
 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 1 of 22

Visual Analysis for Extremely Large-Scale Scientific Computing

D3.5 – Engine able to perform first-time visualizations and simple queries of the last
results and over the unmodified domain or the transformations performed in D3.2
(EDM) & report

Version 1.1

Deliverable Information

Grant Agreement no 619439

Web Site http://www.velassco.eu/

Related WP & Task: WP3, T3.4

Due date December 31st, 2015

Dissemination Level PU

Nature P

Author/s Jochen Haenisch

Contributors Miguel Pasenau, Ivan Martinez, Abel Coll, Olav Liestøl

http://www.velassco.eu/

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 2 of 22

Approvals

 Name Institution Date

Author Jochen Haenisch Jotne 2016-04-12

Task Leader Miguel Pasenau CIMNE 2016-04-15

WP Leader Miguel Pasenau CIMNE 2016-04-15

Coordinator Abel Coll CIMNE 2016-04-15

Change Log

Version Description of Change

Version 1.0 Completed final draft for delivery to PO

Version 1.1 Corrected broken links as pointed out by the project reviewers

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 3 of 22

Table of Contents

1 Introduction ___ 4

1.1 Scope of the deliverable __ 4

1.2 Related DoW task ___ 4

1.3 Related deliverables ___ 5

1.4 Contents of the document __ 5

2 Latest VELaSSCo system architecture ___________________________________ 6

3 Revision summary __ 7

3.1 Modifications forecasted in D3.4 ___ 7

3.2 Modifications triggered by internal evaluations _____________________________ 9

3.3 Impact of the Eddie HPC cluster ___ 11

3.4 Changes to the storage implementations _________________________________ 11

4 Lessons learnt ___ 16

5 Abbreviations and Definitions __ 17

6 References ___ 22

Table of figures

Figure 1 VELaSSCo prototype, open source architecture, version 2015-06-16 6

Figure 2: VELaSSCo prototype, closed source architecture, version 2015-10-21 6

Figure 3: Process diagram of the VELaSSCo platform. Depending on the launched
version platform, open or closed, the Query Manager Module will communicate
with the Storage Module + HBase or with the Storage Module + EDM. 11

Figure 4: Architecture of the EDM Storage Module ... 13

Figure 5: EDMcluster schema ... 13

 Table of tables

Table 1: Table of acronyms ... 17

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 4 of 22

1 Introduction

1.1 Scope of the deliverable

This is deliverable D3.5 with the following title and description: “Engine able to perform first-
time visualizations and simple queries of the last results and over the unmodified domain or
the transformations performed in D3.2 (EDM) & report: Installation of a database
management system for the WP4 visualization tool to answer simple queries based on the
indexed pre-computed results. This includes prototype software and a report in two
deliverables, three months apart.”.

This report is the second in a sequence of two deliverables. The first deliverable, D3.4,
described the initial version of the first project prototype; it was due and was delivered at
month 21 of the project. The prototype shows how pre-computed results of simple queries
can be requested, retrieved and presented by the VELaSSCo visualization tool. The scope of
D3.4 and of this document is the role and the implementation of VELaSSCo Queries
(VQueries) in the two database management systems in the overall architecture.

This deliverable, D3.5, describes modifications to the first prototype and includes lessons
learnt; it was scheduled for month 24, after the evaluation of the platform by the user panel
in an evaluation event.

D3.5 is slightly delayed because of delays in the development of the prototype and its
deployment for the evaluation event. The latter was mainly caused by the loss of a key
resource and Hadoop expert who could not be replaced in the expected time. Thus, also the
evaluation event had to be postponed to 2016-02-04. D3.5, therefore, summarizes changes
to the VELaSSCo platform that result from internal evaluations and from first-handed
impressions by external users of the platform since D3.4. Several of the results of the
evaluation event can first be included in an update to the version of the platform that will be
used during the project review.

Correspondingly, the project team plans to deliver an update of D3.5 after the review. It will
cover the modifications of the first prototype due to user feedback of the evaluation event
and will be completed at the latest three months after the evaluation event, as originally
planned, that is, before 2016-04-28.

