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1. Introduction

As stated in [20], scientists hope to reach Exascale computing in 2015. Exascale computers
are machines, which can reach one exaFlops (10" floating point operations per second).
Such amount of computations brings new kinds of problems for large-scale computing. To be
able to reach Exascale computing, scientists have to deal with massive parallel architectures
and apply computations on heterogonous nodes (variable granularity of computation). Such
a paradigm is a shift in mind: traditional parallelism is not enough to express Exascale
requirements. ExaFlops are expected to be reached in 2018; to achieve this goal new
hardware is developed, see [108].

Storage of Data is another important field of research in computer science. Data growing
scale has followed a similar path than computing (based on Moore’s law) [28]: quantity
doubles every 2 years, see Figure 1. This fast growing is driven by two evolutions: personal
computers and Internet access. Data is produced by everything; any object from our life can
now produce information. Moreover, data is now collected through many communication
channel. To manage efficiently this amount of information, it is necessary to produce
metadata, this new information is used to explain existing inforamtion.
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Figure 1. Current and forecasted growth of big data. [220]
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As an example, LSST produce 30 terrabytes of astrophysics data every night [22]. In 2008,
servers around the world have produced 9.57 zettabytes (10*! bytes) of information [27].
Massive data brings new computation dilemmas, but it is not a new problem: the first
processing equipment was deployed in 1890; this system used punched cards to store
information. Now, compute systems have evolved and are massively distributed to perform
fast parallel computations. This intensive data growth has an energy impact: data analysis
and management needs more energy [26]. In the case of the VELaSSCo project, this amount
of data is produced by simulation software. For example, the solver computes a particles
simulation on a set of particles and produces files. These files are composed of timestamps
and new values for particles. When a new time step is computed, a new file is generated. To
understand a simulation, it is necessary to store the maximum number of time steps, this
statement imply to deal with large amount of information: Big Data.



In the earlier days, the term Big Data has been proposed to refer to large datasets, which
required supercomputing capabilities [14][29]. But after a while, these datasets could fit into
a standard computer, and analysis could be performed on a desktop computer. From this
statement this definition of Big Data is considered as a poor term [13]. A new definition has
been provided: Big Data is more correlated to capacities of search, aggregate and cross-
reference datasets: the number of datasets is less important. Data processing needs to
address three key points, named 3V: Volume, Velocity and Variety. The term 3V is presented
in [11][29]. The data volume concerns the amount of produced data (byte quantity). Rate
and frequency of the data production represent the data velocity. And finally, data variety
means which data is produced. Now storage systems need to handle with these three
dimensions [12]. To be able to manage these datasets, data scientists need to provide new
ODP (Organize, Package and Deliver data) strategies to databases [12].

An important event brings Big Data in the front part of the scientific community [159].
Google Scientists have produced a paper published in Nature, which presents the
dissemination of flu across USA in 2008. This analysis has been performed without any
medical knowledge; only search engine queries have been used. Five years later, the same
analysis was performed again, and then the results have diverged from the reality, the flu
was overstated by a factor of two. This example shows an important thing with Big Data: the
result is not always true. In 2010, the economist has published a paper entitles: “the data
deluge”, see [230], in this paper, authors present business development of this new domain.
Big data is now an evolving domain, which surround all domains. This document referees to
most common problems with big data: the amount of information, transformation of
traditional business, data visualization, etc. This paper presents what big data means, and
what is evolving with big data.

In this document, the first part is dedicated to distribute systems (Section 2). The second
part presents cloud infrastructures (Section 3). The third part is devoted to best practices
concerning Big Data (Section 4). The fourth part presents some cloud tools (Section 5) and
the following part discusses some applications (Section 6). The next section discusses the
future of cloud systems (Section 7). The last section focuses on the VELaSSCo project
(Section 8).

2. Distributed Systems

A distributed system (DS) is a part of the High Performance Computing field, and HPC is a
part of the computer science domain. A distributed system is focused on how to deal with
distributed components over networks. Computation is coordinated by a message passing
system or job scheduling. DS can be divided into several sub-domains as stated in [1]. These
subdomains are: Supercomputing, Grids, Clusters, Web 2.0 and clouds. Figure 2 shows this
decomposition, on abscissa, systems are classified between Application and Services
orientation, and the ordinate axis is dedicated to describe scale (size of computing system).
Subclasses of DS are disseminated on this 2D space and some overlapping exists between
these subdomains.

In this document, our interest is focused on grid and cloud computing.



Scale

Distributed Systems

>
Application Services

Oriented Oriented

Figure 2. Global overview of Distributed Systems [1]

2.1. Supercomputing

To reduce the scope of this document, we make a short introduction to this subdomain. And
more precisely, we deal with the BigTable approach presented by Google. The presented
solution cannot be defined as a cloud or grid computing.

Google has developed this solution to index the Web, and provide an efficient WebCrawler.
This solution is based on 3 components: GFS [215], BigTable [56] and MapReduce. The main
component is GFS (Google File System). It is a virtual distributed File System (FS), which has
been designed to fit efficiently to web crawl requirements (small amounts of writes, huge
amounts of reads). GFS has been designed to be suitable with a highly distributed system.
This system works with two different nodes: Master and Chunkservers. This solution
provides a high reliability and high redundancy with at least 3 instances of the same data
chunks. Then Google has provided a database system named BigTable. This DB is based on
GFS, and was a data column store. All the computation is based on MapReduce. This
programming model is a distributed computation model based on two functions Map and
Reduce. Figure 3 presents the MR paradigm. Multiple Map functions are executed on
several nodes. Results of the Map function are written in files, and the Reduce functions
merge these files into other files. The original MR implementation is only suitable for batch
processing; interactive processing is not suitable.

Scientists have developed an open-source framework named Hadoop and based on Java
[95][94][107]. This strategy enables to deploy a reliable, scalable and distributed application
among several computers. Instead of using Google File Systems, Scientists have developed a
specific file system named HDFS (Hadoop File System). This File System enables similar
functionalities than GFS. This system can store any data, without any schema requirements.
To apply computation among several nodes, they also implement MapReduce. As an open
source framework, this solution has massively evolved, and a plethora of extensions has
been proposed and implemented. In the next section of this document, we present some of



them. An example of these extensions is presented in [142]: MongoDB can be used to store
Hadoop data instead of HDFS.

2.2. Grid computing

Grids are part of distributed systems (see Figure 2). Grids provide a set of resources by
sharing and coordinating them. Grids architectures can be composed by different kinds of
resources, hardware (x86, SPARC, ARM, etc.) and operating systems. All these features make
Grids heterogeneous. Grids are also shared between users; each one has a specific amount
of time and resources. And grids can be distributed among several locations. When a
scientist has to deal with a grid system, he has to think with a possible heterogeneity of the
hardware, shared resources (resources are not always available). Resources of a Grid can be
distributed among countries (this implies specific network issue). An example of a grid
cluster is named: GRID 5000 (France) [2]. This system is distributed among 10 sites and
connected by a specific high-speed French network. This grid system provides to scientists a
highly configurable, reconfigurable and manageable platform.
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Figure 3. MapReduce execution workflow

In [3], authors describe the requirements, of grid systems: the coordination of resources
with a standard protocol. They also present the most important problem with this system:
fluctuant quality of service (due to the distribution and failure of resources). To manage Grid
resources, a centralized system is used; and a specific protocol to enable communication
among nodes. The distributiveness of the Grid system is the most complex task; it is not easy
to deal with this problem. From a developer point of view, a grid system can be assimilated
as a very large super computer. These super computers are virtual, because nodes are not
located at the same location. Compared to a traditional super computer, network is the
critical point of such systems.



Grid systems have a specific business model; it is a project-oriented model. The cost unit is
represented by CPU hours, allocated resources and wall time. To manage these resources,
GRID systems use batch submission software: PBS (Portable Batch System), Torque, SGE, etc.
Grid can deal with both low hardware level and virtualized environment. Virtualized
environments are used to reduce the complexity to deploy application on this system.

The next section presents an overview of cloud architectures; we present a comparison with
grid because they share lot of common points. As stated in [1], the differences between both
architectures are not so easy to understand.

2.3. Clouds

In 1961, John McCarthy said, “computation may someday be organized as a public utility”
[10][9]. This quote lays the first milestone for cloud computing. With this paradigm,
computation is brought outside of the desktop computer. Running fewer larger clusters is
cheaper than running more small clusters [53].

Multiple definitions have been proposed for cloud computing, see [4][5]. For example, cloud
computing is described as a powerful service and applications, integrated and packed on the
web in [4]. Cloud systems have brought a new point of view concerning requirements of IT
systems [163]. Clouds are becoming one of the most used metaphors to describe Internet
needs. Internet usage brings new usage and also new data structures, quantity and velocity.
For example, Internet services bring new data like: text, rich text, graphs, etc [143]. Some
examples of cloud services provided on Internet are storage systems like: Dropbox, box.net
or Google Drive. Another example provides an email service like Gmail, or some web
crawlers used on Google or Yahoo. In [174], 15 services are referenced to be used with
clouds.

Cloud is considered as a cornerstone of Web 2.0. It can be used to host services, resources,
applications, etc. Cloud computing refers both to the application and the hardware layers. As
stated in [1], Cloud computing is a large-scale distributed computing driven by the
economies of scale: the final price is linked with the quantity of CPU used.

Three important features compose cloud systems: processing, storage and network. To
deliver resources on demand, abstract layers are used to manage cloud. Abstraction is
provided by the intensive use of virtualization. With virtualization, it is possible to produce
dynamically the most suitable architecture for each specific purpose. This strategy reduces
the complexity for deployment. Virtualization is used on public, private and hybrid clouds.
For example, on public clouds, a customer can extend his CPU resources or storage system
with a credit card. This extensibility is provided by new virtual machines. The public cloud
business model is based on computing and storage requirements. Resources of cloud
systems are managed on demand, and they are released as soon as possible. With this
strategy, Clouds systems response time is drastically reduced and users can expect a short
response time (within 100ms [6]).

An example of a cloud public provider is Amazon. Amazon provides mainly two cloud
services: one is dedicated for computing purposes: EC2 (Amazon Elastic compute Cloud)
[199] and S3 is dedicated to storage (Amazon Simple Storage Service) [200].



In the earlier days of clouds, some companies have introduced a huge mistake on Grid and
clouds. They decided to switch some of their product names from grid to cloud. This strategy
led to a global mistake of the term Cloud. Moreover, as stated in Figure 2 some overlaps
exist between both strategies, and a separation is not so clear. A cloud system is defined as
massive, parallel, scalable and on-demand computing capabilities [7][10]. Differences
between clouds and grids are deeply presented in [140]. Company mostly own Clouds, while
grids are owned by public institutions (Universities). But cloud systems are not only
restricted to companies: researchers also develop and deploy their own cloud facilities, for
example using the Hadoop framework [39][44]. With this framework they are able to
provide storage, elasticity and fault-tolerance features of a big data system. This strategy can
replace their traditional data warehouse solutions [42][43]. Hadoop is also becoming the
new data and computational standard for scientific needs.

To identify the best solution between Grids and Clouds, it is necessary to identify the
requirements of the target applications. In [163], the authors provide some questions to
identify which solution is the most suitable: information classification, computation needed,
which data will be stored and which cloud provider is the most suitable. To extend these
requirements we can use different categories provided in [142] as shown in Figure 4.

Category Grid HPC Cluster Cloud
SLA Requirement High Very High Low
Unit of work type Repetitive Very Repetitive— MPP  Not MPP — workflow
repetitive
Data Dependency Medium High High
1/O Dependency Medium High Low
External Dependency  Medium None None
Integration type Aware Tight with the H/W Loose coupling
Integration time Long Long and on-going Short
Statefull? Not desirable but No! No
possible
Typical unit of work Seconds to minutes Vey short — low Long — minutes to
minutes max hours

Figure 4. Comparison between: Grids, HPC and cloud.

3. Cloud infrastructures

When we want to talk about clouds, it is necessary to deal with: architecture, virtualization,
management, resources on demand, services, fault-tolerance and analysis mechanisms.
Clouds have also to be classified between public, private and hybrid. Private companies host
public clouds; private clouds are hosted by a specific organization (universities, companies)
and hybrid clouds use both methodology [8][10].

Private clouds are managed by a specific organization. These cloud systems have a strict
complexity, a dedicated bandwidth, dedicated computation capabilities and a controlled
security.

Public clouds are more traditional. Some companies sell cloud services: Amazon, Google, etc.
These clouds are more traditional and suffer from different problems: service is provided
over the Internet, security is related to the provider, resources are shared between a wild
set of users, etc. The last cloud architecture is named hybrid and is based on multiple public
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and private clouds. A virtualization layer manages services provided by these different
clouds. This layer is used to create resources dynamically, in [10] these additional resources
are designed to add computation or storage on demand. This virtualized layer provides the
necessary resources to different cloud infrastructures. Virtualization is used as an
abstraction layer between hardware, operating system and services. This strategy improves
agility, flexibility and cost of a cloud system. Virtualization is used at different levels:
network, storage or server. Virtualization is used to provide dynamically all the necessary
resources. It brings elasticity to traditional IT systems [9]. To perform high reliability of cloud
systems, these systems have been designed to be fault-tolerant and support an efficient
load-balancing. Fault-tolerance is guaranteed by redundancy, histories and backup of data.
The load-balancing is used to minimize job latency, avoid failover and downtime of services.
When a component fails the manager will no longer send traffic to this element, this feature
has been inherited from grid systems.

The next section describes different services provided by cloud systems. The second part
presents storage methodologies of cloud systems. The last part presents computational
methodology used with clouds.

General usage of cloud systems is based on a simple paradigm named Software as a Service
(SaaS). Here, the goal is to provide an application as a global service. Two other main
services have to be discussed: PaaS and laaS [146]. But cloud can also provide some other
services; the literature regroups all these services under the XaaS paradigm (Everything as a
Service) [85][86][146]. Some taxonomy has been proposed to present XaaS [8][146].

3.1. Xaa$

Software-as-a-Service (SaaS)

Platform-as-a-Service (PaaS)
Developers implementing cloud applications

Infrastructure-as-a-Service (IaaS)
[(Virtualization, Storage Network) as-a-Service]

Hardware-as-a-Service

Figure 5. Cloud Layer Architecture [8]

New XaaS paradigms are proposed every day. VMware introduced an example in a recent
proposal. In [119], they have introduced a DaaS (Desktop as a Service) which enables users
to deploy a window for different tiny clients (desktop computer, tablet, smartphones, ...). As
stated in [85][86], XaaS counts at least 35 different services.

Moreover each provider (Amazon, Google, Microsoft, etc.) has produced its own taxonomy
of services, thus it is not easy to provide a global taxonomy. Some examples of Xaa$ services
are: Software as a Service (SaaS), Infrastructure as a Service (laaS), Platform as a Service
(PaaS), Communications as a Service (CaaS) or Monitoring as a Service (Maas), etc. In this
document, we use the smaller taxonomy of [8]. They merge most of XaaS into three sub-
classes: SaaS, PaaS and laaS. And these different classes can be stacked into layers, see
Figure 5. A stricter classification is provided in [10], two classes are used: SaaS and laaS. As
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stated in Figure 7, these services can be encapsulated, l1aaS can run PaaS and PaaS can run
Saas.

All these three sub-classes are presented in [8] and they have common points: these services
are reachable through an Internet connection and through a single access point.

Software as a Service is the most common cloud service. It uses common resources and a
single application instance [8]. An end-user can only access a single application. For example,
Microsoft proposes this kind of service: Live mesh [1] (a file sharing software). GoToMeeting
is another example; this application provides a cloud based meeting and collaborative tool.
Now, most of Internet services are provided using SaaS: Saleforce, ConstantContact,
NetSuite, etc.

Platform as a Service provides to developers an environment necessary to deploy
applications. PaaS is a set of tools and services, which are able to scale with a system [8].
Google’s App Engine is an example of this service [1], a developer is able to build a scalable
Web application based on the architecture of Google applications. Other Paa$S providers are
Force.com [212], AWS Elastic [199], Beanstalk [213] or Heroku [214].

laaS provides dynamic hardware, software and equipment to user. This subclass of service is
brought by massive use of virtualization (hardware, automation). This model is suitable for
companies who do not want to buy expensive data centers. Common examples of such
services are Amazon EC2 and S3, which provide dynamic storage and computation [1]. Most
of laaS providers use closed-source virtualization environment like: VMware or Citrix. But it
is also possible to use other open source solutions like Openstack with: Linux container or
KVM virtualization software.

Big Data:
Expanding on 3 fronts
at an increasing rate.
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Figure 6. A star glyph of 3V, definition of BigData [87][144]
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3.2. Storage

Storage systems have followed the evolution regarding the amount of produced data. In the
earlier days of data storage, the CRUD paradigm has been defined to set requirements of
traditional database systems (Create, Read, Update and Delete). A second evolution of
DataBases was brought by the definition of the ACID requirements (Atomicity, Consistency,
Isolation and Durability). This requirement rules the most widely used DB like RDBMS
(Relational Data Base Management System). A comparison between ACID and BASE
(Basically Available, Soft and Eventual Consistency) approaches is presented in Figure 8.

But regarding to the fast evolution of the data produced, the ACID paradigm is now too
restrictive to be used with new data. Each year, the amount of produced data is increasing,
and meta-data is used to enhance data understanding. As stated in the introduction, 3
dimensions, named 3Vs [11][142], define this fast growing: Volume, Variety and Velocity.
These 3 dimensions are represented in Figure 6.

