VELassCo<{ @

DELIVERABLE D1.3. Technical requirements

i 4

COOPERATION

/iDELIVERABLE UNDER REVIEW PROCESS!!

VELasSSCaoa

Visual Analysis for Extremely Large-Scale
Scientific Computing

D1.3 —Technical requirements

Description and requirements of components and tools, their interaction and communication
between them and the final user for the prototype

Deliverable Information

Grant Agreement no 619439

Web Site http://www.velassco.eu/

WP1 - Steering on target users and general VELaSSCo's

Related WP & Task: i
requirements

Due date 31/03/2014

Dissemination Level Public

Nature Report

Author/s Miguel Pasenau de Riera, Stefanos Papanicolopulos, Abel Coll,

Andreas Dietrich, Frank Michel, Alvaro Janda, Jin Y. Ooi

Contributors

—COOPERATION _ Page 1 of 31




VELassCo< @
- DELIVERABLE D1.3. Technical requirements

Approvals
Name Institution Date OK
Author CIMNE
Task Leader CIMNE
WP Leader UEDIN
Coordinator CIMNE

~COOPERATION _ Page 2 of 31



VELassCo < @

DELIVERABLE D1.3. Technical requirements

Table of Contents

1 Introduction

W 0 00 N U N BN

1.1 FEM simulations

1.2 FEM queries

1.3 DEM simulations

1.4 DEM queries on discrete data

1.5 Continuum results and queries on DEM

1.6 Visualization pipeline

2  Dataset description

2.1 FEM simulation data

2.2 DEM simulation data

2.3 Distributed simulation data

2.4 Data localization

2.5 Target data characteristics

3 VELaSSCo platform overview

3.1 Interaction

3.2 Ensuring interaction

3.3 Queries
3.3.1 User queries & visualization client queries
332 Processing visualization client queries
3.3.3 Grouping user queries into visualization client queries

3.4 Interfaces
3.4.1 User €2 Visualization client

3.4.2 Visualization client €<= VELaSSCo
3.4.3 VELaSSCo €= Simulated data

3.5

Context

11
11
13
15
17
18

19
19
22

22
22
23
24
29
29
29
31

31

COOPERATION

Page 3 of 31



VELassCo< @)

DELIVERABLE D1.3. Technical requirements

1 Introduction

A simulation of a physical process is performed by solving the equations describing this
process using a discretization of the domain of the problem, depending on the method
used to solve these equations. This document describes the preliminary technical
requirements for achieving the VELaSSCo platforms for visual-analysis of extremely
large and complex engineering simulation data. These technical requirements are
based on the end-user requirements described in deliverable D1.1 and they are
defined to fulfil the functional requirements from an external point of view. They
include descriptions of the components and tools, the interaction and communication
between them and the final user for the VELaSSCo prototype.

1.1 FEM simulations

In a Computer Fluid Dynamics (CFD) simulation, the domain, for instance, is the air
surrounding an F1 racing car. To get this domain, the car is geometrically modelled and
placed inside a box. The volume of the box, minus the volume of the car, is the air
domain used in the computation. This complex domain is subdivided into very simple
geometric elements, usually tetrahedra, sharing their vertices, called nodes, filling the
space between the car's surface and the walls of the box. This discretization is called
mesh.

After setting the boundary conditions of the simulation (such as initial pressure,
velocity, direction of the air, impenetrability of some surfaces) and the properties of
the materials (like air density or viscosity), and mathematical model to be used, the
calculation process is launched. The simulation program calculates the unknowns of
the equations (mainly velocity and pressure), on all the nodes of the mesh.

As the air flow around a car is a dynamic process, the simulation is performed along a
time interval and at certain time-steps the results are written in files.

Small CFD simulations can be successfully be calculated with meshes with a few
hundred thousand elements to a few million elements on a single computer.

More accurate and complex CFD simulations require from tens of millions to a billion
elements.

To solve such big problems, the simulation cannot be run on a single computer. To be
able to run the simulation on a pool of computers, a HPC cluster, the domain is
partitioned into several sub-domains, usually one for each node of the cluster. That
means that the initial mesh of a billion elements is sub-divided into smaller sets and
distributed across the cluster. The simulation program, which runs on each node of the
cluster, reads their partition and communicates with its siblings to solve the problem.
Then, at given time intervals, the program writes its mesh portion and results into its
own file.
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Figure 1.1 example of domain decomposition, the mesh of the air surrounding the telescope,
with 24 million tetrahedrons is partitioned into 128 sub-domains, which are coloured in the
picture above. The partitions are localized on different nodes of the cluster.

In Figure 1.1 nodes are drawn according to the partition they belong. From the original
mesh, elements are distributed into partitions. Two neighbouring elements may
belong to two different partitions and the nodes they share are assigned to both
partitions, and, thus, duplicated.

1.2 FEM queries

One of the most performed queries by FEM users is to load the simulation data, and
visualize the results of the last time-step as contour fill or vectors over the skin of the
volume model. Sometimes the vectors displayed belong to the nodes of the volume
mesh but with a filter factor, i.e. instead of drawing all vectors which will produce a
cluttered view, for instance, one out of 10 are drawn.

These queries only access the results values to draw them as colours or vectors.
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Figure 1.2 simple visualization examples: contour fill of pressure on the left and velocity
vectors distribution on the right, one out of hundred vectors are drawn.

Then more complex queries are performed such as defining cut planes to interpolate
results from the volume mesh into the plane, or stream-lines, to get a feeling of the
vector field of a result into the volume mesh. Also iso-surfaces are used by the users,
for instance, to get the free surface of a flow (the iso-surface of pressure equal to 0
extracted from the volume mesh) or the boundaries of embedded objects.

These queries operate at mesh level, by creating a new mesh of lower order than the
original (surface or line mesh) from the original one using geometrical or result
definition (cut plane coefficients, line definition, result value filter or another result
criteria).

prg

F=h-:

Figure 1.3 simple visualization examples
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Also animations of the above visualizations are performed, thus repeating the queries
at some or all time-steps.

