
 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 1 of 15

Quber2

Visual Analysis for Extremely Large-Scale Scientific Computing

D3.3 – Pre-computed, or on-demand computed, transformations stored in HPC: Engine to create multi-

resolution models & co. from simulation data, first version ready for first prototype (A Revision)

Version 1.1

Deliverable Information

Grant Agreement no 619439

Web Site http://www.velassco.eu/

Related WP & Task: WP3, T3.2

Due date February , 2016

Dissemination Level PU

Nature P

Author/s Miguel Pasenau

Contributors
Giuseppe Filippone, Alvaro Janda, Heidi Dahl, Ivan Martinez
Rodriguez, Jochen Haenisch, Abel Coll

http://www.velassco.eu/

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 2 of 15

Approvals

 Name Institution Date OK

Author Miguel Pasenau CIMNE 16/2/2016

Task Leader Miguel Pasenau CIMNE 16/2/2016

WP Leader Miguel Pasenau CIMNE 17/2/2016

Coordinator Abel Coll CIMNE 17/2/2016

Change Log

Version Description of Change

Version 0.0 Content definition

Version 1.0 Draft

Version 1.1 Reviewed

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 3 of 15

Table of Contents

1. Introduction___ 4

2. Revision after an internal evaluation ___________________________________ 4

2.1 CalculateBoundaryOfAMesh ______________________________________ 6

3. Revision after the Evaluation Event ____________________________________ 8

4. References ___ 11

Annex 1 – Execution log __ 12

Table of figures

Figure 1: Latest version of the VELaSSCo platform's architecture showing the layers,
modules, the tools and interfaces involved in the different components 5

Figure 2: Model selection window showing the different models used to develop the
platform and the 3rd column list the different tables used with different structures.
 .. 6

Figure 3: Telescope FEM model used in some use-cases of the evaluation event. The
different colours are the sub-domains, partitions, in which the model is subdivided
to run the simulations and which are ingested in separated rows in the hbase
tables. ... 7

Figure 4: The Telescope FEM model used in some use-cases of the evaluation event.
Showing on the left the Pressure colour map drawn over the boundary mesh of the
model. On the right the evolution of the pressure on one of the vertices. 9

Figure 5. Example of the results obtained by means of the Discrete to Continuum
transformation: Left, discrete data provided by DEM simulation solver. Center:
D2C results for a single time-step. Right: D2C results including temporal averaging.
 .. 10

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 4 of 15

1. Introduction

This deliverable was meant to present the revision of the complex VELaSSCo Queries
(VQueries) according to the study and evaluation of the first prototype of VELaSSCo
Platform by the consortium and on the evaluation of the same prototype by the user
panel members on an evaluation event. The very short time slice between the release
of the prototype, the evaluation event and this report, makes it impossible to include
the revisions and modifications of the VELaSSCo platform that are corollary of the
users’ evaluation of the first prototype.

Thus, this report will only lean on some of the impressions won by the study and
internal evaluation of the platform done by the consortium and some first-handed
considerations done by the users in the evaluation event.

Due to some deviations, like the architecture redefinition, some of the work outlined
in D3.3 will be included in the final version of the VELaSSCo platform: like the
CalculateSimplifiedMesh, and ‘pre-computed’ path of the VQueries, i.e. storing the
results of the analytics operation for later retrieval when the query is issued, thus
avoiding repeated calculations.

First the revisions of the in D3.2 presented VQueries are presented after an internal
evaluation, and then a preliminary revision after the Evaluation Event are presented.

2. Revision after an internal evaluation

During the implementation process, the architectural design has been changed several

times.

Figure 1 shows the latest versions of both architectures, the open source one and the
closed source one. Still, in the closed source architecture, the connection of the
analytics queries between the QueryManager, StorageModule and EDM has not been
solved as the different proposals were not satisfactory for all partners. Some iterations
in the design of this part are still been considered.

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 5 of 15

Also during the implementation process, in the open source architecture the HBase
table structure has been changed several times after the release of D3.1, and different
tables were used in addition to the official ones. The latest HBase table structure
definition used in the prototype is described in D2.7.