Application
SaaS PP

Middleware

PaaS

(0N

Virtualization

laaS Server/Storage

Network

Data Center

Figure 7. Positioning of 1aaS, Paa$S and SaaS.

Before choosing a Data Base, it is necessary to study the structure of the target data. DB is
designed to store one of thee three kinds of data: structured, unstructured and semi-structured.

In the next sections, we present a classification, and some examples of DBMS, based on
information in [15]. This classification is composed by: traditional RDBMS, other RDBMS
(Distributed DBMS, Object-oriented, ... ) and non-relational DB.

13



ACID

BASE

Strong consistency

Weak consistency

Isolation

Availability first

Focus on “commit”

Best effort
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Availability Aggressive
Conservative Simple
Difficult evolution Faster
Easier evolution
Figure 8. ACID vs Basic [201]
3.2.1. RDBMS

RDBMS are the most popular database management systems. RDBMS means: Relational
Data Base Management System. The first description of RDBMS has been produced in 1970,
[20]. This DB is based on a table-oriented data model; the storage of data is constrained by a
schema. Data records are represented as rows of table, i.e., tuples. These DBMS have some
basic relational algebra operations: union, intersection, difference, selection, projection and
join. On top of these DB, a language named SQL (Structured Query Language) is used. The
evolution of these DB has produced a large number of DBMS: DB-engine [18] presents a
wide DB list. This web site references different kinds of DB (NoSQL, Object-oriented, ...). If
we take a look at only RDBMS, 79 RDBMS are referenced on this website, which contains
216 references. Four RDBS are in the top 5 of this webpage: Oracle, Mysql, Sql Server and
PostgreSQL.

MySQL is an open source RDBMS. It is one of the most famous RDBMS because it has been
massively used with web applications. This DB has been developed to answer to direct
requirements of users. It supports multi-threading and multi-user accesses. This DB has been
created in 1995, and the implementation is done in C and C++. It is possible to access to this
DB using several languages: Ada, C, C++, CH#, D, ... A distributed version of this DB exists and
was named MySQL cluster. Replication is also provided.

Oracle DB is a database marketed by the Oracle Corporation. It is a closed-source DB, which
can be deployed on any OS. This DB has been developed in 1980, using C and C++. It is
possible to use it with any programing language. This DB supports partitions and replication
methods. This DB supports also multiple users at the same time.

SQL Server is a commercial product delivered by Microsoft. It has been developed since
1989. It is a commercial DB, developed in C++. It can only run on a Windows instance. It is
possible to use this database with .NET language or Java. Data can be distributed across
several files and replication depends on which version of SQL Server is running. Multiple
users can use this DB concurrently.
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3.2.2. Object Oriented DataBase

An object database is a database management system in which information is represented in
the form of objects as used in object-oriented programming. Object databases are different
from relational databases, which are table-oriented.

Object-oriented database management systems (OODBMSs) combine database capabilities
with object-oriented programming language capabilities. OODBMSs allow object-oriented
programmers to develop the product, store them as objects, and replicate or modify existing
objects to make new objects within the OODBMS. Because the database is integrated with
the programming language, the programmer can maintain consistency within one
environment, in that both the OODBMS and the programming language will use the same
model of representation. Relational DBMS projects, by way of contrast, maintain a clearer
division between the database model and the application.

Express Data Manager™ (EDM) (see [225] for more information) from Jotne EPM Technology
is an object-oriented database that is well suited to handle both structured and unstructured
FEM and DEM data. The reason for this is that ISO has standardized an object oriented
schema for storing and exchange of FEM and CFD data, ISO 10303-209,Multidisciplinary
analysis and design (AP209). The schema is written in the modelling language EXPRESS (I1SO
10303-11, see white paper on [226]). EDM is designed to handle EXPRESS objects and is by
that a good choice database system for standards based and, thus, interoperable FEM, DEM
and CFD data.

EDM is a database system that is well suited for deployment on HPC clusters; see Figure 9,
below. The EDM database server, EDMserver™ consists of one database server process and
several application server processes, as indicated on the right hand side of the sketch below.
The database server performs initialization functions, like compile EXPRESS schemas, create
users, repositories, models (datasets) etc., and synchronisation functions between EDM
application servers. It is the EDM application servers that execute the database queries, and
these EDM application servers can be deployed on several machines concurrently.

EDMinterface™

orotocol Machine / HPC node

EDM
database

server

N

1

a
a EDM
( User application ¢
program sefver

Figure 9: EXPRESS Data Manager (EDM) in the context of a HPC cluster
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The communication between the EDM application servers and the database server is
implemented by messages over TCP/IP. By that it is easy to distribute the application servers
on many machines. The TCP/IP approach is better suited for HPC clusters than
communication solutions using, for example, shared memory messages, semaphores etc. .

An EDM database can have many independent datasets, in EDM terminology called models.
Each EDM application server may update one data model; therefore, this architecture allows
parallel updates of the database. If the scenario requires a database that consists of one
huge dataset, all EDM application servers may read this model concurrently. Queries may be
split into subqueries, and each subquery may be assigned to one EDM application server.
The result is an implementation of the Hadoop Map/Reduce pattern.

The EDM database is an object oriented database system where each object has a "database
global" object id; the object id is a 64 bits integer. The uppermost part of the object id is the
model number of the model that the object belongs to. The lowermost part of the object id
is the object number within the model. By this great object address space it is only disk size
on the database server that limits the size of the database.

These characteristics make the EDM database system a good starting point for implementing
efficient FEM/DEM queries on a HPC cluster.

OoDBMS (Object oriented DBMS) was developed to improve storage applications. Objects
produced by software are directly stored in OODBMS. Schema of data is provided by the
applications. Some existing DBs have evolved to support this new paradigm, and others have
been developed. Some examples of these DB are: Cache, DB4o, Versant Object Database or
PostgresSQL.

PostgresSQL is developed since 1989. It was developed in C and can run on any operating
system. This DB can be used with several programming languages: .NET, C, C++, Java. This DB
is mostly Object-oriented, and it does not support the partitioning of data. Replication is
performed using a traditional master-slave solution. Multiple users can use this DB.

A deeper comparison between RDBMS and OODBMS is provided in [231]. Data of OODBMS
contains both execution part and information. In a RDBMS, only data are stored into a two
dimensional view (table). In an OODBMS, data are stored into structured objects. Authors of
[231] say that OODBMS must be used for complex data and/or complex data relationship.
OODBMS are not recommended when only a few join operations are necessary and when
there is large volume of simple transactional data. This document also provide information
regarding to advantages and disadvantages of RDBMS compared to OODBMS. These
information are quite useful to determine which solution is the most suitable regarding to
data and operation over data.

3.2.3. Other RDBMS

To be more suitable with new data requirements, RDBMS have also evolved. DBs have
evolved to support multiple instance of the DB.

To increase performance of DB, solutions have been proposed to use multiple nodes. Thus
two solutions arise: the first one uses distributive properties (like the solution powered by
Google: BigTable), the second one uses parallel databases. To be able to deal with BigData,
it is necessary to use distributed DBMS. In 2006, BigTable has been presented in [56], it is a

16



distributed file system management, which can be used to store data in a distributed way.
These parallel DBs are designed to run on multiple nodes, with multiple CPU and using
parallel storage systems.

3.2.4.NoSQL

NoSQL describes DataBase, which do not only deal with SQL. A clear definition of NoSQL
does not exist, and the points of view can diverge. An example is presented in [16]; NoSQL is
described as a distributed DB without any fixed schema. Sometime, NoSQL refer to a non-
relational system. Another definition of NoSQL DB refers to a structured DB. A common
property with all NoSQL definitions is Web 2.0, huge amount of data and huge amount of
users.

This DB has been introduced in 1998 and has reached a growing interest in 2009 [16]. These
DBs do not use ACID schema, thus they are able to achieve higher performance and higher
availability, compared to traditional RDBMS. Store and retrieve mechanisms are also
different.

As stated in [15][16], NoSQL DBs can be classified into different types: Key-Value, Document,
Column, and Graph. Some other classifications are available, see [17]. In this document, we
use the most common classification: Key-Value, Document, Column, and Graph. This
classification of DBs is based on [14][18].

3.2.4.1. Key-Values

The Key-Value strategy allows the application developer to store data with a schema-less
approach. Two fields represent data: a key and a value. This strategy allows storing data
using an arbitrary index based on a key. Both fields of this DB depend on the applications
[88]. This mechanism can be found in several DB: Redis [24], CouchDB [88], Cassandra [88]. A
more complete list of Key-Value databases is presented in [17][202].

3.2.4.2. Document

Document DBs store data with named documents. The engine is used to manipulate these
documents and improve storing, retrieving and managing. Using a document storage
approach allows to deal with semi-structured data. Access of data is done using a unique key
for each document. This methodology have been implemented into: MongoDB [24],
CouchDB [24], Riack [24], etc.

3.2.4.3. Column DB

In a column DB, data is stored in tables. Each table is structured with a column schema. This
strategy serializes all data onto columns. This strategy has been used in several DBs: BigTable
[17], Hbase [24] and Cassandra [24].

17



3.2.4.4. Graph

The last kind of NoSQL DB is named Graph DB. This DB uses a graph structure to store data,
composed by: nodes and edges. With this strategy, every element contains direct access to
adjacent elements. With this method, no indexes are necessary. Examples of graph DB are:
Neodj [24], FlockDB [17], OrientedDB [17], Pegassus [31] or Pregel[30].

3.2.5. The case for VELaSSCo

In this section, we will propose a summary of VELaSSCo needs concerning the storage
system. Data of this project will be produced by two specific simulations: FEM and DEM. For
Discrete Element Methods, particles and contacts can be created and lost during the whole
simulation. For both solutions, a solver produces relative small files, which contain the
different time steps of a simulation (See D1.3, section 2.5, page 18). These files will be
structured regarding to a specific format. The amount of data produced by these solvers
depends on the number of generated time steps, it is also depends on the number of
nodes/Elements (FEM) or particles (DEM) involved in the simulation. The velocity of
produced data vary regarding to the simulation engine.

As the data already exists in distributed files at day O of the project, it is necessary to find a
distributed system, which enables to inject the data based on a key value or document
oriented approach into the DB (key = analysis_name + time_step + result_info +
partition_info, value = result_values). With this methodology, the complexity of integration
is drastically reduced. Data storage needs to be directly reachable by a HPC facility. If the DB
system is distributed, thus the location of information has to be transparent.
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Figure 10. Expected revenue of different DBMS [221].
3.3. Computation

Computational models of DBMS can be divided into two different strategies: complex and
simple queries.
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Complex queries apply complex operations (join, selection, projection, etc.) on data. A
simple query uses a simple model: extract data from the dataset (without any result
enhancement). Complex queries can be expressed by simpler queries.

From these two models, some specific query languages have been proposed. In this paper
we present only two of the most used models: SQL and MapReduce. SQL can express
complex and simple queries, while MR is used to express simple queries (some extensions of
MR have been proposed to improve this simple query model).

This section is dedicated to compare these strategies. We present how computational
models work, describe when these methods have to be used, and which drawbacks arise
from these models.

3.3.1.5QL

Most of traditional RDBMS systems use complex queries to manage their data. SQL is a
normalized language used to exploit DBMSs. This language has been built on top of CRUD
(Create, read, update and delete). SQL also supports more complex queries like: joins,
transactions, etc. This language has been developed to run one-time queries. Most common
SQL systems do not provide suitable tool to run long queries, and the results of these
executions are sent to the users at the end of the computation.

Unfortunately, the fast growth of datasets introduces new requirements for data
computations. An answer for these requirements has been presented in [74]. Authors
proposed a Data Stream Management System (DSMS), as an alternative to the traditional
DBMS systems. This project deals with three important features: the first one concerns
streamed data where data is sent at runtime, and it is not necessary to wait the end of a
computation. The second feature concerns load variability (system deals with variability of
queries) and the last part concerns the management of resources. To perform these
continuous queries, authors have introduced a new language named CQL (Continuous
Queries Language). This modern paradigm brings new challenges: necessity to provide
suitable stream structures, and traditional declarative queries need to be translated into
specific continuous jobs.

A DSMS needs specific features; it is necessary to deal with coarse data (sometime accurate
results are not possible and degraded results have to be sent). In [74], authors provide a
centralized monitor and manager of queries. With this methodology, system workload is
always under control. This project is unfortunately no longer maintained, and has been
stopped in January 2006.

3.3.2. MapReduce

The second computational methodology is for simple computational tasks. The most used
model is MapReduce. This methodology is composed by two functions: Map and Reduce.
Map function is used to filter and sort the data, while the Reduce function is used to
aggregate and summarize data produced by Maps. This methodology is described in several
papers: [19] [35][58]. In the original paper, MapReduce was implemented using the Sawzall
functional language [35]. Google has popularized this methodology with one paper: [89]. The
Hadoop framework provides an open-source implementation of MapReduce [49].
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MapReduce has massively been used for words search and count, but this simple
computational model is not suitable for complex queries, and expressing more complex
computations requires drastic code modifications. In the scientific community (Machine
Learning for example), MR has some difficulties to express iterative algorithms, thus it is
necessary to find new solutions. Problems that cannot handle efficiently with MapReduce
are presented in [25].

3.3.3. Procedural approach

The EDMopenSimDM™ system (see: [227] or [228]) offers AP209 engineering queries to the
end user. Examples of AP209 queries are Model Query, Node Query, Element Query,
Element Property Query, Displacement Query and Stress and Strain Query.

These AP209 queries are built upon the EDM C++ Express APl. This is a generated C++
interface to the EDM database objects of AP209. Each EXPRESS entity (object class) is
mapped to a corresponding C++ class. The generated C++ classes have put and get methods
for all attributes. The EDM C++ EXPRESS APl is an extension to the EDMinterface™ API, which
is shown in Figure 9, above. See also the EDMinterface™ chapter in EDMassist in [229].

In the AP209 engineering queries each query is implemented along the following pattern:

1. The objects to be queried are either all of one specific class, a range of objects,
objects with specific ids or objects that satisfy pattern matching search criteria.

2. For each object of interest, the database object is located by different access
methods dependent on the search criteria. If all objects of one specific class shall be
visited, the query traverses the list of all objects of that class. If specific objects ids
are the search criteria, attribute hash tables are used.

3. When an object of interest is found, the C++ get methods are used to retrieve
information about the object and all other relevant objects for the query.

The AP209 engineering queries developed for the EDMopenSimDM™ system are a good
starting point for developing visualization queries for FEM/DEM objects.

3.3.4. The case for VELaSSCo

To identify the most suitable strategy for the VELaSSCo platform, it is necessary to identify
its needs. Discussions with the partners highlight some requirements: an efficient
computational model, a distributed computational model, a simple interface to access data
and a computational model suitable for batch and online queries.

To store data, the most common habit is based on SQL storage; developers have been
formed to use SQL engine. Thus switching to a new paradigm like MapReduce is not a simple
task. To deal with Big Data, it is necessary to evaluate the performance of both model, see
[19]. The rest of this section describes some differences between these two models
regarding to the VELaSSCo project.
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EDM, on the other hand, is a strongly object oriented DB, in which associations between
objects are very important, are another key value in the system. The format followed is the
one defined in AP209. As the input data does not have this information, it should be created
when the simulation data is injected into the system, like defining the mesh-groups, identify
the distributed parts that belong together, group the results of the same analysis and time-
step, etc.

The first difference is on data structures: MR allows arbitrary data formats, while DBMS
requires well-defined data formats. MR and parallel DB share some common elements, but
some noticeable differences appear in both systems. This missing schema can produce data
corruption, while a strict schema makes SQL DBs less flexible.

Another difference between DBMS and MapReduce resides in the indexing of data. The
index of DBMS is based on hash or B-tree, while MR framework does not provide a built-in
index. MR programming model needs a higher language to be more user-friendly, and MR
can be compared to a low-level language like assembler. Hive, Pig, [42][73][123] have
emerged to propose this higher language, and in [158] other SQL abstractions are presented.
These solutions bring SQL abstractions on top of MR, thus it becomes less difficult to interact
with the MR computational model. SQL queries are translated into a set of MR jobs. Hive,
[46], brings also an improved file storage system [122]. This storage strategy (ORCFile)
compresses data and brings good compression results (78% smaller than raw information).

Outputting results from RDBMS and cloud solution is also different (in their traditional
methodology). With the MR computation, it is necessary to create manual data filter. In the
case of RDBMS, data is already filtered. This issue is also similar regarding to intermediary
steps, RDBMS uses raw data, while MR writes intermediary files.

Finally, MR provides a native sophisticated fault-tolerance model compared to RDBMS; this
advantage comes from the built-in high redundancy of data [21]. From these different key
points, [19] have proposed several benchmarks based on the original MR task: Grep Task,
and four HTML specific tasks (selection, aggregation, join, UDF aggregation (user defining
function)). Then the authors make a comparison based on user-level aspects. This
benchmark shows that in most cases, parallel DB are an order of magnitude faster than MR.
But MR is more user-friendly, and deploying this system is easier than a parallel DB.
Extensibility is also in favor of MR; DBMS are not well suited for such tasks. Some of the
discussed VELaSSCo queries, which requires the processing of the distributed information
and the fusion of partial results, which also may require some distribution-fusion calculation
iterations, can be harder to implement in EDM than in map-reduce.

