

Visual Analysis for Extremely Large-Scale

Scientific Computing

D5.2. Architecture Evaluation Version #1.0

Deliverable Information

Grant Agreement no 619439

Web Site http://www.velassco.eu/

Related WP & Task:
WP5 - Usability and Effectiveness Evaluation

Task 5.2 – Architecture Evaluation

Due date 30/11/2015

Dissemination Level Public

Nature Report

Author/s Ivan Martinez, Miguel Angel Tinte

Contributors
Alavaro Janda, Giuseppe Filippone, Miguel A. Pasenau de
Riera, Tomas Pariente

http://www.velassco.eu/

 DELIVERABLE D5.2. Architecture Evaluation

 Page 2 of 57

Approvals

 Name Institution Date OK

Author
Miguel Angel
Tinte, Ivan
Martínez

ATOS 30/11/2015

Task Leader Ivan Martínez ATOS 30/11/2015

WP Leader Ivan Martínez ATOS 30/11/2015

Coordinator Abel Coll CIMNE 30/11/2015

Quality Check Heidi E. I. Dahl SINTEF 30/11/2015

 DELIVERABLE D5.2. Architecture Evaluation

 Page 3 of 57

Table of Contents

1 Introduction __ 4

1.1 Purpose of the document __ 4

1.2 Structure of the document __ 4

2 Architecture Evaluation Planning ______________________________________ 6

2.1 GQM life-cycle for End User Functionalities and Architecture Dimensions ________ 6

2.2 Study set-up and methodology __ 7

2.2.1 Acuario Cluster __ 7

2.2.2 Testing Tools ___ 10

2.2.3 Testing Scenarios and Use cases description __________________________________ 12

3 Measurement Plan __ 14

3.1 End User Functionality Extended Table ___________________________________ 14

3.2 Architecture Extended Table ___ 22

4 Data Collection ___ 40

4.1 DEM Use Case: Fluidized Bed (Small) _____________________________________ 40

4.2 FEM Use Case: Telescope (Small) _______________________________________ 47

5 Interpretation of Data Collected _____________________________________ 55

6 Conclusions __ 56

7 References __ 57

 DELIVERABLE D5.2. Architecture Evaluation

 Page 4 of 57

1 Introduction

1.1 Purpose of the document

The main purpose of this document is to report on the validation of the architectural
components of the VELaSSCo framework for simulation purposes and identify the list
of corrective actions in case it is needed. To do so, this document follows the
guidelines proposed on document D5.1 [1] where Goal Question Metric methodology
for evaluation was introduced. The main objective, is applying full GQM cycle over
Architecture and End User Functionalities dimensions in order to assess current
development status as well as detecting new requirements and improvements.
Current evaluation takes three main items as the basis for achieving the process: the
cluster where VELaSCCo platform has been deployed, the tools selected to assess and
measure the platform developed and two main scenarios or use cases to carry out this
evaluation.

The completeness of this report will depend on the status of VELaSCCo modules
development at the moment of evaluation, as well as reliability of VELaSCCo platform
access and services availability. Therefore, architecture evaluation encompasses
several aspects including technical functionality requirements, physical resources
consumption, service integration interoperability, etc. All these aspects have been
materialized in a list of metrics which have been described within a measurement plan.

Besides this, the document will provide a roadmap for future evaluations, clarifying
current assessment process and future processes, which will be reported in future
evaluations.

Finally, it is necessary to mention that evaluation focuses on two scenarios based on
both simulation types present in the project, DEM and FEM simulation, aiming to
provide an overall picture of evaluation status.

1.2 Structure of the document

The document is structured as follows:

Section 1 gives a brief introduction and outlines the major purpose of the document.

Section 2 recaps on the main aspects of the Architecture Evaluation planning
describing in details the current status on GQM cycle for End User Functionalities and
Architecture Dimensions as well as the Study set-up and methodology.