1.2 Related DoW task

This deliverable is the result of Task 3.3, which the Description of Work (DoW) describes as
follows:

“Development of distributed database system that efficiently executes simple users’ queries
(DEM &FEM)

— Subtask 3.3.1: design and implement the opening case: visualization tool connects to the
system, provides information about the capabilities and the system, depending on the

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 5 of 22

capabilities, returns a first view (geometric mesh) of the simulated model so that the user can
move it, and zoom.

— Subtasks 3.3.2: provide first view of the results of the last time-step for doing a colour
representation, vector visualization over the views (mesh) provided in subtasks 3.3.1 .”

1.3 Related deliverables

D3.5 relies on D3.3, the second version of “Pre-computed, or on-demand computed,
transformations stored in HPC: Engine to create multi-resolution models & co. from
simulation data, first version ready for first prototype”. While D3.5 provides a global view of
the Simple queries engine, D3.3 provides an insight view of analytics functionalities and
transformations like GetBoundary Mesh, GetBoundingBox, Discrete2Continuum and
Calculate Multi-resolutions. These are integrated into the first prototype of the VELaSSCo
platform.

1.4 Contents of the document

Based on the guidance by the DoW this document describes the implementation of the
modifications of the first prototype of simple queries, that is, the architecture and the
execution process aspects of the platform and its modules. Relevant issues are discussed
and lessons learnt are reported.

The document covers the following topics in this sequence:

1) the VELaSSCo system architecture applied to this prototype;

2) implementation aspects of the modules of the architecture;

3) lessons learnt for the continuous development of the VELaSSCo platform.

This prototype and document and the results of Task 3.3 in general will serve Task 3.4 to
implement DEM specific queries and Task 3.5 to address not only simple, but also complex
queries in prototypes based on the same or a revised VELaSSCo architecture.

Lessons learnt are input to D1.4 and D1.6, which will update the project technical
requirements and will guide further implementation.

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 6 of 22

2 Latest VELaSSCo system architecture

Figure 1 and Figure 2 depict the current system architectures of the two scenarios used to
produce the revised prototype. They have been updated compared to D3.4. Figure 1 depicts
the architecture based on open source software, Figure 2 the one with Jotne’s DBMS EDM.

Figure 1 VELaSSCo prototype, open source architecture, version 2015-06-16

Figure 2: VELaSSCo prototype, closed source architecture, version 2015-10-21

Deliverable D4.2 [1] relates in detail the modules of this architecture to the workflow
involved in the simple VQueries.

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 7 of 22

3 Revision summary

The intention of this modified first prototype is to incorporate feedback from evaluations of
the initial version of the first prototype. Focus is still not to deliver a wide range of end-user
functionality. Instead, focus has been to develop and run all modules in order to validate the
interaction among the various modules as shown in Figure 1 and Figure 2; that is, query
manager, analytics, graphics and real time storage retrieval. Evaluations included both DEM
and FEM data.

VELaSSCo Queries (VQueries) are the means of traversing the architecture, providing end
user functionality and, thus, connect visualization with data storage. The scope of the simple
queries of the first VELaSSCo prototype is simulation data access and initial analysis queries.
Finally, the queries listed below have been implemented.

In order to have a working prototype so that it can be evaluated before the review meeting
several compromises have been taken and not all the originally planned VQueries, listed in
D3.4 and other deliverables, have been implemented.
The list of Vqueries implemented in the current version of the platform are:

1. Session connection:
a. User Authentication
b. List of models for model selection:

 Get Model Information Summary: name, number of nodes, elements,
steps and results.

2. Model view:
a. Get DEM particles
b. Extract the bounding box of the model
c. Extract skin of Volume meshes, i.e. set of tetrahedrons

3. Results view:
a. Get list of analyses, time steps, and results properties (name, type, …)
b. Given a list of nodes (vertices), get the results values for these nodes

The following analytics Vqueries are implemented and described in deliverables D3.2 and
D3.3:

1. GetBoundingBox,

2. GetBoundaryOfAMesh and

3. DiscreteToContinuum transformation.

3.1 Modifications forecasted in D3.4

D3.4 predicted that the modified release of the first VELaSSCo prototype would address the
following tasks. The list below indicates to which degree this has happened:

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 8 of 22

1) EDM plug-in

a. D3.4: “The data ingestion via Flume will be adapted to load large data sets via

several transactions so that each transaction handles a relatively small

amount of data.”

i. Done; large data sets are split and ingested into different databases.

b. “The second prototype of the EDM plug-in will be a server that implements

the Thrift interface between the VELaSSCo engine layer and the data layer. It

will manage all EDM plug-in slave servers that are running on the HPC nodes.

