VELassCo< @

D2.7-Engineering friendly and open data formats

COOPERATION

VELasSSCaoa

Visual Analysis for Extremely Large-Scale
Scientific COomputing

D2.7 —Target engineering friendly and open standards

formatted data stored in the HPC cloud infrastructure
Version #1.0

Deliverable Information

Grant Agreement no | 619439

Web Site http://www.velassco.eu/
Related WP & Task: WP2,T2.6
Due date December 31%, 2015

Dissemination Level

Nature

Author/s

Contributors

_COOPERATION _ Page 1 of 23

VELaSSCo < @)

D2.7-Engineering friendly and open data formats

Approvals
Name Institution Date OK
Author FRAUNHOFER/INRIA
Task Leader | Frank Michel FRAUNHOFER
WP Leader Bruno Raffin INRIA
Coordinator | Abel Coll CIMNE
Contributors | lvan Cores INRIA

Change Log

Version Description of Change

0.1 Outline and initial content
0.2 Add main content + cleaning
1.0 Review and definitive version

COOPERATION

Page 2 of 23

VELassCo < @

D2.7-Engineering friendly and open data formats

Table of contents
1 INErOAUCTION Lot 4
2 Hbase Data fOrmatsc.cuei i 6
2.1 VELASSCO_IMOAEIS ..eeeiiiiieeieiiee ettt ettt e e s ira e s saae e e s naaeae s 7
2.1.1 Simulation_Metadata......cccceeeiiiieiiiiiiee e 7
2.1.2 SImMUIAtioN_Data ..cccueeeiiiiiiee et s aaa e e 8
K J o Tol [V 1Y 1o o RO PP PP PPPPRT 9
A REFEIENCES ittt st st 9
5 Annex I - Hbase table Structure.......c...ccoceeiiiriiiiiiniieeeeeeeee e 10
5.1 VELASSCO _MOTEIS. eoeeiiieiiiieeeee ettt ettt e e nrree e e e e e e arrareeee e 10
5.2 Simulations_Metadata: metadata of Simulation modelscuuue...... 11
5.3 Simulations_Data: meshes and results data of simulation modeils................ 17
5.4 Simulations_VQuery_Results_Metadata: metadata of the Vqueries............ 21
5.5 Simulations_VQuery_Results_Data: data of the Vqueries.......c...ccceeeuvvveeenn... 21
5.6 Standard Gauss Points definitionccccoeciiiieiiniin e 21

i e

Page 3 of 23

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

1 Introduction

D2.7 was expected (DOW) to contain refinements for the data conversion identified in
D2.6. As we did not identify significant divergences from D2.6, we focus D.2.7 on the
description of the actual table structures adopted for storing the data and metadata in
the VELaSSCo parallel storage (DEM or FEM data sets). Previous descriptions made in
D2.6 (section 5.2) and D3.1 (section 3.3.1) are outdated.

VELaSSCo’s goal is to enable the high performance analysis of the data produced by
parallel FEM and/or DEM simulations, relying on a Hadoop infrastructure. The way the
data produced by these simulations is structured in the Hadoop infrastructure is
critical to ensure that data queries can be efficiently implemented, taking advantage
from the data parallel data processing capabilities offered by Hadoop. The data
structure in Hadoop must take into consideration the way the data are organised by
the simulation. Before presenting the structure of the VELaSSCo Hbase tables, we
rapidly remind general key features related to numerical simulation data structures.

The parallel simulations like the ones considered in VELaSSCo often relies on a
distributed memory model, following the MPI (Message Passing Interface)
programming model, where the simulation data/space needs to be explicitly
partitioned across the processes running on the cluster. This partitioning follow the
simulation own internal optimization criteria, but with the usual goals of ensuring a
even load balancing amongst processes while minimizing the needs for
communications. Such partitioning often follows a principle of spatial coherency, i.e.
data spatially close in the simulation space tend to be located in the same partition.

To simplify the writing of the results of the parallel simulation program and to reduce
data communications, data at the boundary of several simulation partitions are often
duplicated amongst these partitions. For instance, in a FEM simulation, a tetrahedron,
and its vertices, located on a partition boundary will be duplicated on each
neighbouring partition to avoid having partial definitions of tetrahedrons. Numerical
simulations are iterative processes that progress in time with a given time-step. At a
given frequency defined by the user, results, i.e. particles' positions and states for DEM
simulations or elements' positions and state for FEM simulations, are exported.

In a traditional HPC simulation data, different time steps are often saved to different
files, while the internal data partitions are often merged, suppressing the duplicated
data, but also loosing information about a potential data split that could convey a
relevant data storage parallelism.

One fundamental aspect of map/reduce infrastructure is the structuring of data into
tables of rows indexed by keys (first column) and having data attached in one or
several extra columns. These tables are split into blocks. In Hadoop, tables are splits in
physical "blocks", usually of 128MB, and logically into "splits". Boundaries of logical
splits are not necessarily aligned with blocks. Blocks are managed by the low level
HDFS file system, while Hbase exposes splits to the Hadoop infrastructure. Blocks are
distributed on different cluster nodes and can be replicated to ensure data integrity

EPERW Page 4 Of 23 * 5k

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

and to support fault tolerance mechanisms. The split size defines the granularity of
data parallelism. One map instance processes full splits. Several map instances can
process in parallel several splits, while one split cannot be processed concurrently by
several maps instances. The actual acceleration provided by parallel splits processing
depends on the physical location of the data. Notice that in Hadoop tables’ rows are
sorted according to the key index, the row-key.