Section 3 is the core section of the document. It provides a detailed description about
the Measurement Plan defined for the dimensions affected for the evaluation process
extending the Measurement Plan defined in D5.1 [1] describing how to read and use
the metrics listed in GQM tables.

 Section 4 reports on Data collected from the execution of the two test scenarios
evaluated.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 5 of 57

Section 5 provides an interpretation of the Data collected in order to validate the
soundness of the architectural components of the VELaSCCo framework for simulation
purposes and take corrective actions in case it is needed.

Section 6 concludes with consolidated findings and reports on the next steps.

Section 7 contains the references.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 6 of 57

2 Architecture Evaluation Planning

Deliverable D5.1 [1] provided an overview of the VELaSCCo Evaluation Methodology
selected for the evaluation of the VELaSCCo framework. This section recaps on the
main aspects of GQM and provides a picture of the main aspects to be taken into
account to apply correctly GQM for the evaluation process.

2.1 GQM life-cycle for End User Functionalities and Architecture Dimensions

On the one hand, the current status of the progress applying the GQM cycle over the
End User functionalities Dimension is the following:

 Identification of GQM goals: Step 1 finished. A set of technical goals related to

business functionalities have been identified considering as goal each one of

the tasks defined in the use cases definition described in Section 2.2.3.

 Development of a GQM plan and Derive Measurement Plan: Steps 2 and 3

finished. An extended Measurement Plan is provided as part of T5.2 in Section

3 including additional information to the GQM Metrics Table described in D5.1

[1] .

 Data collection and Interpret collected data: Steps 4 and 5 to be covered at the

end of the Architecture Evaluation task or T5.2 and reported in the current

document.

Figure 1 shows the GQM steps finished (in green) and pending (in orange) related the
End User Functionalities Dimension.

Figure 1. GQM cycle status over End-User Functionalities Dimension

 DELIVERABLE D5.2. Architecture Evaluation

 Page 7 of 57

On the other hand, the current status of the progress applying the GQM cycle over the
SW Architecture Dimension is the following:

 Identification of GQM goals: Step 1 finished. The standard ISO-9126 was

adopted to measure Architecture dimension considering goals as each one of

the suggested software quality characteristics described in the standard.

 Development of a GQM plan and Derive Measurement Plan: Steps 2 and 3

finished. An extended Measurement Plan is provided in Section 3 including

additional information to the GQM Metrics Table described in D5.1 [1] .

 Data collection and Interpret collected data: Steps 4 and 5 to be covered at the

end of the Architecture Evaluation task or T5.2 and reported in the current

document.

Figure 2 shows the GQM steps finished (in green) and pending (in orange) related the
Architecture Dimension.

Figure 2. GQM cycle status over SW Architecture Dimension

2.2 Study set-up and methodology

2.2.1 Acuario Cluster

In the view of the deployment of the VELaSCCo platform in UEDIN’s EDDIE cluster for
the evaluation event, the current implementation is in the Acuario cluster, located at
the CIMNE premises, in which 10 nodes are allocated for the VELaSCCo project.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 8 of 57

Figure 3. Configuration of the 10 nodes of CIMNE’s Acuario cluster devoted to the VELaSSCo project

Figure 3 shows the configuration of the 10 nodes:

- 8 nodes are used to develop the open-source version (architecture) of the

platform, using the Hadoop framework, and

- 2 nodes (pez003 and pez010) are used to develop the closed version of the

platform, using JOTNE’s EDM engine.

All nodes are connected through a 20Gbps InfiniBand network and their configuration
is:

- CPU: 2 x Intel Quad Core E5410 @ 2.33 GHz (total of 8 cores)

- RAM: pez001: 32GB, the rest: 16 GB

- Network: DDR x4 InfiniBand (20Gb/s) + 1Gbps Ethernet

- Hard disk: 1 x 150 GB + 1 x 1TB

Deliverables D3.4 [6] , D4.2 [5] , D4.1 [7] and D2.4 [7] explain the two architectures in

detail.