In the specific case of VELaSSCo, a hybrid computational model can be more suitable. It is
important to provide an extensible approach which can answer to well define requirements
and which can be extended to future needs. One of the requirements for the VELaSSCo
platform is to support special particle shapes, or cluster of particles, which can be
implemented on other systems, but requires an extension of the AP209 standard so that the
EDM systems support them too. In the meantime may be they can be treated as mesh of
particles, for the cluster, so that a 'mesh of particle clusters' would be represented as a
'mesh of mesh of particles' in EDM/AP209.

The next section presents some improvements concerning cloud solutions.
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4. Best practices

With a major evolution of usage, cloud systems need some improvements, evolutions. These
modifications have to be focused on cpu usage, long run time computation, etc.

To manage this new amount of data and computation, industries and scientists use a cloud
approach to perform both computation and storage. Cloud systems have to be scalable, see
[191]. Three scale strategies exist: scale out, scale up and scale side-by-side. Scale out is used
to refer to the increase of number of nodes (machines). Scale up increases the capacity of a
system. And the last methodology is used to deploy a temporary system, used for test and
development. Regarding to actual state-of-the-art, a large variety of cloud architectures are
based on Hadoop; see [34][40][42][50][80][177]. Computations presented in most cloud
systems use the MR methodology.

In this section, we present some best practices used to improve cloud architectures. Our
interest is focused on virtualization, storage and computations improvements. The last part
presents software stacks.

4.1. Hardware

IT systems used for Big Data have multiple tradeoffs: data storage, network resources,
computation capabilities and energy efficiency, see [203]. This section presents
optimizations provided by scientists at different hardware levels.

4.1.1. Storage

Computer hardware is composed of two different storage systems: main memory and
secondary storage systems. Both solutions have their own advantages and drawbacks. The
main memory (RAM) is mostly used to store cached data or current used data. This system
has a high throughput, directly linked to CPU. This storage system cannot be used as a long-
term storage system; some energy is required to keep data available; the cost of this
memory is expensive. Hard Disk (HD) is the most suitable solution to store high data volume
for long periods. It is also the cheapest solution. But this system suffers many drawbacks:
lifetime (Hard disks are mechanical systems), speed efficiency (it is a low speed storage
system) and failure (this system is quite a sensitive to hardware issues).

Some improvements have been developed for this hardware, for example SSD HD, SCSI HD
or PCl-express HD. These new storage systems move I/O bottleneck to computation units.
But, for most IT systems, the main issue remains I/O of HD, distributed systems have been
partly an answer to this issue [81].

In [25], the authors present a solution based on SSD, this methodology allows to increase the
amount of available 1/O operations per seconds. Optimized hardware can improve
performance. Hyder is a new transactional record manager. The main idea of Hyder is to
provide a data-sharing architecture without requirement of portioning database or
applications. Transactions are applied on a snapshot and a log is produced. Then, this log is
broadcast to all nodes of the server. Nodes are now able to apply these modifications to
their local data. Hyder is composed by three main components: log, index, and roll-forward.
Hyder is designed to simplify application development by providing a set of tools:
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partitioning, distributed programming, layer of caching and load balancing. The architecture
of Hyder has also been improved and four main key points have been identified: high
performance network, large main memory, many-core processors and solid-state storage.

Storage facilities are mostly led by two technologies: regular HD and SSD. SSD can provide
more 1/O operations than a mechanical HD system. But their lifetime is limited: SSD have a
limited number of Read and Write operations. Moreover, SSD cost is drastically more
important than mechanical HD cost. In [72], authors proposed to use Blu-ray disk to store
cold data. Cold Data is a specific set of information that is quite never accessed. They have
evaluated their methodology on a real Facebook dataset and they are able to save 50% of
hardware cost and 80 percent of energy. This storage strategy is only used into experimental
data center, and none production data center are based on this strategy.

4.1.2. Computation

The popular computational model for cloud systems is MapReduce. This computational
model is implemented among several frameworks. One of them is Hadoop, it is a Java
framework that did not originally deal with parallelism on modern architectures. However,
hardware has evolved, and now standard architectures are composed by multi- or many-
core nodes, see [25][81]. In this section, we present improvements based on Multi-core
architecture and GPU. The native implementation of Hadoop was not suitable for multi-core
architecture. Now, some researchers have developed MR solution which used new hardware
capabilities.

The first example is presented in [33] and is named Nephele. It provides a new processing
framework designed for cloud environments. This system can dynamically allocate or
deallocate resources on clouds. The computation is expressed as a directed acyclic graph. In
this case, jobs are represented as vertex and edges of the graph define communication
flows. With this strategy, it is possible to express a complex computation using a parallel
processing approach. This tool is also composed of a specific scheduler, which allows dealing
efficiently with parallelism. This solution is very similar to Dryad [45].
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Figure 11. Structure of Dryad.
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Dryad, see Figure 11. Structure of Dryad., has been developed to solve two problems:
efficient parallel applications and distributed applications. This framework is presented in
[45] and was motivated by the emergence of large-scale Internet services. Dryad provides an
execution engine able to handle large distributed and concurrent applications. This strategy
is based on several features: efficient scheduling of CPU and hardware usage, strategies of
recovering from communication and computer failures and moving data among vertices.
Dryad is based on a graph flow control. Communication is allowed between each node
through a specific pipeline. This method alleviates the difficulty to program large distributed
systems, and concurrent applications. A Dryad job is designed by its communication flows.
Jobs are acyclic graphs where each vertex is a program and each edge is a data channel. It is
a logical computation graph mapped onto physical resources. This application gives to
developer the opportunity to express some queries in a more complex way than the
traditional MR model. But this solution brings more complexity to the MR model.

Another solution to increase computation capabilities is based on existing multicore task
scheduler for Hadoop systems, see [47]. Hadoop employs a JAVA runtime, which is not been
optimized for parallel computing or specific hardware instruction (SIMD). Some authors have
proposed a hierarchical MapReduce application, named Azwraith, which use the optimized
MapReduce runtime: Ostrich. This runtime is able to deal efficiently with task parallelism
and data locality. At the opposite of the actual Hadoop implementation, they are able to
reduce computation using a caching system. This solution answers the requirements of the
original Hadoop; the workflow has been preserved. Regarding to actual Hadoop framework,
authors are able to achieve higher speedup.

Another hardware suitable for improving the performance of computations is provided by
GPU. These devices are composed by large set of computational units.

Hadoop has been extended to use GPU capabilities. MARS is an implementation of MR using
GPU [64]. This approach is implemented for data- and computation-intensive tasks. It
removes the complexity of GPU programing by providing a familiar MR model to the
developers. Developers can write MR tasks without any knowledge on GPGPU. To validate
their results, authors implement six classic tasks of web applications and show that their
strategy is better than the traditional CPU-based methodologies. This approach gives
promising results, but last updates to this implementation have been released in 2009.
Figure 12 presents the Mars Workflow; grey parts are executed on the GPU.
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Figure 12. MARS workflow
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4.1.3. Others

We have presented two of the most important hardware strategies to improve cloud
systems: computation and storage. But, other solutions exist but have a minor impact for
this project, thus this section regroups them.

Network is an important aspect for public clouds. Nodes are disseminated all around the
world (for example Amazon cloud). Thus to improve a cloud system, it is necessary to study
the topology of the architecture. Network infrastructure has evolved and follows the same
path than computation capabilities. Now, with new networks and compression of data, it is
possible to transfer more information than the existing methods. The gap between private
and public cloud is reduced gradually [25] [81].

The second part of this section concerns improvements on power efficiency [6][26][48].
Modern hardware consume more and more energy, thus power has to be taken into
account during the cloud deployment. The energy bill of IT equipment depends on the
number of elements used. Energy consumption depends on the computation done on the
system. Regarding to the computation model used, an online model is not suitable for
energy savings because the necessary computation is often hard to predict. Architectures
have to be design with a low energy footprint. Intel provides an example of low energy
architecture [157]. Intel has designed most of the hardware presented, but in this paper,
they also propose some optimizations to improve OS, Hadoop System and hardware
parameters.

Consumption power of modern data center has become an important issue. In [232],
authors provide an overview of different techniques used to improve energy efficacy of data
center. Consumption of data center is a new challenge; not only to reduce the cost of data
center exploitation but also to reduce it is energy footprint. This document suggests also
some new way to follow most related to cloud system.

4.2, Virtualization

Virtualization is a key feature for laaS. Virtualization allows deploying dynamically virtual
machines configured for specific needs. As stated before and in [25], virtualizations now lead
the deployment of the architectures (location of computation, storage, and so on).

Management of Virtual machines is performed using a manager named: VMM (Virtual
Machine Monitor). This tool allows the system administrator to share hardware resources
into several virtual machines. Three important elements characterize virtual machines: VM
have to run existing applications without modifications, VM have to run subsets of
instructions directly on CPU and VM need to access to resources.

laaS can now deal efficiently with some scientific requirements: long runtime and high
resource utilization. From these requirements, some improvements have been proposed,
and an example of one of them is presented in [77], BlobCR. Here, the authors present a
solution to minimize the storage space and performance overhead on a checkpoint/restart
strategy. This methodology implements VM snapshots, by inserting checkpoint-restarts. An
experimentation of this methodology has been provided on G5K test bed [2]. This solution
uses MPI to provide a message passing system. A part of the distributed file system is used
to store the checkpoints. Snapshots of the VM are saved in the checkpoint repository, the
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VM is suspended and the application state can be saved. Then, while only a small set of
virtual disks have been modified; BlobCR needs a specific strategy to avoid useless data
replication. Authors have used a transparent solution for the versioning system. BlobCR is
available.

Vmware also provides a solution to deploy a Hadoop ecosystem, which is based on a virtual
environment. In [233], authors present their distribution based on their virtualization
software. This document shows benefit of virtualization for Hadoop deployment. This
strategy allows deploying as fast as possible a whole ecosystem. Fault tolerance of this
system is performed through virtual machine. Energy and computation efficiency is
optimized; it is possible to use more resources from the IT system. With their strategy, it is
possible to provide a Hadoop as a service platform.

4.3. Data Storage

Cloud systems have eliminated the burdening maintenance of the traditional HPC systems.
Scientists are now using these modern infrastructures to run their specific workloads.
However, scientific workloads exhibit some performance issues on cloud compute systems
[83]. Authors analyze performance of the Amazon EC2 platform for scientific computations.
Amazon EC2 is an laa$, the virtualization of this system is provided by Xen. In [83], authors
highlight difficulties of using scientific tools and they provide an evaluation for using laaS in
the scientific context. Two parts are proposed: a specific cloud methodology and an
infrastructure approach. This paper claims that there does not exist a “best”-performing
instance for scientific computing. Computation workloads may exhibit unstable behaviors
when applications run over virtualized resources. To obtain reasonable performance, the
users need to tune the execution plans of the applications and choose carefully the
virtualization infrastructure. Amazon EC2 is generally not suitable for scientific
computations, but some providers have more specific services for such kind of applications
(Penguin on Demand or HPC as a service).

Clouds are often used as massive storage systems with versioning, redundancy, etc
[48][169]. To ensure the best service, specific cluster file systems are used [97]. These
specific file systems are mainly split in two subclasses: Shared FS and distributed FS. Both
systems have their drawbacks and their specific usage. Shared FS provide direct access level
to multiple computers at the block level, while the Distributed FS does not share any blocks.
In most cloud solutions, the FS used is based on distributed FS. The fast growth of data has
highlighted the importance to use distributed systems [25]. A cloud system needs tools to
extend its file system dynamically, with the same redundancy capabilities, distribution
approaches, etc. In this section, we present some example of distributed FS and
improvements provided for the read and write 1/0 of these FS.
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Figure 13. HDFS Architecture [93].

Most cloud systems use a distributed file systems to manage data, and this strategy is
named share-nothing: data is split across the file system. A distributed file system implies to
use synchronization barriers. In [38], authors do not use synchronization; they use a logical
partitioning of data and a specific query processing. This method avoids synchronization
barriers and keeps consistency of the file system. The modern FS uses atomic operations to
perform this synchronization (an atomic operation is a lightweight operation). With this
method, authors of [38] have built a storage-distributed system based on both RDBMS and
NoSQL DB. This solution stores data into a centralized node called: shared record store. To
improve query, the system decouples queries processing and transactions management. In
the context of this paper, atomic operations are used to implement a multi-version
concurrency control. An evaluation is presented by the authors and provides a comparison
with MySQL cluster DB. The methodology presented in this paper is claimed more efficient
than most common RDBMS.

Distributed FS have been massively used in the case of cloud architectures. In [56], authors
present BigTable. The provided data model is a sparse, distributed persistent and multi-
dimensional sorted map. Cells contain multiple versions of the same data; this approach is
used to improve indexing methodology used for such a DB. This methodology has been
designed to provide a high availability, and machines can be added dynamically regarding to
necessary resources.

Hadoop Distributed File System (HDFS) is one of the most used FS with a Hadoop framework.
It is a distributed and extensible file system. It has been designed to store large datasets on
large clusters of computers. This solution is a virtual FS, deployed on a top of a regular File
System.

As stated in [93], HDFS architecture deals with two different components, see Figure 13.
These machines are named: a NameNode and a DataNode. The DataNode is in charge of the
storage. And the NameNode provides File tree, namespace, metadata and directory. To
store large files, HDFS split them and send data chunk to some Datanodes. To increase
reliability of the system, each block is repeated among the whole system. DataNodes can
communicate together to dispatch chunks among them. Unfortunately, this system is not
POSIX compliant, and the NameNode is a single point of failure, it is necessary to duplicate it
to increase the security of the system.
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Another example of FS is named Moose File System (MooseFS). It is a distributed FS, which
enable fault-tolerance, scalable, POSIX compliant, and suitable with any kind of data or
hardware. This system is inspired by GFS [215], it is based on three nodes: a Master Server
(master server), some Data Servers (chunk servers) and a/some Metadata Backup Servers
(metalogger server). The first node is used to manage the whole FS. It stores the metadata. A
chunk server is used store data and synchronizes them, if multiple copies of the same files
are stored. The last part store metadata and change logs: this element periodically updates
the main metafile. Figure 14 presents the architecture of this FS.

In [37], authors present NetCDF, a distributed file designed to provide an efficient parallel
I/O interface. This File system has a set of tool that provides a portable and efficient file
format and programming methodology. The programming interface is built on top of MPI-10,
to perform efficient parallel I/O. NetCDF is currently under development and some releases
are proposed to end-users.

Ceph is another well known distributed FS, [76]. This FS provides a separation between data
and meta-data with a specific data distributed function called CRUSH designed to run
efficiently over heterogeneous and dynamic clusters. With this solution, authors address
some critical challenges: scalability, performance and reliability. Ceph provides a single
uniform directory hierarchy based on the POSIX semantics.

Lustre FS, presented in [91], is a parallel-distributed FS. This FS is often used in
Supercomputing: it provides a scalable method to use multiple computers and store data.
This system is composed by two elements: a metadata server, which stores namespaces,
metadata, filenames, directories, permissions and file layouts, and object storage servers
which store the data in one or more objects. The architecture of Lustre is presented in Figure
15. This file system is POSIX compliant.

A comparison between Lustre and HDFS is provided in [92], see Figure 16. The authors
present a strategy, which combines Lustre FS and HDFS. As stated in this paper, using Lustre
introduces some overhead, compared to HDFS.
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Another comparison between HDFS, Lustre and Moosefs is presented in Figure 17, [93]. This
benchmark evaluates 1/O performance of Lustre, HDFS and Moosefs. This paper also
evaluates more common features: installation complexity, data backup, failure support, and
redundancy of data, etc. These requirements have to be taken into account before choosing
the file system. File systems have their own advantages and are not suitable for similar tasks.
For example Lustre can be used for massive writes, while HDFS is more suitable for massive
reads.

Lustre HDFS
Host Language c Java
POSIX compliance Support Not strictly support
Heterogeneous network Support Not support, only TCP/IP.
Hard/soft Links Support Not support
User/ group quotas Support Not support
Access control list (ACL) Support Not support
Coherency Model Write once read many
Record append Support Not support
Replication Not support Support

Figure 16. Comparison between Lustre and HDFS [92]

Read and write operations can be optimized with specific I/O operations. High distribution
and high redundancy implies important I/O operations, and thus it is important to provide
improvements to the system. I/O operations have to be tuned regarding to the hardware,
but this methodology is time consuming. To avoid this long study, [36] presents a new library
to avoid code complexity (adapting I/O regarding to the architecture), this library is named
ADIOS. ADIOS API provides a simple standard I/O model, extended by a XML file, which
described data and the process flow. This strategy gives to developers the ability to change
execution parameters to his application using an XML file. This API provides suitable 1/0
operations regarding to the architecture. The source code does not require any changes. The
XML file is used to change parameters of the execution. Adios has evolved, and seems to be
maintained. Now, it is possible to add other features for the execution plan: manipulation of
the workflow, visualization, and auxiliary tasks.
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Some cloud architectures are able to handle data locality, they have to ensure a compromise
between where the data is stored and where the data is processed. The current Hadoop
runtime is based on a JVM and this virtual machine is not optimized to deal with the location
of data and multi-core features on modern processors. In [47], the authors present a
hierarchical approach that improves the data locality and the task parallelism. A cache
system, based on RAM, is used to improve the location of data. This caching methodology
enables to reuse data, and avoid networks and disks accesses. This system is presented in
the Azwraith software, which is not available for download. The locality of data is also
important in the case of heterogeneous environments.