Analysis of data from numerical simulations are often performed on a given timestep
(iso-surface extraction, plane cut, streamlines...) or a series of time-steps (path-lines,
results’ statistics, discrete to continuum transformations, etc.). Thus, it is important to
rely not only on the temporal parallelism offered by the various time-steps, but also by
a parallelism internal to each time-step. For that purpose we leverage the partitioning
performed when running the simulation, optimized for load balancing and reducing
the needs for communications between partitions, into the Htables.

Because the simulation often runs at a significantly higher degree of parallelism than
data analysis, the number of partitions available at the simulation level offers a
potential parallelism that should, in most cases, enable to benefit from the resource
aggregation provided by the Hadoop cluster (smaller in terms of nodes). Thus each
partition for each time-step corresponds to a row. The indexing key is a built from the
simulation id, the simulation analysis name, next the time-step value and eventually
the partition number. This order is important as rows are ordered based on that index.

The goal is to have rows likely to be processed together stored closely one to each
other to benefit from the caching effect of block loading during the hbase scan
process. Because we keep the partitioning from the simulation, processing the data
from one row becomes easier as a partition is usually self-contained.

On the opposite, this partitioning is simulation dependent, so queries must be aware
of the partitioning scheme used. To mitigate this effect the data produced by a
simulation are converted to the AP2019 standard format before to be injected into the
EDM. For a detailed description of AP2019 please refer to Deliverable D2.6, where it
was already described exhaustively. We detail in the following the Htable data
structure adopted for VELaSSCo open source architecture.

Early versions have been exposed in deliverables D2.6 and D3.1. The one presented
here is the one adopted for the current prototype. Notice that the result of popular
queries, like mesh boundary extraction, can be stored as new datasets in the Hadoop
cluster to save processing time and have a more reactive system. The scheme for
storing these new data sets follows the same than the simulation provided data with
small additions. We detail it here as well, but it may be subject to changes as this
aspect of the VELaSSCo prototype is still under intensive development.

EPERW Page 5 Of 23 * 5k

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

2 Hbase Data formats

HBase is a kind of Big Table, which enables access to data sets in a very efficient way.
The access to this table is based on a key methodology. For each row a key is
computed. Apache HBase®, the open source, NoSQL standard for Apache Hadoop, is
one of the two databases chosen to store engineering simulation data in a persistence
layer. According to a Cloudera post?, the main benefits on using Apache Hbase as
NoSQL database are the following:

“Tightly integration with HDFS, HBase opens data stored in Hadoop to users
across the company requiring real-time data access. As an integrated part of
Hadoop, HBase also works closely with other popular, open standard tools such
as Apache Kafka, Apache Flume, Apache Spark, and Impala.”

HBase can be used on top of multiple file systems, and in particular with the HDFS
distributed file system from the Hadoop suite. Besides this, NoSQL capacities provide
enough flexibility to adapt engineering simulation data to the most suitable data
model, in order to optimize data access to retrieve simulation information.

HBase data model consists in following elements?:

e Table: design-time namespace, has many rows.

e Row: atomic key/value container, with one row key
e Column Family: divide columns into physical files

e Column: a key in the k/v container inside a row

e Timestamp: long milliseconds, sorted descending

e Value: a time-versioned value in the k/v container

The data types of these elements are:

e Row keys, column names, values: arbitrary bytes
e Table and column family names: printable characters
e Timestamps: long integers

In the VELassCo platform there are six global tables:

e VELaSSCo _Models: one with a listing of the simulation models and some
properties and for each simulation model,

e Simulations_Metadata: a Metadata table with some specific metadata of the
model,

e Simulations_Data: a Simulation Data table with the mesh(es) and results
calculated by the simulation program,

e Simulations_VQuery_Results_Metadata: as Simulations_Metadata this table
will store the metadata of the output of the VQueries,

e Simulations_VQuery_Results_Data: as Simulations_Data this table will store the
data of the output of the VQueries, and

e VELaSSCo Users: to manage permissions to execute / access the queries.

Simulations_Vquery ... stores the output of the VQueries, like the
GetBoundaryOfMesh, GetSimplifiedModel or SplineVolume representation, or

WPERW Page 6 Of 23 * 5k

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

temporary information for Isosurfaces or Cutplanes, that can be later reused, like cut
extended information needed to interpolate results for the cut.

In the case of the Discrete2Continuum transformation, which creates a FEM mesh with
new analyses, time-steps and results, the Vquery will inject the data in tables: the
Simulations_Metadata and Simulations_Data.

Eventually, data about the input parameters used to run the Vqueries could be stored
in the CF:Q of Simulations_VQuery_Results_Metadata.

For a better operation of the flume agents when injecting the simulation data into the
VELaSSCo platform, instead of storing the metadata and simulation results in
independent tables for each simulation model, its metadata and data will be stored in
two global tables: Simulations_Metadata and Simulations_Data. To access the data of
a simulation, its Simulationld will also be used as key.

Modelling data schema must take into account main functionalities required by the
platform, as well as optimizing access to stored simulation data. Next sub-sections will
describe the main three tables: VELaSSCo_Models, Simulations_Metadata and
Simulations_data:

2.1 VELaSSCo_Models

This is the global table, which contains general information about the simulation
processed and stored. Data is stored in a unique Column Family called “Properties”,
which also contains specific qualifiers for simulation name, user, file path, etc. The
main role of this table is offering a general overview of engineering simulation data
stored, types, path, names, etc. to provide input parameters to build complex queries.

2.1.1 Simulation_Metadata

This table contains the data description (metadata) of the simulation meshes and
results present in the Simulations_data table for all models in the VELaSSCo platform.
The main information stored here related to types of particles, types of results, etc.
Data is divided into three column families; M, represents Mesh data, G represents
GaussPoints and R refers to results. The SimulationID will be used to access the
metadata of the simulation model with id SimulationID.

