

The research leading to these results has received funding from the European Community's Seventh Framework
Programme managed by REA-Research Executive Agency http://ec.europa.eu/research/rea [FP7/2007-2013] under
grant agreement n° 619439

Visual Analysis for Extremely Large-Scale

Scientific Computing

D4.5 – Verification Tests of the Developed Tools
Version #1.0

Deliverable Information

Grant Agreement no 619439

Web Site http://www.velassco.eu/

Related WP & Task: WP4, T4.1, T4.2, T4.3

Due date November 30, 2015

Dissemination Level PU

Nature R

Author/s Andreas Dietrich, Miguel Pasenau

Contributors Frank Michel, Abel Coll, Heidi Dahl

http://www.velassco.eu/

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 2 of 17

Approvals

 Name Institution Date OK

Author Andreas Dietrich FRAUNHOFER

Task Leader Andreas Dietrich FRAUNHOFER

WP Leader Frank Michel FRAUNHOFER

Coordinator Abel Coll CIMNE

Change Log

Version Description of Change

Version 0.1 First draft of the document

Version 0.2 Minor formal corrections

Version 0.3
Added schemas about Test Client and Test Server scenarios, Query
Manager command line interaction, with output logs, and a visual
test with GiD.

Version 0.4 Minor formal corrections

Version 1.0 Final version

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 3 of 17

Table of Contents

1 Introduction __ 4

2 Query Unit Testing ___ 4

2.1 Test Client ___ 5

2.2 Test Server __ 6

2.3 Query Manager Interpreter ___ 6

2.4 Access Library / API Testing ___ 7

2.5 Query Manager (Platform) Testing ______________________________________ 10

3 Query Timing __ 11

4 Visual Testing __ 12

5 References __ 17

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 4 of 17

1 Introduction

In this document, we provide an overview of the methods, procedures, and utilities,
which are employed to perform verification testing of the systems and tools developed
in WP4.

The testing infrastructure currently consists of three major components – query unit

testing, query timing, and visual testing (M21). We will describe these in more detail in

the following sections.

2 Query Unit Testing

Query unit tests represent the central part of the testing environment. For each im-
plemented query, supplementary code exists that simulates the invocation of a query
by a client. A list of queries and their respective function parameters can be found in
D3.1.

In order to simulate both ends of a query, we have implemented a test client as well as
a test server. While the test client simulates a sequence of queries that would be is-
sued by a user through a suitable client application, the test server simulates the re-
sponses of VELaSSCo platform. The combination of these test units can be used for
different testing scenarios, which will be described in following sections.

Also the Query Manager Module has a small command interpreter to check up on to
the Data Layer’s Storage Module. With this interpreter the status of the Storage Mod-
ule and the underlying DB Engine can be tested, specific queries can be issued by hand
and both the Engine Layer and the Data Layer can be stopped.

Figure 1 shows the different test scenarios used to validate the implementation at dif-
ferent levels, from the Visualization client through the Access Library and the Engine
Layer, down to the Data Layer.

Figure 1: The Test client is used to verify the connection and implementation of the VQueries in

both the Engine and Data Layer.

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 5 of 17

Figure 2: On the left the Test server is used to verify the connection from the visualization client

and the access library and on the right, the Access Library itself and the connection between
client and server can be verified.

2.1 Test Client

The test client executable is currently part of the Access Library module within the
code base of the project. The test client acts as a standalone replacement for iFX or
GiD (or any other visualization engine). Its executable is linked to the access library and
can therefore connect to the VELaSSCo platform, issue queries and receive results. Like
a regular client, the test client does not need to have any information about the inner
workings of the platform as it only interfaces with the access library.

A session tested with the test client typically looks like:
1. Opening Session Queries, e.g.,

a. UserLogin()

b. GetStatusDB()

c. GetListOfModels()

d. OpenModel()

2. One or more Direct Result Queries, e.g.,

a. GetListOfMeshes()

b. GetResultsFromVerticesID()

c. …

3. One or more Result Analysis Queries, e.g.,

a. GetBoundingBox()

b. …

4. Closing Session Queries, e.g.,

a. CloseMode()

b. UserLogout()

On each query, the test client executable checks the query result code and writes the
outcome of the query to a log file. Currently, these logs are checked manually, but it
would be easily possible to automate this with the help of suitable scripts. A more de-
tailed view of the access library is presented in D2.4 and D4.2.

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 6 of 17

2.2 Test Server

The test server executable represents the counterpart of the test client. As it is used to
simulate the behavior of the VELaSSCo platform, it implements the Thrift interface of
the Query Manager module as a back-end. Although the test server implements all
queries, it does not return any usable result data. For example, when issuing a Get-
BoundingBox() query, it returns the minimum/maximum values of a hardcoded bound-
ing box.