MB/s
12

10

6 Owrite
@ read

hadoop Moosef's Lustre

Figure 17. 1/0 performance comparison between three file systems [93]

Hadoop has been designed for homogenous clusters. Thus in heterogeneous environments,
it is necessary to study the data locality to preserve a more efficient processing, and this
issue is studied in [63]. This paper presents a load balancing approach to store the data on
the appropriate computational nodes. The main idea is to improve processing operations,
but moving large sets of data can lead to excessive network loads. Two algorithms are
presented in this paper: an efficient initial placement in a distributed file system and a
reorganization methodology. The first algorithm splits data regarding node capabilities. The
second algorithm addresses dynamic load balancing. An evaluation of this approach is
presented, and this study is applied on two well-established functions: grep and word count.
Compared to the traditional Hadoop system, the proposed method can achieve better
performance on heterogeneous architectures.

Storage for the Hadoop frameworks has largely evolved in the past few years. New file
systems have been developed like CloudStore, which have been designed to run with
Hadoop jobs [177]. The main HDFS branch has also evolved and now proposes new versions
named HDFS 2.0 and presented in [116]. This new version brings HDFS to new dimensions by
improving automatic failover and full stack resiliency. It also adds standard support for NFS
read/writes to HDFS through a dedicate gateway: HDFS is becoming POSIX compliant. HDFS
2.0 also brings an encryption protocol for data transfer and snapshot capabilities for HDFS
(save the current status of HDFS).
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4.4. Data computation

In this section, we present how computation on cloud systems can be improved. This section
is dedicated to the limitations and improvements for current computational models used on
clouds. These improvements bring new capabilities to the actual cloud computation models,
for example: SQL support, HPC capabilities or online-computing. MapReduce was one of the
most traditional computational models for cloud systems. Without modifications, this model
is not enough to express complex or scientific computing [25][29][60].

The MapReduce computation model has been designed to run batch jobs. These jobs are
mining operations, like word count or extraction of specific contents. But this model is not
designed to run scientific or more complex workloads: iterative computations, recursive
computations, etc. In [82], the authors provide a classification of scientific problems. This
classification is based on how a scientific problem can be converted into a MapReduce
function. Four classes have been defined. The first class represents an algorithm, which can
be adapted as a single execution of a MR. The second class represents algorithms that can
be adapted as sequential executions of a constant number of MR. The third kind represents
algorithms where the content of one iteration is represented as an execution of a single MR.
And the last one represents algorithms where the content of one iteration is represented as
an execution of multiple MR. [82] presents an evaluation of two runtimes: Hadoop and
Twister. This benchmark evaluates which solution is the most suitable regarding to scientific
workloads. Twister is an alternative MR framework designed to run iterative algorithms. The
first and second classes are more suitable for Hadoop systems and data intensive algorithms.
The third and fourth classes are more adapted to Twister.

As shown in the previous example, identifying the right computational model is not a trivial
task. And the adaptation of a MR paradigm requires understanding of the complete
computation workflows. Specific computational models will have some difficulty to be
adapted to the MR model, like recursive algorithms. This computational model delivers its
output when all computations are applied at the end of the recursion. A failure may imply a
complete restart of its tasks. In [59][59], the authors provide an efficient implementation of
recursions in MR environments. But they are not able to fully implement this strategy: a
complete optimized recursion of a MR function requires a considerable amount of work.

After the identification of the computational workloads, it is necessary to manage these jobs
and also manage efficiently the accesses to the data. In [57], authors present HFSP: a new
scheduler for Hadoop systems. This scheduler is based on the jobs size and on the evaluation
of the required time to accomplish them. This evaluation is produced on-line. Authors
introduce the notion of virtual time and age. This scheduler provides good performance for
either large or small jobs.

The information retrieval is conducted by an efficient indexing strategy, and the choice of
the best indexing methodology is not obvious. In [50], the authors present a study of four
indexing strategies. Each strategy has been implemented on a Hadoop system and applied to
different datasets. The first and second indexing strategies concern the solution presented in
[89]. This indexing method can be implemented in two different ways. The first method is
based on a map function which outputs a set of <term, doc-ID> pairs for each token. Then,
for each unique doc-IDS, a reduce function aggregates unique terms to obtain a frequency
measure. Figure 18 presents the pseudo code of MR functions for this specific method. The
second strategy emits <term, doc-ID, term frequency>. This solution reduces the number of
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messages, as they are now done only once per unique term in each document. Figure 19
shows the pseudo-code of the indexing solution. The third strategy is presented in [50]:
instead of emitting terms, this method tokenizes documents during the map phase. Then the
reduce phase is in charge of writing all the index structures. Compared to the previous
solutions, this method emits less information; see Figure 20 for the pseudo-code.

And the last one is presented in [205]. This strategy splits the process into multiple tasks;
each map task is in charge of a subset of the data. This benchmark shows that the two first
methods are not well suited (they generate important set of intermediate map data). The
last method seems to be the most efficient: this strategy uses efficiently the local computer
memory and tries to reduce the MR traffic (using compression strategies). The pseudo code
of this strategy is presented in Figure 21.

To reduce the complexity of cloud programming, it is necessary to use existing or find new
ways to express queries. The SQL language is well disseminated, and scientists have
provided a SQL layer on top of Hadoop (queries are compiled into MR jobs). A recent report
[42] explains that some companies also combine a Hadoop system with a traditional DBMS.
This combination is used to increase performance of analytic tools.

Word Counting - Word Counting -
Map function pseudo-code Reduce function pseudo-code
1: Input 1: Input
Document File-name, Name A Word
Contents of the Document, Contents List of 1s, Instances
2: Output 2: Output
A list of (Word,1) pairs, one for each The Word and the size of
word in the document, Instances The Instances, Result
3: for each Word in the Document loop 3: Integer result = 0
4: emit(Word, 1) 4: for each int '\’ in Instances loop
5: end loop 5: result = result + i
6: end loop

7: emit(Word, Result)
Figure 18. Pseudo-code for the word-counting operation, expressed as map and reduce functions [50]

Per-Token Indexing - Per-Token Indexing -
Map function pseudo-code Reduce function pseudo-code

1: Input 1: Input

Key: Document Identifier, Name Key: A Term

Value: Contents of the Document, DocContents Value: List of (doc-ID), doc-IDs
2: Output 2: Output

A list of (term,doc-ID) pairs, one for each token Key: Term

in the document Value: Posting List
3: for each Token in the DocContents loop 3 : List Posting-List = new PostingList()

Stem(Token)

-

: Sort doc-IDs

4:

5: deletelfStopword(Token) 5 : for each doc-ID in doe-IDs loop

6 : if (Token is not empty) then emit(Token, doc-ID) 6 increment tf for doc-1ID

7: end loop 7 correct doc-ID

8: Add document to the Document Index 8 add doc-ID and tf to Posting-List
9: if (lastMap()) write out information about the 9 : end loop

10: documents this map processed (“side-effect” files)  10: emit(Posting-List)
Figure 19. Pseudo-code interpretation of the per-token indexing strategy (map emitting <term,doc-ID>) [50]

Hive has been presented to convert a SQL-like query into MR jobs. This SQL language is
named HiveQL and can be used to define custom MR scripts. It can express computations
into higher levels than MR. This language has been used on real Facebook datasets. Now,
Hive has been integrated into the Hadoop framework. An improvement for Hive is presented
in [138]. This optimization increases execution plans (increase performance of 100x
compared to original implementation). It also introduces a SQL windowing function (Rank,
Lead, Lag). Now, this optimization has been integrated to modern implementations of Hive
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[139]. Hcatalog is another improvement for Hive [123]. This solution is used to easily read
and write data on the cloud through Pig, MapReduce and Hive. Hcatalog can display data
from any suitable format: RCFile, text, sequence etc. Display of the data is done through
tabular views. It also provides a REST API. Hcatalog is now integrated into the Hive

ecosystem.

Per-Term Indexing -
Map function pseudo-code

Per-Term Indexing -
Reduce function pseudo-code

1: Input
Key: Document Identifier, Name
Value: Contents of the Document, DocContents
2: Output
A list of (term,(doc-ID,tf)) pairs, one for each term
in the document
each Token in the DocContents loop

3: for
: Stem(Token)

4:

1: Input
Key: A Term
Value: List of (doc-ID,tf) pairs, doc-IDs
2: Output
Key: Term
Value: Posting List
: List Posting-List = new PostingList()
: Sort doc-IDs

- w

5:  deletelfStopword(Token) 5 : for each doc-ID in doc-IDs loop
6: if (Token is not empty) then increment stored tf 7 correct doc-ID
for the Term=Token 8: add doc-ID and tf to Posting-List
7: end loop 9 : end loop
8: Add document to the Document Index 10: emit(Posting-List)

9: for each Term where tf does not equal 0 loop

10 :  emit(term, (doc-ID,tf))

11: end loop

12: if (lastMap()) write out information about the

13:  documents this map processed (“side-effect” files)

Figure 20. Pseudo-code interpretation of the per-term indexing strategy (map emitting <term,(doc-ID,tf)>) [50]

Per-Document Indexing -
Map function pseudo-code

Per-Document Indexing -
Reduce function pseudo-code

1: Input 1:
Key: Document Identifier, Name
Value: Contents of the Document, DocContents

2: Output 2:
Key: A Doc-ID
Value: A compressed Document, Docurnent

Input

Key: A Doc-ID

Value: A compressed Document, Document
Output

Key: Term

Value: Posting List

3: for each Token in the DocContents loop 3: index(Document) into in-memory Posting-Lists
4: Stem(Token) 4: if (lastMap())
5 deletelfStopword(Token) 5: for each Posting-List in-memory loop
6 if ( Token is not empty) then increment stored tf 6 emit(Posting-List)
for the Term="Token 7 end loop

7: end loop

8: Add document to the Document Index

9: for each Term where tf does not equal 0 loop

10 : add term to compressed Document representation
11: end loop

12: emit(Doc-ID,Document)

Figure 21. Pseudo-code interpretation of per-document style indexing (map emitting <Doc-ID,Document>) [50]

HadoopDB is a hybrid MR system; this approach uses a traditional Hadoop system and a set
of DBMSs. This solution has been proposed in [40] and takes both advantages of RDBMS and
MR. This prototype is able to achieve similar performance compared to a parallel DB, and
has the advantages of MR: scalability, fault-tolerance and flexibility. This strategy uses
Hadoop and Hive. A schema of the architecture is presented in Figure 22. Queries are
expressed in SQL, then they are translated into MR jobs, and finally this job is transferred to
the right nodes. An evaluation of this system is provided, but this solution does not match
the performance of parallel DBs. The authors hope to increase performance of HadoopDB
with the next releases of Hadoop. Moreover, they have planned to use a column-store DB
instead of the actual Postgresql DB. This implementation seems not to be developed
anymore; the last update has been performed in 2013.
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Figure 22. The architecture of HadoopDB

The traditional MR model is based on batch scheduling. Some scientists have extended this
model to support online and hierarchical computations. Now, the Hadoop framework also
provides a tool named Streaming [117]. This utility allows an user to create and run an
application as a MR job. This application only needs to interact with the Hadoop framework
through standard 1/O (stdin or stdout). But this solution does not fill the critical
requirements for interactive jobs: a query cannot be modified before the end of the
computation.

An on-line MR has been presented in [80]. This method can pipeline data among operators.
This strategy sends earlier information from MR tasks, thus users do not have to wait the
end of a computation. With this methodology, continuous queries are available and events
monitoring is possible. This methodology has been tested in HOP (Hadoop Online
Prototype), but authors do not anymore update this software. Another continuous
processing MR implementation has been proposed in [70]. A huge quantity of data can be
assimilated to an unbounded data stream. The architecture presented in this paper is named
S4; it is a distributed stream-processing engine inspired by the MR model and the actor
model. Yahoo! has initially released S4, and now the development seems to be stopped, the
last version has been published in June 2013.

Another streaming and distributed system is presented in [28]. It is the first streaming-
mining application based on a subscription model. This solution can analyze streamed data
by tracking and analyzing changes. In their paper the authors present implementation of SPC
and provide an experimental evaluation. This communication strategy is not only designed
to deal with stream operators but with any other operators. It provides a unique feature
such as the flow specification that allows stream mining applications to catch ever-changing
states of the data. Authors show that their solution can manage a large-scale application
with a non-trivial structure.

Another requirement for the MR model is to handle hierarchical computations. Map and
Reduce functions are not enough to express all the potential of complex queries. Node
locations have also an important impact on the computational model, for example in public
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clouds, nodes are not necessary located at the same location, IT systems can be distributed
all around the world. To answer these requirements, hierarchical methods have been
developed.
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Figure 23. Map-Reduce-GlobalReduce model.

In [55], the proposed hierarchical method improves the reduction step. When a specific
number of map operations have been achieved, a reduction operation is launched. Then,
regarding to a tree structure, the system aggregates new results of the reduction tasks. This
paper makes a comparison with the regular Hadoop model. This hierarchical decomposition
of the reduction phase is more efficient than the traditional MR implementation. When
applications use a public cloud, performance may vary during the runtime. These changes
come from the global distribution of public clouds (hardware is potentially distributed all
around the world). Thus, it is necessary to propose some efficient solutions to improve the
traditional MR model.

In [39][53], a hierarchical MR model has been proposed, it can gather resources from
different clusters and run computations across them. The proposed method is based on a
Map-Reduce-GlobalReduce model. Thus, three layers compose this solution. With their
hierarchical MR programming model, the authors are able to coordinate multiple clusters to
act collaboratively. The proposed method has two components: a traditional HMR (Hadoop
MapReduce, which is deployed over a cluster) and a Global Controller (which manages
clusters). Figure 23 presents a representation of this architecture.

Another hierarchical approach is presented in [65]. This paper provides a set of
recommendations to deploy this architecture. MapReduce software has to be deployed over
the same local clusters to reach good performance. With a widely distributed system, MR is
becoming less efficient. The authors of this paper present three new architectures to solve
this issue: LMR (Local MapReduce), GMR (Global MapReduce) and DMR (Distributed
MapReduce). The first strategy moves all the data into one centralized cluster; all
computations are performed locally. The second method requires the deployment of a
global MR cluster over all clusters. The last solution is based on multiple MapReduce
clusters. These three strategies have to be used carefully regarding to: the network
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topology, node bandwidth and latency. From this paper, the DMR solution is more efficient
than the LMR and the GMR: transfers of data are avoided. With zero-aggregation (MR
output is the same size as the input) or ballooning (MR output is larger than the input) data,
the LMR obtains better results than both other solutions.
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Figure 24. MARLA architecture.

Cloud systems are not necessarily designed to achieve high performance computing. These
systems are mainly deployed to answer to high-density storage or deal with large numbers
of users. Cloud systems can be used as a public facility (leasing resources) or deployed as
private clouds. But in both cases, HPC and cloud systems are different entities [30][48]. HPC
and cloud systems do not have the same goals, and these systems do not have similar
computational power. Deploying these two IT systems is not simple, and these solutions are
expensive. Thus, scientists have tried to find solutions to deploy cloud systems over existing
HPC facilities.

MRAP is one of them. In [176], the authors analyze the computation gap between clouds
and HPC. The authors have extended the traditional MR model to eliminate unnecessary
pre-processing features needed for a transfer from MR to HPC. This solution provides HPC
data analytics, which reduces the overhead of MR on HPC systems. This solution has been
implemented using a dedicate framework.

In the literature, Hadoop has been delpoyed to HPC facilities [104][105]. For example, this
has been realized using myHadoop [34]. This application runs Hadoop over a HPC system.
HPC resources are different than a traditional Hadoop system. HPC deals with small and
powerful hardware, while Hadoop frameworks run on large clusters with less powerful
hardware. The last update of the original myHadoop framework was realsead in 2011. But a
new version of myHadoop is available [100], and a full deployment instruction guide is
presented in [101].

MR models have been implemented in other software as well; Dryad is one of them. This
framework is introduced in [45] and was motivated by the emergence of large-scale Internet
services. Dryad provides an execution engine, which can handle large distributed and
concurrent applications. This application is based on several features: a specific scheduler,
and a communication strategy. This scheduler was designed to manage computers and CPUs
on clouds. The communication strategy is used for recovering information when a failure
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occurs. The communication between nodes is performed through a specific pipeline. The
Dryad jobs are designed by a communication flow, jobs can be represented as acyclic graphs,
where each vertex is a program and each edge is a data channel. It is a logical computation
graph mapped on some physical resources. This application gives developer the opportunity
to express queries as more complex structures than MapReduce, but the simplicity of the
MR has been sacrified. Dryad has been recently released to support Hadoop ecosystem.
Now, it is possible to use Dryad has an extension of Hadoop, all features are available for
HDFS and YARN [236].

In [234], authors provide an evaluation of several cloud deployment over different facilities:
AWS, Azure and GCE (google compute engine). This document provides all information and
benchmarks of deployment of cloud system over these services. These benchmark shows
that deployments of cloud system are more relevant with Linux OS, compared to Windows
performances.