For instance, a FEM simulation model may have different meshes with triangles,
tetrahedrons and lines with names, unit and color properties. The meshes are grouped
by name and element type (all triangles with same name together, etc.) and this table
will contain the name, color, element type and units and the Simulations_Data will
contain the list of triangles with ids and connectivities. The same for a velocity vector,
the Simulations_Metadata table will contain the name of the result, the type, in this
case a vector, the number of components, eventually the component names, and
other properties and the Simulations_Data will contain the list of result values with
their id's.

For a single SimulationModel there will be several entries in this table, one for each
AnalysisName and Step inside this analysis, for instance to represent that a fluid is only

WPERW Page 7 Of 23 * 5k

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

present at some time-steps of the simulation. The entries will contain the mesh
description, gauss points description and results description for that step of that
analysis for simulation problems with dynamic meshes, like particle simulations. For
simulations problems with static meshes, like a fluid flow simulation without
refinement, their mesh and gauss points description will be on an extra entry with an
empty AnalysisName, and a step value of 0. The entries corresponding to each step of
analyses will have empty mesh and gauss points descriptions, but result definitions will
be present.

Traditional FEM simulation models have a single Coordinate set and several Meshes,
representing several parts (layers) of the model.

For DEM simulations, to represent the particles and contacts as described in the P4
format, there will be more than one Coordinate set:

e (Coordinates-p3p with number of particles (as appearing in P3P simulation files).

e Coordinates-p3c with number of particle2particle contacts (as appearing in P3C
files).

e Coordinates-p3w with number of particles2wall contacts (as appearing in P3W
files).

e Coordinates-w with number of nodes of wall meshes (considering all the wall
meshes together).

Also for DEM simulations, as described in the P4 format, there will be always at least 4
meshes:

e Mesh-p3p (for particles, maybe additional meshes needs to be considered once
the complex shaped particles are included, for instance a mesh for spherical
particles and another one for complex shaped particles? It will depend on how
visualization of complex shaped particle is implemented ... For the analytics all
particles could be in the same mesh)

e Mesh-p3c (for p2p contacts with element type “quadratic line”).

e Mesh-p3w (for p2w contacts with element type “line”).

e Mesh-walls (for the mesh of the walls. They are like the FEM meshes).

2.1.2 Simulation_Data

Finally, this is the most important table, where simulation result data is stored.
Similarly, information is divided into two column families: M for Mesh and R for
Results. It contains different types of results like, scalar, vectors, etc. Qualifiers are
defined with a unique name in order to identify specific information that could be
retrieved for queries.

This table contains the data of coordinates, meshes and results for all simulation
models. Following the recommendations for HBase schema design, the table will have
only two column families with several column names (qualifiers). The data will be
stored in binary form, to avoid binary-to-string conversions when storing and string-to-

WPERW Page 8 Of 23 * 5k

VELasSSCo < @)

binary conversions when querying the data. Each vertex/coordinates, element and
result value will be stored separately:

o the first letter indicates if it’s a ‘c’ coordinate, ‘m’ mesh or ‘r’ result

o followed by 6 digits that represents the id’s of the coordinate set, mesh set
or result set respectively,

e In the case of column qualifiers related to meshes ‘m’ and results ‘r’, 2
characters.

o followed by 1 special character

D2.7 - Engineering friendly and open data formats

aon

o followed by 8 bytes which are the 64-bit-integer of the Id of the vertex,
mesh element or result value respectively.

This data model is currently being assessed in terms of functionality and performance,
so minor changes could be adopted in the development of the VELaSSCo platform.

A detailed description of these tables can be found in this document Appendix.

3 Conclusion

The HTable structure described in this document reflects the structure actually in use
in the current prototype implementation (December 2015). Data computed from
gueries and that are expected to be saved in the Htable (pre-computed queries) follow
the same data structure. However pre-computed queries are still in their early
implementation stage. As the implementation and the experiments progress we may
expect some changes.

4 References
1: http://hbase.apache.org

2: http://vision.cloudera.com/open-standards-in-apache-hadoop-apache-hbase/

3: “HBase Schema Design”, HBaseCon 2012, by lan Varley.

—COOPERATION _ Page 9 of 23

VELasSSCo < @)

5 AnnexI - Hbase table structure.

D2.7 - Engineering friendly and open data formats

Next sub-sections shows all the internal parameters and columns in each HBase table.
VELaSSCo_Users table is not depicted in this section because it is only used to manage
permissions to execute/access the queries.

5.1 VELaSSCo_Models.

The main role of this table is offering a general overview of engineering simulation
data stored, types, path, names, etc. to provide input parameters to build complex
queries.

This table contains a list of the simulation models present in the VELaSSCo platform
with:

o Key: Simulationld: 16 bytes (known as GUID in Session VQueries)
o ColumnFamily: Properties, single column family with following columns:

o nm (name): String can be repeated by other user, ...

o fp (FullPath): full path of the simulation data, so that it can be uniquely
identified as used and known by the simulation users, this is the
simulation model path in the cluster where the simulation program
being executed becomes its source information, or where the
simulation results comes from, so that the user can identify the model’s
origin and locate any needed information; and not the final path inside
the VELaSSCo platform where the HDFS files lie)
bb (BoundingBox): 6 double precision numbers
vs (ValidationStatus): string
np (Number of partitions): integer
uName (uUserName): string (contains the access permissions, one of
no_access / read_only [read&write&delete for user UserName)
ot (Other data): Byte Array (optional)

Thumbnails are stored as files in HDFS, so they are not in this table.

o Eventually another column(s) with the names of the tables that store
the temporary data like multi-resolution models, skins, pre-computed
queries.

0O O O O

o O

Access permissions:

Access permissions are stored in the global simulation table for each simulation, i.e.
row. There will be one column name (qualifier) per user starting with letter “u”,
following with the user name and its value is the access permission to that model
which can be: no_access, read_only or read&write&delete.