Figure 1: Latest version of the VELaSSCo platform's architecture showing the layers,
modules, the tools and interfaces involved in the different components

Several mechanisms have been implemented in the VELaSSCo platform to support the
evolution of these architectures like:

 support for several HBase tables and structures (see Figure 2);

 different SessionID and modelID management strategies for the open and closed

architectures;

 binary temporary files are written as hexadecimal strings;

 standard java and Hadoop’s YARN calling methods have been added;

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 6 of 15

 several implementations of GetBoundaryOfAMesh have been implemented to

overcome some of the yarn configuration settings;

 and support for the deployment on two clusters: CIMNE’s Acuario (pez001) and

UEDIN’s Eddie (velassco-cluster01).

Figure 2: Model selection window showing the different models used to develop the platform
and the 3rd column list the different tables used with different structures.

2.1 CalculateBoundaryOfAMesh

Quick overview

This analytics has been already explained in detail in D3.2, but in a nutshell, given a
volume mesh, a set of tetrahedrons, this VQuery splits each tetrahedron in four
triangles and removes the repeated ones, i.e. the triangles shared between two
attached tetrahedrons, returning a list of the unique triangles which form the skin of
the boundary mesh.

Following figure shows the usage of the analytics with the telescope example using
YARN is shown in the log included in listing 1 in the Annex 1 of this document.

Problem detected: not running in parallel

In the first implementation the analytics operation GetBoundaryOfAMesh run
flawlessly on a standard java machine, but crashed using Hadoop’s YARN, a tool to
launch and manage jobs on a distributed computing and data cluster. After modifying
the configuration settings for the job containers, yarn can run the
GetBoundaryOfAMesh.

The telescope example used in the use-cases is split in 128 partitions, as shown in
Figure 3. Each partition was ingested in the HBase tables in separate rows and we’ve
configured HBase to store the rows in separated region-servers, i.e. data nodes, as
described in previous deliverables, in order to distribute the processing effort of the
analytics operations across different data nodes.

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 7 of 15

Figure 3: Telescope FEM model used in some use-cases of the evaluation event. The different
colours are the sub-domains, partitions, in which the model is subdivided to run the simulations

and which are ingested in separated rows in the hbase tables.

But, although the 128 rows were detected by the yarn tool (in listing of Annex 1: Map
input records=128), the work could not be split (in listing 1: INFO mapreduce.JobSubmitter:
number of splits:1) and all the work was done in serial, as shown in listing 1:

 Job Counters
 Launched map tasks=1
 Launched reduce tasks=1
 Rack-local map tasks=1

This serialization with YARN results in longer execution times compared to the java
version:

Job management GetBoundaryOfAMesh GetListOfVertices Total

YARN 381 s. 163 s. 620 s.

Java 159 s. 131 s. 311 s.

Table 1: execution times for the jobs that compose the VQuery: GetBoundaryOfAMesh and
GetListOfVertices, and the total time for the VQuery GetBoundaryOfAMesh. This times were

taken on the Acuario cluster (Intel(R) Xeon(R) CPU E5410 @ 2.33GHz).

Table 1 shows the overhead yarn brings with itself, when the jobs are executed in
serial. This may reflect some issues with the yarn configuration or the data ingested in
the HBase tables.

In order to distribute the data and the computing effort of the analytics, two
techniques are available [1, 2, 3]:

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 8 of 15

1. Pre-splitting: as we known the characteristics of our simulation data we can configure

hbase to split the ingested data and send the rows to different region-servers, based

on the row-key.

2. Salting: add some prefix or suffix to the row-key to break the order and sequence of

the row-keys so that they appear more random and each record will be sent to a

different region-server.

We have decided to use the first technique but it seems that it’s not working well.

At the present, we are scrutinizing and analysing the yarn and HBase logs in order to
detect and solve this problem.

Problem detected: too long transit times

During the preparation of the evaluation event use-cases, one of the partners (ATOS)
reported that using the local visualization client with the AccessLibrary plug-in against
the VELaSSCo platform deployed in UEDIN’s Eddie cluster, the VQuery
GetBoundaryOfAMesh took more than 20 minutes until the telescope skin mesh was
shown in the visualization client.

A closer look at the different steps of the VQuery execution showed that despite the
fact that the VQuery takes less than 2 minutes to be executed in the Eddie cluster, the
transit time of the triangles and vertex coordinates to a visualization client at CIMNE,
was 9 minutes. The data size to be sent from Eddie to the visualization client at CIMNE
is 33 Mbytes, resulting in a bandwidth of 64 Kbytes in average. It is worth mentioning
that the connection to Eddie cluster is done through a VPN connection and a SSH
tunnel.