[235] owns more references concerning deployment of Hadoop ecosystem over HPC. They
classified these distributions into four specific kinds: Commercial software (with IBM
platform symphony), research project with myHAdoop, MR job adaptor. The third kind is
named on the shelf with: MR+ and Hadoop on demand. And the last category is for Mesos
and Yarn.
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Figure 25. MARIANE architecture [99].

Another solution to deploy a Cloud on top of a HPC is presented in [187]. Here, authors have
study how to integrate MapReduce jobs into a HPC cluster. Both systems use a scheduler to
perform their tasks, but cloud systems do not required any parameters to launch jobs, while
HPC jobs needs configuration to run. This solution is based around a MR adaptor, which
provides a specific HPC workflow for this computational model. With this methodology,
components are optimized to execute MR tasks.

However, providing extensions to Hadoop is sometime not enough. Thus MapReduce
computations have been directly implemented on top of HPC facilities.

In [102], the authors present MARISSA. This solution provides a POSIX compliant framework,
which can support iterative executions, the ability to run different applications on nodes,
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and to process different datasets on each node, etc. Restrictions of the traditional Hadoop
system are avoided, and a deployment on a regular HPC is facilitated. This solution cannot
be compared to new solutions, because this method is not available for download. The
traditional MapReduce approach is used through the Hadoop framework. But, it is based on
HDFS, which was not POSIX compliant. Thus a deployment on a traditional cluster is not an
easy task. In [103], the authors provide a solution named MARLA. This method has been
designed to provide a MR framework, which supports POSIX features. Some heterogeneous
nodes compose traditional HPC systems. This paper presents a dynamic load-balancing
strategy on top of a MR application. The architecture of Marla is composed by three
components: Splitter, taskcontroller and faulttracker, see Figure 24. The MARLA framework
does not use a chunk strategy to store the data. As stated in the paper, MARLA is able to
reach a higher efficiency than the regular Hadoop framework, on a HPC. MARLA is not
directly available, and the maintenance is not clear.

In [99], the authors present a modern approach to use MR model on traditional HPC. HDFS is
not POSIX compliant, thus it is necessary to develop a new MR framework adapted to a HPC
context. From this assumption, authors have released: MARIANE. This solution does not only
provide a MR implementation over a HPC files system, it is also brings better performance.
MARIANE is designed to work with various clusters, shared-disk solutions, POSIX file systems
and parallel file systems. The architecture of MARIANE is presented in Figure 25. Three
modules manage the whole system: a Splitter, a task controller and a fault tracker.

With the redesign of MR, the authors avoid to use an additional file system like HDFS. [99]
shows significant improvements in term of performance compared to the traditional dual
file system methodology. Unfortunately this APl is not directly available for download, and
MARIANE cannot be used in combination with the original Hadoop framework.

The last solution is a new implementation of the MR library. In [173], the authors have
developed a solution based on message passing (MPI). The library described in this paper is a
lightweight implementation of a basic MR. The motivations to create this library were to
provide a solution which enables graph algorithms on for MR frameworks. Several
algorithms has been implemented with this library, the goal is to validate all features of this
solution.

Several tools have been produced regarding this computational model, see [106]. In [198],
developers have proposed a MapReduce implementation based on bash programming. A
JavaScript implementation also exists and was named: Meguro [198]. This tool can be used
to extract content and traces from datasets. A MPI implementation has also been ported:
MR-MPI [197]. This implementation provides a C/C++ and Python wrapper, and it has been
designed to provide MR to distributed parallel machines.

Another MR library is named Flumelava. It is a Java library designed by Google. This library
can be used for more complex problems by creating specific pipelines. This Library is
presented in [192]. This library optimizes the execution plans of the applications; the library
abstracts details of how data is represented and where the data is stored (Mysql, Bigtable,
etc).

Phoenix [41][51] is another reimplementation of MR. This software has evolved with 3
different distributions (1, 2 and ++). Phoenix now provides a full implementation of MR
model with modular properties. It can be used efficiently to support particular workloads.
This MR implementation is suitable to run on shared memory machine, and also run on
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multi-core architectures. Compared to the MR implementations on Hadoop, Phoenix is able
to achieve higher performance. The implementation was done in C++. Their optimizations
are designed to improve runtime on NUMA systems; they are able to achieve average
speedups of x2.5 and peak speedups of x19.

4.5, In the case of VELaSSCo

VELaSSCo has to follow some of the best practices highlighted in this document.

The platform has to deal with hardware optimization. These optimizations have to deal with
multi-threading and hardware extensibility. Thus to deploy the system, a suitable solution is
to use commodity hardware. This solution can be used to increase the capacity of the cloud
infrastructure. It is an economic solution, which can be used to deal with more
computational and storage nodes.

On top of this commodity system, it is necessary to deploy virtual machines dynamically
regarding to the computation requirements. Load balancing of the system has to be
dynamic; the platform manager is in charge of the creation or release of virtual machines.

In the VELaSSCo project, simulation engines output their results into files. Thus, to simplify
the development of our storage platform, a solution can be based on file system. Alternative
solutions can also be based on database systems instead of accessing files, and
computational models could be based on higher languages like SQL.

As stated in the computing section, it is necessary to support scientific computational
workflows for the VELaSSCo platform. The current requirements do not consider heavy
computations. But with an extensible approach, it is possible to support future needs later.
For example extensions can be: online queries, recursive and iterative algorithms. Moreover,
instead of using this platform with fixed computational facilities, it is suitable to connect it to
a HPC system.

Finally, the data that is stored in the VELaSSCo platform will be composed by different time
step for the same inputs. Thus, storage needs to be studied for redundant information.

In the next section, we present some clouds frameworks designed mainly to store files, to
compute information and for both cases.
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5. Cloud tools

Wide column stores: 5 \ Content stores: 2

Search engines: 13 — &

Document stores: 30
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Key-value stores: 40
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Native XML DBMS: 6
Navigational DBMS: 2

RDF stores: 16 / Object oriented DBMS: 14

Figure 26. Shows the number of references DBMS in Db-engine.com

The recent interest for cloud systems led to the development of a large number of software
stacks. Thus, cloud software can be classified into three different kinds: private, public and
open source. Private software is described in scientific papers, but these solutions are not
accessible to the community, a well-known example is BigTable from Google. The second
kind represents tools, which are sold by companies. The last kind regroups stacks brought by
the community.

5.1. Storage
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Figure 27. With this figure, db-engine shows the popularity of some DB-engine.

Cloud systems use mainly two methods to store data: file systems and databases. A
benchmark of both solutions is not a trivial task: their storage and compute model are too
different. Thus to provide a benchmark, it is necessary to produce adapted tools.
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Firstly we will focus on DB systems. The web site: http://db-engines.com, provides an
interesting comparison between a large set of DBMSs. This website compare SQL and NoSQL
DB. It has been developed to give advices on DBMSs. As stated in [98][98], NoSQL systems
are not so easy to sort. Most of DBMSs are based on a single data model, but the recent
NoSQL systems use multiple models to increase performance. This trend comes along the
fast growing of datasets: NoSQL DBMSs need to find new solutions to deal with this massive
amount of information. DB engines provide comparison of some features, for example:
license, implementation language, DB model, SQL support, transactions, MapReduce
support, etc.

The website also provides two interesting statistics presented in Figure 26 and Figure 27.

Figure 26 shows the huge number of RDBMS compared to other classes. All other classes can
be regrouped in NoSQL DBs. This specific type of DB represents now a large set of database
systems. Figure 26 gives an overview of which NoSQL models are available. The second
figure (Figure 27) represents the popularity of DB engines. This figure presents the
popularity growth of NoSQL DBs. Another overview of a set of NoSQL DB is presented in
[67].

Different methodologies can be used when a computer scientist wants to use a DBMS to
store cloud data. The first solution is to use a traditional RDBMS, while the second one use a
NoSQL DB.

The first example presented in here is named ScaleDB (http://www.scaledb.com). It is a
MySQL plugin. This tool extends a MySQL DB into a shared-disk clustering DB. With this
extension, DBs can perform simultaneous read/write operations on data: any node can
reach any data. ScalDB has a special indexing mechanism to deliver superior performance.
This indexing strategy removes the necessary use of a master/slave paradigm.

A second solution is named OrientDB (http://www.orientechnologies.com/orientdb/). It was
developed to store both documents and graphs. This NoSQL DB uses a SQL layer to query the
data. This DB can perform high-speed queries using a specific tree structure.

ThruDB is a service built on top of Thift’s framework (https://code.google.com/p/thrudb/). It
provides a specific indexing and a document storage service. This system has been
developed to store website data. This DB service works with multiple storage back-ends: for
example it can be deployed on EC2. But this system is no longer developed.

Dynamo is a new key-value store approach presented in [23]. This solution was built on top
of the S3 Amazon service. It is provides a high-level of availability (an “always-on”
experience). This software is based on an extensive use of object versioning. Data
consistency is facilitated by versioning. Dynamo has already been applied on Amazon
services. Dynamo provides improved technics for partitioning, replication, versioning,
membership, failure handling and scaling. For the partitioning approach, this method is
based on consistent hashing, which provide incremental and scalable performance. A vector
clock provides high availability which guaranty read consistency with write operations. A
Merkle tree is used to recover data from permanent failure and finally, membership and
failure detections are provided by gossip-based membership protocol and failure detection.

Data stored in cloud systems have also evolved. Two specifics datasets have been massively
used: spatio-temporal and graph datasets.
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In [52], the authors present a new indexing structure developed for geographical data sets.
This solution was based on top of a NoSQL DB. Some databases have been specially
developed to store geographical data into their DB (with Geohashes). [52] presents a new
non-relational distributed DB, inspired by BigTable. This NoSQL DB is named Accumulo. To
improve search for spatio-temporal data, authors have proposed a specific index structure
based on a geohash. This approach allows to compute keys for each piece of data
independently. With this strategy, filters over data can be improved; for example, temporal
data is included into the index of data.

Another example, PNUTS is a massive parallel and geographically distributed DB system
presented by Yahoo! [75]. This system provides a data storage organization based on a
hashed and an ordered table. This system supports all cloud requirements: load-balancing,
failover, central management, etc. The data model of PNUTS is presented as a simple
relational model. This system achieves redundancy at multiple levels: data, meta-data,
serving components, etc. The communication system is based on a publish-subscribe
message system.

Due to recent changes in Internet usage, scientists have to deal with graph-based datasets.
This new data is produced by social networks like Facebook, Twitter, etc. These social
networks produce each day huge amounts of new information. In [24], authors analyze how
several applications deal with large social graphs. Comparison is based on 8 applications:
MySQL, Redis, Riak, MongoDB, CouchDB, HBase, Cassandra and Neo4j. MySQL is
representative of Relational Data Base Model, Redis and Riak are key-value repositories,
MongoDB and CouchDB use Document to store data, Cassandra and HBase use a column
oriented model and Neo4j is a graph DB.

All these storage systems have their own query language and processing capacities. This
study shows that the most suitable DB for graph data is Neo4j. This DB is designed to deal
with graph and not social data, thus constraints on query and processing of social data arise.
The second problem of Neo4lJ is the important size of the social data.

The nature of social data (semi-structured) is the main problem for RDBMS, join queries are
complex to perform. Moreover, RDBMS are not suitable to perform computation on
complete datasets. Tested Key-value DB software is not able to apply query or process over
data. Document and column stores suffer the same problem. From [24], column store seems
to be the best choice to store social data.

Instead of using DBMSs, some approaches use simple file system as a storage system. One
solution proposed by the science community is based on large virtual FS, which enable to
deal with big data.

The Google file system (GFS) was introduced in [215]. This system is designed to store data
on a virtual file system; this data is used for web crawling. It has been optimized for
processing data required for Google applications. This system has been designed to be fault
tolerant (standard computers are used and failures can occur frequently). GFS splits files into
tiny blocks to store information. Each block is stored among different nodes. These tiny files
are named chunk and their size is limited to 64 Mo. A unique key and version identify each
block (version is used to avoid update problems). Each file is copied at least 3 times across
the datacenter. GFS is a private software, regarding to statement of this method, HDFS has
been developed.
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GFS and HDFS are virtual file system; they do not use low-level storage systems, and direct
access of the disk is not provided. Both systems are designed to be transparent to the end-
user. But these FS have not been developed to be POSIX compliant, thus a traditional tool to
manage files are not suitable. To reduce complexity of file access, some improvements have
been performed for HDFS. For example, HBase provides random and real-time read/write
access to the HDFS. But virtual file systems are not well suited to run with HPC, it is
necessary to use POSIX compliant FS. An example of a real file system is presented in [37].
This FS is named parallel NetCDF (http://en.wikipedia.org/wiki/NetCDF). It has been
designed to fit especially with scientific data. This system stores data into an array-oriented
methodology.

HDFS has also been improved to be used with HPC facilities see [118]. Here authors present
a NFS gateway, which extend the actual Hadoop ecosystem. This solution brings to HDFS
support for the NFS protocol. Figure 28 presents how this gateway works. It can be deploy
on several nodes, to increase the availability of NFS systems. With this strategy, HDFS cluster
can be mounted on any machine and interaction with stored files is possible through
standard command lines, script or Ul explorer. Some improvements are scheduled to
manage with the security of this gateway and support for other protocols (like NFS 4).

Another approach to improve storage system is based on hardware. In [147], authors
describe a new scalable design to store a distributed FS. This solution is based on the
combination of SSD and mechanical HD. In this project, the Bigfoot team has performed a
benchmark to evaluate the best strategy to store data (HDD-only, SSD-only and a hybrid
SSD/HDD storage configuration). This paper also presents an efficient strategy to store data
supporting data locality.

Microsoft has proposed a prototype implementation of a distributed data storage system,
[79]. This tool is called Boxwood. This project explores the use of data structure or
abstraction at the storage level. In this case, storage is considered as a simple abstract layer.
This strategy covers all requirement of Distributed file system.
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Figure 28. NFS gateway for HDFS.
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5.2. Computing

Cloud systems can also perform computation over data. Some examples of these
computation functionalities are: information retrieval, data analyses, statistics, etc. The
traditional computational model used on cloud system is the MapReduce. But this model is
too simple, and some scientific workloads need more complex algorithms than a simple MR.
In this section, we present four specific scientific workloads extracted from literature. These
workloads are: iterative, recursive and graph algorithm. The last part concerns machine
learning. Our first example is based on a set of tools for bioinformatics applications. In [66],
authors present a new solution called CloudBLAST. It provides a full distribution dedicated to
bioinformatics requirements. This solution brings all tools to run bioinformatics applications
on a distributed system.

Specific algorithms are also developed, in the next part we will present iterative algorithms.
These algorithms need to re-run the execution of a specific function multiple times. Original
implementation of MR is not optimized for this purpose.

Twister (http://www.iterativemapreduce.org) is a solution to perform iterative executions of
MR in a more efficient way. Twister is new MR runtime which enhances the actual MR
model. The authors have added the support for static and variable data, it is possible to
cache MR tasks. This solution is based on a publish/subscribe paradigm for communication.
Authors have also improved the combination phase which grab data from many reduce
phases, etc. This application is a lightweight implementation compared to the traditional MR
in Hadoop. And this tool is suitable with any regular MR jobs, and the associated
management tools.

Another solution presented in this document is named HalLoop, [90]. This solution can be
downloaded at: https://code.google.com/p/haloop/). Haloop extends the MapReduce
model by providing a programing support for iterative applications, caching options for loop
invariant data access and it is designed to reuse major building blocks from Hadoop. This
solution also supports similar requirement than the current Hadoop system (reliability,
distributive system, etc). To evaluate their solution a benchmark has been presented in [89].
They compare their solution with a traditional Hadoop system. Conclusions of this paper
show that HalLoop is able to compute more efficiently iterative algorithm than Hadoop.

K-Means Clustering using Mahout and Hama (6M points datasets on Oracle BDA)
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Figure 29. K-means Clustering using Mahout and Hama [130].
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The traditional MapReduce model was in most case not suitable for machine learning. ML
has some specific workloads, which cannot be splitted into efficient MR jobs. Mahout has
been developed to fill the gap of machine learning (ML) with Hadoop [96]. This software can
apply machine-learning techniques in Hadoop. These machine-learning problems are
limited, and Mahout only proposes a sub set of ML problems: a recommendation engine, a
classification engine and a clustering engine.

Apache Hama (https://hama.apache.org), is another ML tool based on top of the MR model.
This method provides a pure Bulk Synchronization Parallel (BSP) computing engine to
perform complex analyses. This model is based on three components, which can express a
wide range of scientific problems. In a comparative benchmark, the authors show that this
solution is more efficient than Mahout: [130]. BSP is an answer to MPI problems: data
partitioning and data locality aware for task scheduling, job fault-tolerance, deadlock and
race condition avoidance and complexity of interface.

In [73], the authors present a use-case of Hadoop frameworks for a machine learning
workloads. This system uses PIG as an analysis tool. A recent version of PIG is able to provide
predictive analysis. This methodology incorporates machine-learning capabilities to PIG and
is mainly focused on supervised classification.

Graph algorithms have also evolved to run on Hadoop platforms.

In [30], the authors present a computational model for large graph problems. The Massive
use of social networks brings graph problems to the Hadoop ecosystem. Efficient processing
of this data has become an important challenge. This application has been designed to
express programs as sequences of iterations, in which the computation is done using a
message passing approach centered on vertices. This model has been designed to be
efficiently scalable and fault-tolerant.