Special user name ALL is used to set the default access permissions for all users, when
no specific permission is present.

oan

The column uALL = “” should always be present to specify the default access to the

model for all users.

—COOPERATION _ Page 10 of 23

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

Example:

Key CF: Properties

0x0001 nm = “3Dcylbody”, fp = “/user/KratosUserA/simulation/3Dcylbody”, bb={00011 1}, vs
= “Not validated”, np = 1, umiguel = “read&write&delete”, ubenoit =
“read&write&delete”, uALL = “read_only”, ot = NULL

0x0002 nm = “Car”, fp = “/user/KratosUserB/simulation/Car”, bb = {-10 -5 -3 10 5 3}, vs = “Not
valid, motive”, np = 96”, ualvaro = “read&write&delete”, uALL = “read_only”, ot = NULL

0x0003 nm = “FluidizedBed”, fp = “/user/DemUserC/simul/FluidizedBed”, bb ={-2 -2 -2 6 10 22},
vs = “Invalid, missing”, ujochen= “read&write&delete”, uALL = “no_access”, np =1

5.2 Simulations_Metadata: metadata of Simulation models

The table containing the Simulations_Metadata will have only three column families
with several column names (qualifiers):

e Key: SimulationID + AnalysysName + Step (16 bytes + integer (4bytes = length)
+ String + double 8 bytes)
e ColumnFamily: M (stands for Mesh) with following columns:
o un (units): String with the name of the units of the geometry
o Ccoordinate set definitions:
= cCCCCCCH#: the full length name of the column qualifiers is a
String of 9 bytes:
e (CCCCCC, 6 digits, is the number of coordinate set
e ## 2 characters, specific for the column qualifiers types
of the coordinates set.

» ¢000001nm (Coordinates 000001 name): String, name of this
coordinate set, for DEM will be p3p.

= ¢000001nc (Coordinates 000001 number of coordinates): 64-bit
integer

= ¢c000002nm (Coordinates 000002 name): String, name of this
coordinate set, for DEM will be p3c.

= ¢000002nc (Coordinates 000002 number of coordinates): 64-bit
integer

= ¢CCCCCCnm (Coordinates CCCCCC name): String, name of this
coordinate set, for DEM will be p3p, p3c, p3w or w.

= ¢CCCCCCnc (Coordinates CCCCCC number of coordinates): 64-bit
integer

o M mesh definitions:

" mMMMMMM##: the full length name of the column qualifiers is

a String of 9 bytes:
o MMMMMM, 6 digits, is the number of mesh set

—COOPERATION _ Page 11 of 23

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

e ## 2 characters, specific for the column qualifiers types
of the mesh set.

= mO000001nm (Mesh 000001 name): String, name of the mesh
000001

= mO000001cn (Mesh 000001 coordinates column name): String,
indicating the name (prefix) of the coordinates this mesh uses

= m000001et (Mesh 000001 element type): String, one of {Point,
Line, Triangle, Quadrilateral, Tetrahedron, Hexahedron, Prism,
Pyramid, Circle, Sphere, ComplexShape, quadratic line for p2p
contacts of DEM simulations} (or may be SphereCluster, as they
are represented as cluster of Spheres...) (for the initial platform
we only need to support lines, quadratic lines, triangles,
tetrahedrons and spheres)

= mO000001ne (Mesh 000001 number of elements). 64-bit integer,
number of elements of Mesh 000001

= m000001nn (Mesh 000001 number of nodes per element):
integer, indicates the number of nodes of the element, for
instance tetrahedrons of 4 or 10 nodes

= m000001c/ (Mesh 000001 color). String (optional), with the
colour of the mesh in hexadecimal format: #rrggbb or #rrggbbaa.

= mMMMMMMnm (Mesh MMMMMM name): String, name of
the mesh M

= mMMMMMMcn (Mesh MMMMMM coordinates column name):
String, indicating the name (prefix) of the coordinates this mesh
uses

" mMMMMMMet Mesh MMMMMM element type): String, one of
{ Point, Line, Triangle, Quadrilateral, Tetrahedron, Hexahedron,
Prism, Pyramid, Circle, Sphere, ComplexShape, quadratic line for
p2p contacts of DEM simulations} (or may be SphereCluster, as
they are represented as cluster of Spheres...)

" mMMMMMMne (Mesh MMMMMM number of elements): 64-
bit integer, number of elements of Mesh 1

" mMMMMMMnn (Mesh MMMMMM number of nodes per
element): integer, indicates the number of nodes of the element,
to represent quadratic elements, for instance triangles with 3 or
6 nodes or tetrahedrons with 4 or 10 nodes

= mMMMMMMecl (Mesh MMMMMM color). String (optional),
with the colour of the mesh in hexadecimal format: #rrggbb or
H#rrggbbaa

e ColumnFamily: G (stands for Gauss Points) with following columns:
o G gauss point definitions:

" gGGGGGGH##: the full length name of the column qualifiers is a

String of 9 bytes:
e GGGGGG, 6 digits, is the number of gausspoint set

—COOPERATION _ Page 12 of 23

VELasSSCo < @)

COOPERATION

D2.7 - Engineering friendly and open data formats

e ## 2 characters, specific for the column qualifiers types
of the gausspoint set.