A more detailed list of the required queries can be found section on FEM — Continuum
data User requirements (FEM Analysis) in on the D1.1 deliverable.

1.3 DEM simulations

The Discrete Element Method models the interaction between individual particles
through the contacts with their neighbours. DEM primary results are therefore
“discrete” results relating either to individual particles or to individual contacts:

e Particle results relate an individual particle ID (PID, a positive integer) to scalar
and vector quantities such as mass, position or velocity.

e Contact results relate a contact, identified by the PID of two particles, to scalar
and vector quantities such as position or contact force.

DEM computations are always dynamic, computing a large number of successive time-
steps, although results are saved at a lower frequency.

Contacts are created and lost throughout the analysis, with consecutive time-steps (or
at least consecutive saved time-steps) possibly differing significantly in the particles
being in contact.

On the other hand, particles are more persistent within an analysis. Even though
particles can enter and exit the analysis, a particle is expected to be present
throughout many different time-steps. Some particle quantities such as mass and
radius (for spherical particles) are usually constant within the analysis, while other
particle quantities, such as position and velocity change in each time-step. Therefore,
while individual particle results should contain information about the time to which
they refer, as well as to the mass and size of the particle, it can be inefficient to do so.
For example, it is usual to group the results by time (so that all results in a single time-
step are grouped together).

Most DEM codes only consider particles which are spherical and therefore their shape
is identified uniquely by their radius. To model non-spherical particles, it is common to
lump together a number of spherical particles using rigid links between them to create
a composite particle. In this case, results are still computed at the spherical-particle
level, but should be saved and visualised at the composite-particle level. In some cases
it is possible to model grain breakage by allowing the rigid links to be broken, so that
composite particles can disappear (with new, smaller ones possibly appearing) even
without a change in the underlying spherical particles.
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1.4 DEM queries on discrete data

The basic query on discrete data regards the position of the particles, with the
visualisation showing the position and size of each particle. This is often animated over
time to show the displacement (and velocity) of the particles. Colour can also be used
to denote scalar particle quantities (e.g. velocity magnitude, or total force on the
particle), or vectors can be added to describe vector fields.
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Figure 1.4 simple visualization examples: colour-coded particles on the left, particles with
velocity vectors in the centre and normal forces network on the right

Contact discrete data can also be directly queried and visualised, e.g. in the form of
contact force networks.

Queries can also regard statistical distributions of quantities for individual particles
along several time-steps or across all particles (or contacts) in a given time-step (or
time-averaged across more time-steps).

In many practical cases, however, it is not of actual interest to track individual particles
or contacts, but to track the overall material behaviour within a domain. A different
type of query is then needed on discrete data that computes a “spatial average or
coarse graining” and thus projects the discrete data on a continuum field. Through
these queries, therefore, we obtain secondary results of a continuum type (similar to
FEM and CFD results).

1.5 Continuum results and queries on DEM

The continuum results obtained by coarse-graining can be of the same type as the
respective discrete results (e.g. velocity) or they can be of new types (e.g. density,
stress, strain — the last two being rank-two tensors). Like discrete data, continuum data
can represent a single time-step or a time average of different time-steps.

As in continuum simulations (FEM, CFD) the continuum results for DEM are actually
“discretized”, i.e. computed on individual points of a mesh. Indeed, it is useful to run
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new queries on the continuum data of the same type as those found in FEM post-
processing (e.g. point temporal evolution, line plots, iso-surfaces or slices) including
pseudo-colour visualisation.

a) b) <)

Figure 1.5 simple visualization from the discrete data showing particles on the left, to the
continuum results on a static mesh in the centre, showing the spatial average, and on the
right image, showing the spatial and temporal averages

A more detailed list of the required queries can be found in sections DEM-discrete data
User requirements (Visualisation and DEM analysis) on the D1.1 deliverable.

1.6 Visualization pipeline

In Figure 1.6 a generic visualization pipeline is represented, in order to better
understand the data and processes involved in the project.

: 5 Image
—— Simulation —— Post-process —— g_
Generation

Figure 1.6 generic visualization pipeline, from the data that describes the problem to be

simulated to the final images shown in the visualization client

The pipeline shows the usual workflow of the simulation engineer. First the problem is
modelled, discretised and their parameters are set: the Analysis Data. The simulation
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program executes the modelled physical process virtually during a defined time-
period, and at certain time-steps outputs the raw results: raw visualization data.

When the simulation finished, the simulation engineer downloads the simulation
results into their computer and, using a post-processing program, like GiD, RPE/iFX,
ParaView, VTK, processes, analyzes and extracts useful information, artefacts like iso-
surfaces ( surfaces that connects points of space with the same result value), stream-
lines, graphs, etc., from the raw simulation data. These artefacts are usually
represented by graphics primitives, like lines, and triangles, and rendered to an image
shown to the user.

The scope of the projects does not include the execution of the simulation on an HPC,
but the visualization of the initial data for the simulation, running post-process
algorithms, which transforms the raw data from the simulation program into visual
artefacts, and the rendering of these artefacts (collection of graphics primitives) on the
user's computer.

Due to the size of the raw visualization data, the post-process algorithms cannot be
run on a single workstation, and must be run on a distributed environment. To
guarantee interactive rates, the post-process can be done in the user's visualization
computer on a reduced model or over a region of interest so that the user is able to
interact with the data and to control the parameters of the post-process algorithms.
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2 Dataset description

Datasets in simulation consists in two distinct parts:
e mesh: which defines the domain and
e results: attributes defined over the mesh.

From a very simplified point of view there are two types of simulations: one in which
the mesh is fixed along the whole analysis and the results are defined for several time-
steps, and another one in which at each time-step of the analysis, both mesh and
results are defined.

The results of the provided FEM examples are defined on the nodes, despite this,
results on elements (at the gauss integration points defined on them) should be
supported by the VELaSSCo platform too.

