyStopping>

<GradientNormGoal>

gradient_norm_goal

</GradientNormGoal>

<MaximumEpochsNumber>

maximum_epochs_number

</MaximumEpochsNumber>

<MaximumTime>

maximum_time

</MaximumTime>

<ReserveParametersHistory>

reserve_parameters_history

</ReserveParametersHistory>

<ReserveParametersNormHistory>

reserve_parameters_norm_history

</ReserveParametersNormHistory>

<ReserveEvaluationHistory>

reserve_evaluation_history

</ReserveEvaluationHistory>

<ReserveValidationErrorHistory>

reserve_validation_error_history

</ReserveValidationErrorHistory>

<ReserveGradientHistory>

reserve_gradient_history

</ReserveGradientHistory>

<ReserveGradientNormHistory>

reserve_gradient_norm_history

</ReserveGradientNormHistory>

<ReserveInverseHessianHistory>

reserve_inverse_Hessian_history

</ReserveInverseHessianHistory>

<ReserveTrainingDirectionHistory>

reserve_training_direction_history

</ReserveTrainingDirectionHistory>

<ReserveTrainingDirectionNormHistory>

reserve_training_direction_norm_history

</ReserveTrainingDirectionNormHistory>

<ReserveTrainingRateHistory>

reserve_training_rate_history

</ReserveTrainingRateHistory>

<ReserveElapsedTimeHistory>

reserve_elapsed_time_history

</ReserveElapsedTimeHistory>

<Display>
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display

</Display>

<DisplayPeriod>

display_period

</DisplayPeriod>

Conjugate gradient

The conjugate gradient class is very similar to the gradient descent class.
The next listing shows how to use that.

ConjugateGradient c on ju ga t e g ra d i en t (& m o c k o b j e c t i v e f u n c t i o n a l ) ;

c on jug a t e g r ad i e n t . s e t t r a i n i n g d i r e c t i o n m e t h o d ( ConjugateGradient : : Po lakRib ie re ) ;
c on jug a t e g r ad i e n t . s e t t r a i n i n g r a t e m e t h o d ( ConjugateGradient : : GoldenSect ion ) ;

c on jug a t e g r ad i e n t . set minimum evaluation improvement ( 1 . 0 e−9);
c on jug a t e g r ad i e n t . set maximum epochs number ( 5 0 0 ) ;

c on jug a t e g r ad i e n t . t r a i n ( ) ;

c on jug a t e g r ad i e n t . save ( ” ConjugateGradient . dat ” ) ;
c on jug a t e g r ad i e n t . s a v e t r a i n i n g h i s t o r y ( ” ConjugateGradientTra in ingHistory . dat ” ) ;

The file format of the conjugate gradien object is as follows:

<Flood version="3.0" class=’ConjugateGradient’>

<TrainingDirectionMethod>

training_direction_method

</TrainingDirectionMethod>

<TrainingRateMethod>

training_rate_method

</TrainingRateMethod>

<BracketingFactor>

bracketing_factor

</BracketingFactor>

<FirstTrainingRate>

first_training_rate

</FirstTrainingRate>

<FirstTrainingRate>

training_rate_tolerance

</FirstTrainingRate>

<WarningParametersNorm>

warning_parameters_norm

</WarningParametersNorm>

<WarningGradientNorm>

warning_gradient_norm

</WarningGradientNorm>

<WarningTrainingRate>

warning_training_rate

</WarningTrainingRate>

<ErrorParametersNorm>

error_parameters_norm

</ErrorParametersNorm>

<ErrorGradientNorm>

error_gradient_norm

</ErrorGradientNorm>
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<ErrorTrainingRate>

error_training_rate

</ErrorTrainingRate>

<MinimumParametersIncrementNorm>

minimum_parameters_increment_norm

</MinimumParametersIncrementNorm>

<MinimumEvaluationImprovement>

minimum_evaluation_improvement

</MinimumEvaluationImprovement>

<EvaluationGoal>

evaluation_goal

</EvaluationGoal>

<EarlyStopping>

early_stopping

</EarlyStopping>

<GradientNormGoal>

gradient_norm_goal

</GradientNormGoal>

<MaximumEpochsNumber>

maximum_epochs_number

</MaximumEpochsNumber>

<MaximumTime>

maximum_time

</MaximumTime>

<ReserveParametersHistory>

reserve_parameters_history

</ReserveParametersHistory>

<ReserveParametersNormHistory>

reserve_parameters_norm_history

</ReserveParametersNormHistory>

<ReserveEvaluationHistory>

reserve_evaluation_history

</ReserveEvaluationHistory>

<ReserveValidationErrorHistory>

reserve_validation_error_history

</ReserveValidationErrorHistory>

<ReserveGradientHistory>

reserve_gradient_history

</ReserveGradientHistory>

<ReserveGradientNormHistory>

reserve_gradient_norm_history

</ReserveGradientNormHistory>

<ReserveTrainingDirectionHistory>

reserve_training_direction_history

</ReserveTrainingDirectionHistory>

<ReserveTrainingDirectionNormHistory>

reserve_training_direction_norm_history

</ReserveTrainingDirectionNormHistory>

<ReserveTrainingRateHistory>

reserve_training_rate_history

</ReserveTrainingRateHistory>

<ReserveElapsedTimeHistory>

reserve_elapsed_time_history

</ReserveElapsedTimeHistory>

<Display>

display

</Display>

<DisplayPeriod>

display_period

</DisplayPeriod>
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Quasi-Newton method

To construct a QuasiNewtonMethod object associated to a concrete objective
functional object we use the following sentence

QuasiNewtonMethod quasi newton method(& m o c k o b j e c t i v e f u n c t i o n a l ) ;

where &mock objective functional is a reference to a concrete objective functional
object which has been previously constructed.

The use of training operators for this method is illustrated below.

quasi newton method . s e t inve r s e Hes s i an approx imat ion method ( QuasiNewtonMethod : : BFGS) ;
quasi newton method . s e t t r a i n i n g r a t e m e t h o d ( QuasiNewtonMethod : : BrentMethod ) ;

Next we set some training parameters to the quasi-Newton method.

c on jug a t e g r ad i e n t . set minimum evaluation improvement ( 1 . 0 e−9);
c on jug a t e g r ad i e n t . set maximum epochs number ( 5 0 0 ) ;

The following sentences set some stopping criteria for the quasi-Newton
method.

quasi newton method . s e t e v a l u a t i o n g o a l ( 0 . 0 0 1 ) ;
quasi newton method . s e t g r a d i e n t n o r m g o a l ( 0 . 0 0 1 ) ;
quasi newton method . set maximum time ( 1 0 0 0 . 0 ) ;
quasi newton method . set maximum epochs number ( 1 0 0 0 ) ;

The history of some training variables are reserved next.

quasi newton method . s e t r e s e r v e e v a l u a t i o n h i s t o r y ( true ) ;
quasi newton method . s e t r e s e r v e g r a d i e n t n o r m h i s t o r y ( true ) ;

The method train trains a multilayer perceptron according to the quasi-
Newton method.

quasi newton method . t r a i n ( ) ;

We can save or load a quasi-Newton method object to or from a data file,
by using the save(char∗) and load(char∗) methods, respectively. Similarly, the
training history is saved with the save training history (char∗) method.

quasi newton method . save ( ”QuasiNewtonMethod . dat ” ) ;
quasi newton method . s a v e t r a i n i n g h i s t o r y ( ” Tra in ingHis tory . dat ” ) ;

See below for the format of a quasi-Newton method XML-type file in
Flood.

<Flood version="3.0" class=’QuasiNewtonMethod’>

<TrainingRateMethod>

training_rate_method

</TrainingRateMethod>

<BracketingFactor>

bracketing_factor

</BracketingFactor>

<FirstTrainingRate>
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first_training_rate

</FirstTrainingRate>

<TrainingRateTolerance>

training_rate_tolerance

</TrainingRateTolerance>

<WarningParametersNorm>

warning_parameters_norm

</WarningParametersNorm>

<WarningGradientNorm>

warning_gradient_norm

</WarningGradientNorm>

<WarningTrainingRate>

warning_training_rate

</WarningTrainingRate>

<ErrorParametersNorm>

error_parameters_norm

</ErrorParametersNorm>

<ErrorGradientNorm>

error_gradient_norm

</ErrorGradientNorm>

<ErrorTrainingRate>

error_training_rate

</ErrorTrainingRate>

<MinimumParametersIncrementNorm>

minimum_parameters_increment_norm

</MinimumParametersIncrementNorm>

<MinimumEvaluationImprovement>

minimum_evaluation_improvement

</MinimumEvaluationImprovement>

<EvaluationGoal>

evaluation_goal

</EvaluationGoal>

<EarlyStopping>

early_stopping

</EarlyStopping>

<GradientNormGoal>

gradient_norm_goal

</GradientNormGoal>

<MaximumEpochsNumber>

maximum_epochs_number

</MaximumEpochsNumber>

<MaximumTime>

maximum_time

</MaximumTime>

<ReserveParametersHistory>

reserve_parameters_history

</ReserveParametersHistory>

<ReserveParametersNormHistory>

reserve_parameters_norm_history

</ReserveParametersNormHistory>

<ReserveEvaluationHistory>

reserve_evaluation_history

</ReserveEvaluationHistory>

<ReserveValidationErrorHistory>

reserve_validation_error_history

</ReserveValidationErrorHistory>

<ReserveGradientHistory>

reserve_gradient_history

</ReserveGradientHistory>

<ReserveGradientNormHistory>

reserve_gradient_norm_history

</ReserveGradientNormHistory>
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<ReserveInverseHessianHistory>

reserve_inverse_Hessian_history

</ReserveInverseHessianHistory>

<ReserveTrainingDirectionHistory>

reserve_training_direction_history

</ReserveTrainingDirectionHistory>

<ReserveTrainingDirectionNormHistory>

reserve_training_direction_norm_history

</ReserveTrainingDirectionNormHistory>

<ReserveTrainingRateHistory>

reserve_training_rate_history

</ReserveTrainingRateHistory>

<ReserveElapsedTimeHistory>

reserve_elapsed_time_history

</ReserveElapsedTimeHistory>

<Display>

display

</Display>

<DisplayPeriod>

display_period

</DisplayPeriod>

EvolutionaryAlgorithm

To construct a EvolutionaryAlgorithm object associated to a concrete objec-
tive functional object we can use the following sentence

Evolut ionaryAlgor ithm evo lu t i ona ry a l go r i thm (& m o c k o b j e c t i v e f u n c t i o n a l ) ;

where &mock objective functional is a reference to that objective functional ob-
ject.

In order to set a new number of individuals in the population we use the
method set population size (int).

evo lu t i ona ry a l go r i thm . s e t p o p u l a t i o n s i z e ( 1 0 0 ) ;

The following sentences set some stopping criteria for the evolutionary
algorithm

evo lu t i ona ry a l go r i thm . s e t e v a l u a t i o n g o a l ( 0 . 0 0 1 ) ;
evo lu t i ona ry a l go r i thm . set maximum time ( 1 0 0 0 . 0 ) ;
evo lu t i ona ry a l go r i thm . set maximum generations number ( 1 0 0 0 ) ;

The method train trains a multilayer perceptron according to the evolu-
tionary algorithm method.

evo lu t i ona ry a l go r i thm . t r a i n ( ) ;

We can also save or load a evolutionary algorithm object to or from a
data file, by using the methods save(char∗) and load(char∗), respectively.

The next listing shows the format of an evolutionary algorithm data file
in Flood. It is of XML-type.

<Flood version="3.0" class=’EvolutionaryAlgorithm’>

Training operators
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<FitnessAssignmentMethod>

fitness_assignment_method

</FitnessAssignmentMethod>

<SelectionMethod>

selection_method

</SelectionMethod>

<RecombinationMethod>

recombination_method

</RecombinationMethod>

<MutationMethod>

mutation_method

</MutationMethod>

<PopulationSize>

Training parameters

<PopulationSize>

population_size

</PopulationSize>

<Elitism>

perform_elitism

</Elitism>

<SelectivePressure>

selective_pressure

</SelectivePressure>

<RecombinationSize>

recombination_size

</RecombinationSize>

<MutationRate>

mutation_rate

</MutationRate>

<MutationRange>

mutation_range

</MutationRange>

Stopping criteria

<EvaluationGoal>

evaluation_goal

</EvaluationGoal>

<MeanEvaluationGoal>

mean_evaluation_goal

</MeanEvaluationGoal>

<StandardDeviationEvaluationGoal>

standard_deviation_evaluation_goal

</StandardDeviationEvaluationGoal>

<MaximumGenerationsNumber>

maximum_generations_number

</MaximumGenerationsNumber>

<MaximumTime>

maximum_time

</MaximumTime>

<EarlyStopping>

early_stopping

</EarlyStopping>

Training history

<ReservePopulationHistory>

reserve_population_history

</ReservePopulationHistory>

<ReserveMeanNormHistory>

reserve_mean_norm_history

</ReserveMeanNormHistory>

<ReserveStandardDeviationNormHistory>

reserve_standard_deviation_norm_history

</ReserveStandardDeviationNormHistory>

<ReserveBestNormHistory>
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reserve_best_norm_history

</ReserveBestNormHistory>

<ReserveMeanEvaluationHistory>

reserve_mean_evaluation_history

</ReserveMeanEvaluationHistory>

<ReserveStandardDeviationEvaluationHistory>

reserve_standard_deviation_evaluation_history

</ReserveStandardDeviationEvaluationHistory>

<ReserveBestEvaluationHistory>

reserve_best_evaluation_history

</ReserveBestEvaluationHistory>

Display

<WarningParametersNorm>

warning_parameters_norm

</WarningParametersNorm>

<Display>

display

</Display>

<DisplayPeriod>

display_period

</DisplayPeriod>
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Chapter 7

Function regression

The function regression problem can be regarded as the problem of ap- proxi-
mating a function from data. Here the neural network learns from knowledge
represented by a data set consisting of input-target instances. The targets
are a specification of what the response to the inputs should be. The function
regression problem is formulated from a variational point of view.

7.1 Problem formulation

Introduction

The function regression problem [24] can be regarded as the problem of ap-
proximating a function from data.

A common feature of most data sets is that the data exhibits an under-
lying systematic aspect, represented by some function, but is corrupted with
random noise.

The central goal is to produce a model which exhibits good generalization,
or in other words, one which makes good predictions for new data. The
best generalization to new data is obtained when the mapping represents
the underlying systematic aspects of the data, rather capturing the specific
details (i.e. the noise contribution) of the particular input-target set.

The basic goal in a function regression problem is to model the conditional
distribution of the output variables, conditioned on the input variables [8].
This function is called the regression function.

The formulation of a function regression problem requires:
- An input-target data set.
- A multilayer perceptron.
- An error functional.
- A training algorithm.

135
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- A testing method.

Input-target data set

Here the neural network learns from knowledge represented by a data set
consisting of input-target instances. The targets are a specification of what
the response to the inputs should be.

Table 7.1 shows the format of an input-target data set for function re-
gression. It consists of n input variables, x1, . . . , xn, and m target variables,
t1, . . . , tm, comprising Q instances.

x
(1)
1 . . . x

(1)
n t

(1)
1 . . . t

(1)
m

x
(2)
1 . . . x

(2)
n t

(2)
1 . . . t

(2)
m

· · · · · · · · · · · · · · · · · ·
x

(Q)
1 . . . x

(Q)
n t

(Q)
1 . . . t

(Q)
m

Table 7.1: Input-target data set.

When solving function regression problems it is always convenient to split
the input-target data set into a training, a validation and a testing subsets.
The size of each subset is up to the designer. Some default values could be to
use 60%, 20% and 20% of the instances for training, validation and testing,
respectively.

There are several data splitting methods. Two common approaches are
to generate random indices or to specify the required indices for the training,
validation and testing instances.

A simple statistical analysis must be always performed in order to chech
for data consistency. Table 7.2 depicts the basic statistics of an input-target
data set. It includes the mean, standard deviation, minimum and maximum
values of input and target variables for the whole data set and the training,
validation and testing subsets. An histogram of each input and target vari-
ables should also be plot in order to check the distribution of the available
data.

Also, it is a must to scale the training and validation sets with the training
data statistics. There are two main data scaling methods, the mean and
standard deviation and the minimum and maximum.

The mean and standard deviation method scales the training data for
mean 0 and standard deviation 1, and the validation data for similar mean
and standard deviation values. The expression of this scaling method is
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Variable µ σ min max

x1

All
Training

Validation
Testing

All
Training

Validation
Testing

All
Training

Validation
Testing

All
Training

Validation
Testing

· · · · · · · · · · · · · · ·

xn

All
Training

Validation
Testing

All
Training

Validation
Testing

All
Training

Validation
Testing

All
Training

Validation
Testing

t1

All
Training

Validation
Testing

All
Training

Validation
Testing

All
Training

Validation
Testing

All
Training

Validation
Testing

· · · · · · · · · · · · · · ·

tm

All
Training

Validation
Testing

All
Training

Validation
Testing

All
Training

Validation
Testing

All
Training

Validation
Testing

Table 7.2: Input-target data set statistics.

x =
x− µ
σ

, (7.1)

t =
t− µ
σ

, (7.2)

where the overline means scaled data and the mean and standard deviation
values refer to the training subset.

The minimum and maximum method scales the training data for mini-
mum −1 and maximum 1, and the validation data for similar minimum and
maximum values. The expression here is

x = 2
x−min

max−min
− 1, (7.3)

t = 2
t−min

max−min
− 1, (7.4)

where, as before, the overline means scaled data and the minimum and max-
imum values refer to the training subset.
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Multilayer perceptron

A multilayer perceptron is used to represent the regression function. The
number of inputs in this multilayer perceptron must be equal to the number
of inputs in the data set, and the number of outputs must be the number of
targets. On the other hand, the number of hidden layers and the size of each
layer are up to the designer. In general, one hidden layer will be enough. A
default value to start with for the size of that layer could be

s(1) = round
(√

n2 +m2
)
. (7.5)

Please note that the complexity which is needed depends very much on
the problem at hand, and Equation (7.5) is just a rule of thumb.

The activation functions for the hidden layers and the output layer are
also design variables. However hyperbolic tangent activation function for the
hidden layers and linear activation function for the output layer are widely
used when solving function regression problems.

Scaling of inputs and unscaling of outputs should not be used in the design
phase, since the input-target data set has been scaled already. When moving
to a production phase, the inputs scaling and outputs unscaling methods
should be coherent with the scaling method used for the data.

This multilayer perceptron spans a function space V of dimension d. The
elements of that space, y : X → Y , are of the form

y = y(x). (7.6)

That parameterized space of functions will be the basis to aproximate the
regression function.

Error functional

The regression function can be evaluated quantitatively by means of the error
functional E : V → R, which is of the form

E = E[y(x)].