It will have one master database that holds the information about all EDM

plug-in slave servers in the platform. To execute a user query the master will

start queries on all relevant slave servers in parallel.”

i. Done; see section 3.4.2 .

2) Hive and Phoenix

a. “The use of additional tools will be examined for alternative access solutions.

Two examples are Hive (proposed by INRIA) and Phoenix (proposed by ATOS).

Each of these tools may help to reduce development costs of the platform.

For example, Hive might express a MapReduce job using a SQL query. The

tool uses a table stored in the HDFS system, but can also be linked to an

HBase table. It provides access APIs for integration with the following external

tools:

i. Command Line Interface

ii. JDBC

iii. Python

iv. PHP

v. ODBC driver

vi. Thrift

For the second release, such tool might be linked to the VELaSSCO HBase

table.”

i. Apache Phoenix has not been applied to the modifications of the first

release, but is still up for consideration for the second release. Apache

Phoenix is a relational database layer over HBase delivered as a client-

embedded JDBC driver targeting low latency queries over HBase data.

Apache Phoenix takes your SQL query, compiles it into a series of

HBase scans, and orchestrates the running of those scans to produce

regular JDBC result sets. The table metadata is stored in an HBase

table and versioned, such that snapshot queries over prior versions

will automatically use the correct schema. Direct use of the HBase API,

along with coprocessors and custom filters, results in performance of

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 9 of 22

approximately milliseconds for small queries, or seconds for tens of

millions of rows.

3.2 Modifications triggered by internal evaluations

3.2.1 GetResultsFromVerticesID

Given a list of vertices id’s, this VQuery is used to retrieve result values for them.

Issue

The execution of Vquery GetResultsFromVerticesID showed poor performance especially
when it returned single values, which was needed for the evaluation event use cases that
showed single node results or their evolution over time, Node evolution graph.

Resolution

1) The function code was optimized by including a special path for single values.

2) Measurements showed that hand-over of huge amount values through Thrift is

significantly faster if this happens by binary (BLOB) data.

3) Operating systems and types of compilers with their different options have additional

impact on performance and need to be carefully tested and synchronized.

Issue

GetResultsFromVerticesID showed also poor performance when retrieving and returning
very many values, such as result values for the round 400,000 vertices on a boundary mesh
of the FEM telescope model.

Resolution

1) The list of vertex identifiers is not passed between the QueryManager and the

Visualisation Client as a JSON list of comma separated integers any more, but as a

JSON base64 encoded binary array.

2) The returned data is compressed between the QueryManager and the AccessLibrary

integrated in the Visualization Client; this is further discussed in D3.3.

3) For the second prototype it will be considered to pass all arguments in binary format.

However, as this would require rewriting of Vqueries in AccessLib and in the

QueryManager, this measure will depend on the result of an effort estimation.

Issue

GetResultsFromVerticesID performed badly when applied to the node evolution graph use
cases.

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 10 of 22

Resolution

1) In addition to the above mentioned generic measures of single value retrieval, the

number of steps of the step list for creating the node evolution graph was reduced to

five.

2) A specific path will be added to the query function to get the result values for a single

vertex along several time-steps.

3.2.2 GetMeshDrawData

This VQuery is used in the prototype to retrieve the sphere elements of the DEM model to
be rendered in the visualization client. It will also support other element types (like line and
triangles) in further implementations, for the final version of the VELaSSCo platform.

Issue

The query did not perform fast enough.

Resolution

1) Returned values will be compressed as described in section 3.2.3 to speed up

transmission times.

2) The algorithm that retrieves required data from the set of simulation data may be

improved.

3) Specific support for lines and triangles may be added.