2.1 FEM simulation data

Data types in FEM simulation data are:
e nodes: defined by an id with their coordinates,

e elements: defined by an id and their connectivity, i.e. list of nodes' id that defines the
element,

e meshes: groups of elements, of the same type, which can also be seen as layers,

e results: (in our case defined on nodes) with nodes id followed by their values. Results
types are: scalar ( 1 component), vector ( 3 or 4 components) and matrices ( 6
components).

In the FEM cases selected to test the VELaSSCo platform, the mesh is fixed and defined
at the beginning of the analysis and at each time-step only the results are written.
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i i Mesh information: defines
Nodes ( IC.I' coordlnat.efs)
Elements ( id, connectivity) the geometry used to draw.
Time-step 1 |
Pressure -
Velocity Results: attributes defined
overthe mesh.
Vorticity
Often only the results of one
—> =1 | time-step “slice” are visualized,
usuallythe last one.
Time-step N |
Pressure Animationsare d.one with one
result across all time-steps
Velocity -
Vorticity

=

Figure 2.1 Simulation data structure of a FEM simulation run on a single machine.

Mesh description consists of a header followed by the definition of the nodes and their
coordinates and the definition of the elements with their node connectivity:

MESH "Walls" dimension 3 ElemType Triangle Nnode 3
# color 127 127 10

Coordinates

101000

2 10 100 0O

1116 94.29 75.234 0
end coordinates

Elements

# Element_Id Node_1 Node_2 Node_3
1 30 28 27

2 30 29 28

192 65 35 34
end elements

MESH "Another surface" dimension 3 ElemType Quadrilateral Nnode 4
# color 127 200 127

Coordinates

# defined in previous MESH definition

end coordinates

Elements

# Element_Id Node_1 Node_2 Node_3 Node_4
193 100 90 73 23

194 1 459
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232 65 35 34 13
end elements

MESH "Particles" dimension 3 ElemType Sphere Nnode 1
# color 63 180 210

Coordinates

# defined in previous MESH definition

end coordinates

Elements
# Element_Id Node_Id Radius
1000 10 1.12

1116 1045 2.33
end elements

Listing 2.1 Example of mesh definition using GiD ascii format. Three sets are defined: 'Walls',
'Another surface' and spherical 'Particles

Like the mesh, the result description consists of a header, followed by a list of pairs of
node number and result values.

GiD Post Results File 1.0

Result "DESPLACEMENTS"™ "LOAD ANALYSIS"™ 10 Vector OnNodes

ComponentNames "X-DESPL", "Y-DESPL", "Z-DESPL", "|DESPLACEMENTS|"
ResuTtRangesTable "My table"

Values

10000

2 2.0855e-05 -1.9174e-05 0 2.83297e-05

1116 2.4357e-05 -0.00018974 0 0.000191297
End values

Result "Damage factor" "LOAD ANALYSIS" 10 Scalar OnNodes
Values

10

2 2.0855e-05

1116 2.4357e-05
End values

Listing 2.2 Example of result definition using GiD ascii format. Two results are defined: a
'DESPLACEMENTS' vector and 'Damage factor' scalar.

2.2 DEM simulation data

In DEM simulations, every time-step a new particle and contact point mesh is
calculated and written with their results. So the result “time-step slice” consists both
of mesh (particles and contacts) and results.
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After the simulation is run, in addition to visualising particle and contact data, a post-
processing algorithm is performed in which the particle information, position and
results are statistically analyzed and interpolated to a static mesh. This coarse-graining
post-processing should also be included in the VELaSSCo platform. An application that
uses this kind of algorithms is the P4 tool. And the output of this process resembles the
FEM simulation data, in which a mesh is defined at the beginning and does not change
along all the time-steps, and results are defined at each time-step.

—

Time-step 1 |

Mesh information: defined
Particles( id, coords, radius, mass) new at each time-step.
Contacts (Partld1, Partld2, coords)

- - Results: attributes defined
Velocity (Particles) over the mesh.
Angularvelocity (Particles)
Usuallyanimationsare doneon a
subset of time-steps, visualizing

> =4 | onlythe mesh or using a result.

Force( Contacts)

Time-step N | Animationsuses a new mesh and
oneresult across all time-steps

Particles ( id, coords, radius, mass)
Contacts (Partld1, Partld2, coords)

Statistical analysisand
Velocity (Particles) Interpolations of results are done
on a static mesh ( P4), resembling
the FEM data structure

Angularvelocity (Particles)

Force( Contacts)

=

Figure 2.2 Simulation data structure of a DEM simulation run on a single machine.

Although Figure 2.2 represents particles as spheres, other particle types shall be
supported but may be characterized as a group of spheres.

The provided DEM data is written using GiD ascii, binary format or Edinburg's P4
format, which is based on the one used in LAMMPS. Listing 2.3 shows an example of a
P4 file for particles and Listing 2.4 for contacts. Note that different DEM codes output
this type of information (particles and contacts) in formats different than P4 format.

TIMESTEP PARTICLES

0.1 1000

PID RADIUS MASS PX PY PZ VX VY VZ WX WY WZ
1 0.1 0.2 0.00.00.00.10.10.10.10.10.1

1000 0.1 0.3 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
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TIMESTEP PARTICLES

0.2 1000

PID RADIUS MASS PX PY PZ VX VY VZ WX WYy WZ

1 0.1

1000 0.1

0.2 0.00.00.00.10.10.10.10.10.1

0.3 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Listing 2.3 Sample P4 ASCII file format for particles.

TIMESTEP CONTACTS

0.1 800

PL P2 PX PY PZ FX FY
1 2 0.0 0.1 0.0 0.0 0.1
942 976 0.0 0.1 0.0 0.0 0.1

TIMESTEP CONTACTS

0.2 798

PL P2 PX PY PZ FX FY
1 3 0.0 0.3 0.0 0.1 0.0
932 976 0.0 0.2 0.0 0.0 0.5

Fz

0.0

0.0

Listing 2.4 Sample P4 ASCII file format for contacts.