The goal in a function regression problem for the multilayer perceptron
is to obtain a function y∗(x) which minimizes the error functional E[y(x)].
More specifically, this problem can be formulated as follows:
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Problem 5 (Function regression problem) Let V be the function space
spanned by a multilayer perceptron. Find a function y∗(x) ∈ V for which the
error functional E : V → R given by

E = E[y(x)]

takes on a minimum value. The function y∗(x) is called the regression func-
tion.

In that way, the function regression problem is formulated as a variational
problem.

The sum squared error

One of the most common error functionals used in function regression is
the sum squared error. This objective functional is measured on a training
data set. The sum of the squares of the errors is used instead of the errors
absolute values because this allows the objective function to be treated as a
continuous differentiable function. It is written as a sum, over all the samples
in the training data set, of a squared error defined for each sample separately.

The expression for the sum squared error functional, E : V → R, is given
by

E[y(x)] =

Q∑
q=1

(
y(x(q))− t(q)

)2
. (7.7)

Both the gradient, ∇e(ζ), and the Hessian, He(ζ) of the sum squared er-
ror function can be computed analytically by means of the back-propagation
algorithm.

The mean squared error

The mean squared error error functional has the same properties than
the sum squared error and the advantage that its value does not grow with
the size of the training data set [8].

The expression for the mean squared error, E : V → R, is

E[y(x)] =
1

Q

Q∑
q=1

(
y(x(q))− t(q)

)2
. (7.8)

As before, the gradient vector and the Hessian matrix of the mean squared
error function can be computed analytically by means of back-propagation.
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The root mean squared error

The expression for the root mean squared error is given by

E[y(x)] =

√√√√ 1

Q

Q∑
q=1

(y(x(q))− t(q))
2
. (7.9)

The gradient∇e(ζ) and the Hessian He(ζ) of the root mean squared error
function can be computed analytically by means of the back-propagation
algorithm.

The normalized squared error

Another useful objective functional for function regression is the normal-
ized squared error, which takes the form

E[y(x)] =

∑Q
q=1

(
y(x(q))− t(q)

)2∑Q
q=1 (t(q) − t̄)

2 . (7.10)

As before, the gradient ∇e(ζ) and the Hessian He(ζ) of the normal-
ized squared error function can be computed analytically with the back-
propagation algorithm.

The normalized squared error has the advantage that its value does not
grow with the size of the input-target data set. If it has a value of unity then
the neural network is predicting the data ’in the mean’, while a value of zero
means perfect prediction of the data [8]. As a consequence, the normalized
squared error takes the same value for preprocessed data without pre and
postprocessing method in the multilayer perceptron and non-preprocessed
data with pre and postprocessing method in the multilayer perceptron.

The Minkowski error

One of the potential difficulties of the sum squared error objective func-
tional is that it can receive a too large contribution from points which have
large errors [8]. If there are long tails on the distribution then the solution
can be dominated by a very small number of points which have particularly
large error. In such occasions, in order to achieve good generalization, it is
preferable to chose a more suitable objective functional.

We can derive more general error functions than the sum squared error
for the case of a supervised learning problem. Omitting irrelevant constants,
the Minkowski R-error is defined as
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E[y(x)] =

Q∑
q=1

(
y(x(q))− t(q)

)R
. (7.11)

This reduces to the usual sum squared error when R = 2 [8].
The gradient and the Hessian of the root mean squared error function

can also be computed with back-propagation.

Training algorithm

The training algorithm is entrusted to solve the reduced function optimiza-
tion problem by minimizing the error function.

In general, evaluation, gradient and Hessian of the error function can be
computed analytically. Zero order training algorithms, such as the evolution-
ary algorithm, converge extremely slowly and they are not a good choice.

On the other hand, second order training algorithms, such as the Newton’s
method, need evaluation of the Hessian and are neither a good choice.

In practice first order algorithms are recommended for solving function
regression problems. A quasi-Newton method with BFGS training direction
and Brent training rate usually works well here.

In order to study the convergence of the optimization process, it is useful
to plot the behaviour of some variables related to the multilayer perceptron,
the error functional or the training algorithm as a function of the iteration
step. Some common training history variables are listed in Table 7.3.

Symbol Description
[CPU ] Elapsed time history
[‖ζ‖] Parameters norm history

[e] Error history
[v] Validation error history

[‖∇e‖] Gradient norm history
[‖d‖] Training direction norm history

[η] Training rate history

Table 7.3: Training history variables.

Form all the training history variables, may be the most important one
is the error history. Also, it is important to analyze the final values of some
variables. Table 7.4 summarizes the most important training result numbers.
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Symbol Description
N Number of iterations

CPU Training time
ζ∗ Final parameters
‖ζ∗‖ Final parameters norm
e(ζ∗) Final error
v(ζ∗) Final validation error
∇e(ζ∗) Final gradient
‖∇e(ζ∗)‖ Final gradient norm

Table 7.4: Training result variables.

Linear regression analysis

The performance of a neural network can be measured to some extent by
the mean squared error on the testing set, but it is useful to investigate the
response in more detail. One option is to perform a regression analysis be-
tween the network response and the corresponding targets for an independent
testing subset.

This analysis leads to 3 parameters for each output variable. The first
two parameters, a and b, correspond to the y-intercept and the slope of the
best linear regression relating outputs and targets,

y = a+ bx, (7.12)

a =

∑n
i=1 yi

∑n
i=1 x

2
i −

∑n
i=1 xi

∑n
i=1 xiyi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2 , (7.13)

b =
n
∑n

i=1 xiyi −
∑n

i=1 xi

∑n
i=1 yi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2 . (7.14)

The third parameter, R2, is the correlation coefficient between the outputs
and the targets,

R2 =
n∑

i=1

(yi − (a+ bxi))
2 . (7.15)

If we had a perfect fit (outputs exactly equal to targets), the slope would
be 1, and the y-intercept would be 0. If the correlation coefficient is equal
to 1, then there is perfect correlation between the outputs from the neural
network and the targets in the testing subset.
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Underfitting and overfitting

We can illustrate the function regression task by generating a synthetic train-
ing data set in a way which is intended to capture some of the basic properties
of real data used in regression problems [8]. Specifically, we generate a train-
ing data set from the function

h(x) = 0.5 + 0.4sin(2πx), (7.16)

by sampling it at equal intervals of x and then adding random noise with a
Gaussian distribution having standard deviation σ = 0.05. Figure 7.1 shows
this training data set, together with the function h(x).
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Figure 7.1: Illustration of an input-target data set for function regression.

The goal in this function regression problem for the multilayer perceptron
is to obtain a function y∗(x) which approximates the regression function h(x).

Two frequent problems which can appear when solving a function regres-
sion problem with the sum squared error are called underfitting and overfit-
ting. The best generalization is achieved by using a model whose complexity
is the most appropriate to produce an adequate fit of the data [15]. In this
way underfitting is defined as the effect of a generalization error increasing
due to a too simple model, whereas overfitting is defined as the effect of a
generalization error increasing due to a too complex model.

Figure 7.2 shows an underfitting case for the function regression problem
formulated in this section. In this case we have used a neural network which
is too simple to produce an adequate fit.
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Figure 7.2: An underfitting case, showing a poor approximation obtained by
a too simple model.

Figure 7.3 shows an overfitting case for the function regression problem
formulated in this section. Here the error on the training data set is very
small, but when new data is presented to the neural network the error is
large. The neural network has memorized the training examples, but it has
not learned to generalize to new situations. The model is too complex to
produce an adequate fit.

Figure 7.4 shows a case when the neural network provides a good fitting
of the data. The size of the model here is correct and the neural network has
approximated the regression function well.

While underfitting can be prevented by simply increasing the complexity
of the neural network, it is more difficult in advance to prevent overfitting. In
the next two sections we introduce regularization theory and early stopping,
which are methods to prevent overfitting.

Regularization theory

A problem is called well-possed if its solution meets existence, uniqueness
and stability. A solution is said to be stable when small changes in the
independent variable x led to small changes in the dependent variable y(x).
Otherwise the problem is said to be ill-possed. In this way, the function
regression problem for a neural network with the sum squared error is ill-
posed [13]. Indeed, the solution exists for any network architecture, but for
neural networks of big complexity it might be non-unique and unstable.
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Figure 7.3: An overfitting case, showing a poor approximation obtained by
a too large model.
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Figure 7.4: A good fitting case, showing a correct approximation obtained
by a well-sized model.

In a function regression problem with the sum squared error or the
Minkowski error objective functionals, the best generalization is achieved
by a model whose complexity is neither too small nor too large [52]. Thus, a
method for avoiding underfitting and overfitting is to use a neural network
that is just large enough to provide an adequate fit. Such a neural network
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will not have enough power to overfit the data. Unfortunately, it is diffi-
cult to know beforehand how large a neural network should be for a specific
application [15].

An alternative approach to obtain good generalization in a neural net-
work is to control its effective complexity [51]. This can be achieved by
choosing an objective functional which adds a regularization term Ω to the
error functional E [15]. The objective functional then becomes

F [y(x); ζ] = E[y(x); ζ] + νΩ[y(x; ζ)], (7.17)

where the parameter ν is called the regularization term weight. The value
of Ω[y(x; ζ)] typically depends on the mapping function y(x), and if the
functional form Ω[y(x; ζ)] is chosen appropriately, it can be used to control
overfitting [8].

One of the simplest forms of regularization term is called parameter decay
and consists on the sum of the squares of the free parameters in the neural
network divided by the number of free parameters [8].

Ω[y(x; ζ)] =
1

s

s∑
i=1

ζ2
i , (7.18)

where s is the number of free parameters. Adding this term to the objective
function will cause the neural network to have smaller weights and biases,
and this will force its response to be smoother and less likely to overfit.

The problem with regularization is that it is difficult to determine the
optimum value for the regularization ratio ν. If we make this parameter too
small, we may get overfitting. If the regularization ratio is too large, the
neural network will not adequately fit the training data [15].

It is desirable to determine the optimal regularization parameters in
an automated fashion. One approach is the Bayesian framework of David
MacKay [37]

Early stopping

Another method for improving generalization is called early stopping. In this
technique the input-target data set is divided into a training and a valida-
tion subsets. The training subset is used for training the neural network by
means of the training algorithm. On the other hand, the error on the vali-
dation subset is monitored during the training process. The validation error
normally decreases during the initial phase of training, as it does the training
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error. However, when the neural network begins to overfit the data, the error
on the validation subset typically begins to rise. When the validation error
increases for a specified number of iterations, the training is stopped, and
the parameters at the minimum of the validation error are set to the neural
network.

Principal component analysis

In some situations, the number of input variables is large, but that variables
are highly correlated (redundant). It is useful in this situation to reduce
the dimension of the input space. An effective procedure for performing this
operation is principal component analysis [15].

Principal component analysis is not reliably reversible. Therefore it is
only recommended for input processing, since outputs require reversible pro-
cessing functions [15].

Flood does not implement principal component analysis, although it will
include that preprocessing method in future versions.

7.2 A simple example

In this section a simple function regression problem with just one input and
one output variables is solved by means of a multilayer perceptron [15]. The
data and the source code for this problem can be found within Flood.

Problem statement

In this example we have an input target data set with 101 instances, and 1
input (x) and 1 target (y) variables. The objective is to design a multilayer
perceptron that can predict y values for given x values. Figure 7.5 shows this
data set.

The input-target data set is divided into a training and a testing subsets.
No validation analysis will be performed here. The training data represents
75% of the original data, while the testing data represents the remaining
25%. This assigns 76 and 25 instances for training and testing, respectively.

Selection of function space

The first step in solving the problem formulated in this section is to choose a
network architecture to represent the regression function. Here a multilayer
perceptron with a sigmoid hidden layer and a linear output layer is used. The
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multilayer perceptron must have one input, since there is one input variable;
and one output neuron, since there is one target variable.

The size of the hidden layer is set to 2. This neural network can be de-
noted as 1 : 2 : 1. It defines a family V of parameterized functions y(x) of
dimensions s = 4, which is the number of neural parameters in the multi-
layer perceptron. Figure 7.6 is a graphical representation of that network
architecture.

The neural parameters are initialized at random with a normal distribu-
tion of mean 0 and standard deviation 1.

Figure 7.5: Input-target data set for the simple function regression example.

x y

Figure 7.6: Network architecture for the simple function regression example.
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Formulation of variational problem

The second step is to assign the multilayer perceptron an objective functional.
This is to be the normalized squared error defined by Equation (7.10).

The variational statement of the function regression problems being con-
sidered here is then to find a function y∗(x) ∈ V for which the functional

E[y(x)] =

∑Q
q=1

(
y(x(q))− t(q)

)2∑Q
q=1 (t(q) − t̄)2 . (7.19)

defined on V , takes on a minimum value. Note that Q is here the number of
training instances.

Evaluation of the objective functional in Equation (7.19) just require
explicit expressions for the function represented by the different multilayer
perceptrons. This is given in Section 4.1.

On the other hand, evaluation of the objective function gradient vector
∇e(ζ), is obtained by the back-propagation algorithm derived in Section 5.
This technique gives the greatest accuracy and numerical efficiency.

Solution of reduced function optimization problem

The third step in solving this problem is to assign the objective function e(ζ)
a training algorithm. We use the quasi-Newton method described in Section
6 for training.

In this example, we set the training algorithm to stop after 1000 epochs
of the training algorithm.

The presence of noise in the training data set makes the objective function
to have local minima. This means that, when solving function regression
problems, we should always repeat the learning process from several different
starting positions.

During the training process the objective function decreases until the
stopping criterium is satisfied. Table 7.5 shows the training results for the
problem considered here.

Here ‖ζ∗‖ is the final parameter vector norm, e(ζ∗) the final normalized
squared error and ‖∇e(ζ∗)‖ the final gradient norm, N the number of epochs
and CPU the training time in a PC.

Testing analysis

The last step is to test the generalization performance of the trained neural
network. Here we compare the values provided by this technique to the
actually observed values.
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‖ζ∗‖ = 75.693
e(ζ∗) = 0.066
‖∇e(ζ∗)‖ = 8.049 · 10−4

N = 1000
CPU = 15s

Table 7.5: Training results for the simple function regression example.

Figure 7.7 shows the linear regression analysis for this example. The
intercept and slope obtained by this testing method are a = −0.013 and
b = 0.827, respectively. In this case, the intercept value is quite close to 0
and the slope value is also close to 1. The plot also shows good correlation
between the output and the target values. Note that the data for this example
is quite noisy.

Figure 7.7: Linear regression analysis for the simple function regression ex-
ample.

The multilayer perceptron is now ready to predict outputs for inputs that
it has never seen.

The mathematical expression of the trained and tested multilayer percep-
tron is listed below.

<InputsSca l ing>
s c a l e d x =(x+2.63815e−017)/0.586003;
</InputsSca l ing>
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<ForwardPropagation>
y11=tanh (−0.0383786+0.55872∗ s c a l e d x ) ;
y12=tanh (0.0472245−0.438857∗ s c a l e d x ) ;
s c a l e d y =(−0.835477+49.2648∗y11 +57.4557∗y12 ) ;
</ForwardPropagation>
<OutputsUnscaling>
y=−0.000128472+0.750166∗ s c a l e d y ;
</OutputsUnscaling>

7.3 A practical application: Residuary resis-

tance of sailing yachts

In this Section an empirical model for the residuary resistance of sailing
yachts as a function of hull geometry coefficients and the Froude number is
constructed by means of a neural network [42]. Both the data and the source
code for this problem can be found within Flood.

Introduction

Prediction of residuary resistance of sailing yachts at the initial design stage
is of a great value for evaluating the ship’s performance and for estimating the
required propulsive power. Essential inputs include the basic hull dimensions
and the boat velocity.

The Delft series are a semi-empirical model developed for that purpose
from an extensive collection of full-scale experiments. They are expressed as
a set of polynomials, and provide a prediction of the residuary resistance per
unit weight of displacement, with hull geometry coefficients as variables and
for discrete values of the Froude number [21]. The Delft series are widely
used in the sailing yacht industry.

In this example we follow a neural networks approach to residuary resis-
tance of sailing yachts prediction. Here a multilayer perceptron is trained
with the Delf data set to provide an estimation of the residuary resistance
per unit weight of displacement as a function of hull geometry coefficients
and the Froude number.

Experimental data

The Delft data set comprises 308 full-scale experiments, which were per-
formed at the Delft Ship Hydromechanics Laboratory [21]. These experi-
ments include 22 different hull forms, derived from a parent form closely
related to the ‘Standfast 43’ designed by Frans Maas. Variations concern
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longitudinal position of the center of buoyancy (LCB), prismatic coefficient

(Cp), length-displacement ratio (LWL/∇1/3
c ) beam-draught ratio (BWL/TC),

and length-beam ratio (LWL/BWL). For every hull form 14 different values
for the Froude number (FN) ranging from 0.125 to 0.450 are considered. As
it has been said, the measured variable is the residuary resistance per unit
weight of displacement (1000 ·RR/4c).

The data set is scaled with the mean and standard deviation method.

Selection of function space

A feed-forward neural network with a sigmoid hidden layer and a linear out-
put layer of perceptrons is used to span the function space for this problem.
It must have 6 inputs (LCB, Cp, LWL/∇1/3

c , BWL/TC , LWL/BWL and FN),
and 1 output neuron (1000 ·Rr/4c).

While the numbers of inputs and output neurons are constrained by the
problem, the number of neurons in the hidden layer is a design variable. In
this way, and in order to draw the best network architecture, different sizes
for the hidden layer are tested, and that providing the best generalization
properties is adopted. In particular, the performance of three neural networks
with 6, 9 and 12 hidden neurons is compared.

For that purpose, the data is divided into training, validation and testing
subsets, containing 50%, 25% and 25% of the samples, respectively. More
specifically, 154 samples are used here for training, 77 for validation and 77
for testing.

Table 7.6 shows the training and validation errors for the three multilayer
perceptrons considered here. ET and EV represent the normalized squared
errors made by the trained neural networks on the training and validation
data sets, respectively.

Number of hidden neurons 6 9 12
ET 0.000394 0.000223 0.000113
EV 0.002592 0.001349 0.001571

Table 7.6: Training and validation errors in the yacht resistance problem.

As we can see, the training error decreases with the complexity of the
neural network, but the validation error shows a minimum value for the
multilayer perceptron with 9 hidden neurons. A possible explanation is that
the lowest model complexity produces under-fitting, and the highest model
complexity produces over-fitting.
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In this way, the optimal number of neurons in the hidden layer turns
out to be 9. This neural network can be denoted as a 6 : 9 : 1 multilayer
perceptron, and it is depicted in Figure 7.8.
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Figure 7.8: Network architecture for the yacht resistance problem.

The family of functions spanned by the neural network in Figure 7.8 can
be denoted V and it is of dimension s = 73, the number of parameters.

Let denote

x = (LCB,Cp, LWL/∇1/3
c , BWL/TC , LWL/BWL, FN) (7.20)

and

y = 1000 ·Rr/4c. (7.21)

The elements of V are thus written as functions y : R6 → R defined by
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y(x) =
9∑

j=0

ζ
(2)
j tanh

(
6∑

i=0

ζ
(1)
ji xi

)
. (7.22)

Finally, all the biases and synaptic weights in the neural network are
initialized at random.