4) An analysis will be performed to detect the other bottleneck locations.

3.2.3 Data transmission

Issue

The transmission of data from the UEDIN HPC cluster to remote visualization clients took
unreasonably much time.

Resolution

1) The data will be compressed using zlib or lzop by the StorageModule on the HPC side

and uncompressed by the QueryManager in the machine with the visualisation

software; this is further discussed in D3.3

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 11 of 22

3.3 Impact of the Eddie HPC cluster

After the delivery of D3.4, at the end of M24 the EDDIE HPC cluster in Edinburgh was put in
commission for the project. The open source solution, which is being developed in CIMNE’s
Acuario cluster, was also deployed in Eddie which brought some modifications of the
VELaSSCo platform and its Query engine. The closed solution stayed on Acuario due to its
MS Windows dependency. The evaluation event was performed using EDDIE.

In spite of good support from UEDIN, the transition caused some delays. The entire
infrastructure needed to be reinstalled, and new routines needed to be established.

Also the closed source solution will move to Eddie, as soon as the EDM database has been
ported to Linux.

3.4 Changes to the storage implementations

Both the open and the closed storage implementations have been updated continuously,
especially to improve query performance.

The architecture described in the previous section, Figure 1 and Figure 2, is illustrated in the
process diagram in Figure 3.

Figure 3: Process diagram of the VELaSSCo platform. Depending on the launched version platform,
open or closed, the Query Manager Module will communicate with the Storage Module + HBase or

with the Storage Module + EDM.

As shown in Figure 3 the VQueries triggered by user interactions with the visualization client
will be sent by the Access Library to the Query Manager Module (QMM) of the Engine Layer.
The Query Manager Module is part of a Thrift server, which acts as the Engine Layer. The
QMM passes, in this first prototype, most of the VQueries to the Storage module of the Data

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 12 of 22

Layer, as most of the VQueries are data access queries.

According to the changes in the architecture, now the Query Manager will communicate
with the Storage Module (Hbase) of the open platform or with the Storage Module (EDM) of
the closed platform, but not with both at the same time. Now the Query Manager needs to
be aware of the type of Storage Module it is connecting to. In the previous version of the
architecture, the Query Manager did not need to be aware of the nature of the Storage
Module.

3.4.1 Open source (HBase)

During the implementation process of the open source architecture, the HBase table
structure has been changed several times after the release of D3.1, and different tables were
used in addition to the official ones. The latest HBase table structure definition used in the
prototype is described in D2.7. Several mechanisms have been implemented in the Query
engine to support the different table definitions and the different table sets used by the
partners of the consortium. These mechanism has been implemented both in the simple
queries and the analytics queries, and are described in D3.3.

3.4.2 Closed source (EDM)

The “EDM database plug-in for the VELaSSCo platform” has, since D3.4, changed name to
“EDM Storage Module for the VELaSSCo platform”. It is designed with a master process that
communicates with the rest of the platform via the Thrift interface now described in
"https://projects-
ext.igd.fraunhofer.de/svn/VELASSCO/trunk/modules/Thrift/VELaSSCo/VELaSSCoSM.Thrift".
The acronym SM in VELaSSCoSM indicates that it is a definition for the Storage Module. The
interface definition is common for the Open and the Closed source version of the Storage
Module.

The Jotne design of the approach for parallel execution in a HPC cluster is now complete,
and the first prototype is running and can execute several Storage Module operations. A
sketch of the design is depicted in Figure 4.

The EDM Storage Module is a process that receives operations from the Query Manager via
the VELaSSCoSM Thrift interface. The incoming operations are there translated to EDM type
queries that are executed in parallel on many EDM application servers. A new remote query,
edmiRemoteExecuteCppMethod was developed. It makes it possible for client programs, in
this case the EDM Storage Module, to execute C++ methods on EDM application servers.
These methods are implemented and deployed in .dll modules.

The parallel processing approach is also newly developed; it is based on the EDMcluster
concept. It allows the EDM Storage Module (ESM) to host information about all EDM
databases and database servers of the VELaSSCo platform in a local database on the
machine(s) where the ESM executes; see Figure 4: Architecture of the EDM Storage Module.