To reduce the size of the returned data to the visualization client, a compression
mechanism will be implemented between the QueryManager and the AccessLibrary.

Some preliminary tests using different compression techniques has been performed
which reduced the size of the returned result of 1/3 of the original size, and up to 1/10
in some cases, in less than a second.

At the present this mechanism is being implemented in the VELaSSCo platform for all
the implemented VQueries, the layered approach of the architecture makes possible
to apply this change without modifying any VQuery, only the QueryManager and the
AccessLibrary.

Another way to reduce the size of the returned data for this specific VQuery, as the
returned results are graphic data (triangles and coordinates), is to use some specialized
graphic compression techniques and formats, like the Real Time Format presented in
D4.1.

3. Revision after the Evaluation Event

As the writing of this document is done in parallel with the deliverables of WP5 in
charge of reporting the user feed-back on the evaluation event, some conclusions can

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 9 of 15

be drawn from the evaluation event but not actions could be performed nor
modifications implemented yet.

As commented in the introduction, as soon as we get the reports including the feed-
back from the users, the new improvements have been implemented; a review of this
deliverable will be released.

One of the first-hand impressions from the users at the Evaluation Event was the slow
performance of some of the VQueries, including the GetBoundaryOfAMesh
transmission problem explained in the previous section. A screenshot of the result
from this VQuery using GiD as visualization client is depicted in Figure 4.

Figure 4: The Telescope FEM model used in some use-cases of the evaluation event.
Showing on the left the Pressure colour map drawn over the boundary mesh of the model.

On the right the evolution of the pressure on one of the vertices.

About the other complex VQuery included in an use-case of the evaluation event, the
Discrete to continuum (D2C) transformation, the users complained about the little
feed-back was provided during the D2C execution, as in other VQueries, and that they
had to do several steps in order to view the result of this analytics: close the current
DEM model, open the D2C_model, calculate the boundary of the new mesh, select a
result to visualize. A screenshot of the result from this VQuery using GiD as
visualization client is depicted in Figure 5.

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 10 of 15

Figure 5. Example of the results obtained by means of the Discrete to Continuum
transformation: Left, discrete data provided by DEM simulation solver. Center: D2C results for a

single time-step. Right: D2C results including temporal averaging.

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 11 of 15

4. References

[1] From “Hints for optimizing LOAD” https://www-
01.ibm.com/support/knowledgecenter/SSPT3X_4.1.0/com.ibm.swg.im.infosphere.bigi
nsights.analyze.doc/doc/bigsql_loadhints.html , last visited on February 2016.

[2] From “Best Practices for Managing HBase in a High Write Environment” by
Woodstock, March 2013, http://www.appfirst.com/blog/best-practices-for-managing-
hbase-in-a-high-write-environment/ , last visited on February 2016.

[3] From “HBaseWD: Avoid RegionServer Hotspotting Despite Sequential Keys” by
Alex Baranau, April 2012 , http://blog.sematext.com/2012/04/09/hbasewd-avoid-
regionserver-hotspotting-despite-writing-records-with-sequential-keys/ , last visited
on February 2016.

https://www-01.ibm.com/support/knowledgecenter/SSPT3X_4.1.0/com.ibm.swg.im.infosphere.biginsights.analyze.doc/doc/bigsql_loadhints.html
https://www-01.ibm.com/support/knowledgecenter/SSPT3X_4.1.0/com.ibm.swg.im.infosphere.biginsights.analyze.doc/doc/bigsql_loadhints.html
https://www-01.ibm.com/support/knowledgecenter/SSPT3X_4.1.0/com.ibm.swg.im.infosphere.biginsights.analyze.doc/doc/bigsql_loadhints.html
http://www.appfirst.com/blog/best-practices-for-managing-hbase-in-a-high-write-environment/
http://www.appfirst.com/blog/best-practices-for-managing-hbase-in-a-high-write-environment/
http://blog.sematext.com/2012/04/09/hbasewd-avoid-regionserver-hotspotting-despite-writing-records-with-sequential-keys/
http://blog.sematext.com/2012/04/09/hbasewd-avoid-regionserver-hotspotting-despite-writing-records-with-sequential-keys/

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 12 of 15

 Annex 1 – Execution log

Execution log of the GetBoundaryOfAMesh operation, including the execution of the
GetBoundaryOfAMesh and GetListOfVertices Yarn jobs is shown in Listing 1.