Formulation of variational problem

The objective functional chosen for this problem is the normalized squared
error between the outputs from the neural network and the target values in
the Delft data set.

The variational statement of the function regression problem considered
here is then to find a function y∗(x) ∈ V for which the functional

E[y(x)] =

∑Q
q=1 ‖y(x(q))− t(q)‖2∑Q

q=1 ‖t(q) − t̄‖2
, (7.23)

defined on V , takes on a minimum value.
Evaluation of the objective function gradient vector is performed with

the back-propagation algorithm for the normalized squared error.

Solution of reduced function optimization problem

The selected training algorithm for solving the reduced function optimization
problem is a quasi-Newton method with BFGS train direction and Brent
optimal train rate. Training is set to stop when the improvement between
two successive epochs is less than 10−12.

The evaluation and gradient norm histories are shown in Figures 7.9 and
7.10, respectively. Note that these plots have a logarithmic scale for the
Y -axis.

Table 7.7 shows the training results for this application. Here N is the
number of epochs, CPU the training time in a laptop AMD 3000, ‖ζ∗‖ the
final parameter vector norm, e(ζ∗) the final normalized squared error and
‖∇e(ζ∗)‖ the final gradient norm.

Once the neural network is trained, the inputs must pre-processed with
the means and the standard deviations of the input data. Similarly, the
outputs are be post-processed with the mean and the standard deviation of
the target data.
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Figure 7.9: Evaluation history for the yacht resistance problem.
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Figure 7.10: Gradient norm history for the yacht resistance problem.

The explicit expression for the residuary resistance model obtained by
the neural network is
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N = 1210
CPU = 348s
‖ζ∗‖ = 720
e(ζ∗) = 0.000223
‖∇e(ζ∗)‖ = 1.648 · 10−6

Table 7.7: Training results for the yacht resistance problem.

x1 =
x1 + 2.38182

1.51322
,

x2 =
x2 − 0.564136

0.02329
,

x3 =
x3 − 4.78864

0.253057
,

x4 =
x4 − 3.93682

0.548193
,

x5 =
x5 − 3.20682

0.247998
,

x6 =
x6 − 0.2875

0.100942
,

y = 155.425

+ 63.2639 tanh(−3.2222 + 0.0613793x1 + 0.112065x2 + 0.292097x3

− 0.172921x4 − 0.277616x5 + 0.569819x6)

+ 91.0489 tanh(−147.226− 75.3342x1 + 24.7384x2 + 15.5625x3

− 82.6019x4 − 88.8575x5 + 1.03963x6)

+ 0.00875896 tanh(−77.0309− 156.769x1 − 244.11x2 + 62.4042x3

+ 70.2066x4 + 12.1324x5 − 76.0004x6)

+ 1.59825 tanh(−2.94236− 0.0526764x1 − 0.21039x2 − 0.266784x3

+ 0.131973x4 + 0.317116x5 + 1.9489x6)

− 0.0124328 tanh(−207.601− 210.038x1 + 99.7606x2 + 106.485x3

+ 252.003x4 − 100.549x5 − 51.3547x6)

+ 0.026265 tanh(−17.9071− 11.821x1 + 5.72526x2 − 52.2228x3

+ 12.1563x4 + 56.2703x5 + 56.7649x6)

+ 0.00923066 tanh(69.9392− 133.216x1 + 70.5299x2 − 21.4377x3

+ 47.7976x4 + 15.1226x5 + 100.747x6)

− 0.215311 tanh(4.54348− 1.11096x1 + 0.862708x2 + 1.61517x3

− 1.11889x4 − 0.43838x5 − 2.36164x6)

+ 0.010475 tanh(23.4595− 223.96x1 − 43.2384x2 + 13.8833x3

+ 75.4947x4 − 7.87399x5 − 200.844x6),

y∗(x; ζ∗) = 10.4954 + 15.1605y∗(x).
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Testing of results

A possible testing technique for the neural network model is to perform
a linear regression analysis between the predicted and their corresponding
experimental residuary resistance values, using and independent testing set.
This analysis leads to a line y = a + bx with a correlation coefficient R2. In
this way, a perfect prediction would give a = 0, b = 1 and R2 = 1.

Table 7.8 shows the three parameters given by this validation analysis.

a = 0.110
b = 0.975
R2 = 0.958

Table 7.8: Linear regression analysis parameters for the yacht resistance
problem.

Figure 7.11 illustrates a graphical output provided by this testing analysis.
The predicted residuary resistances are plotted versus the experimental ones
as open circles. The solid line indicates the best linear fit. The dashed line
with R2 = 1 would indicate perfect fit.
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Figure 7.11: Linear regression analysis plot for the yacht resistance problem.

From Table 7.8 and Figure 7.11 we can see that the neural network is
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predicting very well the entire range of residuary resistance data. Indeed,
the a, b and R2 values are very close to 0, 1 and 1, respectively.

The multilayer perceptron is now ready to estimate the residuary resis-
tance of sailing yachts with satisfactory quality over the same range of data.

7.4 Related code

Many classes included with Flood are related to the problem of function
regression, since these type of problems are traditional learning tasks for the
multilayer perpeptron. The C++ code here include the InputTargetDataSet
class, a number of error functional classes, and the FunctionRegressionUtilities
class.

The InputTargetDataSet class in Flood

This class represents the concept of input-target data set. It presents the
available knowledge to the neural network in function regression.
Constructors

We can construct an input-target data set object directly by loading its
members from a data file. This will set up the number of instances, the num-
ber of input and target variables, and the input and target data. Optionally,
also the names, units and description of input and target variables.

InputTargetDataSet i t d s ( ” InputTargetDataSet . dat” ) ;

where the file InputTargetDataSet.dat must have the proper XML-type format.
An alternative way of constructing an input-target data set object without

creating such a XML-type format is by first passing the numbers of instances
and input and target variables and then loading the data matrix from a file.

InputTargetDataSet
i t d s ( instances number , input var iab le s number , t a rg e t va r i ab l e s number ) ;

i t d s . l oad data ( ”Data . dat ” ) ;

where the file Data.dat is a raw data file containing the data matrix.
Members

The InputTargetDataSet class represent the concept of input-target data set.
It contains:
- The data matrix.
- The indices of training instances.
- The indices of validation instances.
- The indices of testing instances.
- The indices of input variables.
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- The indices of target variables.
- The names of the variables.
- The units of the variables.
- The description of the variables.

All that members can be accessed or modified by means of get and set
methods.
Methods

The InputTargetDataSet class also contains methods to perform simple statis-
tics on the data, which will be useful when solving data modeling problems.

All mean, standard deviation, minimum and maximum of input and tar-
get variables can be calculated by just calling the calculate statistics method.

Vector< Vector<double> > v a r i a b l e s s t a t i s t i c s
= i t d s . c a l c u l a t e v a r i a b l e s s t a t i s t i c s ( ) ;

The method preprocess variables mean standard deviation scales all input and
target variables so that the mean of all input and target variables is 0 and
their standard deviation is 1. It also returns the basic statistics of the input
and target variables.

Vector< Vector<double> > v a r i a b l e s s t a t i s t i c s
= i t d s . p r e p r o c e s s v a r i a b l e s m e a n s t a n d a r d d e v i a t i o n ( ) ;

An alternative preprocessing method for an input-target data set is the
preprocess variables minimum aximum method, which scales all input and target
data so that the minimum value of all input and target variables is −1 and
their maximum value is 1.

Vector< Vector<double> > v a r i a b l e s s t a t i s t i c s
= i t d s . preprocess variables minimum maximum ( ) ;

Please note that preprocessing modifies the data matrix. This needs to
be taken into account when subsequent operations are going to be performed
with that data.

When solving function regression problems it is always convenient to split
the input-target data set into a training, a validation and a testing subsets.
The method split random(double, double, double) splits the data matrix into a
training, a validation and a testing subsets. The data is separated at random.

i t d s . s p l i t ( 0 . 8 , 0 . 2 , 0 . 2 ) ;

File format
An input-target data set object can be serialized or deserialized to or from

a data file which contains the member values. The file format of an object
of the InputTargetDataSet class is of XML type, and it is listed below.

<Flood version="3.0" class=’InputTargetDataSet’>
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<InstancesNumber>

instances_number

</InstancesNumber>

<VariablesNumber>

variables_number

</VariablesNumber>

<TrainingInstancesNumber>

training_instances_number

</TrainingInstancesNumber>

<TrainingInstancesIndices>

training_instance_index_1 ... training_instance_q1

</TrainingInstancesIndices>

<ValidationInstancesNumber>

validation_instances_number

</ValidationInstancesNumber>

<ValidationInstancesIndices>

validation_instance_index_1 ... validation_instance_q2

</ValidationInstancesIndices>

<TestingInstancesNumber>

testing_instances_number

</TestingInstancesNumber>

<TestingInstancesIndices>

testing_instance_index_1 ... testing_instance_q2

</TestingInstancesIndices>

<InputVariablesNumber>

input_variables_number

</InputVariablesNumber>

<InputVariablesIndices>

input_variable_index_1 ... input_variable_index_n

</InputVariablesIndices>

<TargetVariablesNumber>

target_variables_number

</TargetVariablesNumber>

<TargetVariablesIndices>

target_variable_index_1 ... target_variable_index_m

</TargetVariablesIndices>

<VariablesName>

<Name>

first_variable_name

</Name>

...

<Name>

last_variable_name

</Name>

</VariablesName>

<VariablesUnits>

<Units>

first_variable_units

</Units>

...

<Units>

last_variable_units

</Units>

</VariablesUnits>

<VariablesDescription>

<Description>

first_variable_description

</Description>

...

<Description>

last_variable_description

</Description>
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</VariablesDescription>

<Display>

1

</Display>

<Data>

input_instance_1 target_instance_1

...

input_instance_q target_instance_q

</Data>

The error functional classes in Flood

Regarding objective functionals for function regression, Flood includes the
classes SumSquaredError, MeanSquaredError, RootMeanSquaredError, NormalizedSquaredError,
and MinkowskiError to represent that error functionals.

That classes contain:

1. A relationship to a multilayer perceptron object.

2. A relationship to an input-target data set object.

They implement the calculate objective and calculate objective gradient meth-
ods.

Sum squared error

The next listing shows illustrates the sum squared error class use.

InputTargetDataSet i t d s ( 1 , 1 , 1 ) ;
i t d s . i n i t i a l i z e d a t a ( 0 . 0 ) ;

Mul t i l ayerPercept ron mlp ( 1 , 1 , 1 ) ;

SumSquaredError s s e (&mlp , &i t d s ) ;

double o b j e c t i v e = s s e . c a l c u l a t e o b j e c t i v e ( ) ;

Vector<double> o b j e c t i v e g r a d i e n t = s s e . c a l c u l a t e o b j e c t i v e g r a d i e n t ( ) ;

Mean squared error

The use of this class is very similar to that of the sum squared error. The
file format is also the default objective functional one.

Root mean squared error

The use of this class is very similar to that of the sum squared error. The
file format is also the default objective functional one.

Normalized squared error
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The use of this class is very similar to that of the sum squared error. The
file format is also the default objective functional one.

Minkowski error

The use of this class is very similar to that of the sum squared error. The
file format of the Minkowski error class is of XML-type and it is listed below.

<Flood version="3.0" class=’MinkowskiError’>

<MinkowskiParameter>

minkowski_parameter

</MinkowskiParameter>

<RegularizationMethod>

regularization_method

</RegularizationMethod>

<ObjectiveWeight>

objective_weight

</ObjectiveWeight>

<RegularizationWeight>

regularization_weight

</RegularizationWeight>

<CalculateEvaluationCount>

calculate_evaluation_count

</CalculateEvaluationCount>

<CalculateGradientCount>

calculate_gradient_count

</CalculateGradientCount>

<CalculateHessianCount>

calculate_Hessian_count

</CalculateHessianCount>

<Display>

display

</Display>

The FunctionRegressionUtilities class in Flood

The FunctionRegressionUtilities contains a variety of algorithms for this kind
of applications. Basically, it can be used to generate artificial data sets for
proving concepts or to perform linear regression analysis for the purpose of
testing a trained neural network.
Constructors

Objects of this class can be constructed empty or associated to a multi-
layer perceptron object, an input target data set object or both objects.

F u n c t i o n R e g r e s s i o n U t i l i t i e s f ru (&mlp , &i t d s ) ;

where &mlp is a reference to a MultilayerPerceptron object and
&itds is a reference to an InputTargetDataSet object.
Members

The main members of the function regression utilities class are:
- A multilayer perceptron object.
- An input-target data set object.

That members can get or set with the corresponding methods.
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Methods
The most important method of this class calculates the linear regression

analysis parameters between the outputs of multilayer perceptron and the
testing instances of the target variables in an input-target data set,

Vector< Vector<double> > l i n e a r r e g r e s s i o n p a r a m e t e r s = f ru . c a l c u l a t e l i n e a r r e g r e s s i o n p a r a m e t e r s ( ) ;
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Chapter 8

Pattern recognition

8.1 Problem formulation

Another traditional learning task for the multilayer perceptron is the pattern
recognition (or classification) problem [24]. The task of pattern recognition
can be stated as the process whereby a received pattern, characterized by a
distinct set of features, is assigned to one of a prescribed number of classes.

The basic goal in a pattern recognition problem is to model the posterior
probabilities of class membership, conditioned on the input variables [8].
This function is called the pattern recognition function.

Therefore, in order to solve a pattern recognition problem, the input space
must be properly separated into regions, where each region is assigned to a
class. A border between two regions is called a decision boundary.

The formulation of a pattern recognition problem requires:- An input-
target data set.- A multilayer perceptron.- An error functional.- A training
algorithm.- A testing method.

Input-target data set

Here the neural network learns from knowledge represented by a training data
set consisting of input-target examples. The inputs include a set of features
which characterize a pattern. The targets specify the class that each pattern
belongs to,

{x(1), t(1)}, {x(2), t(2)}, ..., {x(Q), t(Q)}.

Here the target data usually has a 1-of-c coding scheme, so that tji = δij.

165
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Multilayer perceptron

A multilayer perceptron is used to represent the pattern recognition. The
number of inputs in this multilayer perceptron must be equal to the number
of inputs in the data set, and the number of outputs must be the number of
targets. On the other hand, the number of hidden layers and the size of each
layer are up to the designer. In general, one hidden layer will be enough.

Error functional

The error functional E : V → R evaluates quantitatively the performance of
the regression function against the input-target data set. It is of the form

E = E[y(x)].

Common error functionals for function regression, such as the sum squared
error, the mean squared error, the root mean squared error, the normalized
squared error and the Minkowski error are also commonly applied for pattern
recognition. However, there are specific problems for this learning task. One
is the cross-entropy error, which is not considered here.

The pattern recognition problem for the multilayer perceptron translates
as follows:

Problem 6 (Pattern recognition problem) Let V be the space consist-
ing of all functions y(x) that a given multilayer perceptron can define, with
dimension d. Find a pattern recognition function y∗(x) ∈ Y for which the
error functional E : V → R defined as

E = E[y(x)],

takes on a minimum or a maximum value.

Training algorithm

The training algorithm for pattern recognition problems applies in the same
way as for function regression problems.

Underfitting and overfitting

The problems of underfitting and overfitting also might occur when solving
a pattern recognition problem with a multilayer perceptron. Underfitting



8.1. PROBLEM FORMULATION 167

is explained in terms of a too simple decision boundary which gives poor
separation of the training data. On the other hand, overfitting is explained
in terms of a too complex decision boundary which achieves good separation
of the training data, but exhibits poor generalization.

Regularization theory

A method for preventing underfitting and overfitting is to use a network that
is just large enough to provide an adequate fit. An alternative approach
to obtain good generalization is by using regularization theory, described in
Section 5.6.

Early stopping

As in function regression, early stopping can also be performed in pattern
recognition to prevent overfitting. However, this technique usually produces
underfitting and a more precise validation analysis is preferible.

The cofusion matrix

In the confusion matrix the rows represent the target classes and the columns
the output classes for a testing target data set. The diagonal cells in each
table show the number of cases that were correctly classified, and the off-
diagonal cells show the misclassified cases.

For the case of two classes the confusion matrix takes the form

C =

(
TP FP
FN TN

)
where TP are the true positives, FP are the false positives, FN are the false
negatives and TN are the true negatives.

Example 50 Consider a problem of pattern recognition between two classes,
C1 and C2. The number of testing instances belonging to each of the two
classes is 50. The number of instances correctly classified for C1 is 45, and
for C2 is 40. On the other hand, the number C1 true instances misclassified
as belongning to C2 is 5, and the number of C2 instances misclassified as
belongning to C1 is 10. The confusion matrix here is

C =

(
45 5
10 40

)
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Binary classification

The classification accuracy, error rate, sensitivity, specifity positive likeli-
hood and negative likelihood are parameters for testing the performance of
a pattern recognition problem with two classes.

The classification accuracy is the ratio of instances correctly classified,

classification accuracy =
TP + TN

TP + TN + FP + FN
. (8.1)

The error rate is the ratio of instances misclassified,

error rate =
FP + FN

TP + TN + FP + FN
(8.2)

The sensitivity, or true positive rate, is the proportion of alcual positive
which are predicted positive,

sensitivity =
TP

TP + FP
(8.3)

The specifity, or true negative rate, is the proportion of actual negative
which are predicted negative,

sensitivity =
TN

TN + FP
(8.4)

The positive likelihood is the likelihood that a predicted positive is an
actual positive

positive likelihood =
sensitivity

1− specifity
(8.5)

The negative likelihood is the likelihood that a predicted negative is an
actual negative

negative likelihood =
specifity

1− sensitivity
(8.6)

Table 8.1 summarizes the binary classification performance variables
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Classification accuracy
Error rate
Sensitivity
Specifity

True positive rate
True negative rate

Table 8.1: Binary classification performance variables.

8.2 A simple example

In this section a simple pattern recognition problem with two inputs and one
output is solved by means of a multilayer perceptron [15]. The data and the
source code for this problem can be found within Flood.

Problem statement

In this example we have an input target data set with 100 instances, 2 inputs
(x1, x2) and 1 target (y). The target variable represents two classes (0 and
1). The objective is to design a multilayer perceptron that can predict the
correct class for given (x1, x2) values. Figure 8.1 shows this data set.

Figure 8.1: Input-target data set for the simple pattern recognition example.

The input-target data set is divided into a training and a testing subsets.
No validation analysis will be performed here. The training data represents
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75% of the original data, while the testing data represents the remaining
25%. This assigns 76 and 25 instances for training and testing, respectively.

Selection of function space

The first step in solving the problem formulated in this section is to choose
a network architecture to represent the pattern recognition function. Here a
multilayer perceptron with a sigmoid hidden layer and a linear output layer
is used. The multilayer perceptron must have two inputs, since there are two
input variables; and one output neuron, since there is one target variable.