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 13 of 22

Figure 4: Architecture of the EDM Storage Module

The database schema of the EDMcluster is shown in Figure 5, below. The central concept is
the ClusterModel. It represents a VELaSSCo model and is divided into many separate EDM
datasets (data models).

Figure 5: EDMcluster schema

Query

Manager

EDM

Storage

Module

User

machine

Thrift

VELaSSCoSM

edmiRemoteExecuteCppMethod

HPC node

EDMapplicationServer

 ClusterModel

 name
 STRING

 belongs_to

 (INV) models S[1:?]

 ClusterRepository

 name
 STRING

 platform

 (INV) repositories S[1:?]

 EDMcluster

 name
 STRING

 description
 STRING

 servers S[1:?]

 (INV) cluster
 EDMServer

 Name
 STRING

 Description
 STRING

 Host
 STRING

 Port
 STRING

 nAppservers
 INTEGER

 (INV) runs

 server

 EDMdatabase
 path

 STRING

 name
 STRING

 password
 STRING

 (INV) belongs_to

 databases S[1:?]

 (INV) repositories S[1:?]

 belongs_to

 EDMrepository
 name

 STRING
 clusterRepository
 (INV) consists_of

 (INV) models S[1:?]
 repository

 EDMmodel
 name

 STRING
 clusterModel

 (INV) consists_of S[1:?]

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 14 of 22

A Storage Module operation is executed by ESM in a stepwise algorithm. If we, for example,
look at the operation GetListOfVerticesFromMesh, it has the following steps:

1. The input parameter ModelID specifies which ClusterModel shall be queried. It is checked
that it is a legal ClusterModel identifier and that the user has access to it.

2. ESM will, for all the physical EDMmodels that the VELaSSCo/ClusterModel consists of,
create a set of input parameters to the C++ method GetListOfVerticesFromMesh that will be
executed on EDM application servers with access to the data models. ESM uses OpenMP, an
open standard for concurrent programming, to parallelize the execution on the different
EDM application servers. ESM creates one local thread for each EDM application server. If,
for example, the execution of GetListOfVerticesFromMesh can utilize 20 EDM application
servers, ESM will create 20 working threads. Below you can see the loop in
GetListOfVerticesFromMesh where the execution of sub-queries starts in parallel.

 #pragma omp parallel for
 for (int i = 0; i < nOfSubmodels; i++) {
 EDMexecution *e = subQueries->getElementp(i);
 // e contains information about the execution of one subquery
 // create return value object for this subquery, retVal
 nodeRvGetListOfVerticesFromMesh *retVal =
 new(e->ema)nodeRvGetListOfVerticesFromMesh(e->ema, NULL);
 e->returnValues = retVal;
 ExecuteRemoteCppMethod(e, "GetListOfVerticesFromMesh", inParams, &errorFound);
 }

3. As mentioned before, a new function for executing queries/methods on the application
server, edmiRemoteExecuteCppMethod has been developed. It includes a rich set of
methods to transfer input parameters and return values between the client program and the
server side plug-in. To be accepted as an EDM application server plug-in it must obey certain
rules. The two most important ones are that there must exist

1) a method named dll_main that for a specified method name starts the correct
method and

2) a method named dll_alloc that the system executes to get memory for input
parameters.

In addition there must be a dll_free and dll_version method.

Our example, GetListOfVerticesFromMesh, and the other Vqueries are implemented in C++,
the plug-in concept described above and the C++ Express API. The C++ Express API is an API
where the EXPRESS-based objects in the database can be handled by generated methods; it
is an early binding API. The API has also a container concept that is designed to handle huge
amounts of data effectively in a concurrent programming environment.

Below you can see the most central part of the GetListOfVerticesFromMesh method: The
execution starts by finding the specified mesh object in the database. The code below
initially declares a container for the returned vertices. See the comments for explanation of
the rest of the code.