The current architectures for the two scenarios used to produce this prototype are
depicted in the following figures (Figure 4 and Figure 5), which may have evolved
slightly compared to earlier deliverables. Figure 4 depicts the architecture based on
open source software, Figure 5 the one with Jotne’s DBMS EDM.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 9 of 57

Figure 4: The VELaSSCo architecture used for the open source version of this prototype

Figure 5: The VELaSSCo architecture used for the closed source version of this prototype

 DELIVERABLE D5.2. Architecture Evaluation

 Page 10 of 57

Deliverable D4.2 [5] relates in detail the modules of this architecture to the workflow
involved in the simple VQueries.

2.2.2 Testing Tools

2.2.2.1 Nagios

Nagios1 is an open source software monitor tool which enables monitoring your entire
IT infrastructure to ensure systems, applications, services, and business processes are
functioning properly. In the event of a failure, Nagios can alert technical staff of the
problem, allowing them to begin remediation processes before outages affect business
processes, end-users, or customers.

In VELaSCCo project, we will use Nagios to monitor cluster resources in order to detect
any failure of servers, network connection, etc. as well to obtain performance metrics
valuable for evaluation purposes.

Figure 6 below display Cluster nodes with default services monitored to check
connectivity issues, resources consumption, etc.:

Figure 6. Nagios monitor tool on CIMNE Cluster (pez001-pez009)

Nagios generates a periodic report as well as automatic alerts regarding status of the
services, which are displayed via web browser: green colour indicates good results for
threshold defined, yellow reflects some warning respect the values expected and red
colour notify about some malfunction affecting the service.

1
 https://www.nagios.org/

 DELIVERABLE D5.2. Architecture Evaluation

 Page 11 of 57

2.2.2.2 TestComplete

TestComplete2 Platform helps you create accurate and repeatable automated tests
across multiple devices, platforms, and environments easily and quickly. It will be used
within VELaSCCo project to reproduce Use Cases steps, in order to measure
performance for each necessary step to complete a VQuery (VELaSCCo Query) and to
ensure the proper working of simulation data access and visualization. To do so,
TestComplete software will record every step perform over VELaSCCo visualization
clients (GiD3 and iFX4)

Figure 7 shows the way TestComplete works and how it can be used simulate GiD and
iFX Uses Cases execution:

Figure 7. Automatizing Use Cases testing with TestComplete.

2.2.2.3 Query Manager and Access Library Logs

These modules have been developed within VELaSCCo project [4] and they are the
intermediary modules between the visualization client and the VELaSCCo platform,
being in charge of the external communication. Another task of these modules is to
analyse queries sent by users and decompose them into sub queries. These sub
queries will interact with the VELaSCCo platform at different levels: analytics, or
storage. Besides this, this module is also in charge of applying multi resolution queries
in order to provide a dataset in an interactive way.

2
 http://smartbear.com/product/testcomplete/overview/

3
 http://www.gidhome.com/

4
 https://www.igd.fraunhofer.de/en/Institut/Abteilungen/IET/Projekte/iFX-Visualization

http://smartbear.com/product/testcomplete/overview/
http://www.gidhome.com/
https://www.igd.fraunhofer.de/en/Institut/Abteilungen/IET/Projekte/iFX-Visualization

 DELIVERABLE D5.2. Architecture Evaluation

 Page 12 of 57

2.2.3 Testing Scenarios and Use cases description

Once mentioned the tools to be used for testing, current subsection aims to describe
the main scenarios and Use Cases to be evaluated and how to apply previous tools to
achieve a fully evaluation description.

We consider as pre-condition for the definition uses cases at task level that the data
have been injected previously. Given this premise, the evaluation tasks defined for
Telescope Use case (FEM) and Fluidized Bed Use case (DEM) are described below:

 FEM Evaluation tasks (T1…10):

o T1: Connect to VELaSCCo

o T2: Open a simulation model (model FEM.M1.)

o T3: Select coarser mesh.