Dealing with DAGs (Direct Acyclic Graphs) is also a difficult task for MR. Tez, presented in
[113], has been designed to handle interactive queries. Tez is a speed layer for Hive and Pig.
This solution removes unnecessary tasks, synchronization barriers and useless HDFS
reads/write. Tez is new software, and it was not yet widely used by the community.

Pegasus, presented in [31], is a petascale graph-mining library over the Hadoop platform.
Authors address a solution to design an efficient MR algorithm able to handle massive
graphs. Authors have observed that mining operations on graphs can be described by a
repetition of matrix-vector multiplications. They define a primitive called GIM-V, which is a
highly optimized Matrix-vector multiplication iteration. To validate this approach, a
benchmark has been done on a super cluster [32]. PEGASUS is a scalable algorithm, which
can mine billion-scale graphs. Pegasus can achieve 43x smaller storage, and 9,2x faster run
time, compared to a naive solution. With their tool, they have been able to discover some
patterns and anomalies (for example validate 7-degree of separation in a web graph).
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Figure 30. Hadoop 1.0 ecosystem.

Finally, we present a specific evolution of the MR model, which has been implemented in
Hadoop. To enable more complex computation, Yahoo! provides a resource scheduling and
negotiator to Hadoop.

The main evolution of Hadoop has been introduced with YARN. As stated in [42][44], this
update brings Yarn and a new MR workload: MapReduce v2.0. YARN is the modern
computational engine for Hadoop platforms. This evolution brings a new architecture
composed by a programming model, a resource management infrastructure and a
scheduling function. This evolution brings a new computational model to Hadoop; MR is no
longer the only available computational model. The programming model provided by YARN
is able to coordinate application communication, execution flows and dynamic optimization.
In [44], the authors show that the decoupling strategy is efficient, and provides greater
scalability, higher efficiency and enable different frameworks to efficiently share a cluster.

As stated in [155], Yarn can be considered as an operating system for big data. With this
tool, Hadoop can deal with any kind of computational model; MR is not anymore the only
one suitable computational model. In Hadoop 2.0, the JobTracker task is splitted in two
major components: the RessourceManager and the ApplicationManager. In this document,
the authors present a comparison view of both solutions; see Figure 30 and Figure 31.

Using Yarn is not an easy task. In [111][112], the authors present a solution named Reef; this
tool has been designed to run on top of Yarn. This extension allows running efficiently some
specific workloads: complex transformations, iterative machine learning or declarative query
processing. Reef uses a persistent cache system to reduce computation time. Yarn is not the
ultimate solution, Reef developers bring the last stone to this framework: retainability
(increases performance of iterative and workflow computations), composability (writes in a
component oriented for reuse), cost modeling (store data locally with a coarse-grain
parallelism), fault handling (including checkpointing of tasks), elasticity (dynamic adaptation
as available resources). With Reef, development of applications based on Yarn is simplified.
This software is open-source and frequently updated.

DataTorrent is a cloud provider, which bring interactive and real-time query on its own
distribution of Hadoop, [126]. They have produced a tool, which simplify the development
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for running real-time applications on Hadoop. It is a commercial software, which can handle
with prediction of load, control and data flow.

MapReduce
Distributed Processing |

YARN

Resource Scheduling and Negotiation

HDFS

Distributed Storage

Figure 31. Hadoop 2.0 ecosystem

Limitations of the actual Hadoop ecosystem have also been highlighted by other actors of
cloud computing. And similar solutions have been developed by Twitter (Mesos), Google
(Omega), Facebook (Corona) and Microsoft (Cosmos). These systems are based on the same
behavior than Yarn. They try to match similar requirements than Yarn: scalability, latency
and a more flexible programming model.

Omega [224] is designed to deal with distributed, multi-level scheduling. This solution is
mostly designed to be suitable to run on a closed source environment with specific
resources, which are well known. This solution is only designed to run with well know
parameters, and there is no room for heterogeneous architecture, and software. Corona
[222]is based on a communication protocol instead of a control-plane solution used in Yarn.
Other solutions are based on the similar behavior than YARN like Mesos. This solution is
based on a two layers scheduler. Mesos [223] is an offer-based resource manager while Yarn
uses a request-based method. The second difference is on usage of task scheduler; Mesos is
similar to the regular Hadoop strategy (a pool of central schedulers) while Yarn is enabling
late binding contender. Cosmos is the closest solution regarding to Yarn architecture.
Cosmos has a main difference: it does not own a central resource manager.

5.3. Storage and computing

To provide more suitable solutions for cloud systems, the most efficient methods are to
produce optimized solutions for both storage and computing, [25]. This last section presents
some framework designed to improve all the features of a cloud system.

SciDB (http://scidb.org) is a data management and analytics software for scientific research.
This DB includes most of the needed features for scientific DB: versioning, provenance
tracking, support of uncertain data with error bars, [62][82]. SciDB has been designed to
involve large datasets produced by scientific applications. In [62], the authors present
specification of this DB, which is based on a new storage manager, array data model, query
language and an extensible framework. The data model used for this DB reflects the
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common scientific requirements, use-cases, which determine the needs of this DB. They are
presented here: http://scidb.org/use/. This DB is organized as collection of-n-dimensional
arrays. Each value in SciDB can express any kind of numerical data, or a fixed string length.
But scientific data also bears some error intervals, thus each of SciDB can itself contain
another SciDB arrays. This DBMS have been developed to adopt a shared-nothing design.
Thus, SciDB can be deployed over a network. Versioning features of this DB are
benchmarked in [68]. The features are implemented using the update function, each update
creates a new array version. This strategy is useful to make comparisons with data at
different times. A strategy is used to reduce data space required for the system.

DataBase Managements Systems have also largely evolved, and this evolution has conducted
these systems to deal with improvements on the computational models and storage
facilities. VoltDB (http://voltdb.com) is a DB system that deals with high velocity data. It
provides a high performance database with ACID-compliant capabilities and also provides
JSON flexibility. It uses memory and disk to store the data, and transactions are performed in
a couple of milliseconds. Analytics tools of this DB have efficient methods able to provide
speed queries and the ability to apply automatic decisions. This DB can be deployed on a
shared-nothing system.

Terrastore is a document store DB, with advanced features on scalability and elasticity
(https://code.google.com/p/terrastore/), but the consistency has been eluded from this DB.
This software is based on Terracotta (which provides fast clustering technology). This DB
supports single- and multiple-cluster deployments. It is a schema-less DB, which provides
some standard processing features: range, MapReduce, update function, event processing,
etc.

Cloudata (http://www.cloudata.org) is a distributed large-scale structured data, inspired by
the traditional Google BigTable. It is a DBMS system, without a relational data model. This
DBMS support various file systems (not only HDFS). It provides some computational
services: single row operation, multi row operation, data upload, MapReduce, and simple
queries.

5.4. Future of clouds

The traditional MR framework is showing its limits, [189]. It is time to use another
programming model. The bottleneck of this approach is the JobTracker: to avoid problems
linked with this function, Hadoop 2 has been developed. Hadoop 2 is based on Yarn, which
splits the JobTracker into two separate daemons. This new framework keeps all features of
Hadoop 1: reliability, availability, scalability, etc. Moreover, this new version brings new
capacities: support alternative programming paradigms and support for short-lived services.

The actual MR framework has also reached its limits (Around 4000 computers), [54]. The
actual Hadoop system imposes to upgrade the whole IT system for any minor or major
changes. All nodes of a cluster need to be updated at the same time. The next generation of
MR needs to deal with high computability.

Scientific workloads have also specific behaviors; most of them are MTC-based (Many-Task
computing). In [71], authors proposed an empirical evaluation of performance of four
commercial cloud services for scientific purposes. Clouds systems claim to become the next
generation of scientific computation tools instead of the current grids, clusters, etc. For their
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study, authors also evaluate the cost of such tools for scientific purposes. In this paper,
authors provide a benchmark between different infrastructure: Amazon EC2, GoGRID,
ElasticHosts and Mosso. Conclusions of this study show that actual cloud computing services
are not enough for scientific computing, but it can be a temporary solution to store and
compute data.

Big Data brings new interesting questions; one of them is presented in [190]. In this paper
authors have evaluated usage of a modern clusters compared to a traditional commodity
server used for Big Data. They evaluate 11 jobs, which represent traditional Hadoop jobs and
they show that the HPC solution can be competitive in any case. From this statement it is
necessary to evaluate in the earlier day of the project the evolution of hardware and also
which jobs will run on the Big Data system. Cloud infrastructures have to scale-up and -out
at the same time to reach the highest performance.

6. Applications

In this section, we present some use-cases of big data architectures, then we show some
commercial and non-commercial products.

6.1. Use cases

Big data has been used in a variety of domains. Now, scientists do not try anymore to filter
data, they usually store information, and try later to extract the content and concepts from
them.

Risk analyses are an use-case of big data. In [168], authors present Hadoop integration to
predict risk from huge datasets. They use a Hadoop framework instead of a RDBMS due to
the traditional bottleneck of standard DBMSs. Most risk analysis solutions are based on ETL,
but these systems are no able to deal with billions of records. Analyses provided by the
authors show that the Hadoop solution is more suitable for simple risk analyses queries. For
complex queries, it is necessary to adopt another storage framework, the access speed
provided by Hadoop can be too restrictive.

Storage of files has been one of the most prevalent usages for cloud. These systems allow
users to store files, and retrieve them anywhere. Files are accessed by network connections.
Moreover, this solution provides to users a fully secure file storage system. This security is
brought by data versioning and redundancy.

Cloud systems can also be used to deal with seasonal activities. This issue is a typical use
case for resellers. And it is necessary to provide the most scalable solutions, regarding to the
user flow and network traffic. The activity flow constrains the deployment of IT systems. All
the hardware will not be used if the activity is low. Thus, it is necessary to deal efficiently
with activity, and find a suitable solution to support elastic workloads. Amazon is a leader in
on-line sales. This company has to deal with periodic annual peaks. Amazon has deployed a
huge cloud solution, which can extend dynamically the IT system. When the planned
workload is low, they can lease the unused parts of their cloud systems.

Cloud systems can be used to deliver CPU time to the users. This approach can extend the
computation power of existing IT systems and can provide the necessary tools to extend a
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system by providing CPU monitoring. Clouds can bring thousands of nodes with at least the
same number of CPU.

Cloud systems are also designed to solve network latency problems. Regarding to private,
public or hybrid cloud, network capabilities are totally different. The computational pipeline
used can avoid latency between nodes of these systems: multi-queries over a cloud system
is an efficient solution to reduce high latency issues.

Using cloud architectures can reduce drastically the cost of IT equipment. Buying modern
HPC facilities is expensive. And this kind of IT equipment has to be updated regularly. Cloud
systems can be leased, thus it is not necessary to buy a complex HPC infrastructure.
Moreover, deploying a cloud solution can be a cheaper solution if computational efficiency is
not necessary.

Cloud systems also provide fully reliability. Outage of these systems is drastically controlled
and service down time does not often happen. Examples of outage are presented in Figure
32.

Service and Outage Duration Date
Microsoft Azure: malfunction in | 22 hours March 13-14,
Windows Azure [5] 2008
Gmail and Google Apps Engine [6] 2.5 hours | Feb 24.2009
Google search outage: programming | 40 min Jan 31, 2009
error [7]

Gmail: site unavailable due to outage | 1.5 hours | Aug 11,2008
in contacts system [8]
Google AppEngine partial outage: | S hours June 17,2008
programming error [9]
S3 outage: authentication service | 2 hours Feb 15,2008
overload leading to unavailability
[10]

S3 outage: Single bit error leading to | 6-8 hours | July 20,2008
gossip protocol blowup. [11]
FlexiScale: core network failure [12] 18 hours Oct 31, 2008

Figure 32. Outage of some cloud services [8]

Molecular dynamic simulation has also been influenced by big data. HiMatch is a software
developed for this purpose, [172]. This tool is inspired from the MR paper presented by
Google. Authors have tried to bridge the gap between molecular dynamics simulations.
Their tool enables users to write trajectory analyses program in a sequential fashion and the
toolkit is in charge of deployment of the parallel application. This framework has been
implemented in Python and support multi-core processing.

Scientific community is starting to bring problems to modern clouds. For example Openfoam
has been ported to Amazon. Improvement of CloudFlu allows deploying OpenFoam on AWS
services [210][211].

6.2. Involved companies

Big Data is also an industrial problem, see Figure 33, not only scientists have to deal with this
domain. This section presents some industrial project, which involved with Big Data. [237]
presents a set of product which include Hadoop as a part of their infrastructure.
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IBM is a major company for Big Data. One of their famous systems is named Watson. This
super computer is able to crawl data over the Internet, to extract knowledge. This super
computer gathers information over Internet, and uses it to play Jeopardy. To evaluate
capacities of this system, Watson has been opposed to two best players of this game. At the
end of the party, Watson wins. Watson is not a storage system; it is an efficient crawler
system. Internet is full of correct and incorrect information. Thus, Watson has to deal with
this incorrectness. It has been necessary to filter information: slang language or
abbreviations. Another issue for Watson was the massive use of Wikipedia. With this super
computer, IBM has been able to beat two of the best Jeopardy players [218]. Now Watson
has evolved and has been used to help nurses to diagnostic health problems.

Big Data Landscape

[ . ( , h . ( .
Vertical Apps Ad/Media Apps Business Analytics and
C— | eollctivelT] Intelligence Visualization
' r N— ORACLE' | Hvperion 2 AR O Palantir
) N \ in 4 e CAD 4 ) PERA  metalayer
Log Data Apps (i) LucxySont Eea’” BusinessObjects [ METAMARKETS
— Media~ Data XD Microsoft | Business Intelligence [ERADATA ASTER ESEINTES
g logic TURN ) .
; nsumoogm.) \Science ) COCNOS BT gsas BITIBCO' [Gammasne
— — . ] panopticon
_ Data As A Service Autonomy e O Datameer O=ES
i croema —J |l RN oime - ¢ O platfora NN Girrd
| O e JRRIX @ ledistexis: S| LOOATE ]| [P ) \ alteryx <visually Avam )
( N\ [ \ [ \ ( \
Analytics Operational Infrastructure As Structured
Infrastructure Infrastructure A Service Databases
QF S ‘\ —
Hoﬁ‘;:‘n;}t,‘ks va:r__,ng MAER] | coucnsase 10gen &= amazon ORACLE My
INFOBRIGHT servees
cloudera = HADAPT 7= SQL server
EMC @ s B
N)neTEZZA kognitio . . g e 2 :
\DHTHSTH:';,..‘ EXASOL _ ) \- MarkLogic ) \ Google BigQuery ) \ Y,
— T —
Technologies
3 ¥ 5 D oy o e g
(G hEdbop TP HSASE 0¥ cassandra
——— e

Copyright © 2012 Dave Feinleib dave@vcdave.com blogs.forbes.com/davefeinleib
Figure 33. Example of companies, which involved in Bigdata.

EDF, a French company involved in power management, also deals with big data. EDF is
currently deploying a new measurement tool. It is a new way to manage and monitor power
usage by consumers. This solution grabs information every 10 minutes from 35 millions of
homes. Raw data produced by this solution represent for each time step 120 TB. But to deal
with this huge amount of data it has been necessary to use a specific data warehouse. The
first solution was designed to run a Hadoop system, but they preferred finally to use the
UDA solution (Unified Data Architecture) based on Hadoop, Teradata and Aster Data. To
improve knowledge, they also grab information from social networks to evaluate the feeling
of their users [206].
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Facebook is also a well know company which deals with Big Data. To store their massive
data, FB needs to use a cloud architecture. Their solution is based on Hadoop, with on top
layers some SQL possibility. In the earlier days these possibilities were provided by Hive, but
this solution is not efficient enough for their needs. Thus they have developed their own SQL
engine on top of Hadoop. This architecture is used to store data from multiple users and also
to apply analytics on data.

Yahoo! has also largely involved in the Big Data community. They have developed the
Hadoop ecosystem, and a spin off (Hortonworks [216]) has been created which also involved
in the Hadoop community. They provide some plugin, which can be used to extend Hadoop.
They use this specific architecture to store data for web crawling, or some analyses of users
information, genome, etc.

Google has published some keystone papers [56] and [215], which brings to big data their
first key features. Their first solution is closed source, and only usable by Google developers.
They use their technology to deploy some services: Google search engine, Gmail, Google
drive etc. They also have opened their cloud infrastructure and now it is possible to deploy
applications on top of the Google architecture. They also provide Google cloud tools
(BigQuery). They also propose some cloud services: App engine, Cloud Database, Cloud SQL,
Cloud Storage, etc.

Amazon is another leader in the Big Data industry. Through Amazon Web Services, they
provide a set of facilities to deal with big data and clouds. Their product is dedicated to some
specific use case: Intensive computation, storage, database, analysis monitoring and
deployment, and software facilities. For example with the EC2 services, Amazon provides a
cloud infrastructure based on virtual machines, and designed to run intensive computations.
With their S3 solution, they provide an evolving cloud system to store data. They also
provide facilities to use a Big Data architecture and HPC facilities at the same time.

Twitter is more a Big Data user than a service provider. They have developed some
extensions to Hadoop, but mainly focused on their needs. They try to store and analyze large
data extracted from network links between users. Their data is mainly designed to be graph-
structured.

Aster is a company involved in BigData analytics. They have developed a tool based on SQL-
MapReduce approach, which can be used to perform Big Data analyses. This methodology
combines a standard Database and a MapReduce solution to deliver a high-speed analytics
tool.
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Figure 34. Amazon AWS.

