
 DELIVERABLE D4.2. First prototype of HP Visualization client

 Page 1 of 11

Visual Analysis for Extremely Large-Scale

Scientific Computing

D4.2 – First Prototype of the High Performance
Visualization / Scalable Visual Analysis Client(s)

Version #1.2
Deliverable Information

Grant Agreement no 619439

Web Site http://www.velassco.eu/

Related WP & Task: WP4, T4.1, T4.2

Due date September 30, 2015

Dissemination Level PU

Nature P

Author/s Andreas Dietrich, Miguel Pasenau

Contributors Frank Michel, Abel Coll

http://www.velassco.eu/

 DELIVERABLE D4.2. First prototype of HP Visualization client

 Page 2 of 11

Approvals

 Name Institution Date OK

Author Andreas Dietrich FRAUNHOFER

Task Leader Andreas Dietrich FRAUNHOFER

WP Leader Frank Michel FRAUNHOFER

Coordinator Abel Coll CIMNE

Change Log

Version Description of Change

Version 0.1 Topics outline

Version 1.0 First version with description of iFX usage

Version 1.1 Review by Abel and Miguel

Version 1.2 Review by Heidi

 DELIVERABLE D4.2. First prototype of HP Visualization client

 Page 3 of 11

Table of Contents

1 Introduction __ 4

2 Overview of the Visualization Workflow ________________________________ 4

3 Using the Prototype __ 5

3.1 Activating iFX and the VELaSSCo plugin ____________________________________ 5

3.2 Login to the VELaSSCo platform __ 7

3.3 Issuing a query ___ 7

3.4 Logging out __ 8

4 Annex (technical/implementation details) _______________________________ 8

4.1 Access Library Module ___ 8

 DELIVERABLE D4.2. First prototype of HP Visualization client

 Page 4 of 11

1 Introduction

A central aspect of the VELaSSCo architecture is the employment of client side
visualization engines that leverage the capabilities of modern GPUs. Visualization
clients are separated from the database infrastructure, and communicate with the
platform to send VELaSSCo Queries (VQueries), receive results, and visualize them
using one or more GPUs.

This document serves as a companion manual for deliverable D4.2, which is part of the
first prototype of the VELaSSCo architecture due in M21. D4.2 includes the
implementation of the visualization client infrastructure, which has been described in
D4.1 – “Specification of the GPU-Driven Representations and Architecture of the GPU-
Based Scientific Visualization Pipeline”.

In the following, we will provide a brief overview of the visualization workflow in the
VELaSSCo platform, followed by a description of the current prototype implementation
of the visualization client and how to operate it in order to perform a simple query.

2 Overview of the Visualization Workflow

The high-level workflow between the visualization client and the VELaSSCo platform is
depicted in Figure 1. Operating the graphical user interface of the visualization engine
can trigger different types of VQueries, i.e., session queries, direct result queries, or
analysis queries. In all cases, the visualization engine calls functions of the platform
access library, which will then send a query command to the engine layer that retrieves
the requested result from the data layer. More detail of how this works can be found
in D2.4, D4.1, D3.4 and D3.2.

Figure 1. Query workflow triggered by the visualization engine.

The visualization engine serves as a rendering and post-processing framework, and is
responsible for generating the final images that are presented to the user. Depending
on the specific use case, this can either involve rendering of data that has been pre-
computed by the VELaSSCo platform (e.g., a triangle mesh representing an iso-

 DELIVERABLE D4.2. First prototype of HP Visualization client

 Page 5 of 11

surface), or post-processing simulation data on the client side (e.g., generating an iso-
surface from a volume dataset). In the VELaSSCo project both GiD (CIMNE) and iFX
(Fraunhofer) are used as visualization client, and the architecture of the platform is
designed to be visualization client independent: a third party client could easily be
integrated using the access library.

3 Using the Prototype

In this chapter, we will outline how the visualization engine is used in a first prototype
implementation of the VELaSSCo platform. Here, we will focus on iFX; the use of GiD is
similar since both make use of the access library, which provides transparent access to
the platform.

We will assume that the VELaSSCo platform is running and available on the server side,
i.e., the Query Manager module, the Storage module, and database management
systems (HBase or EDM) have already been started.

3.1 Activating iFX and the VELaSSCo plugin

After starting up the visualization client (by clicking “Start_VELasSSCo.bat”), the main
RPE viewer appears in iFX (see Figure 2).1 The viewer consists of three main parts:
menu and button bars for operation the application, a rendering area used for the
actual visualization, and a window for displaying status messages.

1
 The Rapid Prototyping Environment (RPE) is the framework iFX builds on. It allows the system designer

to quickly build new applications by providing a modular system of components (such as user interface
elements, scene graph handling, GPU rendering, etc.). It also provides a plugin system for easy
integration of extensions.

 DELIVERABLE D4.2. First prototype of HP Visualization client

 Page 6 of 11

Figure 2. The Rapid Prototyping Environment (RPE) viewer after startup.

The VELaSSCo platform is accessed with the help of a “VELaSSCo plugin”. To show the
user interface of this plugin we have to select “View→VelasscoPlugin→VELaSSCo”
from the drop-down menu (Figure 3). The user interface has two areas, one for
connecting to the platform, and a second one for setting parameters for a query. The
first prototype supports only three VQueries at the moment of writing, namely VQ-
001, “UserLogin”, VQ-006, “UserLogout”, and VQ-100, “GetResultsFromVerticesID”
(see also D3.4).

Figure 3. Opening the user interface of the iFX VELaSSCo plugin.