 T3.1: Select coarser mesh for all time steps.

o T4: Rotate model.

o T5: Select original mesh

o T6: Get the evolution of a result on a node over time.

 T6.1: Get the pressure value of node number 5 for all time steps

o T7: Visualize a contour fill of a result.

 T7.1: Visualize the contour fill of pressure in the skin of the volume mesh in

time step 8

o T8: Do a cut in the volume mesh.

 T8.1: Do and visualize a cut in the volume mesh, parallel to AA direction,

and passing through (x, y, z) coordinates.

o T9: Visualize a result onto the cut plane

 T9.1: Visualize the velocity vectors onto the cut plane in time step 7.

o T10: Logout.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 13 of 57

 DEM Evaluation tasks (T1…11):

o T1: Connect to VELaSCCo

o T2: Open a simulation model (model DEM.M1.)

o T3: Visualize a contour fill of a particle result.

 T3.1: Visualize the velocity-Y in the skin of the particles for time step

2939000

o T4: Rotate model.

o T5: Get the evolution of a result on a particle over time.

 T5.1Get the velocity y-component value for:

 Analysis = DEM

 Coordinates = Particles

 Time-steps: ALL

 Result = Velocity-Y

 Node number 2724

o T6: Visualize p2p contacts.

 T6.1: Visualize the p2p contacts mesh for time step 2939000

o T7: Visualize a contour fill of a p2p result.

 T7.1: Visualize the Force-Y in the skin of the p2p contacts for time step

2939000

o T8: Compute d2c of the model

 T8.1: Compute discrete to continuum for:

 Static mesh = d2c_1

 D2C analysis name = d2C_FB2

 Time-step options = ALL

 Coarse-graining method = Gaussian

 Coarse-graining options:

 Width = 0.003

 Cut-off factor = 3

 Process contacts = True

 Do temporal averaging = True

 Temporal averaging options = ALL

o T9: Do a cut plane in the d2c mesh.

 T9.1: Do and visualize a cut in the d2c mesh, parallel to Y direction, and

passing through (0, 0, 0) coordinates.

o T10: Visualize a result of d2c onto the cut plane

 T10.1: Visualize the Velocity-Y onto the cut plane for computed d2c in

time step 0

o T11: Logout.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 14 of 57

3 Measurement Plan

Taking as input the GQM Metrics for End User Functionalities and Architecture
Dimension defined in D5.1 [1] , we provide an extension of GQM Metrics table that we
named as “GQM Metrics Extended Table”.

As a prelude to the specification of the extended tables for the two dimensions
considered we provide a description about how to read and use the metrics that
appear in the GQM Metrics Extended Table. The following information is given for
each metric in the table:

 Metric: Code that represent a concrete metric for each one of the Dimension.

The code is composed by M.XY#N where M means metrics, XY is the

codification of the dimension (EU = End User, AR= Architecture, AL =

Algorithms, NI = Navigation and Interaction and VI = Views) and finally N is the

number of the metric.

 Description: Briefly description of the Metric.

 Purpose of the metric: This is expressed as the question to be answered by the

application of the metric.

 Measurement, formula and data element computations: Provides the

measurement formula and explains the meanings of the used data elements.

 Interpretation of measured value: Provides the range and preferred values.

 Metric scale type: Type of scale used by the metric. Scale types used are;

Nominal scale, Ordinal scale, Interval scale, Ratio scale and Absolute scale.

 Measure type: Types used are; Size type (e.g. Function size, Source size) , Time

type (e.g. Elapsed time, User time) , Count type (e.g. Number of changes,

Number of failures), Credentials (e.g. User/Password, Public/Private key),

Velocity (e.g. Rotation model velocity)

 Tool: Software tool or mechanism to calculate results.

 Technique: method to be applied in order to obtain empirical results for

metrics.