The size of the hidden layer is set to 2. This neural network can be
denoted as 2 : 2 : 1. It defines a family V of parameterized functions y(x) of
dimensions s = 9, which is the number of neural parameters in the multilayer
perceptron.

The neural parameters are initialized at random with a normal distribu-
tion of mean 0 and standard deviation 1.

Formulation of variational problem

The second step is to assign the multilayer perceptron an objective functional.
This is to be the normalized squared error defined by Equation (7.10).

The variational statement of the pattern recognition problem being con-
sidered here is then to find a function y∗(x) ∈ V for which the functional

E[y(x)] =

∑Q
q=1

(
y(x(q))− t(q)

)2∑Q
q=1 (t(q) − t̄)2 . (8.7)

defined on V , takes on a minimum value. Note that Q is here the number of
training instances.

Evaluation of the objective functional in Equation (8.7) just require ex-
plicit expressions for the function represented by the different multilayer per-
ceptrons. This is given in Section 4.1.

On the other hand, evaluation of the objective function gradient vector
∇e(ζ), is obtained by the back-propagation algorithm derived in Section 5.
This technique gives the greatest accuracy and numerical efficiency.

Solution of reduced function optimization problem

The third step in solving this problem is to assign the objective function e(ζ)
a training algorithm. We use the quasi-Newton method described in Section
6 for training.
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In this example, we set the training algorithm to stop after 1000 epochs
of the training algorithm.

The presence of noise in the training data set makes the objective function
to have local minima. This means that, when solving pattern recognition
problems, we should always repeat the learning process from several different
starting positions.

During the training process the objective function decreases until the
stopping criterium is satisfied. Table 8.2 shows the training results for the
problem considered here.

Here ‖ζ∗‖ is the final parameter vector norm, e(ζ∗) the final normalized
squared error and ‖∇e(ζ∗)‖ the final gradient norm, N the number of epochs
and CPU the training time in a PC.

‖ζ∗‖ = 753.586
e(ζ∗) = 0.098
‖∇e(ζ∗)‖ = 4.940 · 10−8

N = 43
CPU = 1s

Table 8.2: Training results for the simple pattern recognition example.

Testing analysis

The last step is to test the generalization performance of the trained neural
network. Here we compare the values provided by this technique to the
actually observed values.

The binary classification performance parameters for the trained neural
network on the testing instances is listed below.

<ClassificationAccuracy>

0.88

</ClassificationAccuracy>

<ErrorRate>

0.12

</ErrorRate>

<Sensitivity>

0.9

</Sensitivity>

<Specifity>

0.866667
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</Specifity>

<PositiveLikelihood>

6.75

</PositiveLikelihood>

<NegativeLikelihood>

8.66667

</NegativeLikelihood>

The multilayer perceptron is now ready to predict outputs for inputs that
it has never seen.

The mathematical expression of the trained and tested multilayer percep-
tron is listed below.

<InputsScaling>

scaled_x1=(x1-0.101633)/0.843221;

scaled_x2=(x2--0.0126211)/0.660989;

</InputsScaling>

<ForwardPropagation>

y11=tanh(113.654+514.321*scaled_x1+383.688*scaled_x2);

y12=tanh(368.419+32.9912*scaled_x1+67.7521*scaled_x2);

y=(-29.9135-0.477273*y11+30.4362*y12);

</ForwardPropagation>

8.3 A practical application: Pima indians di-

abetes

In this section a pattern recognition application in medicine is solved by
means of a multilayer perceptron.

Introduction

Pima Indians of Arizona have the population with the highest rate of dia-
betics in the world. It has been estimated that around 50% of adults suffer
from this disease. The aim of this pattern recognition problem is to predict
whether an individual of Pima Indian heritage has diabetes from personal
characteristics and physical measurements.

Experimental data

The data is taken from the UCI Machine Learning Repository [41]. The
number of samples in the data set is 768. The number of input variables
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for each sample is 8. All input variables are numeric-valued, and represent
personal characteristics and physical measurements of an individual. The
number of target variables is 1, and represents the absence or presence of
diabetes in an individual. Table 8.3 summarizes the input-target data set
information, while tables 8.4 and 8.5 depict the input and target variables
information, respectively.

Number of instances: 768
Number of input variables: 8
Number of target variables: 1

Table 8.3: Input-target data set information.

1. Number of times pregnant.
2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test.
3. Diastolic blood pressure (mmHg).
4. Triceps skin fold thickness (mm).
5. 2-Hour serum insulin (muU/ml).
6. Body mass index (weight in kg/(height in m)2).
7. Diabetes pedigree function.
8. Age (years).

Table 8.4: Input variables information.

1. Absence or presence of diabetes (0 or 1).

Table 8.5: Target variables information.

In order to test the results, we divide the input target data set into a
training and a testing subsets. 75% of the instances will be assigned for
training and 25% for testing. Training and testing indices are chosen at
random. Table 8.6 summarizes the training and testing data sets information.

Number of samples for training: 576
Number of samples for testing: 192

Table 8.6: Training and testing data sets information.
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It is always convenient to perform a linear rescaling of the training data.
Here we normalize the mean and the standard deviation of the input and
target data so that all variables have zero mean and unity standard deviation.

After the network is trained any future inputs that are applied to the net-
work must be pre-processed to produce the correct input signals. The output
signals from the trained network must also be post-processed to produce the
proper outputs.

Selection of function space

The fist step is to choose a network architecture to represent the pattern
recognition function. Here a multilayer perceptron with a sigmoid hidden
layer and a linear output layer is used. This class of network is very useful in
pattern recognition problems, since it is a class of universal approximator [27].
The neural network must have 8 inputs, since there are eight input variables,
and 1 output, since there is one target variable. As an initial guess, we use 6
neurons in the hidden layer. This neural network can be denoted as a 8 : 6 : 1
multilayer perceptron. It defines a family V of parameterized functions y(x)
of dimension s = 61, which is the number of free parameters. Elements V
are of the form

y : R8 → R

Figure 8.2 is a graphical representation of this neural network.

Formulation of variational problem

The second step is to assign the multilayer perceptron an objective functional.
For pattern recognition problems, the sum of squares error can approximate
the posterior probabilities of class membership, again conditioned on the
input variables. The mean squared error has the same properties than the
sum of squares error, and the advantage that its value does not grow with
the size of the input-target data set. Therefore we choose the mean squared
error as the objective functional for this problem.

The variational statement of this pattern recognition problem is then to
find a function y∗(x) for which the functional

E[y(x)] =
1

576

576∑
q=1

(
y(x(q))− t(q)

)2
(8.8)

takes on a minimum value.
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Figure 8.2: Network architecture for the pima indians diabetes problem.

Solution of reduced function optimization problem

The third step is to choose a training algorithm for solving the reduced
function optimization problem. We will use the quasi-Newton method for
training.

It is very easy for gradient algorithms to get stuck in local minima when
learning multilayer perceptron weights. This means that we should always
repeat the learning process from several different starting positions.

During the training process the objective function decreases until a stop-
ping criterium is satisfied.

Once the network has been trained we set the mean and the standard
deviation of the input and target data to be the mean and the standard
deviation of the input and output variables in the multilayer perceptron.

Testing of results

The last step is to validate the generalization performance of the trained
neural network. To validate a forecasting technique we need to compare the
values provided by this technique to the actually observed values.

The confusion matrix is depicted next.
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<Confusion>

36 27

25 104

</Confusion>

The listing below depicts the testing parameters for this problem.

<ClassificationAccuracy>

0.729167

</ClassificationAccuracy>

<ErrorRate>

0.270833

</ErrorRate>

<Sensitivity>

0.590164

</Sensitivity>

<Specifity>

0.793893

</Specifity>

<PositiveLikelihood>

2.86339

</PositiveLikelihood>

<NegativeLikelihood>

1.9371

</NegativeLikelihood>

Trying other network architectures with more neurons in the hidden layer
does not improve the quality.

Production mode

Once the generalization performance of the multilayer perceptron has been
tested, the neural network can be saved for future use in the so called pro-
duction mode.

The mathematical expression of the function represented by the multi-
layer perceptron is listed next.

<InputsScaling>

scaled_x1=(x1-3.84505)/3.36958;

scaled_x2=(x2-120.895)/31.9726;

scaled_x3=(x3-69.1055)/19.3558;

scaled_x4=(x4-20.5365)/15.9522;
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scaled_x5=(x5-79.7995)/115.244;

scaled_x6=(x6-31.9926)/7.88416;

scaled_x7=(x7-0.471876)/0.331329;

scaled_x8=(x8-33.2409)/11.7602;

</InputsScaling>

<ForwardPropagation>

y11=tanh(4.57656-92.5785*scaled_x1+30.6881*scaled_x2

+2.28317*scaled_x3+45.7042*scaled_x4+63.8847*scaled_x5

-58.3376*scaled_x6-73.4676*scaled_x7+22.0004*scaled_x8);

y12=tanh(-54.7888+61.6894*scaled_x1+11.5055*scaled_x2

+5.68579*scaled_x3+188.846*scaled_x4+62.1316*scaled_x5

+110.376*scaled_x6+16.5942*scaled_x7+73.5779*scaled_x8);

y13=tanh(-87.6615-84.421*scaled_x1+61.0545*scaled_x2

-29.0454*scaled_x3-45.4726*scaled_x4+24.2132*scaled_x5

+52.7024*scaled_x6-51.4027*scaled_x7+67.1938*scaled_x8);

y14=tanh(-39.043-4.48696*scaled_x1+131.624*scaled_x2

-112.286*scaled_x3-85.2925*scaled_x4-74.8874*scaled_x5

+34.8647*scaled_x6+19.3088*scaled_x7-32.0588*scaled_x8);

y15=tanh(63.0214-31.984*scaled_x1-29.5837*scaled_x2

+15.5865*scaled_x3+38.6653*scaled_x4-19.5926*scaled_x5

+62.5646*scaled_x6-114.814*scaled_x7+72.9811*scaled_x8);

y16=tanh(-58.0502-58.2068*scaled_x1-139.021*scaled_x2

+2.79391*scaled_x3+8.80812*scaled_x4-49.925*scaled_x5

-20.7181*scaled_x6+4.42621*scaled_x7-7.45716*scaled_x8);

scaled_y1=logistic(-0.242571-1.27699*y11+128.86*y12

+1.35776*y13+128.057*y14-0.891829*y15-1.31128*y16);

</ForwardPropagation>

8.4 Related code

Flood classes which are related to the solution of pattern recognition prob-
lems include the InputTargetDataSet class, several error functional classes,
and the PatternRecognitionUtilities class.
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The InputTargetDataSet class in Flood

The InputTargetDataSet class represent the concept of input-target data set.

That class is described in Section 7.4. The only difference here is that
the values of the target variables will be, in general, 0s and 1s.

The error functional classes in Flood

Regarding objective functionals for modeling of data, Flood includes the
classes SumSquaredError, MeanSquaredError, RootMeanSquaredError, NormalizedSquaredError
and MinkowskiError to represent that error functionals. All of them are also
described in Section 7.4.

The PatternRecognitionUtilities class in Flood

This class contains a variety of algorithms for this kind of applications. Ba-
sically, it can be used to generate artificial data sets for proving concepts or
to perform testing analysis on a trained neural network.

Constructors

Objects of this class can be constructed empty or associated to a multi-
layer perceptron object, an input target data set object or both objects.

P a t t e r n R e c o g n i t i o n U t i l i t i e s pru(&mlp , &i t d s ) ;

where &mlp is a reference to a MultilayerPerceptron object and &itds is a refer-
ence to an InputTargetDataSet object.

Members

The main members of the pattern recognition utilities class are:
- A multilayer perceptron object.
- An input-target data set object.

That members can get or set with the corresponding methods.

Methods

The most important method of this class calculates the confusion matrix
of a multilayer perceptron on an testing data set,

Vector
The \ l s t i n l i n e ” F u n c t i o n R e g r e s s i o n U t i l i t i e s ” conta in s a v a r i e t y o f a lgor i thms for this kind o f a p p l i c a t i o n s . Bas i ca l l y , i t can be used to generate a r t i f i c i a l data s e t s for proving concepts or to perform l i n e a r r e g r e s s i o n a n a l y s i s for the purpose o f t e s t i n g a t ra in ed neura l network .

\noindent \ t e x t i t {Constructors }

Objects o f this class can be cons t ruc ted empty or a s s o c i a t e d to a mu l t i l a y e r perceptron object , an input t a r g e t data s e t ob j e c t or both o b j e c t s .

\begin { l s t l i s t i n g }
F u n c t i o n R e g r e s s i o n U t i l i t i e s f ru (&mlp , &i t d s ) ;
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where &mlp is a reference to a MultilayerPerceptron object and
&itds is a reference to an InputTargetDataSet object.
Members

The main members of the function regression utilities class are:
- A multilayer perceptron object.
- An input-target data set object.

That members can get or set with the corresponding methods.
Methods

The most important method of this class calculates the linear regression
analysis parameters between the outputs of multilayer perceptron and the
testing instances of the target variables in an input-target data set,

Matrix<double> con fus i on = pru . c a l c u l a t e c o n f u s i o n ( ) ;

The calculate binary classification test performs a binary classification test
(classification accuracy, error rate, sensitivity, specifity, positive likelihood
and negative likelihood).

Vector<double> b i n a r y c l a s s i f i c a t i o n t e s t
= pru . c a l c u l a t e b i n a r y c l a s s i f i c a t i o n t e s t ( ) ;
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Chapter 9

Optimal control

9.1 Problem formulation

Optimal control -which is playing an increasingly important role in the de-
sign of modern systems- has as its objective the optimization, in some defined
sense, of physical processes. More specifically, the objective of optimal con-
trol is to determine the control signals that will cause a process to satisfy
the physical constraints and at the same time minimize or maximize some
performance criterion [29].

The formulation of an optimal control problem requires:
- A mathematical model.
- A multilayer perceptron.
- An objective functional.
- A training algorithm.

Mathematical model

The model of a process is a mathematical description that adequately predicts
the response of the physical system to all anticipated inputs.

Let denote u(x) the state variables of the system and y(x) the state
variables to the system. Then the mathematical model (or state equation)
can be written as

L(x,u(x); x(x)) = f , (9.1)

where L is some algebraic or differential operator and f is some forcing term.
The number of state variables is represented by N and the number of

control variables by m.

181
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Mathematical models can be expressed as all algebraic, ordinary differ-
ential and partial differential equations.

Many optimal control problems in the literature are based on mathemat-
ical models described by a system of ordinary differential equations together
with their respective initial conditions, representing a dynamical model of
the system. In this particular case the mathematical model is of the form

du1

dt
= f1(t, u1, . . . , uN , y1, . . . , ym), (9.2)

duN)

dt
= f1(t, u1, . . . , uN , y1, . . . , ym), (9.3)

u1(0) = u1i (9.4)

uN(0) = uNi (9.5)

Integration here is usually performed with the Runge-Kutta-Fehlberg
method.

Multilayer perceptron

A multilayer perceptron is used to represent the control variables.
For optimal control problems, the number of inputs is usually one, which

represents the time, and the number of outputs is normally small, represent-
ing the control variables. Although the number of hidden layers and the sizes
of each are design variables, that is not a critical issue in optimal control.
Indeed, this class of problems are not regarded as being ill-possed, and a
sufficient complexity for the function space selected is gen- erally enough.

Also some optimal control problems need a neural network with associ-
ated independent parameters. The most common are those with free final
time.

This multilayer perceptron spans a function space V of dimension d. The
elements of that space, y : X → Y , are of the form

y = y(x). (9.6)

An optimal control problem might be specified by a set of constraints
on the control variables. Two important types of control constraints are
boundary conditions and lower and upper bounds.

If some outputs are specified for given inputs, then the problem is said to
include boundary conditions. On the other hand, if some control variables
are restricted to fall in some interval, then the problem is said to have lower
and upper bounds.
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Objective functional

In order to evaluate the performance of a system quantitatively, a criterion
must be chosen. The performance criterion is a scalar functional of the
control variables of the form

F : Y → R

F = F [y(x)].

In certain cases the problem statement might clearly indicate which per-
formance criterion is to be selected, whereas in other cases that selection is
a subjective matter [29].

State constraints are conditions that the physical system must satisfy.
This type of constraints vary according to the problem at hand.

In this way, a control which satisfies all the control and state constraints
is called an admissible control [29].

Similarly, a state which satisfies the state constraints is called an admis-
sible state [29].

Definition 1 (Admissible control) A control y(x) which satisfies all the
constraints is called an admissible control. The set of admissible controls is
denoted Y , and the notation y(x) ∈ Y means that y(x) is admissible.

Definition 2 (Admissible state) A state u(x) which satisfies the state
variable constraints is called an admissible state. The set of admissible states
will be denoted by U, and u(x) ∈ U means that the state u(x) is admissible.

An optimal control is defined as one that minimizes or maximizes the
performance criterion, and the corresponding state is called an optimal state.
More specifically, the optimal control problem can be formulated as

Problem 7 (Optimal control problem) Let Y and U be the function spaces
of admissible controls and states, respectively. Find an admissible control
y∗(x) ∈ Y which causes the system

L(y(x),u(x),x) = f

to be in an admissible state u∗(x) ∈ U and for which the objective functional

F = F [y(x)]

takes on a minimum or maximum value. The function y∗(x) is called an
optimal control and the function u∗(x) an optimal state.
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In this way, the problem of optimal control is formulated as a variational
problem [29].

In general, the objective function f(ζ), cannot be evaluated analytically.
Its gradient vector ∇f(ζ), and its Hessian matrix f(ζ) cannot be computed
analytically by means of the back-propagation algorithm, and numerical dif-
ferentiation is used.

Training algorithm

In general, optimal control problems lead to a variational problem that can-
not be solved analytically to obtain the optimal control signal. In order to
achieve this goal, two types of numerical methods are found in the literature,
namely, direct and indirect [7]. From them, direct methods are the most
widely used.

As it has been explained in this report, a variational formulation for neural
networks provides a direct method for the solution of variational problems.
Therefore optimal control problems can be approached with this numerical
technique.

9.2 A simple example

The car problem for the multilayer perceptron is an optimal control problem
with two controls and two state variables. It is defined by an objective
functional with two constraints and requiring the integration of a system of
ordinary differential equations.

Problem statement

Consider a car which is to be driven along the x-axis from some position xi

at velocity vi to some desired position xf at desired velocity vf in a minimum
time tf , see Figure 9.1.

To simplify the problem, let us approximate the car by a unit point mass
that can be accelerated by using the throttle or decelerated by using the
brake. Selecting position and velocity as state variables the mathematical
model of this system becomes a Cauchy problem of two ordinary differential
equations with their corresponding initial conditions,
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Figure 9.1: The car problem statement.

ẋ(t) = v(t), (9.7)

v̇(t) = a(t) + d(t), (9.8)

x(0) = xi, (9.9)

v(0) = vi, (9.10)

for t ∈ [0, tf ] and where the controls a(t) and d(t) are the throttle acceleration
and the braking deceleration, respectively.