The following convention has been followed:

 In black: the launch of the yarn job with the parameters which, in order of appearance

corresponds to: HBase_file_configuratino SessionID ModelID

Simulation_Data_TableName MeshID ElementType MeshType

 In orange: the alternative paths to overcome the different hbase table versions

 In red: the current problem: the analytics is not running in parallel

[VELaSSCo-EL] 2016.02.16 16:32:43
[VELaSSCo-EL] 2016.02.16 16:32:43 ----- Query() -----
[VELaSSCo-EL] 2016.02.16 16:32:43
[VELaSSCo-EL] 2016.02.16 16:32:43 Input:
[VELaSSCo-EL] 2016.02.16 16:32:43 sessionID : 2616036699551920637
[VELaSSCo-EL] 2016.02.16 16:32:43 query :
{
 "name" : "GetBoundaryOfAMesh",
 "modelID" : "b832810000000000e030810000000000",
 "meshID" : "Kratos Tetrahedra3D4 Mesh",
 "analysisID" : "",
 "stepValue" : "0"
}

S 2616036699551920637
dlS 2616036699551920637
M -b832810000000000e030810000000000-
Msh-Kratos Tetrahedra3D4 Mesh-
An --
Sv -0-
looking for the Mesh Kratos Tetrahedra3D4 Mesh in order to get it's id
Mesh name Kratos Tetrahedra3D4 Mesh has mesh number = 1 and elementType = Tetrahedra
in AnalyticsModule::getInstance
[VELaSSCo-EL] 2016.02.16 16:32:43 yarn jar ../Analytics/GetBoundaryOfAMesh_pez001.jar
/localfs/home/velassco/common/hbase/conf/hbase-site.xml 2616036699551920637
b832810000000000e030810000000000 Simulations_Data_V4CIMNE 1 Tetrahedra static
Heap size: current = 481.5 MB, max = 889.0 MB, free = 461.2366638183594 MB.

>>> Doing GetBoundary of mesh 1 of model b832810000000000e030810000000000 from table
Simulations_Data_V4CIMNE
 it is a static mesh with Tetrahedra
 Using Hasmap in Mapper ? Yes
 Using HBase configuration: /localfs/home/velassco/common/hbase/conf/hbase-site.xml
16/02/16 16:32:45 INFO zookeeper.RecoverableZooKeeper: Process identifier=hconnection-0x7840df80
connecting to ZooKeeper ensemble=pez001:2181
(…)
pez001/10.0.0.1:2181, initiating session
16/02/16 16:32:46 INFO zookeeper.ClientCnxn: Session establishment complete on server
pez001/10.0.0.1:2181, sessionid = 0x152c67bb4660211, negotiated timeout = 90000
rowkey(56) = b832810000000000e030810000000000000000000000000000000000 not found!
 (using the column qualifier prefix = m000001cn_)
16/02/16 16:32:48 INFO client.HConnectionManager$HConnectionImplementation: Closing zookeeper
sessionid=0x152c67bb4660211
16/02/16 16:32:48 INFO zookeeper.ZooKeeper: Session: 0x152c67bb4660211 closed
16/02/16 16:32:48 INFO zookeeper.ClientCnxn: EventThread shut down
Warning: standard qualifier ("m%06dcn_") not found, using alternative ("m%06d_").
16/02/16 16:32:48 INFO zookeeper.RecoverableZooKeeper: Process identifier=hconnection-0x3a1e5f00
connecting to ZooKeeper ensemble=pez001:2181
(…)