2.3 Distributed simulation data

When the simulation is executed in a distributed environment, such as an HPC cluster,
then each node writes its own partition data, its own portion of the mesh and results,

in its own file.

Following listings shows the nodes and elements of the telescope example for some of

the partitions

# encoding utf-8

MESH "Kratos Tetrahedra3D4 Mesh" dimension 3
ElemType Tetrahedra Nnode 4

Coordinates

61466 8944.2969 2324.8501 2376.0071

62552 8946.8242 2325.7144 2377.313

£058312 8943.9102 2376.6377 2460.783
end coordinates

Elements
1096025 410088 3264881 3264883 3258074 0

# encoding utf-8

MESH "Kratos Tetrahedra3D4 Mesh" dimension 3
ElemType Tetrahedra Nnode 4

Coordinates

278669 8924.9619 2333.2236 2394.3804

287934 8926.8105 2333.0669 2396.5317

£062434 8879.8223 2368.1016 2441.2544
end coordinates

Elements
724816 2910964 2951322 2943183 370135 0

COOPERATION
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1096026 3264881 3264883 3258074 3258079 0

53662881 473256 3693657 3693658 2811908 0
end elements

GiD Post Results File 1.0

# encoding utf-8

Result "PART. INDEX" "Kratos" 21 Scalar OnNodes
ComponentNames "PARTITION INDEX"

Values
61466
62552

31.0
31.0

4058312 0.0
End values

Result "PRESSURE" "Kratos" 21 Scalar OnNodes
ComponentNames "PRESSURE"

Values

61466 -7.6108e-04

62552 1.3068e-02

4058312 4.9280e-02
End values

Result "VELOCITY" "Kratos" 21 Vector OnNodes
ComponentNames "X-VEL", "Y-VEL", "Z-VEL", "|V|"
Values

61466 -1.36e-01 -1.41e-01 2.07e-01 2.85e-01
62552 -1.56e-01 -1.62e-01 7.42e-02 2.37e-01

z058312 1.05e+00 -5.44e-02 2.41e-01 1.08e+00
End values

Result "PART. INDEX " "Kratos" 41 Scalar OnNodes
Values

End values

Result "PRESSURE" "Kratos" 41 Scalar OnNodes
OnNodes
Values

End values

Result "VELOCITY" "Kratos" 41 Vector OnNodes
Values

End values

Listing 2.3 data from Partition O

# encoding utf-8

MESH "Kratos Tetrahedra3D4 Mesh" dimension 3
ElemType Tetrahedra Nnode 4

Coordinates

34549 8925.0723 2321.5095 2348.3384

35397 8925.7275 2326.3459 2347.1865

i153043 8907.4619 2331.3745 2357.1917
end coordinates

Elements
10825 67964 975985 975982 963807 0
10826 975985 975982 963807 963813 0

51966512 787659 813371 791758 43737 0
end elements

GiD Post Results File 1.0

# encoding utf-8
Result "PART. INDEX" "Kratos" 21 Scalar OnNodes
ComponentNames "PARTITION INDEX"

724822 2910964 2951322 370135 2994026 0

53473884 4059187 530636 4059189 4059188 0
end elements

GiD Post Results File 1.0

# encoding utf-8

Result "PART. INDEX " "Kratos" 21 Scalar OnNodes
ComponentNames "PARTITION INDEX"

Values

278669 0.0

287934 0.0

4062434 1.0
End values

Result "PRESSURE" "Kratos" 21 Scalar OnNodes
ComponentNames "PRESSURE"

Values

278669 3.1364e-02

287934 2.5183e-02

4062434 4.2826e-02
End values

Result "VELOCITY" "Kratos" 21 Vector OnNodes

ComponentNames "X-VEL", "Y-VEL", "Z-VEL", "|V|"
Values
278669 5.35e-01 -8.79e-02 1.56e-01 5.64e-01

287934 6.26e-01 -7.50e-02 2.29e-01 6.71le-01

1062434 1.04e+00 -5.08e-02 2.13e-01 1.06e+00
End values

Result "PART. INDEX " "Kratos" 41 Scalar OnNodes
Values

End values

Result "PRESSURE" "Kratos" 41 Scalar OnNodes
OnNodes
Values

End values

Result "VELOCITY" "Kratos" 41 Vector OnNodes
Values

End values

Listing 2.4 data from Partition 1

# encoding utf-8

MESH "Kratos Tetrahedra3D4 Mesh" dimension 3
ElemType Tetrahedra Nnode 4

Coordinates

236307 8910.8672 2333.1445 2381.342

236563 8910.3359 2333.0784 2381.0679

5270050 8904.6943 2341.377 2392.0667
end coordinates

Elements
1889 384923 3095737 3095740 3095741 0
1890 3095737 3095740 3095741 3103154 0

19147990 2632647 2626933 316102 2557512 0
end elements

GiD Post Results File 1.0

# encoding utf-8
Result "PART. INDEX" "Kratos" 21 Scalar OnNodes
ComponentNames "PARTITION INDEX"
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Values
34549 112.0
35397 31.0

1153043 112
End values

Result "PRESSURE" "Kratos" 21 Scalar OnNodes
ComponentNames "PRESSURE"

Values

34549 1.4192e-03

35397 -4.8319e-05

1153043 -1.6497e-02
End values

Result "VELOCITY" "Kratos" 21 Vector OnNodes
ComponentNames "X-VEL", "Y-VEL", "Z-VEL", "|V[|"
Values

34549 0.00e+00 0.00e+00 0.00e+00 0.00e+00
35397 0.00e+00 0.00e+00 0.00e+00 0.00e+00