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 15 of 22

Container<EDMVD::Vertex> vertices(dllMa, 0x10000);

Iterator<fem::Node*, fem::entityType> nodeIter(thMesh->getNodes(), theModel);
// Loop through the nodes of the mesh and create one record pr. node
for (fem::Node *n = nodeIter.first(); n; n = nodeIter.next()) {
 EDMVD::Vertex *v = vertices.createNext(); // create a new record in the container
 // and then move the node attributes to the record
 v->id = n->get_id(); v->x = n->get_x(); v->y = n->get_y(); v->z = n->get_z();
}
// then link the vertices container to the return value attribute vertices
retVal->vertices->putContainer(&vertices);
// the vertices container will be automatically transferred back to the client program

4. When all queries on the HPC nodes are finished, ESM will build the result data for return
to the Query Manager via the Thrift channel in single thread mode. In the case of
GetListOfVerticesFromMesh, duplicated vertices are filtered out before storing the data in
the result set. We think it is possible to improve the performance of this step by using
OpenMP, now with the number of threads equal to the number of cores in the machine.

Currently the following Storage Module operations are implemented in the closed source
database:

1. UserLogin
2. GetListOfModelNames
3. UserLogout
4. GetResultFromVerticesID
5. GetCoordinatesAndElementsFromMesh
6. GetElementOfPointsInSpace
7. GetBoundaryOfLocalMesh
8. GetListOfModelNames
9. FindModel
10. GetListOfAnalyses
11. GetListOfTimeSteps
12. GetListOfResultsFromTimeStepAndAnalysis
13. GetListOfVerticesFromMesh
14. GetListOfMeshes

For operations that have one version for FEM data and another one for DEM data, only the
FEM version has been implemented.

Ingestion of FEM and DEM data is still done by C++ programs that read text files and store
the data in the database. With the new edmiRemoteExecuteCppMethod it will be possible to
move the ingestion program to an EDM application server plug-in. This will result in highly
parallel data ingestion methods. An even more interesting option is to offer a
FEM/DEM/AP209 ingestion library where the solvers can send data directly to the
visualization database.

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 16 of 22

4 Lessons learnt

The first prototype has achieved its key functionality. Thus, the VELaSSCo platform is a
success. However, the project has encountered more performance issues than expected.

Applying Big Data tools to scientific simulations data, analytics and graphics requirements is
not as straightforward as initially planned. Setting up the VELaSSCo platform required
constant review of implementation aspects, such as, architecture, data structures and
communication, adaptation and usage of standard big-data frameworks, programming and
deployment. Experts from both fields, Big Data and engineering, needed and will
continuously need to work closely together to harvest the benefits of Big Data technology.
We have learnt a lot from each other already.

The VELaSSCo platform is a complex system that consists of many modules and accordingly
many interfaces. Many of these are not under the control of the partners, but have been
developed by external communities. The first prototype has shown that the hand-over of
data among these modules requires careful design, measurements and testing; example:
binary bulk data vs. complex data structures. This is especially true for a system that will
handle large amounts of data.

Big data requires query functions that are specifically designed for a task; example: special
paths in GetResultsFromVerticesID. Generic algorithms will mostly not be performing fast
enough.

Some modules in the architecture may not be fit for purpose. Replacements will need to be
considered; example: use Spark rather than YARN.

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 17 of 22

5 Abbreviations and Definitions

Table 1: Table of acronyms

Term Definition

2D Two (2) dimensional

3D Three (3) dimensional

AIA Aerospace Industries Association

AIM Application Interpreted Model (ISO 10303)

Analysis Type Type of simulation of the physical phenomena. For instance

"Time analysis" of a process simulation, "Frequency analysis" of

a resonant frequency analysis of a structure, in a casting

simulation there can be two analyses: "Filling process", in which

the amount of air bubbles are to be simulated, and "Cooling

process", in which the residual stresses are simulated. In the

VELaSSCo project we will have usually a single analysis, but

there should be the possibility to handle several analyses.

ISO 10303: (entity Classification_assignment)

AP Application Protocol (ISO 10303)

AP209 ISO 10303-239

API Application Programming Interface

ARM Application Reference Model (ISO 10303)

ASD AeroSpace and Defence Industries Association of Europe

CAD Computer Aided Design

Characteristic Abstraction of a property of an object or of a set of objects (ISO

1087-1 [8])

Class Category or division of things based on one or more criteria for

inclusion and exclusion (ISO 15926-1 [10])

CLI Command Line Interface

Component Is the minimal conceptual entity of the VELaSSCo platform.