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 13 of 15

16/02/16 16:32:48 INFO zookeeper.ClientCnxn: EventThread shut down
Accessing HBase: Found the specified mesh.
16/02/16 16:32:49 INFO client.RMProxy: Connecting to ResourceManager at pez001/10.0.0.1:18050
16/02/16 16:34:31 INFO zookeeper.ClientCnxn: Session establishment complete on server
pez001/10.0.0.1:2181, sessionid = 0x152c67bb4660213, negotiated timeout = 90000
16/02/16 16:34:31 INFO util.RegionSizeCalculator: Calculating region sizes for table
"Simulations_Data_V4CIMNE".
16/02/16 16:34:31 INFO mapreduce.JobSubmitter: number of splits:1
16/02/16 16:34:31 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1455028933081_0020
16/02/16 16:34:31 INFO impl.YarnClientImpl: Submitted application application_1455028933081_0020
16/02/16 16:34:32 INFO mapreduce.Job: The url to track the job:
http://pez001:18088/proxy/application_1455028933081_0020/
16/02/16 16:34:32 INFO mapreduce.Job: Running job: job_1455028933081_0020
16/02/16 16:34:54 INFO mapreduce.Job: Job job_1455028933081_0020 running in uber mode : false
16/02/16 16:34:54 INFO mapreduce.Job: map 0% reduce 0%
16/02/16 16:38:33 INFO mapreduce.Job: map 67% reduce 0%
16/02/16 16:38:57 INFO mapreduce.Job: map 78% reduce 0%
16/02/16 16:38:59 INFO mapreduce.Job: map 100% reduce 0%
16/02/16 16:39:09 INFO mapreduce.Job: map 100% reduce 100%
16/02/16 16:39:09 INFO mapreduce.Job: Job job_1455028933081_0020 completed successfully
16/02/16 16:39:10 INFO mapreduce.Job: Counters: 59
 File System Counters
 FILE: Number of bytes read=48837498
 FILE: Number of bytes written=73509353
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=199
 HDFS: Number of bytes written=44687088
 HDFS: Number of read operations=5
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=2
 Job Counters
 Launched map tasks=1
 Launched reduce tasks=1
 Rack-local map tasks=1
 Total time spent by all maps in occupied slots (ms)=730296
 Total time spent by all reduces in occupied slots (ms)=22041
 Total time spent by all map tasks (ms)=243432
 Total time spent by all reduce tasks (ms)=7347
 Total vcore-seconds taken by all map tasks=243432
 Total vcore-seconds taken by all reduce tasks=7347
 Total megabyte-seconds taken by all map tasks=747823104
 Total megabyte-seconds taken by all reduce tasks=22569984
 Map-Reduce Framework
 Map input records=128
 Map output records=1933408
 Map output bytes=54135424
 Map output materialized bytes=24418746
 Input split bytes=199
 Combine input records=1933408
 Combine output records=813958
 Reduce input groups=798971
 Reduce shuffle bytes=24418746
 Reduce input records=813958
 Reduce output records=783984
 Spilled Records=2441874
 Shuffled Maps =1
 Failed Shuffles=0
 Merged Map outputs=1
 GC time elapsed (ms)=99945
 CPU time spent (ms)=864570
 Physical memory (bytes) snapshot=3402072064
 Virtual memory (bytes) snapshot=9420881920
 Total committed heap usage (bytes)=2953314304
 HBase Counters
 BYTES_IN_REMOTE_RESULTS=3556711056
 BYTES_IN_RESULTS=3556711056
 MILLIS_BETWEEN_NEXTS=212920
 NOT_SERVING_REGION_EXCEPTION=0

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 14 of 15

 NUM_SCANNER_RESTARTS=0
 REGIONS_SCANNED=1
 REMOTE_RPC_CALLS=131
 REMOTE_RPC_RETRIES=0
 RPC_CALLS=131
 RPC_RETRIES=0
 Shuffle Errors
 BAD_ID=0
 CONNECTION=0
 IO_ERROR=0
 WRONG_LENGTH=0
 WRONG_MAP=0
 WRONG_REDUCE=0
 File Input Format Counters
 Bytes Read=0
 File Output Format Counters
 Bytes Written=44687088
Job time: 256.766 s.
CPU time: 380.961 s.
Output: Number of triangles = 783984
(…)
16/02/16 16:39:12 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your
platform... using builtin-java classes where applicable
doing MapReduce::getListOfVerticesFromMesh
[VELaSSCo-EL] 2016.02.16 16:39:17 yarn jar ../Analytics/GetListOfVerticesFromMesh_pez001.jar
/localfs/home/velassco/common/hbase/conf/hbase-site.xml 2616036699551920637
b832810000000000e030810000000000 Simulations_Data_V4CIMNE 1 static