£153043 -5.64e-02 -1.12e-01 1.68e-02 1.26e-01
End values

Result "PART. INDEX " "Kratos" 41 Scalar OnNodes
Values

End values

Result "PRESSURE" "Kratos" 41 Scalar OnNodes
OnNodes

Values

End values

Result "VELOCITY" "Kratos" 41 Vector OnNodes
Values

End values

Listing 2.5 data from Partition 119

Values
236307 127.0
236563 127.0

3270050 92.0
End values

Result "PRESSURE" "Kratos"
ComponentNames "PRESSURE"
Values

236307 -1.8706e-03

236563 -3.2198e-03

21 Scalar OnNodes

3270050 9.9210e-03
End values

Result "VELOCITY" "Kratos" 21 Vector OnNodes
ComponentNames "X-VEL", "Y-VEL", "Z-VEL", "|V|"
Values

236307 -1.06e-01 -1.58e-02 1.63e-01 1.95e-01
236563 -1.08e-01 -1.84e-02 1.29e-01 1.69e-01

3270050 7.72e-01 -8.71e-02 2.05e-01 8.03e-01
End values

Result "PART. INDEX " "Kratos" 41 Scalar OnNodes
Values

End values

Result "PRESSURE" "Kratos" 41 Scalar OnNodes
OnNodes

Values

End values

Result "VELOCITY" "Kratos" 41 Vector OnNodes
Values

End values

Listing 2.6 data from Partition 127

As can be seen each partition has a non-contiguous subset of the nodes and elements
of the whole mesh. And nodes at the interface between partitions, i.e. shared by

elements of two partitions, are duplicated.

To get the final whole model, all partitions are merged:
e using the mesh names and properties, such as element type, all mesh parts are glued

together to visualize the whole domain and

e using the result name and properties, such as result type and time-step value, each

time a result is accessed, all 128 parts are read and merged together.

2.4 Data localization

The HPC clusters where simulation programs run are composed of a set of powerful
compute nodes with minimal local storage and are themselves connected to each
other using a high-speed network such as Infiniband. The result output of the
simulation is written on a centralized, high efficient file system like Lustre, or NFS.
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In the case of the telescope example, the central NFS file system contains all 128 files
corresponding to the 128 sub-domains.

Node 1

N

Node 2
\ Crossbar
switch

NFS server

ocoo /

Node N

Sub-domain 1 data
Sub-domain 2 data

o 00
_-_____,_--_'__-

Sub-domain N data

Figure 2.3 Localization of the simulation data

2.5 Target data characteristics

Table 2.1 shows for a single simulated model, the sizes of the data to be handled by the
system: size of the mesh, number of attributes per node or particle, number of
expected time-steps, and number of sub-domains for the single simulation.

DEM

FEM

Total size of the data for the
simulated model

From 50 Gigabytes to
Petabyte

From 30-140 Gigabytes to 12-
50 Terabytes

Number of partitions

1to 10,000

1 to 10,000

Number of particles /
elements

10 million particles

From 8-100 millions to 1
billion tetrahedrons

Number of written time steps

1 billion

From 40 to 25,000

Number of variables per
particle / node

Particles: 12 (3 scalars + 2
vectors) + user defined
variables (scalars and
vectors)
Contacts: 8 (2 scalars + 2
vectors + user defined
variables (scalars and
vectors)

6 ( 2 scalars + 1 vector) to 16
( 8 scalars + 2 vectors)

Table 2.1 Characteristics of a single simulation to be handled by the VELaSSCo platform
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3 VELaSSCo platform overview

3.1

Interaction

The main use case of the VELaSSCo platform from the user’s point of view may be as
follows. The user requirement evaluation with the User Panel that is underway will
provide critical input into defining these.

10.

11.

The user wants to visualize a result from an already executed simulation on the HPC
cluster.

The user starts a visualization client, GiD, in its own computer and tells the client to
connect to the HPC cluster.

The visualization client connects to the VELaSSCo platform installed in the HPC cluster.
The VELaSSCo platform verifies the user's identity.

The VELaSSCo platform returns a list of the available simulations data with a summary
(date, size, etc.), which the client shows to the user.

The user selects one of the models, selection forwarded by the client to the platform.
The platform returns a view, mesh, of the model (skin extracted from the model),
eventually with the last visualized result.

The user interacts with the model: rotates, zooms, and switches layers on/off, changes
styles like wireframe, solid view, among others.

The user issues a query, for instance the iso-surface of a result of a certain time-step,
and the visualization client forwards the query to the platform. Several queries can be
performed and are detailed further down.

The platform analyzes the query, accesses the simulation data and performs the
calculation of the iso-surface and returns the iso-surface mesh to the visualization
client which shows it to the user.

Steps 8 through 10 are repeated until the user decides to open another model, and
then go to step 5, or close the session.

Depending on the query performed in steps 9 and 10, more interaction may be needed
or feed-back should be provided during its execution.

Following diagrams give an overview of the behaviour or the system. Figure 3.1 shows
an overview of the processes launched by the user and involved in the feeding of data
to the system. Figure 3.2 shows the different components of the whole system and
their relations. Figure 3.3 displays the interaction between the user, the client and
server parts of the system.
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Global system
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injection

return results
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Figure 3.1 Global overview of the VELaSSCo platform
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Figure 3.2 Components of the global system
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Visualization VELaSSCo
client !
1
Execute —
Start VELaSSCo session |
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Loop Get List of models
___________________ ¢ ————————————— ]
< ) ShomTis List of models
Model selection Model selection
¢ —————————————————————— g ——— ]
<~~~ Model rendered | Skin mesh
Loop Interaction
< T render |
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Issue iso-surface query
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___________________ <~~~ "~~~ osurface me<sh 1 [----
< Iso-surface rendered fso-surface mesh “7==--.___| Eventually stores
the iso-surface
Closes model T
Closemodel | Eventually stores
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Figure 3.3 Sequence diagram of user interaction with the system.