JASMIN is a big data analytic system, it was developed to run complex computation over
large data set. [78] presents the initial configuration of JASMIN, and the first experiment of
this system. Requirement of Big Data analysis have not been achieved on JASMIN, this
system does not yet own enough compute and storage capabilities. The JASMIN architecture
is composed by six major components: a low latency network, a Panasas storage sub-system,
a batch compute system, a data compute system, a high memory system and two images of
virtual machines.

6.3. Which datasets

Datasets in Big Data systems involve in many domains. People are usually interested to store
all the information, and understand them later. The processing of data is applied in a second
step. In this section we present some use-cases, like data monitoring [167].

A first set concerns health data. This dataset is coming from many sources: Hospital
measurement tools, quantified self-measurement tools and diagnostics provided by health
personnel. All these information are extracted at different time step, and different
frequencies. Their validity can also be noised by some external sources: human factor,
hardware issues. Governments of different countries have decided to group national health
information into a unique health DB. This aggregation of data brings security, and access
issues. It is also necessary to design the most suitable solutions, which can deal with these
different datasets: images, numerical values, and human diagnostics. Analytics and storage
solutions need to be improved to fit with all these sources.

New buildings also produce more and more data. These entities have largely evolved in the
past few years. In the earlier days, buildings are equipped by BMS (Building Management
Systems), which provide all necessary tools to manipulate the whole ecosystem of the
buildings: sensor, valves, actuators, etc. These systems are only reactive. To improve the
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usage of buildings, it is necessary to propose new kind of devices able to improve the
building behavior through the use of massive dataset. These data sets are composed by
values of the equipment. These new BMSs provide sensor values at different frequencies;
these systems also provide massive datasets (more than 1.000 of sensors in a regular
buildings). All the time steps of sensor data are stored to improve the building management.

The next generation of scientific discoveries will undoubtedly be provided by usage of Big
Data. More and more equipment and simulations create huge datasets, which have to be
effectively managed. Also, the next generations of discoveries need to be compatible with
Big Data, Big Data analytics, Data-intensive simulations and computation. The science has to
follow an important evolution: at the beginning this field was lead by empirical descriptions
of natural phenomena. After some year theoretical models are used to describe real natural
phenomena. At the beginning of 2le, computational model bring science to a new
dimension. then models are proposed, then computational models are used to simulate
complex phenomena and now science uses big data to extract and infer new theories, new
evidence, new perspectives and better understanding of natural phenomena.

6.4. Products

As stated before, many company are today involved in Big Data, see Figure 33. Example of
companies, which involved in Bigdata. In this section, we present some existing products,
which are dedicated to Big Data and Clouds. This section is decomposed in two parts: closed-
sourced software and open-source software.
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Figure 35. Dryad Stack [207]

Miscrosoft has been an important actor in the cloud area. They have developed a cloud
platform named Azure. It is a PaaS cloud system, [150]. This service provides similar
capabilities compared to the Amazon cloud system. And this system is designed to be
suitable with Microsoft tools. As a proof of concept, they also have deployed some of their
popular apps in the cloud environment: SQL Server or Office 365.

Microsoft also provides it is own MR system named Dryad. Their solution is based on the
traditional distributed computational model (MapReduce), which can scale from a small to a
large cluster. Dryad has been designed to help developer use all resources of a computer
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cluster or data center for running parallel programs. Usability of this solution has been
provided by several tools, which enhance the traditional MR paradigm. They have developed
SSIS, which can run multiple instances of a SQL server. Dryadling generates computation
using a specific language: LINQ. A full description of this MR toolkit is presented in [143], and
a presentation of the Dryad ecosystem is shown in Figure 35. As stated in [236], a new
version of their solution is available, and now it is support Hadoop with YARN.

Google is also another important company, which deals with big Data and Clouds. As stated
in [150], Google was born in the cloud. This company uses basic functionalities of cloud
systems to provide the most efficient and suitable search engine. They have developed a set
of tools which are not available to public, and are able to reach high performance. Now they
have extended their framework, and provide new tools on top of it. They have used their
own cloud solution to produce some of their bestseller tools: Google docs, Google drive, etc.
Google now provides solution to deploy applications through their cloud architecture. Now,
Google can offer three engines: Google App Engine, Google Cloud Storage and Google Big
Query. They also provide demonstration of their capabilities, for example, they have extend
the NoSQL DB named: Cassandra, and with this solution they are able to reach one million
writes per second [145]. This solution has been deployed on Google Cloud Platform; the
architecture of the solution is presented in Figure 36.

Intel (http://www.intel.com) was recently involved in Cloud systems. This company has
produced some customized Linux distributions to run efficiently Hadoop. These distributions
were splitted in several distributions regarding the needs of the IT system. Reference [156]
presents one distribution of this ecosystem. These solutions provide efficient tools to
decompose a data center into computation nodes and storages nodes. To be suitable with
HPC, they extend Hadoop to use the Lustre FS. They distribution also integrates some of the
most important tools for HPC usage. The architecture of this distribution is presented in
Figure 37.

IBM (http://www.ibm.com) is a key partner in the development of OpenStack. OpenStack is
an Operating system, which deals with deployment of virtual machines, like VMware or
Citrix solution. IBM has planned to only use OpenStack for the deployment of their clouds
[150].

HP (http://www.hp.com) also owns a cloud solution, see [166]. There solution is composed
by a set of tool for storage, computing, DB, load balancing and so on.

VMware (http://www.vmware.com) is a software developer, which is mainly involved in
virtualization software. They have developed a large set of tools to deploy and run virtual
machines. They also have built software named vCloud, able to provide all the functionalities
to deploy a full cloud system [150].
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Figure 36. Example of Cassandra deployment on the Google Cloud Platform.
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Amazon (http://www.amazon.com) is the most well know company involved in cloud
systems. They provide a set of tools through there platform AWS (Amazon Web Service).
Tools provided by Amazon concern several domain of cloud computing. They propose a tool
for storage, DB, analytics, SaaS monitoring. In [150], Amazon was described has the inventor
of laaS market. Amazon covers all the pipeline of cloud computing, they can deliver from
storage facilities to super computer systems. Two services of Amazon are mainly used by
their users: S3 and EC2. S3 is dedicated to provide a cloud storage solution, and EC2 is
dedicated to computation [143].

All of these companies provide solutions to deploy cloud systems with associated fees. Open
source software solutions have been developed to allow anybody to deploy a cloud system.

Apache is a software foundation, which host an important set of these tools. Hosted projects
deal with Database, big data and clouds [208]. This foundation host a large part of open
source tools from the Hadoop community.

VMware has developed a tool to deploy a whole Hadoop ecosystem: Serengeti. This solution
allows running multiple Hadoop distributions on virtual servers. With Serengeti, it is possible
to deploy a whole Hadoop ecosystem in a couple of minutes, one command is enough. All
configurations parameters required for Hadoop clusters is produced by Serengeti.
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Figure 37. Architecture of the Intel distribution of Hadoop.
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Instead of using a closed-source virtual manager system, it is possible to use an open-source
solution. Sahara [196], previously named Savanna project, can be used to deploy a whole
Hadoop ecosystem on top of an OpenStack platform. This solution provides all necessary
tools to be suitable with this virtual machine manger.

Mesos is an Apache project, which provides resource isolation and distribution strategies to
run distributed algorithms. With this software it is possible to deploy a whole ecosystem of
Hadoop, Jenkins, Spark, etc. This tool provides a scalable system suitable for 10.000 nodes;
virtualization is done using Linux containers.

The Apache Ambari is another project that aims to provide a simple tool to deploy Hadoop
ecosystems. This software is a management tool to simplify development, provision
management, and monitoring of Hadoop clusters.

Whirr is another project that can provide convenient ways to launch clusters. This solution
can deploy a whole Hadoop system anywhere on a: private cloud or AWS. This solution
provides a set of library for running cloud services. This solution provides a neutral way to
run a cloud service with any provider.

OpenStack [128] is a major tool in the Big Data community. Openstack is a cloud OS, which
controls large pools of compute, storage and network nodes [195]. This software provides all
the necessary tools to monitor efficiently the deployment of a complete cloud system. It has
been designed to provide cloud flexibility and supports most of common hardware and does
not impose any software requirements. This solution is designed to manage and automate
pools of compute resources. Different kinds of supervisors can be used to deploy cloud
resources (KVM, XenServer and LXC). This stack also supports alternative hardware
architectures like ARM. It can be used to process Big Data using Hadoop. This software is
designed to provide virtual machines needed to compute results of BigData queries. Several
plugins have been developed. Hortonworks provides one of these, which enable to run
Hadoop on top of Openstack [128]. All the parameters settings and deployment of virtual
machines are performed automatically with this tool.

7. The Hadoop Ecosystem

The last part of this section is a discussion of Hadoop 2.0, [121]. It is the most recent version
of Hadoop. It brings modern optimization to the Hadoop ecosystem, some of them have
been presented before: HDFS 2.0, Yarn, etc. With this novel ecosystem, Hadoop can achieve
higher performance: uses more compute/storage nodes, a simplified deployment, etc. This
solution does not have lost his extensibility, and most of existing extensions can be used.
The ecosystem is still evolving and new extensions are proposed.

7.1.1. Introduction

Hadoop is a well-deployed system, which has been released by the open-source community.
This system has been developed to reproduce the computational pipeline presented by
Google, this computational model is named MapReduce. The Hadoop system has largely
evolved and now new possibilities are available: it provides all necessary stuff to process (in
any manner) distributed data.
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Figure 38. evolution of Hadoop [216].

7.1.2. Evolution of Hadoop 1.x to Hadoop 2.x

The first version of Hadoop is based on the traditional MapReduce strategy. This solution
decomposes queries in two functions: Map and Reduce. The Map function will gather
information from several nodes, write results on a file, and then the reduce function reads
these file and produces the final result. This strategy is well suited for some use cases, but it
is necessary to propose a modified version of this model to solve some complex analyses.
Generally, this MR model is compared to a low level language, thus to be more usable, a
high-level language is necessary. The traditional MR model is not anymore enough to
express complex computation needed by Big Data system. Computation with this model can
take more time than any other computation workload.

To simplify Hadoop, some extensions have been proposed. We will present some of them in
the next section.

Recently, scientists have made a major revision of the Hadoop ecosystem. This major
revision changes the Hadoop version from 1.x to 2.x. This new version is based on Yarn. The
fundamental idea with YARN is to split two of the functions into separate job. This
separation has been presented earlier in this document. With this solution any kind of
computational model can be used with Hadoop. MapReduce has been ported to Yarn, as a
proof of concept, and to provide backward compatibility. Now Hadoop 2 is following the
same path than the previous version, and a large set of specific extensions are available.

The next section will present some of the extensions available for Hadoop; most of
extensions developed with Hadoop 1 are also usable with Hadoop 2.

7.1.3. Hadoop extensions

The Hadoop community has provided an important set of extensions. The list of these
extensions is available on many online resources [153] [158][160]. The classification of these
extensions is not a simple task and different classes can be presented. The Figure 43, from
[153], presents some extensions that have been developed for Hadoop 1 ecosystem. They
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concern all parts of the Hadoop framework. Each of these extensions brings improvements
at different levels, for example the computational model, the storage file system, the
possible analyses, etc.
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Figure 39. Example of applications, which run on Hadoop [216].

Some Hadoop distributions provide all tools to deploy a complete system. Two leaders of Big
Data propose this service: Cloudera and Hortonworks. Cloudera distribution provides 25
tools related to Hadoop (with Avro, Crunch, DataFu, Flume, HBase, Hue, Hive, etc.). And 12
tools only compose the Hortonworks distribution.

In the next sections, we present some of these extensions. We will present some compute
models; analyze tools, storage solution and management tools.

7.1.4. Hadoop Computation

In this section, we present some computational improvements of Hadoop and also
deployment facilities for this model: Hadoop has not been designed to run efficiently on HPC
system.

The MapReduce paradigm has brought simplicity to distributed computations.
Unfortunately, this strategy is too simple to express specific workloads. But most of
computational problems are not batch suitable. Thus, researchers have developed
extensions on top of Hadoop to simplify application development.

GraphX
(graph)

learning)
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Figure 40. Spark software stack [108]

Spark is presented in [108][109]; it is a recent Apache project. In the earlier days of this
project, it was developed under the incubation platform of Apache. Spark can run on top of
Hadoop 2.0, using Yarn manager. With Yarn, the previous applications run faster than the
first version of Hadoop framework. This extension can provide an efficient tool for analytics
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based on SQL, a streaming engine, a Machine learning library and a graph library. Figure 40
presents a schema of the stack layer for Spark. This software is evolving and releases are
provided regularly. On top of Spark, they have implemented a query processing engine
based on SQL. This engine is called Shark. In [162], authors provide a description of this
guery engine. Shark provides a streamlined interface, which enable deep data analysis. A
schema of this stack layer is presented in Figure 41.

For graph datasets, Giraph has been developed, [131]. Giraph is an extension, which enables
to process large graphs in an efficient way. This solution is an open-source implementation
of Pregel. Giraph has been improved compared to the traditional Pregel model. This solution
brought a master computation node, a share aggregator; an edge oriented input and also
out-of-core computation capabilities.

Another example of computational model for Hadoop is named Reef. Reef has been
presented in [161]. This model is used to compute Singular Value Decomposition of a
dataset. This algorithm is scalable and can run on structured or unstructured data sets. To
validate their solution, authors benchmark this computational model on a real Twitter
dataset.

To reduce complexity of YARN, some other software is developed. Twill, presented in [114],
brings a new abstraction layer for YARN. If we consider Yarn as an operating system for
clusters, Twill brings ease of development for customers: they only deal with business logic.
Twill allows expressing Yarn jobs similar to thread programming.

Spring for Apache Hadoop provides another simple way to deploy a Hadoop Yarn system. It
produces an unified configuration model for any part of the Hadoop ecosystem (HDFS, MR,
Pig or Hive). This solution is presented in [115].
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Figure 41. Shark architecture

Kafka [127] is a publish-subscribe messaging solution. It is provided a distributed system to
transfer logs. This solution has been designed to handle hundreds of megabytes of reads and
writes per second. A message passing system is a low-level communication tool. This
solution brings specifics problems, which needs to solve on processing layer. In [129],
authors present a solution to avoid issue of message passing system. This solution is a top
layer of message system called stream processing. Stream used in Samza is a more complex
system compared to the traditional message passing system. This stream engine provides
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buffers requirements and isolation of processing from each component (application and
system).

The Hadoop ecosystem can be deployed on HPC facilities with specific tools. In [175], the
authors present an evaluation of Hadoop in the context of HPC. They have evaluated the
impact of the file system, network and programming model for scientific workloads. This
paper describes the usability of MR for three data intensive operations: filter, merge and
reorder. Filter operations return a subset of the entire data set. Reorder operation is
designed to reorder data in an output dataset (identical size of the input data set). Merge
brings two datasets into one data set. This paper has studied different workloads:
palindrome processing, data processing, Wikipedia data processing and Terragen. This study
shows that HDFS is well suited with minimal writes.

To deploy a Hadoop framework on a HPC two solutions have been presented. The first one is
named Hadoop on demand and the second one myHadoop.

Hadoop on demand is described in [179]. This tool has been designed to make deployment
of Hadoop easier. It provides a tool to deploy virtual Hadoop over large clusters. This
solution can allocate nodes, and start all necessary daemons (Hadoop, MR and HDFS). It also
provides the appropriate configuration file.

MyHadoop presented in [34], [100] is another tool to deploy Hadoop on a HPC. This tool is
an aggregation of script, which starts Hadoop services over a HPC. This method dumps data
from HPC nodes into the Hadoop, and then applies computation with Hadoop framework.
Then at the end of computation, all HDFS partitions are scratched. And HPC nodes can be
reused as HPC nodes.

7.1.5. Hadoop Analysis

Hadoop MR is not the most efficient tool to analyze complex data. But some extensions have
been developed to perform these computations.

Bioinformatics is a domain, which needs a lot of computation. Analysis of genomic
sequences is a complex task. Crossbow presented in [180] is a scalable software pipeline for
genome alignment. This framework allows deploying a whole computing system in the
Hadoop environment. This solution can bring faster results, compared to the traditional
single node approach.

Another Bioinformatics tool is named SeqPig, [181]. This tool is built on top of Pig which
relies on a Hadoop system. This extension is a distributed analysis tools for large sequencing
datasets. This solution takes advantage of the Hadoop framework using the high-level
language Pig. The authors have created a library and a collection of tools to manipulate,
analyze and query sequencing datasets in a scalable and simpler manner. This set of tool is
based on the scripting engine Pig.

CloudBusrt is another analytics tool for bioinformatics. This tool has been released in 2010,
and presented in [182]. It is an optimized algorithm for next-generation of sequence
mapping for the human genome. This solution uses the Hadoop implementation of the
MapReduce to parallelize executions of the algorithm. This solution is able to achieve linear
speedup regarding to the number of read mapped.
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MRQL is a query-processing engine optimized for large-scale, distributed systems. This
extension is built on top of Hadoop, Spark and Hama. This query engine is based on SQL-like
query language for large-scale data analysis. This extension can process data through three
models: a map-reduce job, a BSP mode using Hama and a Spark mode. This extension is
presented in [194]. With MRQL, users can express complex analysis like: PageRank, K-means,
matrix factorization, etc.