>>> Doing GetListOfVertices of mesh 1 of model b832810000000000e030810000000000 from table
Simulations_Data_V4CIMNE
 it is a static mesh
 Using HBase configuration: /localfs/home/velassco/common/hbase/conf/hbase-site.xml
(…)
Accessing HBase: Found the specified mesh.
(…)
16/02/16 16:39:22 INFO util.RegionSizeCalculator: Calculating region sizes for table
"Simulations_Data_V4CIMNE".
16/02/16 16:39:23 INFO mapreduce.JobSubmitter: number of splits:1
16/02/16 16:39:23 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1455028933081_0021
16/02/16 16:39:23 INFO impl.YarnClientImpl: Submitted application application_1455028933081_0021
16/02/16 16:39:23 INFO mapreduce.Job: The url to track the job:
http://pez001:18088/proxy/application_1455028933081_0021/
16/02/16 16:39:23 INFO mapreduce.Job: Running job: job_1455028933081_0021
16/02/16 16:39:29 INFO mapreduce.Job: Job job_1455028933081_0021 running in uber mode : false
16/02/16 16:39:29 INFO mapreduce.Job: map 0% reduce 0%
16/02/16 16:40:52 INFO mapreduce.Job: map 67% reduce 0%
16/02/16 16:41:43 INFO mapreduce.Job: map 100% reduce 87%
16/02/16 16:41:45 INFO mapreduce.Job: map 100% reduce 93%
16/02/16 16:41:48 INFO mapreduce.Job: map 100% reduce 99%
16/02/16 16:41:49 INFO mapreduce.Job: map 100% reduce 100%
16/02/16 16:41:49 INFO mapreduce.Job: Job job_1455028933081_0021 completed successfully
16/02/16 16:41:49 INFO mapreduce.Job: Counters: 59
 File System Counters
 FILE: Number of bytes read=341071304
 FILE: Number of bytes written=513192109
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=199
 HDFS: Number of bytes written=272176840
 HDFS: Number of read operations=5
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=2
 Job Counters
 Launched map tasks=1
 Launched reduce tasks=1
 Rack-local map tasks=1
 Total time spent by all maps in occupied slots (ms)=223672
 Total time spent by all reduces in occupied slots (ms)=45482
 Total time spent by all map tasks (ms)=111836

 DELIVERABLE D3.3. Pre- or on-demand transformations in HPC

Page 15 of 15

 Total time spent by all reduce tasks (ms)=22741
 Total vcore-seconds taken by all map tasks=111836
 Total vcore-seconds taken by all reduce tasks=22741
 Total megabyte-seconds taken by all map tasks=229040128
 Total megabyte-seconds taken by all reduce tasks=46573568
 Map-Reduce Framework
 Map input records=128
 Map output records=4487780
 Map output bytes=161560080
(…)
 status: Ok
boundary mesh has 783984 triangles and 391984 vertices.
in GraphicsModule::getInstance
[VELaSSCo-EL] 2016.02.16 16:43:03
[VELaSSCo-EL] 2016.02.16 16:43:03 Output:
[VELaSSCo-EL] 2016.02.16 16:43:03 result : 0
[VELaSSCo-EL] 2016.02.16 16:43:03 boundary_mesh = (34495087 bytes)
[VELaSSCo-EL] 2016.02.16 16:43:03 data :
0000000000000000: 4e 75 6d 62 65 72 4f 66 56 65 72 74 69 63 65 73 NumberOfVertices
0000000000000010: 3a 20 33 39 31 39 38 34 0a 4e 75 6d 62 65 72 4f : 391984.NumberO
0000000000000020: 66 46 61 63 65 73 3a 20 37 38 33 39 38 34 0a 01 fFaces: 783984..
0000000000000030: 00 00 00 00 00 00 00 4e 25 03 40 11 7d c2 40 3a N%.@.}.@:
0000000000000040: 95 0c 00 65 78 9c 40 d9 ee 1e a0 3b ad 97 40 02 ...ex.@....;..@.
0000000000000050: 00 00 00 00 00 00 00 59 6d fe 5f a7 7d c2 40 5b Ym._.}.@[
0000000000000060: 7c 0a 80 c1 8d 9c 40 10 75 1f 80 d4 c4 97 40 03 |.....@.u.....@.
0000000000000070: 00 00 00 00 00 00 00 17 9f 02 60 a6 80 c2 40 b0 `...@.

[VELaSSCo-EL] 2016.02.16 16:43:03 --> result size: 34495091 Bytes.

[VELaSSCo-EL] 2016.02.16 16:43:03 --> scaled size: 32.8971 MBytes to send back.

Listing 1: Log of the GetBoundaryOfAMesh analytics which corresponds to two yarn
jobs: one to calculate the skin triangles, and a second to retrieve the coordinates of
this mesh so that the visualization client can draw it.