The "Simulation data injection" process represents the eventual transformation and
transfer of the simulation data from the current format to the one usable by the
system. It should be evaluated if the injection process should also merge together the
sub-domains of the calculation process so that, for instance, the mesh data can be
handled as a single data set is one instead of the N data-sets, one for each sub-domain,
and which the map-reduce process should merge.

Depending on the big data solution selected for the VELaSSCo platform, the simulation
data can be accessed directly or it should be injected into the VELaSSCo platform.

A mechanism should be provided so that a running simulation, instead of writing the
results on a file, is able to inject the “result time-step slice” directly to the platform
using a standard open format.
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3.2 Ensuring interaction

A simplification module, multi-resolution model, is also to be incorporated to the
platform in order to ensure the interaction between the user and the visualized model

and results.

This process and other processes involved in the queries, such as the discrete to
continuum interpolation, are incorporated in Figure 3.4, a refinement of Figure 3.2.

WELa55Co Platform

___________________

Visualization client

O+ +O—O

I
[
v

i

:
.
:
, :
' ]
’ 1
' ]
1 i
) |
]

Generate H ; ] !
VELaS5Co queries E N 5 !
from user actions i ’ \ ! Simulati
I \ ] imulation
Translates VELaSSCo / Y .
queries into Big Data ; Translates data to inject
queries ;’ "‘l into Big Data
. . framework
Simplification, discrete i
to continuum, and other Generating BD queries
data generation and processing results
processes

Figure 3.4 Incorporating components which generate new data for the system.

3.3 Queries

3.3.1 User queries & visualization client queries

When the user interacts with the model and wants to see an iso-surface or display a
contour fill of a result, then the visualization client sends a query to the visualization

platform like these ones:
e query( session_id, create_iso-surface, result_identification) returns the mesh of the

iso-surface which is rendered by the client;

e query( session_id, get_results_values, result_identification, list_of nodes) returns a
list of result values for the provided list of nodes. The values are then used by the
visualization client to draw a contour fill, or contour lines, or vectors, over the mesh
the visualization client already has;

e result_identification can be done with: ( result_name, step_number, analysis_name).
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Several user functional requirements can be translated into a single query between the
visualization client and the VELaSSCo platform. For instance:
e getting a result value for node and draw it as label,
e getting the result values for some, or all, time-steps for a certain node for a node
evolution graph,
e getting the result values to draw a contour fill, contour lines, vectors over the skin of
the model;
e can be grouped into: query( session_id, get_result_values, result_name,
list_of time_steps, analysis_name, list_of nodes) which returns, for each time-step of
the list, a list of result values for the provided node list.

From the user functional requirement list, a table should be created by grouping
similar queries into fewer queries to be issued against the VELaSSCo platform. Also the
implications of the queries should be taken into account, for instance getting the result
values for the nodes of a cut plane implies that those values are to be interpolated
from the original model.

3.3.2 Processing visualization client queries

The queries issued by the visualization client are processed by the VELaSSCo platform
and can result in one or more internal queries.

An interface will be needed to translate the queries received by the visualization client
into the internal processes to calculate and provide the results.

As example, if the solution selected for the VELaSSCo platform is Hadoop with
MapReduce, then the iso-surface query can be translated into a MapReduce query:
e map: get the iso-surface for each portion of the mesh,

e reduce: merge the different iso-surface chunks into a single isosurface mesh,
e transform: the iso-surface mesh is translated into a fault-tolerant, GPU friendly format
and sent to the visualization client.

Staying in the same framework example, a stream-line calculation can generate
multiple MapReduce queries:
e map: from the seed point list, generate stream-lines at each portion of the mesh,
e reduce: check if the stream line finishes at a boundary or in a vortey, if not, then new
seed points ( at the boundary between partitions) are added to the seed list,
e loop: if there are still seed points on the list issue a new MapReduce query until the
seed list is empty.

The translation from the visualization client into internal ones depends on the big data
architecture selected for the VELaSSCo platform.

—COOPERATION _ Page 23 of 31



VELassCo< @)

DELIVERABLE D1.3. Technical requirements

3.3.3 Grouping user queries into visualization client queries

Visualization of:
e mesh:
o from original model: skin extraction, layer selection, single surfaces
o from DEM original model: particles and contacts ( a coarsening model may be
needed if original information hinders user's interactivity)
o created by the user ( thus information must be interpolated from original
data): cut planes, cut lines, iso-surfaces, points
e results:
o contour fill, contour lines, vectors over original mesh = needs result values on
a list of nodes
contour fill, contour lines, vectors over created mesh = needs interpolation
graphs: point queries, line queries 2 may need interpolation
statistical results: process some or all original data, an example of algorithms
calculating statistical results over particles are present in P4 tool and may be
incorporated in the VELaSSCo platform.

The interpolation of result from the original mesh to a cut-plane, cut-line or iso-surface
can be done at two places:

e inside the VELaSSCo platform: needs the information of the cut-plane, cut-line, iso-
surface to access the affected elements and interpolate the values,

e inthe visualization client: then when a cut-plane, cut-line or iso-surface is created the
visualization client also needs the list of affected elements so that when the results are
needed on these surfaces, the client can ask the platform for the values on those
elements and interpolate the values

There are two types of queries:
e consulting queries: get information from original mesh, from original results,
e object creation / interpolation queries:
o over the mesh: skin extraction, cut-planes, cut-lines,
o over mesh and results: iso-surfaces, stream-lines, interpolation over created
mesh objects (skin extraction, cut-planes, cut-lines) if interpolation is done in
VELaSSCo,
o over the results: creation of statistical results from existing ones.

-> a decision should be taken on where the interpolation should be done: whether in
the visualization client or in the VELaSSCo platform.

-> a decision should be taken where to store the created meshes ( skin, iso-surfaces,
cut-planes, cut-lines, etc.)

- multi-resolution model, simplified meshes to ensure interactive rates should be
stored in the platform
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- Discrete to continuum transformation should also be stored in the Big Data
framework.