The acceleration is bounded by the capability of the engine, and the
deceleration is limited by the braking system parameters. If the maximum
acceleration is sup (a) > 0, and the maximum deceleration is sup (d) > 0,
such bounds on the control variables can be written

0 ≤ a(t) ≤ sup (a), (9.11)

− sup (d) ≤ d(t) ≤ 0. (9.12)

As the objective is to make the car reach the final point as quickly as
possible, the objective functional for this problem is given by

F [(a, d)(t)] = tf . (9.13)

On the other hand, the car is to be driven to a desired position xf and a
desired velocity vf , therefore x(tf ) = xf and v(tf ) = vf . Such constraints on
the state variables can be expressed as error functionals,

Ex[(a, d)(t)] = x(tf )− xf

= 0, (9.14)
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Ev[(a, d)(t)] = v(tf )− vf

= 0. (9.15)

where Ex and Ev are called the final position and velocity errors, respectively.
If we set the initial position, initial velocity, final position, final velocity,

maximum acceleration and maximum deceleration to be xi = 0, vi = 0,
xf = 1, vf = 0, sup (a) = 1 and sup (d) = 1, respectively. This problem has
an analytical solution for the optimal control given by [29]

a∗(t) =

{
1, 0 ≤ t < 1,
0, 1 ≤ t ≤ 2,

(9.16)

d∗(t) =

{
0, 0 ≤ t < 1,
−1, 1 ≤ t ≤ 2,

(9.17)

which provides a minimum final time t∗f = 2.
The statement and the solution itself of this car problem points out a

number of significant issues. First, some variational problems might require
a function space with independent parameters associated to it. Indeed, the
final time is not part of the control, but it represents the interval when it is
defined. Finally, this kind of applications demand spaces of functions with
very good approximation properties, since they are likely to have very non-
linear solutions. Here the optimal control even exhibits discontinuities.

Selection of function space

Here a multilayer perceptron with a sigmoid hidden layer and a linear output
layer is chosen to represent the control (a, b)(t). The neural network must
have one input, t, and two output neurons, a and d. Although the size of
the hidden layer is a design variable, that number is not a critical issue in
optimal control. Indeed, this class of problems are not regarded as being
ill-possed, and a sufficient complexity for the function space selected is gen-
erally enough. In this problem we use three hidden neurons. Figure 9.2 is a
graphical representation of this network architecture.

Also this neural network needs an associated independent parameter rep-
resenting the final time tf .

Such a multilayer perceptron spans a family V of parameterized functions
(a, b)(t) of dimension s = 14 + 1, being 14 the number of biases and synaptic
weights and 1 the number of independent parameters. Elements V are of the
form
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Figure 9.2: Network architecture for the car problem.

(a, d) : R→ R2

where

a(t) = b
(2)
1 +

3∑
j=1

w
(2)
1j tanh

(
b

(1)
j + w

(1)
j1 t
)
, (9.18)

d(t) = b
(2)
2 +

3∑
j=1

w
(2)
2j tanh

(
b

(1)
j + w

(1)
j1 t
)
. (9.19)

Equation (9.18) represents just one function, in many of the parameters
are shared.

The control variable is constrained to lie in the interval [0, 1]. To deal
with such constraints we bound the network outputs in the form

a(t) =


0, a(t) < 0.
a(t), 0 ≤ a(t) ≤ 1.
1, a(t) > 1.

(9.20)

d(t) =


−1, d(t) < −1.
d(t), −1 ≤ d(t) ≤ 0.
0, d(t) > 0.

(9.21)

All the parameters in the neural network are initialized at random.

Formulation of variational problem

From Equations (9.14), (9.15) and (9.13), the car problem formulated in this
Section can be stated so as to find a control (a, d)∗(t) ∈ V and t∗f such that

Ex[(a, d)∗(t)] = 0, (9.22)

Ev[(a, d)∗(t)] = 0, (9.23)
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and for which the functional

T [(a, d)(t)],

defined on V , takes on a minimum value.
This constrained problem can be converted to an unconstrained one by

the use of penalty terms. The statement of this unconstrained problem is
now to find a control (a, d)∗(t) for which the objective functional

F [(a, d)(t)] = ρXE
2
x + ρVE

2
v + ρTT, (9.24)

defined on V , takes on a minimum value.
The values ρX = 10−3, ρV = 10−3 and ρT = 1 are called the final time,

error position an error velocity term weights, respectively.
Please note that evaluation of the objective functional (9.24) requires a

numerical method for integration of ordinary differential equations. Here we
choose the Runge-Kutta-Fehlberg method with tolerance 10−12 [49].

The objective function gradient vector, ∇f(ζ), must be evaluated with
numerical differentiation. In particular, we use the symmetrical central dif-
ferences method [8] with an epsilon value of 10−6.

Solution of reduced function optimization problem

Here we use a quasi-Newton method with BFGS train direction and Brent
optimal train rate methods [45]. The tolerance in the Brent’s method is set
to 10−6. While other direct methods might suffer from local optima with
that algorithm in this problem, the neural networks method proposed here
has demonstrated fully convergence to the global optimum.

In this example, training is stopped when the Brent’s method gives zero
rate for some gradient descent direction. The evaluation of the initial guess
was 0.827; after 112 epochs of training this value falls to 1.999 · 10−3.

Table 9.1 shows the training results for this problem. Here N denotes
the number of epochs, M the number of evaluations, F the final objective
functional value, ∇f the final objective function gradient norm, Ex the final
position error, Ev the final velocity error and t∗f the optimum time. As we can
see, the final errors in the position and the velocity of the car are very small,
and the final time provided by the neural network matches the analytical final
time provided by the optimal function in Equation (9.16). More specifically,
the errors made in the constraints are around 5 · 10−3 and the error made in
the final time is around 0.2%.



9.2. A SIMPLE EXAMPLE 189

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

epoch

ev
al

ua
tio

n

Figure 9.3: Evaluation history for the car problem.
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Figure 9.4: Gradient norm history for the car problem.

The analytical form of the optimal control addressed by the neural net-
work is as follows
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N = 113
M = 7565
CPU = 18s
‖ζ∗‖ = 6.84336

f(ζ∗, t∗f ) = 0.00199951
ex(ζ∗, t∗f ) = 5.00358 · 10−4

ev(ζ∗, t∗f ) = 4.99823 · 10−4

‖∇f(ζ∗, t∗f )‖/s = 4.63842 · 10−8

t∗f = 1.99901

Table 9.1: Training results for the car problem.

a∗(t) = −1.31175

+ 6.85555 tanh (−1.1448 + 1.48771t)

− 0.387495 tanh (2.52653− 1.5223t)

+ 16.1508 tanh (12.2927− 12.3053t), (9.25)

d∗(t) = 1.82681

− 4.91867 tanh (−1.1448 + 1.48771t)

− 0.839186 tanh (2.52653− 1.5223t)

+ 6.76623 tanh (12.2927− 12.3053t), (9.26)

subject to the lower and upper bounds

a∗(t) =


0, a∗(t) < 0.
a∗(t), 0 ≤ a∗(t) ≤ 1.
1, a∗(t) > 1.

(9.27)

d∗(t) =


−1, d∗(t) < −1.
d∗(t), −1 ≤ d∗(t) ≤ 0.
0, d∗(t) > 0.

(9.28)

and for t ∈ [0, 1.99901].

The optimal control (acceleration and deceleration) and the correspond-
ing optimal trajectories (position and velocity) obtained by the neural net-
work are shown in Figures 9.5, 9.6, 9.7 and 9.8, respectively.
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Figure 9.5: Neural network solution for the optimal acceleration in the car
problem.
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Figure 9.6: Neural network solution for the optimal deceleration in the car
problem.

9.3 A practical application: Fed batch fer-

menter

The fed batch fermenter problem for the multilayer perceptron is an optimal
control problem with one control and four state variables, and defined by
an objective functional with one constraint and requiring the integration
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Figure 9.7: Corresponding optimal trajectory for the position in the car
problem.
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Figure 9.8: Corresponding optimal trajectory for the position in the car
problem.

of a system of ordinary differential equations. The implementation of this
problem is included in Flood [31].

Introduction

In many biochemical processes, the reactors are operated in fed batch mode,
where the feed rate into the reactor is used for control. There is no outflow,
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so the feed rate must be chosen so that that batch volume does not exceed
the physical volume of the reactor.

As a specific example, an optimization study of the fed batch fermentation
for ethanol production by Saccharomyces cerevisiae is presented.

In this Section, we seek to determine the optimal control law and the
corresponding optimal trajectory of a fed batch fermenter problem using
a neural network. We also compare the results by this numerical method
against those provided by other authors.

Problem statement

The fed batch fermentation process considered here is a process in which
ethanol is produced by Saccharomyces cerevisiae and the production of ethanol
is inhibited by itself.

A batch fermenter generally consists of a closed vessel provided with a
means of stirring and with temperature control. It may be held at constant
pressure or it can be entirely enclosed at a constant volume. In many bio-
chemical processes, the reactors are operated in fed batch mode, where the
feed rate into the reactor chosen so that that batch volume does not exceed
the physical volume of the reactor [1]. Figure 9.3 shows the basics of the
reactor.

feed

V

Figure 9.9: The fed batch fermenter.

State equations

The states of the plant are the concentration of cell mass x(t), the concen-
tration of substrate s(t), the concentration of product p(t) and the broth
volume in the fermenter v(t). The amount u(t) is the feeding rate, which
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is the only manipulated variable of this process [12]. The dynamic behav-
ior of this fed batch fermentation process can be described by the following
differential-algebraic equations

dx(t)

dt
= x(t)µ(t)− u(t)

x(t)

v(t)
, (9.29)

ds(t)

dt
= −x(t)

µ(t)

Y
+ u(t)

s0 − s(t)
v(t)

, (9.30)

dp(t)

dt
= −x(t)η(t)− u(t)

p(t)

v(t)
, (9.31)

dv(t)

dt
= u(t), (9.32)

µ(t) =
µ0

1 + p(t)
Kp

s(t)

Ks + s(t)
, (9.33)

η(t) =
ν0

1 + p(t)
K′p

s(t)

K ′s + s(t)
, (9.34)

together with their initial conditions

x(ti) = xi, (9.35)

s(ti) = si, (9.36)

p(ti) = pi, (9.37)

v(ti) = vi. (9.38)

Here µ is the specific growth rate, η the specific productivity, Y the
yield coefficient and s0 the substrate concentration of the feed. The kinetic
constants for Saccharomyces cerevisiae growing of glucose are µ0 = 0.408h−1,
Kp = 16.0 g l−1, Ks = 0.22 g l−1, η0 = 1.0h−1, K ′p = 71.5 g l−1 and K ′s =
0.44 g l−1 [26].

Input constraints

Here the feed rate to the reactor constrained to lie in the interval

u(t) ∈ [inf (u), sup (u)] (9.39)

for t ∈ [ti, tf ].
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State constraints

The liquid volume of the reactor is limited by the vessel size, v(t) ≤ V . This
constraint on the state of the system can be written as an error functional,

EV [u(t)] ≡ V − v(tf )

= 0. (9.40)

Performance requirements

The desired objective is to obtain a maximum amount of yield at the end of
the process. The actual yield in the reactor is given by the concentration of
product multiplied by the broth volume in the reactor. More specifically, the
aim is to choose a feed rate which maximizes the functional

Y [u(t)] = p(tf )v(tf ), (9.41)

Since the equations describing the fermenter are nonlinear and the inputs
and states are constrained, the determination of the feed rate to maximize
the yield can be quite difficult.

Nominal values

The nominal values for all the parameters here are the same as those used by
R. Luus in [36], so as to compare the neural network results to those reported
by that author.

The yield coefficient, Y , is assumed to be a constant of 0.1. The initial
state is specified as x0 = 1g l−1, s0 = 150g l−1, p0 = 0 and v0 = 10 l, and
the final time of the process, tf , is set at 54h. Besides, The feed rate to the
reactor constrained by 0 ≤ u(t) ≤ 12.

Selection of function space

The control variable u(t) is to be represented by a multilayer perceptron
with a hidden layer of sigmoid neurons and an output layer of linear neurons.
Necessarily, the number of inputs is one, t, and the number of output neurons
is also one, u. The size of the hidden layer is a design variable in the problem,
which is set here to two. Figure 9.10 is a graphical representation of the
resulting network architecture.
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t u

Figure 9.10: Network architecture for the fed batch fermenter problem.

This neural network spans a family V of parameterized functions u(t)
of dimension s = 7, which is the number of biases and synaptic weights.
Elements of V are of the form

u : R→ R

where

u(t) = b
(2)
1 +

2∑
j=1

w
(2)
1j tanh

(
b

(1)
j + w

(1)
j1 t
)
. (9.42)

The minimum and maximum input and output values are by far outside
the range [−1, 1]. It is therefore necessary to pre and post-process input and
output in order to achieve better approximation properties. The minimum
and maximum values used here for pre and post-processing are listed in Table
9.2.

min (t) = 0
max (t) = 54

min (u(t)) = 0
max (u(t)) = 12

Table 9.2: Minimum and maximum for pre and post-processing in the fer-
menter problem.

In this way, the input is pre-processed to produce an input signal with
minimum −1 and maximum 1,

t = 2
t

54
− 1. (9.43)

Similarly, the output signal from the neural network is then post-processed
to produce an output ranging from −1 and 1,
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u(t) = 0.4 (u(t)12 + 1) . (9.44)

It is easy to see that this form of pre and post-processing produces input
and output signals in the range [−1, 1].

On the other hand, the feed rate to the fermenter u(t) is constrained to
lie in the interval [0, 12]. To deal with such constraints we bound the network
outputs in the form

u(t) =


0, u(t) < 0.
u(t), 0 ≤ u(t) ≤ 12.
12, u(t) > 12.

(9.45)

Formulation of variational problem

Following Equations (9.40) and (9.41), the fed batch fermenter for the mul-
tilayer perceptron can be stated as to find an optimal control u∗(t) ∈ V so
that

EV [u∗(t)] = 0, (9.46)

and for which the functional

Y [u(t)],

defined on V , takes on a minimum value.
This constrained problem can be formulated as an unconstrained one by

adding a penalty term for the constraint to the original objective functional.
More specifically, the unconstrained fed batch fermenter problem is stated as
to find an optimal control u∗(t) ∈ V for which the functional

F [u(t)] = ρE(EV [u(t)])2 − ρY Y [u(t)], (9.47)

defined on V , takes on a minimum value.
The volume error an yield term weights ρE and ρY , are set here to 10−3

and 10−10, respectively.
Please note that evaluation of the objective functional (9.47) requires a

numerical method for integration of ordinary differential equations. Here we
choose the Runge-Kutta-Fehlberg method [49]. For this problem we set the
tolerance to 10−12.
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On the other hand, there are no target outputs for the neural network
here, so a back-propagation algorithm for the objective function gradient
vector, ∇f(ζ), can not be derived for this problem. Instead, we use the
central differences method for numerical differentiation with ε = 10−6.

Solution of reduced function optimization problem

Here we use the quasi-Newton method for training. This method is applicable
here, since the objective function is differentiable.

In this example, the training algorithm stops when it can not keep min-
imizing the objective function. When this situation occurs, the Brent’s
method gives zero train rate for a gradient descent train direction.

The training algorithm required 492 epochs to go. The evaluation of the
initial guess is −0.0246886. After training this value falls to −0.0417673. On
the other side, the gradient norm deceases from 0.0394488 to 2.7123 · 10−6.
Figures 9.11 and 9.12 explain this process in a graphical fashion.
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Figure 9.11: Evaluation history in the fed batch fermenter problem.

Table 9.3 shows the training results for this problem. Here N is the
number of epochs, M the number of objective function evaluations, CPU
the computing time in a laptop AMD 3000, ‖ζ∗‖ the final parameters norm,
f(ζ∗) the final objective value, ev(ζ∗) the final error in the volume constraint
and y(ζ∗) the final yield. The final volume error is around 0.1% of the total
volume, giving a very slight violation of the constraint. On the other side, the
yield obtained by the neural network is about 0.2% higher than the 20406 l
reported by Luus [36].
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Figure 9.12: Gradient norm history in the fed batch fermenter problem.

N = 493
M = 24776
CPU = 1019
‖ζ∗‖ = 23.0654
f(ζ∗) = −4.17673 · 10−2

ev(ζ∗) = 0.205
y(ζ∗) = 20447.8
‖∇f(ζ∗)‖ = 2.7123 · 10−6

Table 9.3: Training results for the fed batch fermenter problem.

The optimal feed rate obtained by the neural network can be written in
a explicit form as

t =
2

54
t− 1,

u∗(t) = −27.3844

+ 37.5292 tanh (27.1799− 26.3943t)

+ 11.2443 tanh (−1.83915 + 0.719688t),

u∗(t) = 0.5(u∗(t) + 1)12, (9.48)

for t ∈ [0, 54].
The optimal control obtained by the neural network is plotted in Figure

9.13. On the other hand, the optimal trajectories for the cell mass concentra-
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tion, substrate concentration, product concentration and broth volume are
depicted in Figures 9.14, 9.15, 9.16 and 9.17, respectively. All these process
histories for the state variables are quite smooth functions. This is a de-
sired property, since the process is desired to be stable. Finally, the optimal
specific growth rate and productivity are plotted in Figures 9.18 and 9.19.
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Figure 9.13: Optimal control for the fed batch fermenter.
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Figure 9.14: Optimal trajectory for the concentration of cell mass in fed
batch fermenter.
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Figure 9.15: Optimal trajectory for the concentration of substrate in the fed
batch fermenter.
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Figure 9.16: Optimal trajectory for the concentration of product in the fed
batch fermenter.

9.4 Related code

Flood includes several examples of optimal control problems. These include
the car problem, the car problem neurocomputing, the fed batch fermenter
problem and the aircraft landing problem.
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Figure 9.17: Optimal trajectory for the broth volume in the fed batch fer-
menter problem.
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Figure 9.18: Optimal specific growth rate in the fed batch fermenter problem.
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Figure 9.19: Optimal specific productivity in the fed batch fermenter prob-
lem.
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Chapter 10

Optimal shape design

10.1 Problem formulation

Optimal shape design is a very interesting field both mathematically and for
industrial applications. The goal here is to computerize the design process
and therefore shorten the time it takes to design or improve some existing
design. In an optimal shape design process one wishes to optimize a criteria
involving the solution of some mathematical model with respect to its domain
of definition [38]. The detailed study of this subject is at the interface of
variational calculus and numerical analysis.

In order to properly define an optimal shape design problem the following
concepts are needed:
- A mathematical model of the system. - A multilayer perceptron. - An
objective functional. - A training algorithm.

Mathematical model

The mathematical model is a well-formed formula which involves the physical
form of the device to be optimized. Let define y(x) the shape variables and
u(x) the state variables. The mathematical model or state equation can then
be written as

L(y(x),u(x),x) = f , (10.1)

where L is some algebraic or differential operator and f some forcing term.