2.3 Query Manager Interpreter

Embedded in the Query Manager Server, an interpreter has been implemented to test
the health of the DB engine, type and send some Vqueries and stop the platform.

launch the Query Manager
[VELaSSCo-EL] Connecting to Data Layer at pez001:36366
[VELaSSCo-EL] listening on port36367
List of available commands :
stop: stop the dataLayer application
ping: get Status of DB
query: does a query
exit (or quit): stop the current application (enginelayer)
 ##

[VELaSSCo-EL] Starting VELaSSCo Server...
[VELaSSCo-EL] using port: 36367
[VELaSSCo-EL] before serving ...

getting status of the DB engine
ping
Ping ####
10 servers: 7 live and 3 dead.
 7 live servers: pez007:60020, pez004:60020, pez002:60020, pez005:60020,
pez009:60020, pez006:60020, pez008:60020
 3 dead servers: node001, node002, pez001

/Ping ####
List of available commands :
stop: stop the dataLayer application
ping: get Status of DB
query: does a query
exit (or quit): stop the current application (enginelayer)
 ##

issuing the GetResultFromVerticesID query
ping
Query ####
########## getResultFromVerticesID - 3000 0.039432 0.0165764 0.00161993 0
3001 0.042038 0.0173654 0.00714324 0
(…)
3999 0.0306545 0.047857 0.00930607 0
4000 0.037661 0.0156799 0.00821694 0

/Query ####
List of available commands :
stop: stop the dataLayer application

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 7 of 17

ping: get Status of DB
query: does a query
exit (or quit): stop the current application (enginelayer)
 ##

stopping the platform
stop

stop ####
ERROR: No more data to read.
Figure 3: Output log of the VELaSSCo Query Manager server. In blue the command line interac-

tions.

2.4 Access Library / API Testing

Using the combination of test server and client, the functionality of the access library
and its API can be tested independently from any VELaSSCo platform back-end, i.e.,
without having to connect to a real query manager. This facilitates uncovering bugs
that might be located within the access library itself, such as parameters of wrong
type, incorrect encoding/decoding of query commands/results, etc.

An example output log for the test client and server executables can be shown in Fig-
ure 4 and Figure 5 respectively. It can be seen that every request on the client side
corresponds to a response on the server side. In this example, the client sends a wrong
query command with “CloseMode” as query name instead of “CloseModel”, which
produces an error as result code.

launch test client to connect to test server
Connecting to 'localhost:9990' ...

user login
[VELaSSCo] UserLogin_Result:
[VELaSSCo] result : 0
[VELaSSCo] sessionID : -845483053887632862

get database status
[VELaSSCo] StatusDB_Result:
[VELaSSCo] result : 0
[VELaSSCo] status : Test_Server OK
status = Test_Server OK

query model list
[VELaSSCo] Query_Result:
[VELaSSCo] result : 0
in VELaSSCo_models:
 status = Ok
 model_list = NumberOfModels: 2
Name: DEM_examples/FluidizedBed_small
FullPath:
/localfs/home/velassco/common/simulation_files/DEM_examples/FluidizedBed_small
Name: fine_mesh-ascii_
FullPath: ../../../../../VELASSCO-Data/Telescope_128subdomains_ascii

open model
[VELaSSCo] Query_Result:

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 8 of 17

[VELaSSCo] result : 0
OpenModel:
 status = Ok
 model_modelID = 00112233445566778899aabbccddeeff

get results from vertices
[VELaSSCo] Query_Result:
[VELaSSCo] result : 0
Vertex: 0 ID: 6 Values: [-0.105564 -0.287896 -0.377642]
Vertex: 1 ID: 7 Values: [0.259839 -0.366375 -0.377652]

get bounding box
doing valGetBoundingBox
[VELaSSCo] Query_Result:
[VELaSSCo] result : 0
GetBoundingBox: 00112233445566778899aabbccddeeff (ascii)
 bbox = (-0.5, -0.5, -0.5) - (0.5, 0.5, 0.5).

close model
[VELaSSCo] Query_Result:
[VELaSSCo] result : 4
VELaSSCo ERROR:
 Invalid/unknown query. Error

Figure 4: Output log of the VELaSSCo Access Library test client executable. The test client is-
sues a number of queries to the test server in order to test the API. Note that the close com-

mand caused an error in this test.

launch test server
[VELaSSCo] before StartServer
[VELaSSCo] Starting VELaSSCo Server...
[VELaSSCo] using port: 9990
[VELaSSCo] before serving ...