If the created objects (cut-planes, iso-surfaces, etc.) are stored in the big data
framework, some kind of object identifier is needed in order to interpolate results
over these created objects or query other information.

3.3.3.1 Session queries

QS1: User > client: start session ( login)
e client 2 platform: start session ( login)

e platform = client: validation

QS2: User > client: get list of models (user initiated or client initiated)
e client - platform: get list of available models

e platform = client: list of available models ( with summary information: global mesh &
results size, partitions, etc.), for instance number of total nodes, number of total
elements, number of analysis, time-steps and results per time-step.

QS3: User = client: model selection
e client 2 platform: model selection

e platform > client: ok

QS4: User > client: close model
e client & platform: close model

e platform = client: ok

QS5: User = client: end session
e client 2 platform: end session

e platform = client: ok

3.3.3.2 Mesh queries

QML1: User = client: get model information (user initiated or client initiated)
e client 2 platform: get model information

e platform = client: summary information: list of meshes/layers with their mesh
information, results size,
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QM2: User = client: visualization of model mesh
e client & platform: get boundary, skin, meshes
e platform - client:

o FEM & DEM continuum: calculates and returns the ( simplified) boundary
meshes for the volume meshes and all other meshes ( surfaces, line or points)
of the model ( is the same for all time-steps of the analysis),

o DEM particles and contacts: return ( simplified) mesh of spheres ( or lump of
spheres for non-spherical particles) and surface, line ( contacts) or point
meshes over selected time-step.

Simplification: new meshes are created from the original ones.

QM3: User - client: creation of cut-planes, cut-lines, cut-segments or "point-sensors"
e client 2 platform: get mesh for cut-plane, cut-lines, cut-segments or "point-sensors"
e platform = client:
o FEM & DEM continuum: calculates and returns the ( simplified) meshes for the
defined cut-planes, cut-lines, cut-segments or point-sensors,
o DEM particles and contacts: (over selected time-step or over all time-steps)
calculates and returns the ( simplified) meshes for the defined cut-planes, cut-
lines or point-sensors,

New meshes are created from the original ones, and simplified.

QMa4: User > client: visualization of model boundary conditions (for the simulation)
and parameters
e client & platform: get boundary conditions and parameters,

e platform = client: returns boundary conditions and parameters,

QM5: User - client: create/visualize the continuum mesh from the DEM particle
simulation
e client & platform: create continuum mesh from DEM particle data ( needs
parameters: averaging, etc.),
e platform = client: calculates and returns summary of the continuum mesh
e client & platform: get boundary, skin, meshes ( as in QM2)
e platform = client: FEM & DEM continuum: calculates and returns the ( simplified)
boundary meshes for the volume meshes and all other meshes ( surfaces, line or
points) of the model ( is the same for all time-steps of the analysis),

May be both client - platform queries can be merged into one.

—COOPERATION _ Page 26 of 31



VELassCo< @)

May be this query is to be performed together with query QR7, create temporal and spatial
averaging of the selected results, as described on DEM-discrete data User requirements
(Visualisation and DEM analysis) in Deliverable D1.1
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QM6: User - client: visualization of complex particles
e client 2 platform: get complex particles for the actual time-step,

e platform = client: complex particles definition, information, for the actual time-step,

QM?7: User - client: perform a 'travelling' through the model (interactive navigation)
e client 2 platform: get mesh and result information of current region of interest,

e platform = client: returns the mesh and result for the current ROI,
e loop: as the user travels along a path ( modes the ROI), the client asks for updates on
the new ROI, the platform sends the new information that enters the ROI.

Depending on the design of the platform following queries may be needed:

QMS: User - client: interactive visualization
e client & platform: get simplified skin, surface and spheres mesh of model,

e platform = client: calculates and returns the simplified meshes.

QM9: User - client: detailed full-resolution of Region of Interest ( zoom area)
e client & platform: get original skin, surface and spheres mesh of model, with current

visualized results,
e platform = client: returns the full-resolution meshes section, with the selected

results.

3.3.3.3 Result queries
QR1: User = client: visualize contour fill, contour lines, vectors, ...
e client 2 platform: get result values for list of nodes ( of skin or other surface meshes)
for the actual time-step
e platform = client: returns a list of the results values from the selected time-step,
Vectors may be represented on nodes of the volume mesh, may be a special query QR1b is

required.

As explained in Section 3.2.3 a decision should be taken on where the interpolation for
QM3, QR2 and QR3 should be done: whether in the visualization client or in the VELaSSCo
platform.

QR2: User = client: visualize iso-surface
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e client 2 platform: create and get iso-surface ( requires criteria: result identification
and result value parameters)
e platform = client: calculates and returns the ( simplified) surface meshes for the iso-

surface on the volume meshes and the line-meshes for the iso-lines on the surface
meshes

New meshes are created from the original ones, and simplified.

QR3: User > client: visualize stream-lines
e client 2 platform: get stream-lines for the provided seed points.
e platform = client: calculates and returns the ( simplified) line mesh of the stream-lines
defined by the user seed points,

This query can be seen as a combination of QM3 and QR1, as explained in Section 3.2.2.

As explained in Section 3.2.3 a decision should be taken on where the interpolation for

QM3, QR2 and QR3 should be done: whether in the visualization client or in the VELaSSCo
platform.

QR4: User - client: animate any of the above result visualizations ( queries)
e client & platform: perform the same queries but updating the time-step value

e platform - client: eventually calculates and returns the information desired for the
selected time-step

QR5: User > client: calculate statistics ( minimum, maximum, average, standard
deviation, etc.) for the selected result.

e client 2 platform: calculate statistical results for the user selected result.

e platform > client: calculate statistical results for the user selected result and returns a
summary

This query will be followed by a visualization query, like QR1.

QR6: User = client: create temporal and spatial averaging of the selected results
e client 2 platform: calculate temporal and spatial averaging of the DEM particle mesh,

e platform = client: calculate temporal and spatial averaging of the DEM particle mesh
and returns a summary

This query will be followed by a visualization query, like QR1.