= g000001nm (name): String with the name of the gauss points

= g000001et (element type): String with the element type for this
gauss points definition

= g000001ng (number of gauss points): integer, number of
integration points, for instance 1, 3 or 6 for triangles

= g000001ni (nodes included): Boolean, for gauss points on lines, if
the ends are included in the definition or not

= g000001lic (internal coordinates): Boolean, indicating if the
internal definition is used or the definition provides its own set
of natural coordinates

= g000001nc (natural coordinates): double [g000001ng][3],
natural coordinates of the definition, or empty if g000001ic ==
true

= g000001mn (mesh name): String indicating the mesh name to
which this definition refers, or empty if the gauss points are
defined for all elements of type g000001et

* gGGGGGGnm (name): String with the name of the gauss points
* gGGGGGGet (element type):. String with the element type for
this gauss points definition
» gGGGGGGng (number of gauss points): integer, number of
integration points, for instance 1, 3 or 6 for triangles
» gGGGGGGnI (nodes included): Boolean, for gauss points on lines,
if the ends are included in the definition or not
» gGGGGGGic (internal coordinates): Boolean, indicating if the
internal definition is used or the definition provides its own set
of natural coordinates
» gGGGGGGnc (natural coordinates): double [gGGGGGGNg][3],
natural coordinates of the definition, or empty if gGGGGGGic ==
true
» gGGGGGGmMn (mesh name): String indicating the mesh name to
which this definition refers, or empty if the gauss points are
defined for all elements of type gGGGGGGet
o This column family is not needed for the initial version of the platform,
But as far as | know it should be present though, as it will be
cumbersome to add it afterwards. For the initial version of the platform,
this CF can remain empty for FEM simulations. For DEM simulations, the
following data needs to be added so that it is possible to distinguish
between p2p contacts and p2w contacts:

= Column qualifier = g000001nm value = gp_p2p
= Column qualifier = g000001et value = line (or Line)

Page 13 of 23

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

Column qualifier = g000001ng value = 1

Column qualifier = g000001ni value = false
Column qualifier = g000001ic value = false
Column qualifier = g000001nc value = (empty)
Column qualifier = g000001mn value = p2p contacts

Column qualifier = g000002nm value = gp_p2w

Column qualifier = g000002et value = line (or Line)
Column qualifier = g000002ng value = 1

Column qualifier = g000002ni value = false

Column qualifier = g000002ic value = false

Column qualifier = g000002nc value = (empty)
Column qualifier = g000002mn value = p2w contacts

o Moreover there will be standard gauss points definitions and the
meshes can use them (definitions at the end of the document):

GP_LINE_1,

GP_TRIANGLE_1, GP_TRIANGLE_3, GP_TRIANGLE_S6,
GP_TETRAHEDRA_1, GP_TETRAHEDRA_4, GP_TETRAHEDRA_10,
GP_SPHERE_1

Other standard definitions will be added when the
corresponding element types are added to the platform.

e ColumnFamily: R (stands for Result) with following columns:
o Rresult definitions:

COOPERATION

rRRRRRR##: the full length name of the column qualifiers is a
String of 9 bytes:
® RRRRRR, 6 digits, is the number of result set
o ## 2 characters, specific for the column qualifiers types
of the result set.

r000001nm (Result 000001 name): String with the name of the
result

r000001rt (Result 000001 type): String, one of {Scalar, Vector,
Matrix, ?PlainDeformationMatrix?, ...}

r000001nc (Result 000001 number of components). integer, for
scalars = 1, vectors = 2, 3 or 4, Matrices = 3, 4 or 6.

r000001cn (Result 000001 component names). String|
r000001nc] (optional)

r000001Ic (Result 000001 location): String, one of {OnNodes,
OnGaussPoints}

r000001gp (Result 000001 gauss point name): String, with the
gauss point name if r000001/c == OnGaussPoints

Page 14 of 23

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

r000001co (Result 000001 coordinates name): String (optional),
referring to the coordinate column name if r000001lc ==
OnNodes and there are more than one coordinate set.
r000001un (Result 000001 units name): String with the name of
the units for this result

rRRRRRRnm (Result RRRRRR name): String with the name of the
result

rRRRRRRrt (Result RRRRRR type): String, one of {Scalar, Vector,
Matrix, ?PlainDeformationMatrix?, ...}

rRRRRRRnc (Result RRRRRR number of components): integer, for
scalars = 1, vectors = 2, 3 or 4, Matrices = 3, 4 or 6.

rRRRRRRcn (Result RRRRRR component names): String|
rRRRRRRnc] (optional)

rRRRRRRIc (Result RRRRRR location): String, one of {OnNodes,
OnGaussPoints}

rRRRRRRgp (Result RRRRRR gauss point name): String, with the
gauss point name if rRRRRRRIc == OnGaussPoints

rRRRRRRco (Result RRRRRR coordinates name): String (optional),
referring to the coordinate column name if rRRRRRRIc ==
OnNodes and there are more than one coordinate
set.rRRRRRRun (Result 1 units name): String with the name of
the units for this result

Example of FEM simulation with static mesh Simulation_Metadata (3Dcylbody rows):

Key:
Simulationld CF: M CF:G CF:R
+ Analysis +
Step
un="“m”, (empty)
c000001nm = “coordinates”, c000001nc =
339185,
m000001nm = “exterior volume”,
0x0001 +0+ | m000001cn = “c000001”, m000001et = (empty)
“4+0.0 |“tetrahedral”, m000001ne = 717793, Py
m000001nn = 4, m000001cl = “#00ff00”,
m000002nm = “down 9”, m000002¢cn =
“c000001”, m000002et = “triangle”,
m000002ne = 21720, m000002c| =
“#4d4d80”
r000001nm = “Pressure”, r000001rt =
b oo ool
“RANSOL” + (empty) (empty) ’ - ’
91.5

r000002nm = “Velocity”, r000002rt =
“vector”, r000002nc = 3, r000002cn = “v-X, v-