3.1 End User Functionality Extended Table

From the conceptual point of view the metrics included in Table 1, we can group the
metrics into the following groups:

 Injection Metrics: metrics related with injection of simulation data into

VELaSCCo Big Data Platform. The metrics codes listed in Table 1 are: M.EU#1,

M.EU#2, M.EU#3 and M.EU#4.

 Simulation Configuration Metrics: metrics on what characterizes a simulation,

such as the simulation file size, the number of particles, the number of time

 DELIVERABLE D5.2. Architecture Evaluation

 Page 15 of 57

steps or the number of results at particle level. The metrics codes listed in Table

1 are: M.EU#5, M.EU#6, M.EU#7, M.EU#8, M.EU#9 and M.EU#10.

 Security Metrics: related to secured access, log in or log out into the Platform.

The metrics codes grouped in are: M.EU#11, M.EU#12 and M.EU#22.

 Performance Metrics: metrics focus on the query performance of the VELasCCo

queries involved in the first prototype of the Platform and listed in Table 1 with

the following codes: M.EU#13, M.EU#14, M.EU#15, M.EU#16, M.EU#17, M.EU#18,

M.EU#19, M.EU#20 and M.EU#21.

The complete Measurement Plan defined for the End User Dimension is shown inTable
1:

 DELIVERABLE D5.2. Architecture Evaluation

 Page 16 of 57

Metric Description Purpose Formula Interpretation Metric
Scale
Type

Measure
Type

Tool Technique

M.EU#1 Number of
files which the
simulation is
composed by.

Measure the
number of
partitions
associated to
the simulation
data files.

Non-applicable Non-applicable Absolute Count Linux Command: ls | wc –l Scan the input
simulation data dir in
“Acuario Cluster”.

M.EU#2 Number of
Data Events
generated.

Measure the
number of data
events
generated
during the
injection
process
associated to a
concrete
simulation.

Non-applicable Initially in terms of generated
data events we consider: Small
= hundred, Medium size =
thousand and Large = millions.

Absolute Count curl
localhost:agent_monitoring_
port/metrics

Run Data Injector
using data simulation
files.

M.EU#3 Number of
Hbase nodes

Measure the
distributed
degree of
HBase.

Non-applicable Suggested as minimum (for a
production deployment):

 1x HDFS NameNode

 1x JobTracker / Secondary

NameNode

 3x ZK Nodes

 3x DataNode /

RegionServer nodes (And

if you want to run

MapReduce, TaskTracker)

 1x Thrift Server (Only if

accessing HBase from

outside of the network it is

Absolute Count Physical Cluster Execute HBase
Monitoring service.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 17 of 57

running on)

M.EU#4 Injection Time Measure the
data injection
performance.

TDI= CT - TDIS,
where CT = Current
Time and TDIS =
Data Injection Start
Time

Performance Injection Time
considered will be the
following:

 Bad: <1000 w/s in

Hbase

 Acceptable :>1000

w/s and < 10000 w/

sec in Hbase

 Good :> 10000 w/sec

in Hbase

where w/s means writes/sec.

Absolute Time Nohup and curl. Run Data Injector
using data simulation
files with nohup and
search into
nohup.out for the
execution time.

M.EU#5 Simulation
File Size

Measure the
size of the
simulation.

Non-applicable Initially, in terms of simulation
size we consider: Small <1GB,
Medium from 1GB to 20GB and
Large > 20GB).

Absolute Size Linux Command: du -bsh /file
or folder

Scan the input
simulation data dir in
“Acuario Cluster”.

M.EU#6 Number of
particles (p3p)

Measure the
size of the
particles
involved in the
simulation.

Non-applicable Initially in terms of particles we
consider: Small = hundred,
Medium size = thousand and
Large = millions.

Absolute Count Hbase shell command: get
‘Simulations_Data',
“row_key", {FILTER =>
"(ColumnPrefixFilter('c00000
1_')"}

Filter Query to Hbase
table named
“Simulations_Data”

M.EU#7 Number of
contacts (p3c
and p3w)

Measure the
size of the
contacts at
particle level
involved in the
simulation.