May be this query is to be performed together with query QM5, create/visualize the

continuum mesh from the DEM particle simulation, as described in Section 2.1.2 of
Deliverable D1.1.
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3.4 Interfaces

3.4.1 User €~ Visualization client

The interaction between the user and the visualization client should be (almost) the
same as if using a "heavy" model locally. So the connection to the VELaSSCo platform
should be (almost) transparent, only evident for the extra functionalities in the
visualization client such as:

e connection and user identification on the VELaSSCo platform,

e model summary and availability listing and selection,

e eventually provide feed-back for complex and heavy queries.

To ensure interaction with the model, a simplified representation will be used, but full-
resolution information will be at users disposal.

3.4.2 Visualization client €-> VELaSSCo

The communication between the visualization client and the VELaSSCo platform should
be efficient, secure, fast, robust and reliable.

The information flow between the VELaSSCo platform and the visualization client
should be done in such way that if some parts of the query results are lost, still some
visualization can be performed. The missing parts should be detected and send again.

For instance if the platform sends back the mesh and results of an iso-surface, and
some chunks of the information are lost, the iso-surface should still be able to be
rendered, but with holes representing the missing information, which then will be
gradually filled.

3.4.2.1 Combined post-processing

To ensure interactiveness and provide a faster feedback for end users viewing parts of
the simulation results (at full resolution) or the whole model (coarser resolution), part
of the post-process may be performed in the visualization client and not only on the
HPC cluster. One example would be to allow the interactive generation of streamlines
using parallel processing units (CPU/GPU), which would enable the user to control
seeding of particles in real-time. Another example would be the display of volume
data. Instead of generating iso-surfaces as polygons with the help of, e.g., a marching
cubes algorithm, iso-surfaces can also be visualized using ray casting algorithms (also
running on multiple CPUs/GPUs). This makes it possible to change iso values on the fly
and display new surfaces without having to run a geometric conversion algorithm.
Creating iso-surfaces, stream-lines or other post-process steps on the visualization
client may require a coarser representation of the simulated data when performed on
the whole model, as the full resolution data cannot be handled by the visualization
client capabilities.
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Running the post-process queries on the visualization client on partial simulation data,
or on a coarser model can also be seen as an opening step before the user issues the
queries remotely on the full resolution model.

3.4.2.2 Progressive display

Another class of visualization use-cases comprises progressive display scenario, where
data is continuously streamed from the HPC cluster to the visualization machine. This
realizes a typical query based visualization (QBV) setting, where results are sent on
request with low latency. One example is progressive level-of-detail, where more
geometric detail is added on demand based on a multi-resolution model. Another
example would be interactive navigation through a (spatially) large dataset, where new
data is sent to the visualization machine as soon as the user moves to a different part
of the model. Another example is the animation of a result, where at each time-step
the user selected result is sent to the visualization machine to create the appropriate
image for the animation.

3.4.2.3 Requirements

In summary, the visualization requirements are represented in Table 3.1

Combined post-processing

Separated post-processing

Progressive display

Post-processing, and rendering,
is done on the visualization
machine. The HPC cluster
continuously sends progressive
visualization data.

Post-processing is done on the
HPC cluster. The visualization
machine only displays geometry.
The HPC cluster continuously
sends graphical primitives.

Non-progressive display

Post-processing, and rendering,
is done on the visualization
machine. Data is sent as a large
chunk, which is used for some
time until a new chunk is
requested.

Post-processing is done on the
HPC cluster. The visualization
machine only displays geometry.
Data is sent as a large chunk,
which is used for some time
until a new chunk is requested.

Table 3.1 Classification of requirements according to the visualization use-cases.

Depending on the use case, there are different requirements for the input data that is
sent by the HPC cluster to the visualization machine:

e Combined post-processing. If post-processing is done on the visualization
machine, we would have to deal with a wide variety of simulation results. A
possible data format would have to support arbitrary sets of spatial cells
(tetrahedra, pyramids, cubes, etc.), different kinds of connectivity (structured,
unstructured data), and arbitrary attributes associated with cells as well as

vertices.
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e Separated post-processing. If the visualization machine performs only display
of geometric data, a suitable data format would have to support multiple
graphics primitives, such as polygons, NURBS, etc. with attributes defined on
them.

e Progressive Display. This is subject to research and requirements and structure
of a data format supporting progressive display is yet to be determined. Since
this setting is targeted towards high interactivity, a minimum requirement is
that transferred data has to be as light-weight as possible to ensure high
transfer rates. Ideally, this should be binary data with only a minimum of
control structures. In the best case, such data would be loaded into the address
space of the RPE CPU process (and/or a GPU kernel) and directly used without
any parsing or conversion.

e Non-Progressive Display. In this case we would assume that all data is
converted by RPE into an internal binary representation. Here, data could be
arbitrarily formatted and an ASCIl representation would be acceptable.

Performance should always be taken into consideration, and overhead in a chosen
data format should be minimized. However, in non-progressive settings, almost any
format that supports all needed data types should be acceptable.

In a progressive setting, the data format certainly would be highly specialized, and
there is probably no open format available that would fit all our needs.

The queries specified in section 3.2 may fall into one or several of the above four use-
cases.

3.4.3 VELaSSCo € - Simulated data

The versatile mechanism to incorporate data into the big data framework should
target not only handle already existing simulation data but be able to interact with
running simulations to gather the results at the precise moment they are being
calculated.

3.5 Context

As described on section FEM-Continuum data User requirements (Context) in
deliverable, the platform should be able to co-exists with existing HPC cluster and
resource management. The HPC clusters used by CIMNE are 64-bit Linux system with
several powerful nodes with minimal local storage and connected with their selves
using a high-speed network such as Infiniband. Usually storage is centralized using
Lustre or NFS. The typical resource managers and job schedulers are Slurm, Torque or
Sun grid engine.
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