In [209], a comparison between the most important SQL engines for Hadoop is presented.

7.1.6. Hadoop Storage

Storage of Hadoop frameworks has also been widely studied. Scientists have proposed a lot
of extension to use other file systems instead of the traditional HDFS. To store files, two
strategies are mainly used: a standard File System [240] or a Data Base. These extensions of
FS are for example: Lustre[239], Ceph, Gluster FS and Tachyon. All of these systems have
some specific advantages, and it is possible to use them for Hadoop deployments. For
example, Tachyon is an open-source, distributed, fault-tolerant system that stores data in
memory. The second strategy uses Databases to store the data, and extensions allow to use
Cassandra or mongo DB as basis of the File System. This section presents two approaches
that deal with such storage strategies.

In [178], authors have proposed a strategy to use a Hadoop ecosystem with a HPC
infrastructure. They have study performance of both distributed FS: CloudStore (Hadoop FS)
and a specific HPC FS named: Parallel Virtual File System. To perform their evaluation, they
have used two different workloads: one designed for the HPC FS and the other one suitable
for the Hadoop FS. For this benchmark, they have used a record trace mechanism to provide
I/O traces of both workloads. Their workload was named TFIDF (Term Frequency-Inverse
Document Frequency). They have shown that the Hadoop FS runs slower than the HPC FS.
They have also discovered that the Hadoop job Scheduler made different placement
decisions for mixed workloads. Thus it is necessary to provide a wider study for why Hadoop
job scheduler tries to use data locality in some cases and not for others.

To improve the accesses of storage solutions, it is necessary to find the most efficient way to
select the data. In [193], authors have developed a new solution: Hadoop++. This solution
can boost access to files without any modification of the Hadoop framework. The strategy
used by the authors injects specific information at the right place. No changes are performed
on the Hadoop ecosystem. This paper shows the efficiency of this method compared to the
traditional Hadoop methodology. Hadoop++ is composed by a new indexing strategy based
on RDBMS indexing. This solution adds an additional header to the files.

Before a storage phase, it is necessary to bring data to clouds. Different solutions exist for
this purpose. Two tools are mainly used: Flume and Sqoop. Both tools gather information
from specific storage systems. Flume has been developed to collect, aggregate and move
large data into HPC system. Data is streamed to the cloud systems [135]. On the other hand,
Sqoop is a bulk synchronization tool, which allows transferring data from a structured
repository (a RDBMS) to a Hadoop server [136].

Hadapt is commercial software, which cover the needs of SQL storage on Hadoop. This tool
is a hybrid storage system that uses a SQL DB and HDFS to store the data [124]. It also brings
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a native SQL engine on top of the Hadoop system. This tool comes with an ODBC connector
to simplify access to the data.

The TeraData company, [223], provides a storage distribution for Hadoop which uses their
database to store the information. This solution is presented in Figure 42, and shows the
architecture of their solution. This strategy is based on a top-level plugin. With this
methodology, they can use both products to deal with Big Data: Aster a discovery tool and
Teradata a storage facility.

In [238], Quirks is presented. Author explains how he implements an abstract file system
layer for Hadoop. He uses Quirks as a default file system for Hadoop. This document
provides most of necessary information to extend Hadoop with a complementary File
System.

7.1.7. Hadoop Management

This last section is dedicated to the management tools for Hadoop systems. Some extensions
proposed by the community are designed to extend the Hadoop management strategy. For
this purpose, we will present three kinds of extensions, some of them are dedicated to the
global management of the ecosystem, other are used to improve and simplify its
deployment, and the last strategy are used to monitor jobs.
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Figure 42. Teradata, data integration on Hadoop [219]

The Bigfoot project is a FP7 project, which involved with 9 partners. The goal is to design,
implement and evaluate a scalable way to process and interact with big data application
footprints. In [149], they present their contribution to the Hadoop community. They have
provided some modifications to the global Hadoop ecosystem using an analysis tool, a
protocol scheduler, a k-mean cluster solution for Spark, an improved simulator, an
Openstack measurement framework and an artificial workload injector for Hadoop. All of
these improvements are developed to provide a better analysis of the Hadoop behavior.
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To reduce the complexity of the deployment HPC systems, it is necessary to provide a
standard communication protocol. One of the most standard communication protocols
between nodes is based on MPI. In the thread [183], the authors expected to bring support
of MPI in Hadoop in a couple of releases. This strategy has already a name: Hamster. This
integration will be possible due to the recent separation of the JobTracker introduced by
Yarn.

To improve the deployment of an application on top of Hadoop, some scientists have also
brought new tools. An example is Hoya, [125]. Hoya allows to deploy an existing application
on YARN. This tool provides all necessary tools to monitor these jobs, and it is also possible
to extend dynamically the number of nodes used by the cluster. This tool has similar
requirements to Hadoop ecosystems and can be extend with existing plug-ins. For example it
is possible to use this tool with Hbase and Accumulo.

The last discussion of this section presents monitoring tools. To understand Hadoop
behavior, it is necessary to understand workflow of this ecosystem. Thus, it is necessary to
use Monitoring tools. They need to be efficient to provide the full capability for the
management of Hadoop.

Ambari is a project, which aims to deploy and monitor a Hadoop platforms; this solution is
presented in [133]. This software provides a simple way to manipulate or monitor Hadoop
clusters. This solution is based on a web Ul, and it can support multiple existing components
of Hadoop: MR, Hive, Hcatalog, Hbase, Zookeeper, Oozie, Pig and Sqoop. This tool can be
used for starting, stopping or reconfiguring Hadoop services. This system can be used to
monitor the health of Hadoop clusters.

Another GUI is provided by Hue, [132]. Hue is a web interface for analyzing data provided by
Hadoop, [132]. This GUI is a web application, which enables to manage files, jobs, and
workflows in Hadoop. This GUI allows querying the Hadoop system through the SQL engine.
This tool also provides a workflow monitor based on Zookeeper tasks.

Oozie, [134], is a workflow scheduler for the Hadoop ecosystem. This tool can express
workloads of applications as Direct Acyclic Graphs. OOzie is able to deal with recurrent tasks
to reduce execution time. This software can be used to express Hadoop jobs through any
extensions: MR, Streaming, Pig, Hive or Sqoop.

Another well know tool is named Zookeeper. This tool is an old tool, which was brought by
Yahoo! in 2008, [137]. This tool has been designed to transform a Hadoop ecosystem into a
highly reliable distributed coordination system. It was used to save all states of any part of
the Hadoop system, saving these state enables to restore them in case of failure.

Some tools are designed to automate the tuning of Hadoop. In [165], the authors provide an
optimized technique to tune parameters of the Hadoop distribution. It has developed a tool
named: Starfish, which deals with new extensions of Hadoop: for example a new query
language, an iterative execution engine and a new storage system with random key access.
This solution has been designed to reduce the overhead of the profiling tool.
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Figure 43. [153] a graphical representation of Hadoop ecosystem.




7.2. Benchmarks

As stated in this document, IT systems for Big Data can be deployed on three different
clouds: private, public or hybrid. To choose the right architecture, it is necessary to identify
the needs and requirements of a project. Used tools, architectures and infrastructures
depend on which goals are expected. This choice is also determined by an evaluation of
performance and workloads. To evaluate them, some benchmark tools have been designed.

To deploy an efficient cloud system, the first step is to identify which version of a toolkit can
be used. Regarding different distributions, the evolution of the implementation can bring
new performance or overheads. For example in [154], the authors present advantages and
drawbacks of Hadoop 2.0 and Hadoop 1.0. The main advantage of Hadoop 2.0 is the
scalability of the system; it is now possible to deal with more than 1.000 nodes. To choose
the right version, the right set of tools and the right solution for the deployment,
benchmarks have also been proposed to cloud users.

Intel has produced two benchmark tools presented in [157]. The first one is named Hibench,
it is a Hadoop benchmark suite used to evaluate parameters of the Hadoop platform
through an evaluation stage. This strategy can be used to tune, and optimize the whole
system. This tool is composed by a set of micro-benchmarks: Sort, Word Count, Terrasort.
This tool is also designed to study the behavior of an enhanced file system (a high
performing FS which can perform numerous read and write simultaneously).

Some other benchmarks are available regarding which extensions are used: for example Hive
query benchmark or Mahout Bayesian classification. They have also developed another
benchmark tool named HiTune. It is another performance analyzer for Hadoop. This tool is
composed by three major components: Tracker (collect runtime information), Aggregation
engine (merge results of the tracker and an analysis engine). This strategy allows analyzing
workload of the cloud facilities by grabbing system information. In [61], authors perform
some benchmarks based on standard tools: TerraSort, GraySort or MinutSort. They have
evaluated sorting performance of Hadoop 0.23.

To find the best solution, it is also necessary to study the workload. In [151], authors bring a
new study of specific workloads. This document is an empirical analysis of six-business
contexts from real datasets. These datasets are extracted from Cloudera or FB. From these
datasets, authors have described a new MR workload driven by an interactive analysis. Their
analyses are based on three conceptual components: data, temporal and compute patterns.
This study raises important question to identify workload behavior, for example: data access,
data locality regarding to temporal query, regularity of query, common jobs, etc.

Benchmarks are used to study behavior of Hadoop systems; this methodology is presented
in [152]. In this paper, authors present a standard benchmark suite to quantify and compare
performance of different MR frameworks. These benchmarks are based on representative
use cases of MR workloads. With this tool, authors are able to compare some applications
like: Hadoop, Twister or Lemo MR.

Simgrid is a generic framework to enable simulation of large distributed systems. This
solution is presented in [185][186]. This tool is built to study how big systems work (Grid,
Cloud, HPC, etc.).This software can be used to evaluate some heuristics, it also allows to
prototype applications.
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Applications can be simulated through dedicated tools. These simulations can be focused on
different tasks: network, workload, etc. These simulation tools are more frequently used to
identify the needs of an application. One of these simulation tools is presented in [184].
CloudSim has been designed to simulate and model cloud system infrastructures. This
solution has been developed to help future cloud users to control the execution workflow of
an application. With this tool, customers have the opportunity to tune performance of an
application before a real deployment. The goal of this tool was to provide a generic and
extensible framework to compute simulations.

Simulation of the Hadoop behavior can be evaluated with existing workloads. For example,
logs are loaded to a simulation engine, which emulates the behavior of a specific
computation on a virtual Hadoop system. In [148], authors present a modification of the
Mumak simulator. This simulator is designed to run on top of the Hadoop framework. To run
a simulation, it is necessary to provide a real workload trace. This tool only simulates MR
tasks. Authors of this paper have extended it with a MRPref extension. This tool is a network
simulator, which can be used to simulate the runtime of tasks and the delays of a network.
Thus, authors are able to add these characteristics to Mumak, with this strategy they can
predict the runtime of an execution with various parameters.

Another benchmark is named CloudCmp and was presented in [84]. This method has been
developed to measure some parameters of cloud systems: elasticity, storage persistence and
network capabilities. This evaluation is based on a set of metrics, to allow users to select the
best provider: the one which can deliver the highest performance. Another target of this
solution aims to help cloud providers with a standard metrics to compare cloud systems
(identify where competitors are better, for example). Obviously, a complete coverage of
cloud services features is not possible for a benchmark (all services are not available in all
cloud solutions). But authors have provided fair metrics. These measures can perform
metrics each hour to determine the most accurate model. Before starting an evaluation of a
cloud system, a user needs to select a couple of those metrics compatible with the targeted
cloud. This kind of benchmark can be used to propose a meta-cloud system able to combine
the advantages of difference services.

For cloud systems based on NoSQL DB, a benchmark has been proposed in [69]. This solution
has been developed to identify the best raw performance engine among NoSQL systems.
Authors have developed some standardized tools to evaluate some criteria of such systems.
This benchmark has been designed to perform an evaluation for key-value systems. To
experiment this benchmark, several DBMS have been selected: Cassandra, Couchbase,
Aerospike and MongoDB. This evaluation has been applied to a real-world hardware:
without virtualized system, data can be stored in RAM or SSD. The results of this benchmark
show that Cassandra and Aerospike are in a near-tie in term of performance. Aerospike
outperformed all solutions for a high volume workload.

Finally, a website compare existing distributed DB systems, in [119]. This solution compares:
Redshift, Hive, Shark, Impala and Tez. In this document, authors compare the most recent
analytics frameworks. This tool evaluates different queries on these frameworks. This
benchmark is fully deployed on a cluster, to evaluate which solutions are the most suitable
with the infrastructures. Another comparison is provided at [170]. Here, authors have
produced a table, which compares a large set of Big Data tools. This table is presented in
Figure 44.
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Figure 44. Comparison chart for Big Data analytical Tools [164][170][171]

8. Discussion for the VELaSSCo Project

This last section summarizes this document. This discussion tries to find which solution will
be the most suitable strategy for the VELaSSCo project.

In this project, our goal is to define requirements of a storage platform for data produced by
simulation engines. These simulations are based on solvers, which solve specific equations.
These equations describe some physical phenomena. The computational model is based on
FEM and DEM.

FEM (Finite Element Method) is a computational approach, which uses solvers to compute
solutions to partial differential equations on a domain defined by a mesh and a surrounding
domain. For example for a car simulation, the domain can be the air surrounding the car.

The second model is composed by DEM simulations (Discrete Element Method). In this
approach, the discrete elements are defined as particles. The particles interact with their
neighbors through contact forces. The data of DEM simulations is very dynamic because
particles and contacts can be created or lost during the simulation.

These simulations have already reached their limits. Computation and storage of these
simulations are too important. It is now necessary to compute simulation on multiple nodes
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to reduce the computation time or storage space. The second main issue for scientists is the
storage of produced data. Currently, data produces by simulation are analyzed and
scratched. Storing all available information will bring simulations to a new dimension.
Moreover, actual personal computers are not anymore suitable for massive simulations:
runtime take too much time, and these systems do not own enough memory. Thus, it is
necessary to use more powerful systems, like HPC. The amount of data is also an issue; data
needs to be split among nodes of the HPC. Each node computes its data and at the end of
each time-step, results files are aggregated, and sent to the visualization tools.

This platform has also to deal with query. Two different complexities of queries have been
identified: simple and complex one. Simple queries will extract direct content from
database, while complex queries need a computation phase. These queries will be
performed at two levels: batch and real time.

A big mistake with Big Data is to try to provide a solution, which enables simultaneously HPC
and Big Data (computation and storage are located on the same cluster). Requirements of
both systems are not similar. Thus for optimal solution, the preconized approach is based on
a dedicate VELaSSCo storage platform. But to be suitable with any existing architecture, our
platform will be deployable on any kind of IT system. With this scalable methodology, we
will able to deploy a adapted platform, which deal with any hardware capabilities. This
solution enables to work with the best and the worst hardware architecture.

For the best architecture, our proposed Big Data architecture can follow the most common
strategy: use commodity nodes, with virtualization. With this method, VELaSSCo platform
deploys the wider architecture, at the lower price.

Development of this platform can be suitable with two strategies: use an existing framework
or develop a new framework from scratch. The first solution seems to be the more suitable
one; development cost and complexity will be drastically reduced. Moreover, with an
existing framework, it is possible to use existing plugins. The chosen architecture must be
modular (plug-in concepts). The chosen framework has to fit the proposed architecture: be
deployed on an important set of nodes, and support for virtual machines. The solution has
also to be suitable with HPC facilities. For an existing solution, it is necessary to choose an
evolving framework with regular updates. Using a deprecated solution can bring many
design and implementation issues, increase the amount of work and result in poor
performance.

The Cost of the platform has also to be discussed; we plan to provide two different
platforms, one designed around the EDM software, and the second one developed around a
full open-source software stack. Regarding [234], Linux seems to be the most suitable
operating system, where lower execution times are achieved. With this strategy, the global
cost of our platform will be drastically reduced. It can be deployed on a larger cluster (cost
will be mainly dedicated to hardware). The two possible platforms differ on some of the
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modules, but the skeleton of the architecture will be the same (specification of the
architecture will be presented in deliverable D2.2). The main idea is to take advantage of
commercial modules (like EDM) for the project, using partners’ contributions, and let the
door open to set up another configuration using open source software.

From these elements, the most suitable solution is the Hadoop ecosystem with some
extensions; this framework has already been validated for astrophysical data [241]. As a first
step, we can use a full distribution of Hadoop, which includes a set of pre-installed
extensions, likes Cloudera [217] or Hortonworks [216]. Then extends this ecosystem, and
disable unnecessary extensions. This minimal distribution will be used to deploy over
extensions, and develop new one, some examples can be: storage for DEM and FEM data,
support for storage using the Step format, study energy impact, and improve data locality.

As stated in previous deliverable, VELaSSCo project needs to deal with security. Now, new
version of Hadoop can provide all necessary stuff to support security at different level.
Security is provided at the file system level.

If we choose to use this framework, it will be necessary to answer some open questions:

- How to integrate EDM database on a Hadoop cluster?

- How to deal with interactive query needed by visualization tool?

- Hierarchical decomposition of simulation can be used to store data, is it an
efficient strategy to use this approach to store the data?

- Isit necessary to use a specific data locality model to improve the whole system?

- How does the actual communication protocol deals with interactive visualization?

- The frameworks has to deal with multi-resolution of data, it has to grab data at a
coarse grain and refines it during the query runtime.

- Etc.
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