Non-applicable Initially in terms of particles we
consider: Small = hundred,
Medium size = thousand and
Large = millions.

Absolute Count Hbase shell command: get
‘Simulations_Data',
“row_key", {FILTER =>
"(ColumnPrefixFilter('c00000
2_')"}

Filter Query to Hbase
table named
“Simulations_Data”

M.EU#8 Number of
computationa
l time steps

Measure the
number of time
steps that
simulation is

Non-applicable Initially in terms of timesteps
we consider: Small <1000,
Medium from 1000 to 15000
and Large > 15000.

Absolute Count Hbase shell command: count
'Test_Simulations_Data',
{FILTER =>
"PrefixFilter('row_key_witho

Filter Query to Hbase
table named
“Simulations_Data”

 DELIVERABLE D5.2. Architecture Evaluation

 Page 18 of 57

composed by. ut_timesteps

M.EU#9 Number of
results at
particle level

Measure the
number of
results at
particle level.

Non-applicable Initially in terms of number of
results we consider: Small <3,
Medium from 3 to 10 and
Large > 10.

Absolute Count Hbase shell command: count
'Test_Simulations_Data',
{FILTER
=>"(ColumnPrefixFilter('c000
001_')"}

Filter Query to Hbase
table named
“Simulations_Data”

M.EU#10 Number of
results at
contact level

Measure the
number of
results at
contact level.

Non-applicable Initially in terms of number of
results we consider: Small <3,
Medium from 3 to 10 and
Large > 10.

Absolute Count Hbase shell command: count
'Test_Simulations_Data',
{FILTER =>
"(ColumnPrefixFilter('c00000
2_')"}

Filter Query to Hbase
table named
“Simulations_Data”

M.EU#11 User
Credentials

To know what
User is
connected to
the Platform.

Non-applicable User and password associated
to a concrete VELaSCCo
Platform User.

Absolute Credentials VELaSSCo Excell Log file. Search for User
Name and Security
Token in Access
Library associated log
file.

M.EU#12 Security
Token

To provide a
secured access
to the Platform
to a concrete
User.

Non-applicable Security Token associated to a
concrete User Session into the
Platform.

Absolute Credentials VELaSSCo Excell Log file. Search for User
Name and Security
Token in Access
Library associated log
file.

M.EU#13 Time of
opening
model query
execution

Measure the
performance of
opening a
model.

TOM = CT - TOMS,
where CT = Current
Time and TOMS =
Opening Model
Start Time

Performance Time Scale
considered will be the
following:

 Bad: >10 sec

 Acceptable :> 5 and <

10 sec

 Good :< 5 sec

Absolute Time Linux Command: grep
“TOM=.* sec” log_file

Search for trace
“TOM = Value sec”
into Query Manager
Log File. Should be
user independent.

M.EU#14 Time of
getting
simplified

Measure the
performance of
getting a

TSM = CT - TSMS,
where TSMS =
Simulation Mesh

Performance Time Scale
considered will be the
following:

Absolute Time Linux Command: grep
“TSM=.* sec” log_file

Search for trace
“TSM = Value sec”
into Query Manager

 DELIVERABLE D5.2. Architecture Evaluation

 Page 19 of 57

mesh query
execution

simplified mesh. Start Time and Ct =
Current Time

 Bad: >30 sec

 Acceptable :> 10 and

< 30 sec

 Good : < 10 sec

Log File. Should be
user independent.

M.EU#15 GiD Model
Rotation
Velocity

Measure the
Model Rotation
Velocity on GiD.

VRM(GiD) = NRA /
RT, where NRA =
Number of Rotated
Angles and RT =
Rotation time in
sec.

Rotation Velocity Scale
considered will be the
following: Bad:--, Acceptable :--
, Good :--

Absolute Velocity Linux Command: grep
“VRM=.* sec”
local_user_log_file

Search for trace
“VRM = Value sec”
into GiD Local Log
File. Should be user
dependent.