Multilayer perceptron

A multilayer perceptron is used to represent the shape variables. Optimal
shape design problems are usually defined by constraints on the shape func-

205
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tion. Two important types of shape constraints are boundary conditions and
lower and upper bounds.

Objective functional

An optimal shape design problem might also be specified by a set of con-
straints on the shape and the state variables of the device.

State constraints are conditions that the solution to the problem must
satisfy. This type of constraints vary according to the problem at hand.

In this way, a design which satisfies all the shape and state constraints is
called an admissible shape.

Definition 3 (Admissible shape) A shape y(x) which satisfies all the con-
straints is called an admissible shape. The set of admissible shapes is denoted
Y , and the notation y(x) ∈ Y means that y(x) is admissible.

Similarly, a state which satisfies the constraints is called an admissible
state.

Definition 4 (Admissible state) A state u(x) which satisfies the state
variable constraints is called an admissible state. The set of admissible states
will be denoted by U, and u(x) ∈ U means that the state u(x) is admissible.

Objective functional

The performance criterion expresses how well a given design does the activity
for which it has been built. In optimal shape design the performance criterion
is a functional of the form F : V → R,

F = F [y(x)]

Optimal shape design problems solved in practice are, as a rule, multi-
criterion problems. This property is typical when optimizing the device as
a whole, considering, for example, weight, operational reliability, costs, etc.
It would be desirable to create a device that has extreme values for each of
these properties. However, by virtue of contradictory of separate criteria,
it is impossible to create devices for which each of them equals its extreme
value.

To sum up, the optimal shape design problem can be formulated as
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Problem 8 (Optimal shape design problem) Let Y and U be the func-
tion spaces of admissible shapes and states, respectively. Find an admissible
shape y∗(x) ∈ Y which causes the system

L(y(x),u(x),x) = f

to be in an admissible state u∗(x) ∈ U and for which the objective functional

F [y(x)]

takes on a minimum or maximum value. The function y∗(x) is called an
optimal shape and the function u∗(x) an optimal state.

Training algorithm

In general, there are no automatic solutions to optimal shape design prob-
lems. Therefore, the use of direct methods usually becomes necessary.

A variational formulation for neural networks provides a direct method
for the solution of variational problems. Therefore optimal shape design
problems can be approached with this numerical technique.

10.2 A simple example

The minimum drag problem for the multilayer perceptron is an optimal shape
design problem with one input and one output variables, besides two bound-
ary conditions. It is defined by an unconstrained objective functional requir-
ing the integration of a function. This problem is included with the Flood
library [31], and it has been published in [33] and [32].

Problem statement

Consider the design of a body of revolution with given length l and diameter
d providing minimum drag at zero angle of attack and for neglected friction
effects, see Figure 10.1.

The drag of such a body y(x) can be expressed as

D[y(x)] = 2πq

∫ l

0

y(x)[Cpy
′(x)]dx, (10.2)
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Figure 10.1: The minimum drag problem statement.

where q is the free-stream dynamic pressure and Cp the pressure coefficient
[9]. For a slender body y′(x) � 1, the pressure coefficient can be approxi-
mated by the Newtonian flow relation

Cp = 2 [y′(x)]
2
, (10.3)

which is valid provided that the inequality y′(x) ≥ 0 is satisfied.
From Equations (10.2) and (10.3) we obtain the following approximation

for the drag,

D[y(x)] = 4πq

∫ l

0

y(x)[y′(x)]3dx. (10.4)

It is convenient to introduce the following dimensionless variables associ-
ated with the axial coordinate and the radial coordinate

ξ =
x

l
, (10.5)

η =
2y

d
. (10.6)

In that way, both ξ and η vary from 0 to 1.
Also, a dimensionless coefficient associated with the drag can be defined

as
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CD[η(ξ)] = τ 2

∫ 1

0

η(ξ)[η′(ξ)]3dξ, (10.7)

where τ = d/l is the slenderness of the body.
The analytical solution to the minimum drag problem formulated in this

section is given by

η∗(ξ) = ξ3/4, (10.8)

which provides a minimum value for the drag coefficient CD/τ
2 = 0.4220.

Selection of function space

The body of revolution η(ξ), for ξ ∈ [0, 1], will be represented by a multilayer
perceptron with a sigmoid hidden layer and a linear output layer. This
axisymmetric structure is to be written in cartesian coordinates, so the neural
network must have one input and one output neuron. On the other hand,
an appropriate number of hidden neurons is believed to be three for this
particular application. This network architecture is depicted in Figure 10.2.

xi eta

Figure 10.2: Network architecture for the minimum drag problem.

Such a multilayer perceptron spans a family V of parameterized functions
η(ξ) of dimension s = 10, which is the number of parameters in the network.
The elements of this function space are of the form

η : R→ R

where

η(ξ) = b
(2)
1 +

3∑
j=1

w
(2)
1j · tanh

(
b

(1)
j + w

(1)
j1 ξ
)
. (10.9)
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The outputs from the neural network in Figure 10.2 must hold the bound-
ary conditions η(0) = 0 and η(1) = 1. A suitable set of particular and
homogeneous solution terms here is

ϕ0(ξ) = ξ, (10.10)

ϕ1(ξ) = ξ(ξ − 1), (10.11)

respectively. This gives

η(ξ) = ξ + ξ(ξ − 1)η(ξ). (10.12)

Also, the functions η(ξ) are constrained to lie in the interval [0, 1]. To
deal with such constraints the neural network outputs are bounded in the
form

η(ξ) =


0, η(ξ) < 0.
η(ξ), 0 ≤ η(ξ) ≤ 1.
1, η(ξ) > 1.

(10.13)

The elements of the function space constructed so far indeed satisfy the
boundary conditions and the input constraints. Also, they are thought to
have a correct complexity for this case study.

Experience has shown that this method does not require a good initial
guess for the solution, so the parameters in the neural network are initialized
at random. This is a potential advantage over other direct methods, in which
a good initial guess for the solution might be needed. Figure 10.3 depicts the
starting random shape for this problem.

Formulation of variational problem

From Equation (10.7), the variational statement of this problem is to find a
function η∗(ξ) ∈ V for which the functional

CD[η(ξ)]/τ 2 =

∫ 1

0

η(ξ)[η′(ξ)]3dξ, (10.14)

defined on V , takes on a minimum value.
In order to evaluate the objective functional in Equation (10.14) the in-

tegration of a function is needed. Here we apply the Runge-Kutta-Fehlberg
method [49] with tolerance 10−6.
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Figure 10.3: Initial guess for the minimum drag problem.

Solution of reduced function optimization problem

Here we use a quasi-Newton method with BFGS train direction and Brent
optimal train rate methods for training [8]. The tolerance in the Brent’s
method is set to 10−6.

The objective function gradient vector ∇f(ζ) is calculated by means of
numerical differentiation. In particular, the symmetrical central differences
method is used with ε = 10−6 [8].

The evaluation and the gradient norm of the initial guess are 0.56535
and 0.324097, respectively. Trained is performed until the algorithm can not
perform any better, that is, when the Brent’s method gives zero train rate
for a gradient descent train direction. This occurs after 759 epochs, at which
the objective function evaluation is 0.422. At this point the gradient norm
takes a value of 2.809 · 10−4. Figures 10.4 and 10.5 illustrate this training
process.

Table 10.1 shows the training results for this problem. Here N is the
number of training epochs, M the number of objective function evaluations,
CPU the CPU time for a laptop AMD 3000, ‖ζ∗‖ the final parameters
norm, f(ζ∗) the final value for the objective function and ‖∇f(ζ∗)‖ the
final gradient norm.

Comparing the drag coefficient provided by that neural network (0.4223)
to that by the analytical result (0.4220), these two values are almost the
same. In particular, the percentage error made by the numerical method is
less than 0.1%.

The optimal shape design by the multilayer perceptron is depicted in
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Figure 10.4: Evaluation history for the minimum drag problem.
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Figure 10.5: Gradient norm history for the minimum drag problem.

Figure 10.6.
Finally, an explicit expression of the shape of such an axisymmetric body

is given by

η∗(ξ) = ξ + ξ(ξ − 1)[−164.639

− 275.014 tanh (−2.97601− 27.2435ξ)

− 79.9614 tanh (−2.62125− 3.7741ξ)

+ 201.922 tanh (−1.78294 + 0.0113036ξ)]. (10.15)
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N = 759
M = 38426
CPU = 354
‖ζ∗‖ = 122.752
f(ζ∗) = 0.422325
‖∇f(ζ∗)‖ = 2.80939 · 10−4

Table 10.1: Training results for the minimum drag problem.
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Figure 10.6: Neural network results to the minimum drag problem.

10.3 Related code

Flood includes one optimal shape design example, which is the minimum
drag problem.
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Chapter 11

Inverse problems

11.1 Problem formulation

Inverse problems can be described as being opposed to direct problems. In
a direct problem the cause is given, and the effect is determined. In an
inverse problem the effect is given, and the cause is estimated [30]. There are
two main types of inverse problems: input estimation, in which the system
properties and output are known and the input is to be estimated; and
properties estimation, in which the the system input and output are known
and the properties are to be estimated [30]. Inverse problems are found in
many areas of science and engineering.

An inverse problem is specified by:
- A mathematical model.
- An experimental data set.
- A multilayer perceptron.
- An error functional.
- A training algorithm.

Mathematical model

The mathematical model can be defined as a representation of the essential
aspects of some system which presents knowledge of that system in usable
form.

Let us represent y(x) the vector of unknowns (inputs or properties) and
u(x) the vector of state variables. The mathematical model, or state equa-
tion, relating unknown and state variables takes the form

215
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L(y(x),u(x),x) = f , (11.1)

where L is some algebraic or differential operator and f is some forcing term.

Observed data

Inverse problems are those where a set of measured results is analyzed in
order to get as much information as possible on a mathematical model which
is proposed to represent a real system.

Therefore, a set of experimental values on the state variables is needed in
order to estimate the unknown variables of that system. This observed data
is here denoted û(x).

In general, the observed data is invariably affected by noise and uncer-
tainty, which will translate into uncertainties in the system inputs or prop-
erties.

Multilayer perceptron

The multilayer perceptron represents here the inputs to the system or the
properties of that system. They might include boundary conditions or bounds.

Error functional

For inverse problems, the presence of restrictions is typical. Two possible
classes of constraints are unknowns and state constraints.

The former are defined by the allowable values on the inputs or the prop-
erties of the system, depending on whether the we are talking about an input
or a property estimation problem. Two typical types of constraints here are
boundary conditions and lower and upper bounds.

State constraints are those conditions that the system needs to hold. This
type of restrictions depend on the particular problem.

In this way, an unknown which satisfies all the input and state constraints
is called an admissible unknown [29].

Definition 5 (Admissible unknown) An unknown y(x) which satisfies
all the constraints is called an admissible unknown. The set of admissible
unknowns can be denoted Y , and the notation y(x) ∈ Y means that the
unknown y(x) is admissible.

Also, a state which satisfies the state constraints is called an admissible
state [29].



11.1. PROBLEM FORMULATION 217

Definition 6 (Admissible state) A state u(x) which satisfies the state
constraints is called an admissible state. The set of admissible states will
be denoted by U, and u(x) ∈ U means that u(x) is admissible.

Error functional

The inverse problem provides a link between the outputs from the model and
the observed data. When formulating and solving inverse problems the con-
cept of error functional is used to specify the proximity of the state variable
u(x) to the observed data û(x):

The error functional E : Y → R is of the form

E[y(x)] = ‖u(x)− û(x)‖, (11.2)

where any of the generally used norms may be applied to characterize the
proximity of u(x) and û(x). Some of them are the sum squared error or the
Minkowski error. Regularization theory can also be applied here [10].

The solution of inverse problems is then reduced to finding of extremum
of a functional:

Problem 9 (Inverse problem) Let Y and U be the function spaces of all
admissible unknowns and states, respectively. Find an admissible unknown
y∗(x) ∈ Y which causes the system

L(y(x),u(x),x) = f

to follow an admissible state u∗(x) ∈ U , and for which the error functional

E = E[y(x)],

defined on Y , takes on a minimum value.

On the other hand, inverse problems might be ill-posed [51]. A problem is
said to be well possed if the following conditions are true: (a) the solution to
the problem exists; (b) the solution is unique; and (c) the solution is stable.
This implies that for the above-considered problems, these conditions can be
violated. Therefore, their solution requires application of special methods.
In this regard, the use of regularization theory is widely used [17].

In some elementary cases, it is possible to establish analytic connections
between the sought inputs or properties and the observed data. But for
the majority of cases the search of extrema for the error functional must be
carried out numerically, and the so-called direct methods can be applied.
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Training algorithm

The training algorithm is entrusted to solve the reduced function optimiza-
tion problems. When possible, a quasi-Newton problem should be used. If
the gradient of the objective function cannot be computed accurately, an
evolutionary algorithm could be used instead.

11.2 A simple example

Problem statement

For this problem, consider a 2-dimensional inhomogeneous medium with do-
main Ω and boundary Γ, in which the thermal conductivity is to be estimated.
The mathematical model of heat transfer here is

∇ (ρ(x, y)∇T (x, y; t)) =
∂T (x, y; t)

∂t
in Ω, (11.3)

T (x, y; 0) = T0 in Ω, (11.4)

T (x, y; t) = TΓ on Γ, (11.5)

for t ∈ [0, tf ], and where ρ(x, y) is the thermal conductivity, T0 is the initial
temperature and TΓ is the boundary temperature.

On the other hand, experimental data is obtained from measurements of
the temperature for different time steps and at different points on the domain

t1 T̂11 T̂12 . . . T̂1Q

t2 T̂21 T̂22 . . . T̂2Q
...

...
...

. . .
...

tP T̂P1 T̂P2 . . . T̂PQ

where P and Q are the number of time steps and points considered, respec-
tively.

Figure 11.1 is a graphical statement of this situation.
The goal here is to estimate the thermal conductivity ρ(x, y), so that

the heat equation model matches the experimental data. In this way, the
objective functional for this problem can be the mean squared error between
the computed temperature for a given thermal conductivity and the measured
temperature,

E[ρ(x, y)] =
1

PQ

P∑
i=1

(
Q∑

j=1

(
T (xj, yj; ti)− T̂ij

)2
)
. (11.6)
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Figure 11.1: The thermal conductivity estimation problem statement.

For this example we take the problem domain to be the square Ω =
{(x, y) : |x| ≤ 0.5, |y| ≤ 0.5} with boundary Γ = {(x, y) : |x| = 0.5, |y| =
0.5}. That domain is discretized with a triangular mesh composed of 888
elements and 485 nodes, and the time is also discretized in 11 time steps. On
the other hand, artificial temperature data is generated with the following
expression for the thermal conductivity, which will be considered to be the
analytical solution to this problem,

ρ∗(x, y) = x2 + y2. (11.7)

Selection of function space

The thermal conductivity ρ(x, y) in Ω is represented by a multilayer per-
ceptron with a sigmoid hidden layer and a linear output layer. The neural
network must have two inputs and one output neuron. We guess a good
number of neurons in the hidden layer to be three. This neural network is
denoted as a 2 : 3 : 1 multilayer perceptron.

It spans a family V of parameterized functions ρ(x, y) of dimension s =
13, which is the number of parameters in the neural network. Figure 11.3 is
a graphical representation of this network architecture.

Such a multilayer perceptron spans a family V of parameterized func-
tions ρ(x, y) of dimension s = 19, which is the number of parameters in the
network. Elements V are of the form
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Figure 11.2: Analytical thermal conductivity in Ω.

x

rho

y

Figure 11.3: Network architecture for the thermal conductivity estimation
problem.

ρ : R2 → R

where

ρ(x, y) = b
(2)
1 +

3∑
j=1

w
(2)
1j · tanh

(
b

(1)
j + w

(1)
j1 x+ w

(1)
j2 y
)
. (11.8)

On the other hand, the biases and synaptic weight are initialized at ran-
dom, which means that a random initial guess is used for the thermal con-
ductivity.
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Formulation of variational problem

Following Equation 11.6 the variational statement for this properties estima-
tion inverse problem is to find a function ρ∗(x, y) for which the mean squared
error functional

E[ρ(x, y)] =
1

PQ

P∑
i=1

(
Q∑

j=1

(
T (xj, yj; ti)− T̂ij

)2
)
, (11.9)

defined on V takes on a minimum value
Evaluation of the objective functional (11.9) requires a numerical method

for integration of partial differential equations. Here we choose the Finite
Element Method [57]. For this problem we use a triangular mesh with 888
elements and 485 nodes.

Last, evaluation of the gradient, ∇f(ζ), is carried out by means of nu-
merical differentiation. In particular, the central differences method is used
with an ε value of 10−6 [8] .

Solution of reduced function optimization problem

A suitable training algorithm for this problem is a quasi-Newton method
with BFGS train direction and Brent optimal train rate methods for training
[45]. Indeed, this training algorithm has demonstrated fully convergence to
the global optimum in this problem.

In this example, we set the training algorithm to stop after when the
training rate is zero for a gradient descent train direction. During the training
process, which lasts for 168 epochs, the error decreases from 1.117 to 2.868 ·
10−5, and the gradient norm from 0.466 to 1.106 ·10−6. Figures 11.4 and 11.5
show, with a logarithmic scale for the y-axis, the evaluation and gradient
norm histories of the neural network training process.

Table 11.1 shows the training results for this problem. Here N denotes
the number of training epochs, M the number of objective functional evalu-
ations, CPU the CPU time in seconds for a laptop AMD 3000, ‖ζ‖ the final
parameters norm, f(ζ∗) the final objective function evaluation, and ‖∇f(ζ∗)‖
its gradient norm.

The solution here is good, since the mean squared error between the
output from the model and the experimental data is of order 10−6 and the
estimated thermal conductivity matches very well the actual thermal conduc-
tivity given by Equation (11.7). Figure 11.6 shows the thermal conductivity
estimated by the neural network for this problem.
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Figure 11.4: Evaluation history for the thermal conductivity estimation prob-
lem.
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Figure 11.5: Gradient norm history for the thermal conductivity estimation
problem.

Finally, the analytical expression of the function represented by the trained
multilayer perceptron is as follows,
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N = 168
M = 10476
CPU = 16253
‖ζ∗‖ = 21.606
f(ζ∗) = 2.868 · 10−5

‖∇f(ζ∗)‖ = 1.106 · 10−3

Table 11.1: Training results for the thermal conductivity estimation problem.
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Figure 11.6: Neural network results to the thermal conductivity estimation
problem.

ρ∗(x, y) = 51.6455

+ 45.7732 tanh (−0.551456− 0.143683x− 0.0824186y)

− 30.2139 tanh (0.646978− 0.238919x+ 0.0769619y)

− 19.8059 tanh (0.661936− 0.00304418x− 0.333647y).(11.7)

11.3 Related code

Flood does not include any inverse problem example, since they usually re-
quire external codes in order to calculate the system states.
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Chapter 12

Function optimization

12.1 Problem formulation

The variational problem is formulated in terms of finding a function which is
an extremal argument of some objective functional. On the other hand, the
function optimization problem is formulated in terms of finding vector which
is an extremal argument of some objective function.