COOPERATION

Page 15 of 23

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

”

m/s

y,v-2";
”
’

r000002Ic ="OnNodes”, r000002un =

r000003nm = “Vorticity”, r000003rt =
“scalar”; r000003nc = 1, r000003Ic =
“OnNodes”, r000003un = “1/s”

(empty) (empty)
0x0001 +
6+“RANSOL (empty) (empty)
” +200.0
Example of particle simulation with dynamic mesh Simulation_Metadata
(FluidizedBed rows):
Key:
Simulationid CF: M CF:G CF:R
+ Analysis +
Step
r000001nm = “Volume”, r000001rt =
un= “scalar”, r000001nc = 1, r000001Ic =
c00_000'1nm = “p3p”, €000001nC = “OnNodes”, r000001co ="c000001”,
11880, rlun="%
g(())g(éoOan = "p3c’, c000002nc = 2000001nm = “gp_p2p” r000002nm = “Mass”; r000002rt =
€000003nm = “p3w”, c000003nc = [g000001et = “line”, “scalar”; r000002nc = 1, r000002lc =
321 2000001ng =1, g000001ni = OnNodes”, r000002co ="c000001”,
“false”, g000001ic = “false”, raun=""
m000001nm =” partlclels, , g000001nc = (?Impty), r000003nm = “Velocity”, r000003rt =
m000001cn = “c000001”, g000001mn = “p2p “)
m000001et = “sphere” contacts” vector”, r000003nc = 3, r000003cn =
0x0003 + = sphere’, “Vx,V-y,V-z"; r000003lc = “OnNodes”,
3+ e + [T0000LNe = 11880, mOD000TAN r000003co =” c000001”, r000003un =
* 1= 1, m000001cl = “#foffof”, g000002nm = “gp_p2w”, |, N ’ -
0.0 000002et = “line”,
m000002nm =” p2p con"tacts , §0000’?2ng =1, ngO(iOZm = r000004nm = “Force p2p”, r000004rt
m000002cn = “c000002”, false”, g000002ic = “ false”,|_ “yector”: r000004nc = 3. r000004cn
m000002et = “quadratic line”, g000002nc = (empty), ~ “Ex D2 I’: 2o Fy 2_,, ’rOOOOO4Ic _
m000002ne = 3036, m000002¢| = [g000002mn = “p2w = TXPePTY pepFz pep, N
4918181 contacts” OnGaussPoints”, r000004gp =
“gp_p2p”, r000004un =""
2ggggggzr_z,tgé‘gozzﬁtaCts ' r000005nm = “Force p2w”, r000005rt
m000003et -_”Iine” m00'0003ne _ = “vector”; r000005nc = 3, r000005cn
391, m000003cl = ”ifOOOOff" = “Fx p2w,Fy p2w,Fz p2w”, r000005Ic
! = “OnGaussPoints”, r000005gp =
“gp_p2w”, r000005un =""
0x0003 +3
+ “DEM”"+
0.xx
0x0003 +3
+ “DEM” +
87.0

COOPERATION

Page 16 of 23

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

5.3 Simulations_Data: meshes and results data of simulation models

This table contains the data of coordinates, meshes and results for all simulation
models. Following the recommendations for HBase schema design, at the beginning of
this document, the table will have only two column families with several column
names (qualifiers). The data will be stored in binary form, to avoid binary-to-string
conversions when storing and string-to-binary conversions when querying the data.
Each vertex/coordinates, element and result value will be stored separately:

e the first letter indicates if it’s a ‘c’ coordinate, ‘m’ mesh or ‘r’ result

o followed by 6 digits that represents the id’s of the coordinate set, mesh set
or result set respectively,

e In the case of column qualifiers related to meshes ‘m’ and results ‘r’, 2
characters.

o followed by 1 special character “_

o followed by 8 bytes which are the 64-bit-integer of the Id of the vertex,
mesh element or result value respectively.

o n

The row key and the two column families are:

e Key: SimultionID + AnalysisName + Step + Partitionld (16 bytes + integer
(4bytes = length) + String + double (8 bytes) + integer (4 bytes))
e ColumnFamily: M (stands for Mesh) with following columns (key-value pairs):
o Ccoordinate set data: each vertex will be stored separately as:
= ¢cCCCCCC_id: double[3] (the full length name of the column
qualifiers is a String of 8 bytes + 8 bytes for the id)
e (CCCC, 6 digits, is the number of coordinate set
referenced by the Mesh in metadata.mMcn ;
e Id, int64 (8 bytes), is the id of the vertex stored in binary
form ;
e double[3]: coordinates of the vertex
= ¢000001_1=(34.55921297, 19.83166827,86.05163597)
= ¢c000001_2 =(89.54424860, 92.98155843,91.49390204)

= ¢000001_87654321 =(16.213, 56.607, 50.641)

= ¢CCCCCC 82345 =(17.8073115, 63.9179244, 57.193386)
= cCCCCCC_88888888 = (82.87357, 82.66503, 66.52144)
o M mesh data: each element will be stored separately as:
= mMMMMMM## _id: double[number of nodes per element] (the
full length name of the column qualifiers is a String of 10 bytes +
8 bytes for the id)
o MMMMMM, 6 digits, is the number of mesh set.
e f## is 2 characters to distinguish between the different
types of column qualifiers related to mesh.
e |d, int64 (8 bytes), is the id of the element stored in
binary form

—COOPERATION _ Page 17 of 23

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

= normal FEM elements:
e triangles:
o mO000001cn_1 = nln2n3 (triangle using
nodes/vertices n1, n2, n3 (int64[3]), and
o mO000001gr_1 = element 1 belongs to group GG
(int64)
e tetras:
o m020406cn_8765434 = n1n2n3n4 and
o m020406gr_8765434 = GG
e hexas:
o m844444cn_212312 = nln2n3n4n5n6n7n8 and
o m844444gr 212312 = GG

e .. quadratic elements ...
= Particles (DEM elements):
e Spheres:

o m000001cn_1 = nl for sphere with id 1, using
vertex nl (int64)

o mO000001rd_1 = RR for sphere with id 1, using
radius RR (double)

o mO000001gr 1 = GG for sphere with id 1,
belonging to group GG (int64).