Concept A human understanding of an object unit of knowledge created

by a unique combination of characteristics (ISO 1087-1 [8])

Converter Software that imports, transforms, loads, merges and exports

data from one system to another. A converter is a device the

purpose of which is to convert attributes of one device or

system to those of an otherwise incompatible device or system.

Coordinates x, y and z values that represent a point in space. The z

coordinate may not be present in data and should be handled as

z = 0 .

ISO 10303: A Cartesian_point is a type of Point that defines a

point by a list of up to 3 cartesian coordinates (entity

Cartesian_point).

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 18 of 22

Term Definition

COTS Commercial off-the-shelf

Data Representation of information in a formal manner suitable for

communication, interpretation, or processing by human beings

or computers (ISO 10303-1 [6])

Data query Queries performed over the data of the model / simulation data.

These can be Hive-queries, HBase-queries, HDFS-queries or

EDM-queries.

DBMS Database management system

EDIG Engineering Data Interoperability Working Group (AIA)

EDM EXPRESS Data Manager™

EDMS EDMSupervisor™

Element Basic geometric elements that represent a piece of spatial

region to be simulated. In VELaSSCo elements can be points,

circles, spheres or complex-particles or lines, triangles,

quadrilaterals, tetrahedrons, hexahedrons, prisms, pyramids in

their linear or quadratic forms.

ISO 10303: An Element is a basic building block of a

Fea_model. It defines the mathematical relationship between

the finite element nodes. An Element may be either a

Curve_element or a Directionally_explicit_element, or an

Explicit_element, or a Point_element, or a

Substructure_element, or a Surface_element, or a

Volume_element (entity Element).

EPMT Jotne EPM Technology AS

EXPRESS Data modelling language, defined in ISO 10303-11

EXPRESS-X Data manipulation language, defined in ISO 10303-14

Flume Is a distributed data collection tool, which was designed to

aggregate and move large amounts of streamed data.

FS File System

Gauss Points /

Integration points

Points defined in elements using natural coordinates (relatives

to the element). A simulation which uses gauss points will,

usually, use the same gauss points definition for all elements of

the same type. Depending on the element type the definition

changes.

GUI Graphical user interface

Hadoop Is a framework, which allows the distribution of processing and

storage across clusters of computers.

HBase Is distributed big data storage based on the big table proposal.

HDFS Hadoop File System - Is a JAVA-based file system, which

provides a high scalability and reliability for data storage.

ICT Information & Computer Technology

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 19 of 22

Term Definition

Information Knowledge concerning objects, such as facts, events, things,

processes, or ideas, including concepts, that within a certain

context has a particular meaning (ISO/IEC 2382-1 [7])

Information Facts, concepts, or instructions (ISO 10303-1 [6])

ISO International Organization for Standardization

ISO 10303 Industrial automation systems and integration - Product data

representation and exchange

ISO 10303-11 Industrial automation systems and integration - Product data

representation and exchange - Part 11: Description methods:

The EXPRESS language reference manual

ISO 10303-21 Industrial automation systems and integration - Product data

representation and exchange - Part 21: Implementation

methods: Clear text encoding of the exchange structure

ISO 10303-209 Industrial automation systems and integration - Product data

representation and exchange - Part 209: Application protocol:

Multidisciplinary analysis and design

Layer Conceptual decomposition of the platform. In VELaSSCo we have
identified 4 layers: one related to users, one for the computational
engine, one for the storage, one for the simulation.

Mesh A subdivision, discretization, of the simulated domain (region of
space) into basic geometric elements like triangles, tetrahedrons
or spheres. This includes both particles, surface and volume mesh.
Volume meshes may represent both solids and volume data, for
instance, air surrounding a racing car, water flowing through a
pipe, etc.

ISO 10303: arrangement of cells with connectivity between the

cells defined by the possession of common cell faces or cell

edges (entity Mesh).

Model A specific simulation case data set, including geometry,

conditions, materials, mesh and results, i.e. the simulation data.