While the multilayer perceptron naturally leads to the solution of vari-
ational problems, Flood provides a workaround for function optimization
problems by means of the independent parameters.

Function optimization refers to the study of problems in which the aim is
to minimize or maximize a real function. In this way, the objective function
defines the optimization problem itself.

The function regression problem [24] can be regarded as the problem of
approximating a function from data. The formulation of a function regression
problem requires:
- A multilayer perceptron.
- An objective functional.
- A training algorithm.

Multilayer perceptron

This multilayer perceptron spans a vector space V of dimension d. The
elements of that space, y : X → Y , are of the form

ζ = (ζ1, . . . , ζd). (12.1)

That parameterized space of functions will be the basis to aproximate the
regression function.
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Objective functional

The simplest function optimization problems are those in which no con-
straints are posed on the solution. The general unconstrained function opti-
mization problem can be formulated as follows:

Problem 10 (Unconstrained function optimization problem) Let V ⊆
Rd be a real vector space. Find a vector ζ∗ ∈ V for which the function
f : V → R defined by

f = f(ζ)

takes on a minimum or a maximum value.

The function f(ζ) is called the objective function. The domain of the
objective function for a function optimization problem is a subset V of Rd,
and the image of that function is the set R. The integer d is known as the
number of variables in the objective function.

The vector at which the objective function takes on a minimum or maxi-
mum value is called the minimal or the maximal argument of that function,
respectively. The tasks of minimization and maximization are trivially re-
lated to each other, since maximization of f(ζ) is equivalent to minimization
of−f(ζ), and vice versa. Therefore, without loss of generality, we will assume
function minimization problems.

On the other hand, a minimum can be either a global minimum, the
smallest value of the function over its entire range, or a local minimum, the
smallest value of the function within some local neighborhood. Functions
with a single minimum are said to be unimodal, while functions with many
minima are said to be multimodal.

A function optimization problem can be specified by a set of constraints,
which are equalities or inequalities that the solution must satisfy. Such con-
straints are expressed as functions. Thus, the constrained function optimiza-
tion problem can be formulated as follows:

Problem 11 (Constrained function optimization problem) Let V ⊆
Rd be a real vector space. Find a vector ζ∗ ∈ V such that the functions
ci : V → R, for i = 1, . . . , l and defined by

ci = ci(ζ)

hold ci(ζ
∗) = 0, for i = 1, . . . , l, and for which the function f : V → R

defined by
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f = f(ζ)

takes on a minimum value.

In other words, the constrained function optimization problem consists of
finding an argument which makes all the constraints to be satisfied and the
objective function to be an extremum. The integer l is known as the number
of constraints in the function optimization problem.

A common approach when solving a constrained function optimization
problem is to reduce it into an unconstrained problem. This can be done by
adding a penalty term to the objective function for each of the constrains
in the original problem. Adding a penalty term gives a large positive or
negative value to the objective function when infeasibility due to a constrain
is encountered.

For the minimization case, the general constrained function optimization
problem can be reformulated as follows:

Problem 12 (Reduced constrained function optimization problem)
Let v ⊆ Rd be a real vector space, and let ρi > 0, for i = 1, . . . , l, be real
numbers. Find a vector ζ∗ ∈ V for which the function f : V → R defined by

f̄(ζ) = f(ζ) +
l∑

i=1

ρi (ci(ζ))2 ,

takes on a minimum value.

The parameters ρi, for i = 1, . . . , l, are called the penalty term ratios,
being l the number of constraints.

For large values of the ratios ρi, it is clear that the solution ζ∗ of Problem
12 will be in in a region where ci(ζ) are small.

Thus, for increasing values of ρi it is expected that the the solution ζ∗

of Problem 12 will approach the constraints and, subject to being close, will
minimize the objective function f(ζ). Ideally then, as ρi → ∞ the solution
of Problem 12 will converge to the solution of Problem 11 [35].

Note that, while the squared norm of the constrained is the metric most
used, any other suitable metric can be used.

Many optimization algorithms use the gradient vector of the objective
function to search for the minimal argument. The gradient vector of the
objective function is written:
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∇f =

(
∂f

∂ζ1

, . . . ,
∂f

∂ζd

)
. (12.-2)

While for some objective functions the gradient vector can be evaluated
analytically, there are many applications when that is not possible, and the
objective function gradient vector needs to be computed numerically. This
can be done by perturbing each argument element in turn, and approximating
the derivatives by using the forward or the central differences methods.

The objective function Hessian matrix

There are some optimization algorithms which also make use of the Hessian
matrix of the objective function to search for the minimal argument. The
Hessian matrix of the objective function is written:

Hf =


∂2f

∂ζ2
1

· · · ∂2f

∂ζ1∂ζd
...

. . .
...

∂2f

∂ζd∂ζ1

· · · ∂2f

∂ζ2
d

 (12.-1)

As it happens for the gradient vector, there are many applications when
analytical evaluation of the Hessian is not possible, and it must be computed
numerically. This can be done by perturbing each argument element in turn,
and approximating the derivatives by using the forward or the central differ-
ences method.

Training algorithm

The training algorithm is the solving algorithm for the optimization problem.
If possible, the quasi-Newton method should be applied here. If that fails,
the evolutionary algorithm can be used.

12.2 A simple example

The problem in this example is to find the minimum point on the plane
ζ1 + ζ2 = 1 which also lies in the cylinder ζ2

1 + ζ2
2 = 1.

Figure 12.1 is a graphical representation of this function optimization
problem.

This constrained function optimization problem can be stated as:
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Figure 12.1: The plane-cylinder function optimization problem.

Problem 13 (Plane-cylinder function optimization problem) Let V =
[−1, 1]2 be a real vector space. Find a vector ζ∗ ∈ X such that the function
c : V → R defined by

c(ζ) = ζ2
1 + ζ2

2 − 1, (12.0)

holds c(ζ∗) ≤ 0 and for which the function f : X → R defined by

f(ζ) = ζ1 + ζ2 − 1, (12.1)

takes on a minimum value.

This constrained problem can be reduced to an unconstrained problem
by the use of a penalty function:

Problem 14 (Reduced plane-cylinder function optimization problem)
Let V ⊆ R2 be a real vector space, and let ρ ∈ R+ be a positive real number.
Find a vector ζ∗ ∈ V for which the function f̄ : V → R defined by

f̄(ζ) = ζ1 + ζ2 − 1 + ρ
(
ζ2

1 + ζ2
2 − 1

)2
,

takes on a minimum value.
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12.3 Related code

Flood includes the examples DeJongFunction, RosenbrockFunction, RastriginFunction,
and PlaneCylinder to represent the concepts of the De Jong’s, Rosenbrock’s, Ras-
trigin’s and Plane-Cylinder objective functions, respectively.



Appendix A

Software model

In this Appendix we present the software model of Flood. The whole process is
carried out in the Unified Modeling Language (UML), which provides a formal
framework for the modeling of software systems. The final implementation is to
be written in the C++ Programming Language.

A.1 The Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a general purpose visual modeling lan-
guage that is used to specify, visualize, construct, and document the artifacts of a
software system [47].

UML class diagrams are the mainstay of object-oriented analysis and design.
They show the classes of the system, their interrelationships and the attributes
and operations of the classes.

In order to construct a model for the multilayer perceptron, we follow a top-
down development. This approach to the problem begins at the highest conceptual
level and works down to the details. In this way, to create and evolve a conceptual
class diagram for the multilayer perceptron, we iteratively model:

1. Classes.

2. Associations.

3. Derived classes.

4. Attributes and operations.

A.2 Classes

In colloquial terms a concept is an idea or a thing. In object-oriented modeling
concepts are represented by means of classes [50]. Therefore, a prime task is to
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identify the main concepts (or classes) of the problem domain. In UML class
diagrams, classes are depicted as boxes [47].

Through all this work, we have seen that neural networks are characterized
by a neuron model, a network architecture, an objective functional and a training
algorithm. The characterization in classes of these four concepts for the multilayer
perceptron is as follows:

Neuron model The class which represents the concept of perceptron neuron
model is called Perceptron.

Network architecture The class representing the concept of network architec-
ture in the multilayer perceptron is called MultilayerPerceptron.

Objective functional The class which represents the concept of objective func-
tional in a multilayer perceptron is called ObjectiveFunctional.

Training algorithm The class representing the concept of training algorithm in
a multilayer perceptron is called TrainingAlgorithm.

Figure A.1 depicts a starting UML class diagram for the conceptual model of
the multilayer perceptron.

Perceptron MultilayerPerceptron ObjectiveFunctional TrainingAlgorithm

Figure A.1: A conceptual diagram for the multilayer perceptron.

A.3 Associations

Once identified the main concepts in the model it is necessary to aggregate the
associations among them. An association is a relationship between two concepts
which points some significative or interesting information [50]. In UML class dia-
grams, an association is shown as a line connecting two classes. It is also possible to
assign a label to an association. The label is typically one or two words describing
the association [47].

The appropriate associations in the system are next identified to be included
to the UML class diagram of the system:

Neuron model - Multilayer perceptron A multilayer perceptron is built by
perceptrons.
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Network architecture - Objective functional A multilayer perceptron has as-
signed an objective functional.

Objective functional - Training algorithm An objective functional is improved
by a training algorithm.

Figure A.2 shows the above UML class diagram with these associations aggre-
gated.

Perceptron

MultilayerPerceptron ObjectiveFunctional TrainingAlgorithm

is built by

has assigned is improved by

Figure A.2: Aggregation of associations to the conceptual diagram.

A.4 Derived classes

In object-oriented programming, some classes are designed only as a parent from
which sub-classes may be derived, but which is not itself suitable for instantiation.
This is said to be an abstract class, as opposed to a concrete class, which is suitable
to be instantiated. The derived class contains all the features of the base class,
but may have new features added or redefine existing features [50]. Associations
between a base class an a derived class are of the kind is a [47].

The next task is then to establish which classes are abstract and to derive the
necessary concrete classes to be added to the system. Let us then examine the
classes we have so far:

Neuron model The class Perceptron is concrete, because it represents an actual
neuron model. Therefore a perceptron object can be instantiated.

Network architecture The class MultilayerPerceptron is a concrete class and
is itself suitable for instantiation.

Objective functional The class ObjectiveFunctional is abstract, because it
does not represent a concrete objective functional for the multilayer percep-
tron. The objective functional for the multilayer perceptron depends on the
problem at hand.
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Some suitable error functionals for data modeling problems are the sum
squared error, the mean squared error, the root mean squared error, the nor-
malized squared error or the Minkowski error. Therefore the SumSquaredError,
MeanSquaredError, RootMeanSquaredError, NormalizedSquaredError and
MinkowskiError concrete classes are derived from the ObjectiveFunctional
abstract class. All of these error functionals are measured on an input-target
data set, so we add to the model a class which represents that concept. This
is called InputTargetDataSet, and it is a concrete class.

In order to solve other types of variational applications, such as optimal con-
trol, inverse problems or optimal shape design, a new concrete class must be
in general derived from the ObjectiveFunctional abstract class. However,
in order to facilitate that task Flood includes some examples which can be
used as templates to start with. For instance, the BrachistochroneProblem
or IsoperimetricProblem classes are derived to solve two classical problems
in the calculus of variations. Other concrete classes for some specific optimal
control, inverse problems or optimal shape design are also derived.

On the other hand, evaluation of the objective functional in some applica-
tions requires integrating functions, ordinary differential equations or a par-
tial differential equations. In this way, we add to the model the utility classes
called IntegrationOfFunctions and OrdinaryDifferentialEquations for
the two firsts. For integration of partial differential equations the use of the
Kratos software is suggested [14].

Training algorithm The class TrainingAlgorithm is abstract, because it does
not represent a training algorithm for an objective function of a multilayer
perceptron.

The concrete training algorithm classes included with Flood are RandomSearch
GradientDescent, NewtonMethod, ConjugateGradient, QuasiNewtonMethod
and EvolutionaryAlgorithm.

Figure A.3 shows the UML class diagram for the multilayer perceptron with
some of the derived classes included.

A.5 Attributes and operations

An attribute is a named value or relationship that exists for all or some instances
of a class. An operation is a procedure associated with a class [50]. In UML class
diagrams, classes are depicted as boxes with three sections: the top one indicates
the name of the class, the one in the middle lists the attributes of the class, and
the bottom one lists the operations [47].
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Perceptron

MultilayerPerceptron ObjectiveFunctional TrainingAlgorithm

is built by

has assigned is improved by

BrachistochroneProblem

CarProblem

GradientDescent

QuasiNewtonMethod

SumSquaredError

EvolutionaryAlgorithm

is a

is a

is a

is a

is a

MinimumDragProblem

is a

is a

Figure A.3: Aggregation of derived classes to the association diagram.

Perceptron

A perceptron neuron model has the following attributes:
- A number of neuron inputs.
- The activation function.
- A bias.
- A set of synaptic weights.

It performs the following main operations:
- Calculate the output for a given input.

Multilayer perceptron

A multilayer perceptron has the following attributes:
- The sizes of the network architecture - One or several hidden layers of perceptrons.
- An output layer of perceptrons.
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It performs the following main operations:- Calculate the output for a given
input.

Objective functional

An objective functional for a multilayer perceptron has the following attributes:
- A relationship to a multilayer perceptron. In C++ this is implemented as a
pointer to a multilayer perceptron object.

It performs the following operations:
- Calculate the evaluation of a multilayer perceptron.
- Calculate the objective function gradient vector of a multilayer perceptron.

Training algorithm

A training algorithm for a multilayer perceptron has the following attributes:
- A relationship to an objective functional for a multilayer perceptron. In C++
this is implemented as a pointer to an objective functional object.
- A set of training operators.
- A set of training parameters.
- A set of stopping criteria.

It performs the following operations:
- Train a multilayer perceptron.
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Unit testing

B.1 The unit testing development pattern

Unit testing is the process of creating integrated tests into a source code, and
running those tests every time it is to be built. In that way, the build process
checks not only for syntax errors, but for semantic errors as well.

In that regard, unit testing is generally considered a development pattern, in
which the tests would be written even before the actual code. If tests are written
first, they:

- Describe what the code is supposed to do in concrete, verifiable terms.

- Provide examples of code use rather than just academic descriptions.

- Provide a way to verify when the code is finished (when all the tests run
correctly).

B.2 Related code

There exist several available frameworks for incorporating test cases in C++ code,
such as CppUnit or Cpp test. However, for portability reasons, Flood comes with
a simple unit testing utility class for handing automated tests. Also, every classes
and methods have test classes and methods associated.

The UnitTesting class in Flood

Flood includes the UnitTesting abstract class to provide some simple mechanisms
to build test cases and test suites.

Constructor
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Unit testing is to be performed on classes and methods. Therefore the UnitTesting
class is abstract and it can’t be instantiated. Concrete test classes must be derived
here.

Members

The UnitTesting class has the following members:
- The counted number of tests.
- The counted number of passed tests.
- The counted number of failed tests.
- The output message.

That members can be accessed or modified using get and set methods, respec-
tively.

Methods

Derived classes must implement the pure virtual run test case method, which
includes all testing methods. The use of this method is as follows:

TestMockClass tmc ;
tmc . r u n t e s t c a s e ( ) ;

The assert true and assert false methods are used to prove if some condition
is satisfied or not, respectively. If the result is correct, the counter of passed tests
is increased by one; otherwise the counter of failed tests is increased by one,

int a = 0 ;
int b = 0 ;

TestMockClass tmc ;
tmc . a s s e r t t r u e ( a == b , ” I n c r e a s e t e s t s passed count ” ) ;
tmc . a s s e r t f a l s e ( a == b , ” I n c r e a s e t e s t s f a i l e d count ” ) ;

Finally, the print results method prints the testing outcome,

TestMockClass tmc ;
tmc . r u n t e s t c a s e ( ) ;
tmc . p r i n t r e s u l t s ( ) ;

The unit testing classes

Every single class in Flood has a test class associated, and every single method of
that class has also a test method associated.

On the other hand, a test suite of all the classes distributed within Flood can
be found in the folder AllTests.
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Numerical integration

Evaluation of the objective functional of a neural network often requires to inte-
grate functions, ordinary differential equations and partial differential equations.
In general, approximate approaches need to be applied here.

Some standard methods for numerical integration are described in this Ap-
pendix. They are meant to be utilities which can be embedded into a specific
problem when necessary.

C.1 Integration of functions

Introduction

Numerical integration is the approximate computation of an integral using numer-
ical techniques. More specifically, the problem is to compute the definite integral
of a given real function f(x) over a closed interval [a, b],

I[y(x)] =
∫ b

a
f(x)dx. (C.1)

There are a wide range of methods available for numerical integration [45].
The numerical computation of an integral is sometimes called quadrature.

Closed Newton-Cotes formulas

The Newton-Cotes formulas are an extremely useful and straightforward family of
numerical integration techniques. The integration formulas of Newton and Cotes
are obtained dividing the interval [a, b] into n equal parts such that fn = f(xn)
and h = (b−a)/n. Then the integrand f(x) is replaced by a suitable interpolating
polynomial P (x), so that
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∫ b

a
f(x) ∼

∫ b

a
P (x). (C.2)

To find the fitting polynomials, the Newton-Cotes formulas use Lagrange in-
terpolating polynomials [49]. Next we examine some rules of this kind.

The trapezoidal rule

The 2-point closed Newton-Cotes formula is called the trapezoidal rule, because
it approximates the area under a curve by a trapezoid with horizontal base and
sloped top (connecting the endpoints a and b). In particular, let call the lower
and upper integration limits x0 and x1 respectively, the integration interval h, and
denote fn = f(xn). Then the trapezoidal rule states that [54]

∫ x2

x1

f(x)dx = h

[
1
2
f1 +

1
2
f2

]
+ O(h3f ′′), (C.2)

were the error term O(·) means that the true answer differs from the estimate by
an amount that is the product of some numerical coefficient times h3 times the
value of the functions second derivative somewhere in the interval of integration.

Simpson’s rule

The 3-point closed Newton-Cotes formula is called Simpson’s rule. It approximates
the integral of a function using a quadratic polynomial. In particular, let the
function f be tabulated at points x0, x1, and x2, equally spaced by distance h,
and denote fn = f(xn). Then Simpson’s rule states that [54]

∫ x3

x1

f(x)dx = h

[
1
3
f1 +

4
3
f2 +

1
3
f3

]
+ O(h5f (4)). (C.2)

Here f (4) means the fourth derivative of the function f evaluated at an un-
known place in the interval. Note also that the formula gives the integral over an
interval of size 2h, so the coefficients add up to 2.

Extended Newton-Cotes formulas

The Newton-Cotes formulas are usually not applied to the entire interval of inte-
gration [a, b], but are instead used in each one of a collection of subintervals into
which the interval [a, b] has been divided. The full integral is the approximated by
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the sum of the approximations to the subintegrals. The locally used integration
rule is said to have been extended, giving rise to a composite rule [49]. We proceed
to examine some composite rules of this kind.