user login
[VELaSSCo]
[VELaSSCo] ----- UserLogin() -----
[VELaSSCo]
[VELaSSCo] Input:
[VELaSSCo] url : localhost:9990
[VELaSSCo] name : andreas
[VELaSSCo] password : 1234
[VELaSSCo]
[VELaSSCo] Output:
[VELaSSCo] result : 0
[VELaSSCo] sessionID : -845483053887632862

get database status
[VELaSSCo]
[VELaSSCo] ----- GetStatusDB() -----
[VELaSSCo]
[VELaSSCo] Input:
[VELaSSCo] sessionID : -845483053887632862
[VELaSSCo]
[VELaSSCo] Output:
[VELaSSCo] result : 0
[VELaSSCo] status : Test_Server OK

query model list
[VELaSSCo]

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 9 of 17

[VELaSSCo] ----- Query() -----
[VELaSSCo]
[VELaSSCo] Input:
[VELaSSCo] sessionID : -845483053887632862
[VELaSSCo] query :
{
 "name" : "GetListOfModels",
 "groupQualifier" : "",
 "namePattern" : "*"
}
[VELaSSCo]
[VELaSSCo] Output:
[VELaSSCo] result : 0
[VELaSSCo] data :
NumberOfModels: 2
Name: DEM_examples/FluidizedBed_small
FullPath:
/localfs/home/velassco/common/simulation_files/DEM_examples/FluidizedBed_small
Name: fine_mesh-ascii_
FullPath: ../../../../../VELASSCO-Data/Telescope_128subdomains_ascii

open model
[VELaSSCo]
[VELaSSCo] ----- Query() -----
[VELaSSCo]
[VELaSSCo] Input:
[VELaSSCo] sessionID : -845483053887632862
[VELaSSCo] query :
{
 "name" : "OpenModel",
 "uniqueName" :
"T_VELaSSCo_Models:/localfs/home/velassco/common/simulation_files/D2C/Data/Fluidized_
Bed_Small:FluidizedBed",
 "requestedAccess" : ""
}
[VELaSSCo]
[VELaSSCo] Output:
[VELaSSCo] result : 0
[VELaSSCo] data :
00112233445566778899aabbccddeeff

get results from vertices
[VELaSSCo]
[VELaSSCo] ----- Query() -----
[VELaSSCo]
[VELaSSCo] Input:
[VELaSSCo] sessionID : -845483053887632862
[VELaSSCo] query :
{
 "name" : "GetResultFromVerticesID",
 "modelID" : "d94ca29be534ca1ed578e90123b7",
 "resultID" : "MASS",
 "analysisID" : "DEM",
 "vertexIDs" : [1,2,3,4,5,6,7],
 "timeStep" : 10000
}
[VELaSSCo]
[VELaSSCo] Output:
[VELaSSCo] result : 0
[VELaSSCo] data :
0000000000000000: 32 20 33 0a 06 00 00 00 00 00 00 00 07 00 00 00 2 3.............
0000000000000010: 00 00 00 00 b1 8b a2 07 3e 06 bb bf c1 8c 29 58 >.....)X

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 10 of 17

0000000000000020: e3 6c d2 bf 63 25 e6 59 49 2b d8 bf 09 6c ce c1 .l..c%.YI+...l..
0000000000000030: 33 a1 d0 3f a6 9b c4 20 b0 72 d7 bf 2a 37 51 4b 3..?... .r..*7QK
0000000000000040: 73 2b d8 bf s+..

get bounding box
[VELaSSCo]
[VELaSSCo] ----- Query() -----
[VELaSSCo]
[VELaSSCo] Input:
[VELaSSCo] sessionID : -845483053887632862
[VELaSSCo] query :
{
 "name" : "GetBoundingBox",
 "modelID" : "00112233445566778899aabbccddeeff",
 "numVertexIDs" : "0",
 "lstVertexIDs" : [],
 "analysisID" : "",
 "stepOptions" : "ALL",
 "numSteps" : "0",
 "lstSteps" : []
}
[VELaSSCo]
[VELaSSCo] Output:
[VELaSSCo] result : 0
[VELaSSCo] data :
0000000000000000: 00 00 00 00 00 00 e0 bf 00 00 00 00 00 00 e0 bf
0000000000000010: 00 00 00 00 00 00 e0 bf 00 00 00 00 00 00 e0 3f ?
0000000000000020: 00 00 00 00 00 00 e0 3f 00 00 00 00 00 00 e0 3f ?.......?

close model
[VELaSSCo]
[VELaSSCo] ----- Query() -----
[VELaSSCo]
[VELaSSCo] Input:
[VELaSSCo] sessionID : -845483053887632862
[VELaSSCo] query :
{
 "name" : "CloseMode", Error: “CloseMode” instead of “ClosedModel”
 "modelID" : "d94ca29be534ca1ed578e90123b7"
}
[VELaSSCo]
[VELaSSCo] Output:
[VELaSSCo] result : 4
[VELaSSCo] Invalid Query

Figure 5: Output log of the VELaSSCo Access Library server client executable. The test server
answers the query requests from the test client using hardcoded results. Note the error caused

by an invalid query command.