 DELIVERABLE D4.2. First prototype of HP Visualization client

 Page 7 of 11

The current function uses VQ-100 to retrieve result values of a given type for a list of
vertices from a specific model. In the prototype version, the model (“Model ID”), result
type (“Result ID”), and analysis type (“Analysis ID”) are hardcoded. For now, only
different time steps (“Time step”) influence the query.

3.2 Login to the VELaSSCo platform

To log into the VELaSSCo platform, simply press “Login”. This opens a login dialog
(Figure 4). User and password are preconfigured. For security reasons we currently
need to tunnel all platform communication through an SSH connection, therefore the
URL has to point to a local port (which is forwarded through SSH to the platform
gateway server).

Figure 4. The VELaSSCo platform login dialog.

3.3 Issuing a query

After pressing “Login” (and a successful login operation) the “Show” button becomes
selectable in the VELaSSCo pane. Pressing “Show” will now issue the actual query and
trigger sending a query command to the platform. This should almost immediately
(depending on the quality of the available network connection) result in a display of
particles (Figure 5).

This first query requests the spatial position of a list of particles (in the prototype all
particles of a specific time step) from the database. In iFX these particles are visualized
as spheres. In the viewer, a user can now freely navigate this scene and inspect it. In
order to navigate, use moving the mouse and

 DELIVERABLE D4.2. First prototype of HP Visualization client

 Page 8 of 11

 the left mouse button to rotate the scene,

 the middle mouse button to pan,

 the right mouse button to zoom.

Another configuration of particles for a different time step can be inspected by
changing the “Time step” value and pressing “Show” again.

Figure 5. DEM particles resulting from a "GetResultsFromVerticesID" query.

3.4 Logging out

Logging out of the VELaSSCo platform is straightforward, simply press the “Logout”
button. After that the “Login” button will be available again.

4 Annex (technical/implementation details)

To communicate with the platform, the iFX plugin sits on top of the VELaSSCo Access
Library, which transparently issues queries to the VELaSSCo platform and receive their
results.

4.1 Access Library Module

The access library module is a static library that is linked into the iFX plugin. It acts as a
client for the Apache Thrift remote procedure call interface (see D4.1). From a front-
end the access library is controlled by a “C” application programming interface. This
design choice was taken for flexibility, in order to easily generate bindings for other

 DELIVERABLE D4.2. First prototype of HP Visualization client

 Page 9 of 11

languages (e.g., Python, etc.), for an easier distribution of the library in binary form (a
“C++” interface may require the same compiler version for the front-end as was used
to compile the library). Below the API layer, all implementations were done in C++.

The source of the current version of the API C header is listed below.

 DELIVERABLE D4.2. First prototype of HP Visualization client

 Page 10 of 11

#ifndef VELASSCO_ACCESS_LIB_H

#define VELASSCO_ACCESS_LIB_H

#ifdef __cplusplus

include <cstdint>

include <cstddef>

#else

include <stdint.h>

include <stddef.h>

#endif

#ifndef VAL_API

if defined(_WIN32)

define VAL_API /* __declspec(dllimport) */ // no DLL for now

else

define VAL_API

endif

#endif

/**

 * List of function result codes. Non-zero codes indicate an error.

 */

typedef enum

{

 VAL_SUCCESS = 0,

 /* General */

 VAL_UNKNOWN_ERROR = 0x0001,

 VAL_INVALID_SESSION_ID = 0x0002,

 VAL_INVALID_QUERY_PARAMETERS = 0x0003,

 /* UserLogin */

 VAL_WRONG_URL = 0x0100,

 VAL_USER_NOT_ACCEPTED = 0x0101,

 VAL_SYSTEM_NOT_AVAILABLE = 0x0102,

 /* UserLogout */

 VAL_LOGOUT_UNSUCCESSFUL = 0x0200,

 /* GetResultFromVerticesID */

 VAL_RESULT_ID_NOT_AVAILABLE = 0x0300,

 VAL_SOME_VERTEX_IDS_NOT_AVAILABLE = 0x0301

} VAL_Result;

typedef int64_t VAL_SessionID;

#ifdef __cplusplus

extern "C" {

#endif

/**

 * The user provides credentials to get access to VELaSSCo data. The

 * credentials are verified, and, if approved, a session identifier is

 * returned.

 */

VAL_Result VAL_API valUserLogin(/* in */

 const char* url,

 DELIVERABLE D4.2. First prototype of HP Visualization client

 Page 11 of 11

/**

 * The user provides credentials to get access to VELaSSCo data. The

 * credentials are verified, and, if approved, a session identifier is

 * returned.

 */

VAL_Result VAL_API valUserLogin(/* in */

 const char* url,

 const char* name,

 const char* password,

 /* out */

 VAL_SessionID *sessionID);

/**

 * Logout from the VELaSSCo platform.

 * After successfully logging out, the session identifier is invalid.

 */

VAL_Result VAL_API valUserLogout(/* in */

 VAL_SessionID sessionID);

/**

 * Given a list of vertices IDs from the model, get the result value of a

 * given type of result for each vertex id of the list.

 */

VAL_Result VAL_API valGetResultFromVerticesID(/* in */

 VAL_SessionID sessionID,

 const char* modelID,

 const char* resultID,

 const char* analysisID,

 const int64_t* vertexIDs,

 double timeStep,

 /* out */

 const int64_t* *resultVertexIDs,

 const double* *resultValues,

 size_t *resultNumVertices);

/**

 * Translate a numerical result code into an error message string.

 * The memory for the string does not need to be released by the user.

 */

VAL_Result VAL_API valErrorMessage(/* in */

 VAL_Result error,

 /* out */

 const char* *message);

/**

 * API testing.

 */

VAL_Result VAL_API valStartTestServer(const int server_port);

#ifdef __cplusplus

}

#endif

#endif