= Contacts (DEM elements):
e Quadratic lines (p2p contacts):

o mO000002cn_1 = nln2n3 (quadratic line using
nodes/vertices n1, n2, n3 (int64[3]). The nl1 and
n2 corresponds to nodes/vertices of the
coordinates set “p3p” (c000001_id) and n3
corresponds to nodes/vertex of the coordinates
set “p3c” (c000002_id).

o mO000002gr 1 = element 1 belongs to group GG
(int64). This column qualifier can be empty or
omitted for the first prototype.

e Lines (p2w contacts):

o m000003cn_1 = nln2 (line using nodes/vertices
nl, n2 (int64[2]). The nl corresponds to
nodes/vertices of the coordinates set “p3p”
(c000001_id) and n2 corresponds to nodes/vertex
of the coordinates set “p3w” (c000003 _id).

o mO000003gr_1 = element 1 belongs to group GG
(int64). The value corresponds to the ID provided
for each contact below the column “WALL” of
p3w file.

e Circles:

—COOPERATION _ Page 18 of 23

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

o m000002cn_1234 = n1 for circle with id 1234,
using vertex n1l as centre (int64),
o m000002rd_1234 = RR for circle with id 1234,
using radius RR (double),
o mO000002no_1234 = NxNyNz for circle with id
1234, using normal NxNyNz (double[3]),
o mO000002gr 1234 = GG for circle with id 1234,
belonging to group GG (int64).
[}
= specific for ComplexShape / SphereCluster
e ColumnFamily: R (stands for Result) with following columns:
o Rresult data with one column qualifier per result value
* rRRRRRRVI_id: double[rRRRRRRnc] (the full length name of the
column qualifiers is a String of 10 bytes + 8 bytes for the id)

e RRRRRR, 6 digits, is the number of the result set defined
in the metadata table;
e “vI”js 2 characters.
e [d, int64 (8 bytes), is the id of the value (may reference
to a vertex or a element stored in binary form) ;
e double[rRRRRRRnc]: values of the result for that
vertex/element:
o 1 value for nodal scalar
o 2, 3 or4values for nodal vectors
o 3,4 or 6 values for nodal matrices
o If the result is defined for the element (gauss
points), the above values are repeated for all
gauss points of the element (one triangle with 6
gp will have one entry rRRRRRRvI_1 with 6 scalars
values, or 4 * 6 = 24 vector values)
= Scalar:
e r000001vl_1 =(34.55921297)
e r000001vl_2 =(89.54424860)
= Vector:
e rRRRRRRv|_82345
57.193386)
e rRRRRRRvl 87654321

(17.8073115, 63.9179244,

(16.213, 56.607, 50.641)

Example of FEM simulation with static mesh Simulations_Data (3Dcylbody rows):

Key: Simulationld + CF:R
Analysis + Step + CF: M
PartitionID
c000001_0 = (0.0, 0.0, 0.0), (empty)
0x0001+ 0+ +0.0+0 50001 339185 = (1.0, 1.0, 1.0),

—COOPERATION _ Page 19 of 23

VELasSSCo < @)

D2.7 - Engineering friendly and open data formats

m000001cn_0=(1, 2, 3, 4),
m000001gr_0 = (1),
m000001cn_717793 = (339184,
339183, 339182, 339181),
mO000001gr_717793 = (2),

m000002cn_717794 = (1, 2, 3)
m000002cn_739513 = (7,66, 8)

r000001vl_1 = (4), r000001v]_339184 =
0x0001 + 6 + “RANSOL” (empty) (324),

+91.5+0 r000002vl_1 = (1.1, 2.2, 3.3),
r000002vl_339184 = (10.0, 10.0, 9.1), ...

0x0001 + 6 +“RANSON”

+200.0 (empty)

Example of particle simulation with dynamic mesh Simulations_Data (FluidizedBed
rows):

Key: Simulationld +
Analysis + Step + CF: M CF: R
Partitionld

c000001_1 =(0.0005, -0.0055, 0.0005),
..., €000001_11880 = (0.00237071
0.00278272 0.00786869),

r000001vl_1 = (5.23599-10),
r000001vl_2 = (5.23599¢-10), ...

r000001vl_11880 = (9.04779e-10),
€000002_1 =(0.0005, -0.0055, 0.0005),

..., c000002_3036 = (0.00317887, |r000002vI_1 = (1.0472e-06),
0.0452111, 0.00928326), r000002vl_2 = (5.23599e-10), ...

€000003_1 =(0.0005, -0.0055, 0.0005), | "000002v1_11880 = (9.04779e-07),

.., C000003_463 = (0.00317887, r000003vl_1 = (0.0,0.0,0.0), r000003vl_2

0.0452111, =(0.0,0.0,0.0), ... r000003vl_11880 =
0.00928326),m000001cn_1={1}, | (4 5763565, -0.0355245, -0.00972661),
0x0003 + 3 + m000001rd_1={1.0472e-06},
“DEM”+0.0+0 m000001gr_1=(3}, ..., r000004vl_1 = (-8.67362e-17, 0.0, 0.0),
m000001cn_11880={11880}, r000004vl_2 = (-1.73472e-16, 0.0, 0.0),
m000001rd_11880={9.04779e-07}, | r000004vI_3036 = (-4.56173e-05, -
m000001gr_1={1}, 8.20138e-06, 1.15113e-05),

m000002cn_1={181, 241, 1}, [_ -
mM000002gr 1={}, .., r000005vI_1 = (-9.03448e-320,

m000002cn_3036={8004, 10478, 1.23605e-314. -1.23471e-314),
3036}, m000002gr_1={}, rOOOOOSVI_Z = (-9034488-320, -
1.23605e-314, -1.23471e-314), ...,
r000005vl_463 = (1.63278e-05, -
3.22285e-05, -0.000361286)

m000003cn_1={1, 1}, m000003gr_1={},
..., M000003cn_463={11685, 463},
m000003gr_1={0}