2.5 Query Manager (Platform) Testing

The test client also can be used to test the VELaSSCo back-end. Instead of connecting
to the test server, the test client connects to the platform query manager and issues
the same sequence of commands as shown in Section 2.1. The output log of the query
manager is similar to the one produced by the test server application.

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 11 of 17

3 Query Timing

In order to measure the overall performance of the VELaSSCo system as perceived by
the user, the access library supports tracing of API functions. To enable this feature an
environment variable with name VAL_API_TRACE_FILE has to be defined. The value
of this variable should provide the name of the trace file (See Figure 6).

Figure 6: Defining the location of the access library API trace file using the

VAL_API_TRACE_FILE environment variable.

When VAL_API_TRACE_FILE is defined, the access library will automatically create
the trace file once it gets initialized. Every time an application invokes one of the ac-
cess library functions through its API, the execution time of the function is measured
and written to the trace file. Since the output is formatted as a comma-separated val-
ues (CSV) table, the trace file can be directly loaded into a spreadsheet application. An
example trace resulting from the query sequence used in Figure 4 and Figure 5 is de-
picted in Figure 7.

FunctionName; ExecutionTime[sec]
valUserLogin; 0.0088918
valGetStatusDB; 0.000815947
valGetListOfModels; 0.00163069
valOpenModel; 0.00190418
valGetResultFromVerticesID; 0.00267605
valGetBoundingBox; 0.00245599
valCloseModel; 0.00134874
valErrorMessage; 3.32054e-006

Figure 7: An example access library API trace. Each invocation of an API function is tracked and
its execution time measured.

It has to be noted that the timings represent the complete execution time of an API
function, i.e., they include not only the actual time it takes for a query to be executed
by the storage back-end, but also any time needed to transfer and encode/decode
data.

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 12 of 17

4 Visual Testing

Testing the operational functionality of VELaSSCo requires testing the behaviour of the
VELaSSCo visualization plug-ins that connect the platform to the visualization engines
(see Figure 8).

Figure 8: Query workflow triggered by the visualization engine.

This is usually done by visual inspection, i.e., by operating the visualization engine (see
D4.2), and manually verifying the output of the VELaSSCo plug-in as shown with iFX in
Figure 9.

Figure 9: DEM particles resulting from a "GetResultsFromVerticesID" query shown in iFX.

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 13 of 17

Using the visualization engine will trigger a sequence of queries, which is similar to the
one shown in Section 2.1. Typically, a user logs in, issues a number of visualization que-
ries, and logs out. The correct reaction of the platform in response to the user input
can be verified by checking the log files.

In order to make it easier to perform repeated tests of the iFX/GiD plug-in as the sys-
tem grows, we employ a scripting tool named SikuliX [1]. SikuliX automates operating
graphics user’s interfaces. It can autonomously perform a sequence of actions such as
selecting menu entries, pushing buttons, pulling sliders, etc. One of the advantages of
SikuliX is its capability to recognize UI elements by itself. It is therefore not necessary
to exactly record mouse positions. More importantly, when the user interface is un-
dergoing (moderate) changes, the original scripts still continue to work.

The following steps describes an example of the Visual Testing of the VQuery Get-
BoundingBox with the visualization client GiD.

1. The visualization client GiD has to be downloaded from

http://www.gidhome.com/download/developer-versions

2. Once installed, to retrieve the VELaSSCo plug-in for GiD, go to Data-->Internet re-
trieve

3. and select the "VELaSSCo" problem-type and press the "Retrieve module" button.

http://www.gidhome.com/download/developer-versions

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 14 of 17

(eventually a window will pop up to ask for administrative permissions: they are
needed to install the module into GiD's program folder)

4. Now you'll see a new entry in the Data top menu:

5. If you select this entry, GiD will change to post-process mode and new icon bar will
appear:

(if it appears as a standalone window, you can embed the bar with Utilities--
>Tools-->Toolbars ... window)

6. Remember to start the QueryManager and the Storage module at pez001

7. Press the 'connect' icon to connect to the platform:

(when using the tunnel option, you'll have 5 seconds to enter your password to
create the tunnel. If you don't have time, press 'login' again)

DON'T CLOSE THE CONNECTION WINDOW. Closing the connection window will
automatically do a CloseModel + UserLogout + kill the ssh tunnel

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 15 of 17

 With the 'Status' button you can check if the Data server is alive

8. Now select a model:

 A window with the modelId information will appear:

9. Now you can get the Bounding Box and visualize it:

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 16 of 17

 The message window will show the bounding box:

DELIVERABLE D4.5 Verification Tests of the Developed Tools

 Page 17 of 17

5 References

[1] SikuliX, www.sikulix.com.