It also refers to the geometry of the problem to be simulated.

ISO 10303: a container within which related entity instances

exist (SDAI, ISO 10303-22)

Module Is a specific functionality in the proposed architecture of

VELaSSCo. Boxes in the global schema represent it.

Node/Vertex A point in space with an identification number (ID). In

VELaSSCo the term vertex will be used for traditional FEM

nodes. On static meshes, i.e. global meshes that do not change

along the whole simulation analysis, the ID will be unique. On

dynamic meshes, i.e. meshes defined at each time-step of the

analysis, the ID will be unique for the meshes defined at one

particular time-step.

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 20 of 22

Term Definition

ISO 10303: A node is a discretisation point for the field

variables of the finite element analysis model (entity Node).

Object Anything perceivable or conceivable (ISO 1087-1 [8])

Operation Is a part of a module. It is composed by a set of components.

P21 ISO 10303-21,

P28 ISO/DIS 10303-28e2

PDM Product Data Management

POC Proof of Concept

QMM Query Manager Module

Repository ISO STEP: an identifiable data storage facility (SDAI, ISO

10303-22)

REST Representational State Transfer

Result May refer to the outcome of the simulation program including

mesh and results defined over the mesh (simulation data); or to

the results values defined over the vertices of the mesh or over

the integration points, or gauss points, defined on the elements

of the mesh. Results value(s) are one or several double floating

point numbers depending on the result type. For the VELaSSCo

platform we focus on Scalar, Vector, Matrix 2D and Matrix 3D

types.

ISO 10303: the instances of Model_property_distribution that

result from a simulation (entities Simulation_run and

Model_property_distribution).

RPC Remote Procedure Call

R&D Research & development

SDAI Standard Data Access Interface (ISO 10303-22)

Simulation Program that solves equations using a discretization of the

domain and generates results. These results may include

meshes and result values defined over these meshes.

ISO 10303: A Simulation_run is an individual activity that

simulates a Numerical_model (entity Simulation_run).

Simulation data Outcome of the simulation program including mesh and results

defined over the mesh.

ISO 10303: (see Mesh, Result etc.)

Step An analysis can have several steps, for instance "frequency

analysis" may have different steps, which represent different

simulated frequencies. A "Time analysis" will have several time-

steps. In the VELaSSCo project, for simplification purposes, we

will mention time-steps to refer to the steps of an analysis.

ISO 10303: An Fe_analysis_control_step is a single step in a

Fe_analysis. A Fe_analysis_control_step may be either a

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 21 of 22

Term Definition

Modes_and_frequencies_control_step or a Static_control_step.

(entity Fe_analysis_control_step)

STEP Standard for the Exchange of Product Model Data

TO Technical Officer of the European Commission

Validation The process of evaluating software during or at the end of the

development process to determine whether it satisfies specified

requirements. [12] Confirms that the system meets the

requirements defined in the user requirement document

Verification The process of evaluating software to determine whether the

products of a given development phase satisfy the conditions

imposed at the start of that phase [12]. Checks that each

component meets its specific requirement, usually as defined in

the design document

Vquery (VQ) Functionality offered/exposed by the QueryManager for the

AccessLibrary to call depending on the visualization client

demands. For instance, if the user wants to visualize a contour

fill (coloured areas) of a certain result/step/analysis, the

visualization client will generate one or more VQxxx-

GetMeshData and VQxxx-GetResultsForVerticesID. VQxxx

names are temporary.

XML Extensible Mark-up Language

 DELIVERABLE D3.5. Simple Queries Visualizations (2)

Page 22 of 22

6 References
[1] VELaSSCo D3.2 – Pre-computed, or on-demand computed, transformations stored in HPC,

September 2015

[2] VELaSSCo D3.3 – Pre-computed, or on-demand computed, transformations stored in HPC:

Engine to create multi-resolution models & co. from simulation data, first version ready for

first prototype, April 2016

[3] VELaSSCo D3.4 – Engine able to perform first-time visualizations and simple queries of the

last results and over the unmodified domain or the transformations performed in D3.2 (EDM)

& report, 2015-09-30