0x0003 +3 +
“DEM”+99999+0

—COOPERATION _ Page 20 of 23

VELasSSCo < @

5.4 Simulations_VQuery_Results_Metadata: metadata of the Vqueries

D2.7 - Engineering friendly and open data formats

This table stores the name and parameters of the VQueries whose data is stored in the
Simulations_Vquery Results_Data table.

Simulations_VQuery_Results_Metadata:

e Rowkey: (SimID + An + Step + QID)
e CF: M, G, R (asinSimulations_Metadata table)
e CF:Qwith
o vg: “Vguery-name”, gp: “Vquery-parameters”, ul: “user list who
performed the query”
e QID=md5(QueryName + QueryParameters)

5.5 Simulations_VQuery_Results_Data: data of the Vqueries

This table stores the mesh and results data of the performed VQueries and other
‘temporary’ data like interpolation information for isosurfaces or cutplanes. This table
will also store the output of the Spline Volume representation.

Is to be seen if the output of the Discrete2Continuum transformation data is stored in
this table or in the Simulations_Metadata and Simulations_Data tables.

Simulations_VQuery_Results_Data:

Rowkey: (SimID + An + Step + QID + PartID)
CF: M, R (as in Simulations_Data table)
CF: Q with
o gr: “Other results that cannot be stored in CF:M or CF:R columns ”
QID = md5(QueryName + QueryParameters)

5.6 Standard Gauss Points definition

All element types supported by the platform and visualization clients will have a single
gauss point at the center of the element, to represent cell values.

The standard Gauss Points to be internally defined and understood by the VELaSSCo
platform and the visualization clients are:

For the initial version of the platform:

Name Location in element Internal coordinates
GP_LINE_1 centre of line
GP_TRIANGLE_1 a=1/3
- - (a,a)
al/2
GP_TRIANGLE_3 (a,0)(a a)(0,a)

—COOPERATION _ Page 21 of 23

VELasSSCo < @

D2.7 - Engineering friendly and open data formats

GP_TRIANGLE_6

a=0.09157621 b=0.81684757

¢=0.44594849 d=0.10810301
(a,a)(b,a)(a,b)
(c,d)(c,c)(d,c)

GP_TETRAHEDRA_1

Centre of element

GP_TETRAHEDRA_4

a=(5+3*sqrt(5))/20=0.585410196624968
b=(5-sqrt(5))/20 =0.138196601125010
(b, b,b)(a,b,b)(b,a,b)(b,b,a)

GP_TETRAHEDRA_10

a=0.108103018168070
b=0.445948490915965
c=0.816847572980459
(a,a,a)(c,a,a)(a,c,a)(a, a,c)
(b,a,a)(b,b,a)(a,b,a)
(a,a,b)(b,a b)(a,b,b)

GP_SPHERE_1

centre of sphere

Other standard gauss point definitions, eventually for the final version of the platform:

Name

Location in element

Internal coordinates

GP_QUADRILATERAL_1

(0,0)

GP_QUADRILATERAL_4

a=0.57735027
(-a,-a) (a,-a)
(a,a)(-a,a)

GP_QUADRILATERAL_9

1

a=0.77459667
(-a,-a) (a,-a) (a, a)
(-a,a)(0,-a) (a,0)
(0,a)(-a,0)(0,0)

GP_HEXAHEDRA_1

centre of the element

GP_HEXAHEDRA_8

a=0.577350269189626
(-a,-a,-a) (a,-a,-a) (a, a,-a) (-a, a,-a)
(-a,-a,a)(a,-a,a)(a, a,a)(-a,a,a)

COOPERATION

Page 22 of 23

VELasSSCo < @

D2.7 - Engineering friendly and open data formats

a=0.774596669241483

(-a,-a,-a) (a,-a,-a) (a, a,-a) (-a, a,-a)
(-a,-a,a) (a,-a,a)(a, a,a)(-a,aa)
(0,-a,-a) (a, 0,-a) (0, a,-a) (-a, 0,-a)
(-a,-a,0) (a,-a,0) (a, a,0)(-a, a,0)
(0,-a,a)(a,0,a)(0,4a,a)(-a,0a)

(0,0,-a)
(0,-a,0)(a,0,0)(0,4a,0)(-a,0,0)

(0,0,a)

(0,0,0)

GP_HEXAHEDRA_27

GP_PRISM_1

a=1/6=0.166666666666666

5 b=4/6=0.666666666666666

¢=1/2-1/(2sqrt(3)) =0.211324865405187

d=1/2+1/(2sqrt(3))=0.788675134594812
(a,a,c)(b,a,c)(a,b,c)
(a,a,d)(b,a,d)(a,b,d)

GP_PRISM_6

1 Z

GP_PIRAMID_1 centre of the element

a=8.0*sqrt(2.0/15.0)/ 5.0
=0.584237394672177
b=-2/3 =-0.666666666666666
c=2/5=0.4
(-a,-a, b)

(a,-a,b)

(a,a,b)

(-a,a,b)
(0.0,0.0,c)

GP_PIRAMID_5

GP_CIRCLE_1 centre of the element

_CODPERATION _ Page 23 of 23