Extended trapezoidal rule

For n tabulated points, using the trapezoidal rule n − 1 times and adding the
results gives [54]

∫ xn

x1

f(x)dx = h

[
1
2
f1 + f2 + fn−1 +

1
2
fn

]
+ O

(
(b− a)3f ′′

N2

)
. (C.2)

Note that the error estimate is here written in terms of the interval b− a and
the number of points N instead of in terms of h.

Extended Simpson’s rule

For and odd number n of tabulated points, the extended Simpson’s rule is [54]

∫ xn

x1

f(x)dx = h

[
1
3
f1 +

4
3
f2 +

2
3
f3 +

4
3
f4 + . . .+

2
3
fn−2 +

4
3
fn−1 +

1
3
fn

]
+ O

(
1
N4

)
. (C.2)

Ordinary differential equation approach

The evaluation of the integral (C.1) is equivalent to solving for the value I ≡ y(b)
the ordinary differential equation

dy

dx
= f(x), (C.3)

y(a) = 0. (C.4)

Section C.2 of this report deals with the numerical integration of differential
equations. In that section, much emphasis is given to the concept of ‘variable’ or
‘adaptive’ choices of stepsize.

C.2 Ordinary differential equations

Introduction

An ordinary differential equation (ODE) is an equality involving a function and
its derivatives. An ODE of order n is an equation of the form
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F (x, y(x), y′(x), . . . , y(n)(x)) = 0, (C.5)

where y is a function of x, y′ = dy/dx is the first derivative of y with respect to x,
and y(n) = dyn/dxn is the n-th derivative of y with respect to x.

The generic problem of a n-th order ODE can be reduced to the study of a
set of n coupled first-order differential equations for the functions yi, i = 1, . . . , n,
having the general form

dyi(x)
dx

= fi(x, y1, . . . , yN ), (C.6)

for i = 1, . . . , n and where the functions fi on the right-hand side are known.
While there are many general techniques for analytically solving different classes

of ODEs, the only practical solution technique for complicated equations is to use
numerical methods. The most popular of these are the Runge-Kutta and the
Runge-Kutta-Fehlberg methods.

A problem involving ODEs is not completely specified by its equations. In
initial value problems all the yi are given at some starting value x’s, and it is
desired to find the yi’s at some final point xf , or at some discrete list of points
(for example, at tabulated intervals).

The Euler method

The formula for the Euler method is

yn+1 = yn + hf(xn, yn) +O(h2), (C.7)

which advances a solution from xn to xn+1 = xn+h. The formula is unsymmetrical:
It advances the solution through an interval h, but uses derivative information only
at the beginning of that interval.

There are several reasons that Eulers method is not recommended for practical
use, among them, (i) the method is not very accurate when compared to other
methods run at the equivalent stepsize, and (ii) neither is it very stable [45].

The Runge-Kutta method

Consider the use of a step like (C.7) to take a ‘trial’ step to the midpoint of the
interval. The use the value of both x and y at that midpoint to compute the ‘real’
step across the whole interval. This can be written

k1 = hf(xn, yn)

k2 = hf(xn +
1
2
h, yn +

1
2
k1)

yn+1 = yn + k2 +O(h3) (C.6)
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As indicated in the error term, this symmetrization cancels out the first-order
error term, making the method second order. A method is conventionally called
nth order if its error term is O(hn+1)- In fact Equation (C.6) is called the second-
order Runge-Kutta or midpoint method.

There are various specific formulas that derive from this basic idea. The most
often used is the classical fourth-order Runge-Kutta formula,

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1

2
)

k3 = hf(xn +
h

2
, yn +

k2

2
)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(h5) (C.3)

The fourth order Runge-Kutta method requires four evaluations of the right-
hand side per step h.

The Runge-Kutta-Fehlberg method

Implementation of adaptive stepsize control requires that the stepping algorithm
signal information about its performance, most important, an estimate of its trun-
cation error.

It is this difference that we shall endeavor to keep to a desired degree of accu-
racy, neither too large nor too small. We do this by adjusting h.

An step size adjustment algorithm is based on the embedded Runge-Kuta
formulas, originally invented by Fehlberg. The general form of a fifth-order Runge-
Kutta formula is

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1

2
)

. . .

k3 = hf(xn +
h

2
, yn +

k2

2
)

k4 = hf(xn + h, yn + k3)
yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 +O(h6) (C.-1)

The embedded fourth order formula is

y∗n+1 = yn + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4 + c∗5k5 + c∗6k6 +O(h5) (C.0)



244 APPENDIX C. NUMERICAL INTEGRATION

And so the error estimate is

∆ ≡ yn+1 − y∗n+1

=
6∑

i=1

(ci − c∗i )ki. (C.0)

The particular values of the various constants that we favor are those found by
Cash and Karp [11], and given in Table C.1. These give a more efficient method
than Fehlberg’s original values [45].

i ai bi1 bi2 bi3 bi4 bi5 ci c∗i
1 37

378
2825
27648

2 1
5

1
5

0 0
3 3

10
3
40

9
40

250
621

18575
48384

4 3
5

3
10

− 9
10

6
5

125
594

13525
55296

5 1 −11
54

5
2

−70
27

35
27

0 277
14336

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

Table C.1: Cash and Karp parameters for the Runge-Kutta-Fehlberg
method.

Now that we know, approximately, what the error is, we need to consider
how to keep it within desired bounds. What is the relation between ∆ and h?
According to Equations (C.-1) and (C.0), ∆ scales as h5. If we take a step h1

and produce an error ∆1, therefore, the step h0 that would have given some other
value ∆0 is readily estimated as

h0 = h1

∣∣∣∣∆0

∆1

∣∣∣∣0.2

(C.1)

Henceforth we will let ∆0 denote the desired accuracy. Then, Equation (C.1)
is used in two ways: If ∆1 is larger than ∆0 in magnitude, the equation tells
how much to decrease the step when we retry the present (failed) step. If ∆1 is
smaller than ∆0, on the other hand, then the equation tells how much we can
safely increase the stepsize for the next step.

This notation hides the fact that ∆0 is actually a vector of desired accuracies,
one for each equation in the set of ODEs. In general, the accuracy requirement
will be that all equations are within their respective allowed errors.

h0 =

 Sh1

∣∣∣∆0
∆1

∣∣∣0.20
∆0 ≥ ∆1

Sh1

∣∣∣∆0
∆1

∣∣∣0.25
∆0 < ∆1

(C.1)
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C.3 Partial differential equations

Introduction

Partial differential equations arise in all fields of science and engineering, since
most real physical processes are governed by them. A partial differential equation
is an equation stating a relationship between a function of two or more inde-
pendent variables and the partial derivatives of this function with respect to the
independent variables. In most problems, the independent variables are either
space (x, y, z) or space and time (x, y, z, t). The dependent variable depends on
the physical problem being modeled.

Partial differential equations are usually classified into the three categories,
hyperbolic, parabolic, and elliptic, on the basis of their characteristics [45].

The prototypical example of a hyperbolic equation is the wave equation

∂2u(x, t)
∂t2

= v2∇2u(x, t), (C.2)

where v is the velocity of wave propagation.
The prototypical parabolic equation is the diffusion equation

∂u(x, t)
∂t

= ∇(D∇u(x, t)), (C.3)

where D is the diffusion coefficient.
The prototypical elliptic equation is the Poisson equation

∇2u(x) = ρ(x), (C.4)

where the source term ρ is given. If the source term is equal to zero, the equation
is Laplace’s equation.

From a computational point of view, the classification into these three canonical
types is not as important as some other essential distinctions [45]. Equations (C.2)
and (C.3) both define initial value (or Cauchy) problems. By contrast, Equation
(C.4) defines a boundary value problem.

In an initial value problem information of u is given at some initial time t0 for
all x. The PDE then describes how u(x, t) propagates itself forward in time [45].

On the other hand, boundary value problems direct to find a single static
function u which satisfies the equation within some region of interest x, and which
has some desired behavior on the boundary of that region [45].

In a very few special cases, the solution of a PDE can be expressed in closed
form. In the majority of problems in engineering and science, the solution must
be obtained by numerical methods.
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The finite differences method

In the finite differences approach, all the derivatives in a differential equation are
replaced by algebraic finite difference approximations, which changes the differen-
tial equation into an algebraic equation that can be solved by simple arithmetic
[25].

The error between the approximate solution and the true solution here is deter-
mined by the error that is made by going from a differential operator to a difference
operator. This error is called the discretization error or truncation error [40]. The
term truncation error reflects the fact that a difference operator can be viewed as
a finite part of the infinite Taylor series of the differential operator.

The finite element method

Another approach for solving differential equations is based on approximating
the exact solution by an approximate solution, which is a linear combination of
specific trial functions, which are typically polynomials. These trial functions are
linearly independent functions that satisfy the boundary conditions. The unknown
coefficients in the trial functions are then determined by solving a system of linear
algebraic equations [25].

Because finite element methods can be adapted to problems of great complexity
and unusual geometries, they are an extremely powerful tool in the solution of
important problems in science and engineering. It is out of the scope of this work
to provide a detailed explanation of the finite element method. The interested
reader is referred to [57].
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gradient descent method, 100
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gradient vector, objective function, 227
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initial condition, 184, 194, 218
initial value problem, 245
input constraint, 182, 216
input layer, 47
input scaling, 61
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input space, perceptron, 36
input variable description, 47
input variable maximum, 61
input variable mean, 61
input variable minimum, 61
input variable name, 47
input variable standard deviation, 61
input variable units, 47
input-target data set, 136, 165
inputs, perceptron, 29
integration of functions, 239
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inverse Hessian, 104
inverse Hessian approximation, 108
inverse problems, 23, 215
IsoperimetricProblem class, 97
iteration, see epoch

Jacobian matrix, 70

Laplace equation, 245

layer, 47
layer activation derivative, 67
layer activation function, 55
layer activation second derivative, 72
layer combination function, 54
layer hyperbolic tangent, 57
layer hyperbolic tangent derivative, 69
layer hyperbolic tangent second deriva-

tive, 72
layer Jacobian matrix, 70
layer linear function, 57
layer linear function derivative, 70
layer linear function second derivative,

73
layer logistic function, 56
layer logistic function derivative, 69
layer logistic function second derivative,

72
layer output function, 57
layer symmetric threshold, 56
layer symmetric threshold second deriva-

tive, 72
layer threshold function, 55
layer threshold function second deriva-

tive, 72
learning algorithm, see training algorithm
learning algorithm, see training algorithm,

99
learning direction, see training direction
learning problem, 81
learning rate, see training rate
Levenberg-Marquardt algorithm, 100
line recombination, 116
line search, see one dimensional opti-

mization
linear function, 34
linear function derivative, 39
linear function second derivative, 42
linear ranking, 114
linear regression analysis, 142, 157
linearized diagram, 71
local maximum, 99
local minimum, 99, 226
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local minimum condition, 100
local minimum, objective function, 100
local minimum, objective functional, 81
logistic function, 33
logistic function derivative, 38
logistic function second derivative, 40
lower and upper bounds, 182, 197, 205,

216
lower bound, 66

mathematical model, 181, 205, 215
mating population, 114
Matrix class, 17
maximal argument, 226
maximization, 226
maximum epochs number, 100
maximum generations number, 118
maximum time, 100, 118
mean and standard deviation scaling method,

61
mean evaluation goal, 118
mean squared error, 139
MeanSquaredError class, 97, 161, 178
mesh, 219
minimal argument, 226
minimization, 226
minimum and maximum scaling method,

61
minimum drag problem, 207
minimum evaluation improvement, 100
minimum parameters increment norm,

100
MinimumDragProblem example, 97
Minkowski error, 140
MinkowskiError class, 97, 161, 178
modeling, see fnction regression135
multi-criterion, 206
multilayer perceptron, 21, 47, 138, 166
multilayer perceptron activity diagram,

67
MultilayerPerceptron class, 73
multimodal function, 226
mutation, 117
mutation range, 117

mutation rate, 117

namespace, 13
net input, see cmbination31
network architecture, 21, 47
neural network, 21
neural parameters, 50, 58
neural parameters norm, 50
neural parameters number, 50
neuron model, 21, 29
Newton’s increment, 104
Newton’s method, 100, 104
Newton’s training direction, 104
node, 219
normal mutation, 117
normalized squared error, 140, 149, 154,

170
NormalizedSquaredError class, 97, 161,

178
number of individuals, see population

size
number of variables, 225
numerical differentiation, 188, 198, 211
numerical differentiation, Jacobian ma-

trix for the multilayer percep-
tron, 71

numerical differentiation, objective func-
tion gradient, 92

numerical differentiation, objective func-
tion Hessian, 93

numerical integration, 239
numerical integration, see integration of

functions, 239

objective function, 86, 100
objective function gradient, 87, 227
objective function Hessian, 92, 228
objective functional, 21, 81
Objective functional abstract class, 95
Objective functional derived classes, 95
observed data, 216
offspring, 114
one dimensional optimization, 99
one hidden layer perceptron, 61
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operation, object oriented programming,
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optimal control, 23, 181, 183
optimal shape, 206
optimal shape design, 23, 205
optimal state, 183, 206
ordinary differential equation, 184, 194
ordinary differential equations, 241
ordinary differential equations, see inte-

gration of ordinary differential
equations, 241

output layer, 47
output space, multilayer perceptron, 58
output space, perceptron, 36
output variable description, 47
output variable maximum, 61
output variable mean, 61
output variable minimum, 61
output variable name, 47
output variable standard deviation, 61
output variable units, 47
output variables lower bounds, 66
output variables upper bounds, 66
output, perceptron, 29
outputs scaling, 61
overfitting, 143, 166

parabolic equation, 245
parameter decay, 94
parameters, 53
parameters increment, 100
parameters norm, 53
parameters number, 53
parameters, perceptron, 30
partial differential equation, 218
partial differential equations, 245
particular solution, 65
pattern recognition, 23, 165
pattern recognition function, 165
penalty term, 84, 197
penalty term ratio, 226
penalty term weight, 84
perceptron, 21, 29
Perceptron class, 42

performance criterion, 206
performance criterion, see objective func-

tional, 183
performance function, see objective func-

tion
performance functional, see objective func-

tional, see objective functional
PlaneCylinder example, 97
Poisson equation, 245
Polak-Ribiere parameter, 107
population, 112
population matrix, 112
population size, 112
pre and post-processing, mean and stan-

dard deviation, 154
pre and post-processing, minimum and

maximum, 196
PrecipitateDissolutionModeling example,

97
processing, see scaling
property constraint, 216

quadratic approximation, 104
quadrature, see integration of functions,

239
quasi-Newton method, 100, 149, 154, 170,

188, 198, 211, 221
quasi-Newton methods, 108

random search, 100, 111
RastriginFunction example, 97
recombination, 116
recombination size, 116
reduced function optimization problem,

86
regression function, 135
regularization, 144
regularization term, 94, 144
regularization theory, 94, 167, 217
relative maximum, 99
relative minimum, 99
root mean squared error, 139, 140
RootMeanSquaredError class, 97, 161,

178
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RosenbrockFunction example, 97
roulette-wheel, 114
Runge-Kutta method, 242
Runge-Kutta-Fehlberg method, 188, 197,

243

scaled conjugate gradient, 100
scaling, 61
searching direction, see training direc-

tion
second order method, 100
selection, 114
selection vector, 114
selective pressure, 114
sensitivity, 168
shape constraint, 205
shape optimization, 205
shape variable, 205
specifity, 168
stability, 94, 217
standard deviation evaluation goal, 118
state constraint, 182, 206, 216
state equation, 181, 205
state variable, 181, 205, 215
steepest descent, see gradient descent
step size, see train rate
stochastic sampling with replacement, see

roulette wheel
stochastic universal sampling, 114
stopping criteria, 100
stopping criteria, evolutionary algorithm,

118
sum squared error, 139
SumSquaredError class, 97, 161, 178
symmetric threshold, 32
symmetric threshold derivative, 37
symmetric threshold second derivative,

40
synaptic weight vector, 30

testing data set, 136
threshold function, 31
threshold function derivative, 37
threshold function second derivative, 40

tolerance, Brent’s method, 100
tolerance, golden section, 100
training algorithm, 21, 99
training algorithm, function regression,

141
training algorithm, pattern recognition,

166
training data, 165
training data set, 136, 152
training direction, 100, 103
training rate, 100, 103, 104, 107
transfer function, see activation function
true negatives, 167
true positives, 167

UML, see Unified Modeling Language,
231

unconstrained function optimization prob-
lem, 225

unconstrained variational problem, 81
underfitting, 143, 166
Unified Modeling Language, 231
uniform mutation, 117
unimodal function, 226
uniqueness, 94, 217
universal approximation, 61
unknown variable, 215
unknowns constraint, 216
unscaling, 61
upper bound, 66

validation data set, 136, 152
variable metric methods, see quasi-Newton

methods
variational problem, 81
Vector class, 13

wave equation, 245
weight matrix, 50
well-possed problem, 94, 217

yacht residuary resistance, 151

zero order method, 100


	Preliminaries
	The Flood namespace
	The Vector class
	The Matrix class

	Introduction
	Learning problem
	Learning tasks

	The perceptron
	Neuron model
	Perceptron parameters
	Combination function
	Activation function
	Perceptron function
	Activation derivative
	Activation second derivative
	The Perceptron class

	The multilayer perceptron
	Network architecture
	Multilayer perceptron parameters
	Layer combination function
	Layer activation function
	Layer output function
	Multilayer perceptron function
	Universal approximation
	Scaling and unscaling
	Boundary conditions
	Lower and upper bounds
	Multilayer perceptron activity diagram
	Layer activation derivative
	Layer Jacobian matrix
	Multilayer perceptron Jacobian matrix
	Layer activation second derivative
	The MultilayerPerceptron class

	The objective functional
	Unconstrained variational problems
	Constrained variational problems
	Reduced function optimization problem
	Objective function gradient
	Objective function Hessian
	Regularization theory
	ObjectiveFunctional classes

	The training algorithm
	One-dimensional optimization
	Multidimensional optimization
	Gradient descent
	Newton's method
	Conjugate gradient
	Quasi-Newton method
	Random search
	Evolutionary algorithm
	The TrainingAlgorithm classes

	Function regression
	Problem formulation
	A simple example
	A practical application: Residuary resistance of sailing yachts
	Related code

	Pattern recognition
	Problem formulation
	A simple example
	A practical application: Pima indians diabetes
	Related code

	Optimal control
	Problem formulation
	A simple example
	A practical application: Fed batch fermenter
	Related code

	Optimal shape design
	Problem formulation
	A simple example
	Related code

	Inverse problems
	Problem formulation
	A simple example
	Related code

	Function optimization
	Problem formulation
	A simple example
	Related code

	Software model
	The Unified Modeling Language (UML)
	Classes
	Associations
	Derived classes
	Attributes and operations

	Unit testing
	The unit testing development pattern
	Related code

	Numerical integration
	Integration of functions
	Ordinary differential equations
	Partial differential equations