M.EU#16 IFX Model
Rotation
Velocity

Measure the
Model Rotation
Velocity on IFX

VRM(IFX) = NRA /
RT, where NRA =
Number of Rotated
Angles and RT =
Rotation time in
sec.

Rotation Velocity Scale
considered will be the
following: Bad:--, Acceptable :--
, Good :--

Absolute Velocity Linux Command: grep
“VRM=.* sec”
local_user_log_file

Search for trace
“VRM = Value sec”
into IFX Local Log
File. Should be user
dependent.

M.EU#17 Time of
getting
original mesh
query
execution

Measure the
performance of
getting the
original mesh.

TORM = CT -
TORMS, where and
CT = Current Time
and TORMS =
Original Mesh Data
Start Time.

Performance Time Scale
considered will be the
following, considering n the
number of elements of the
original mesh:

 Bad: TT > (n / 5.000) sec,

QET > 10s.

 Acceptable : TT between (n

/ 5.000) and (num of

elements / 10.000) sec,

3 s. < QET < 10 s.

 Good : TT < (n / 10.000)

sec, QET < 3 s.

There are 2 timings: QET
(Query Execution Time) + TT

Absolute Time Linux Command: grep
“TORM=.* sec” log_file

Search for trace
“TORM = Value sec”
into Query Manager
Log File. Should be
user independent.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 20 of 57

(Transfer Time): to get the first
one execute the query with a
small mesh (i.e. < 1000
elements), then to get the
second, use a big mesh
(>1,000,000 or bigger).

M.EU#18 Time of
getting result
on a vertex
over time

Measure the
performance of
getting result
on a node over
time.

TRON = CT - TRONS,
where and CT =
Current Time and
TRONS = Result on
a Node Start Time.

Performance Time Scale
considered will be the
following:

 Bad: QET > 10 sec. , TT <

100Kresults/s

 Acceptable: 3s. < QET <

10s. 100Kres/s < TT <

500Kres/s

 Good: QET < 3s. TT >

500Kres/s

AS before there are 2 timings:
QET + TT

In this case TT depends also in
the amount of data to be
transferred (number of time-
steps per vertex?)

Absolute Time Linux Command: grep
“TRON=.* sec” log_file

Search for trace
“TRON = Value sec”
into Query Manager
Log File. Should be
user independent.

M.EU#19 Time of
getting the
contour fill for
a concrete
result

Measure the
performance of
getting the
contour fill for a
result.

TCFR = CT - TCFRS,
where CT = Current
Time and TCFRS =
Contour Fill for a
Result Start Time.

Performance Time Scale
considered will be the
following, considering n the
number of elements (triangles)
onto which the contour fill is
drawn:

 Bad: >n/5.000

 Acceptable : between

n /10.000 and

n/5.000

Absolute Time Linux Command: grep
“TCFR=.* sec” log_file

Search for trace
“TCFR = Value sec”
into Query Manager
Log File. Should be
user independent.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 21 of 57

 Good : < n/10.000

M.EU#20 Time of
getting a cut
in a volume
mesh

Measure the
performance of
getting a cut in
a volume mesh.

TCVM = CT -
TCVMS, where CT =
Current Time and
TCFRS = Cut Volume
Mesh Start Time.

Performance Time Scale
considered will be the
following, considering n the
number of elements in the
volume mesh:

 Bad: >n/5.000

 Acceptable : between

n /10.000 and

n/5.000

 Good : < n/10.000

Absolute Time Linux Command: grep
“TCVM=.* sec” log_file

Search for trace
“TCVM = Value sec”
into Query Manager
Log File. Should be
user independent.

M.EU#21 Time of
getting a cut
in a volume
mesh with
results

Measure the
performance of
getting a cut in
a volume mesh
with results.

TCVMR = CT -
TCVMRS, where CT
= Current Time and
TCVMRS = Cut
Volume Mesh with
Results Start Time.

Performance Time Scale
considered will be the
following:

 Bad: same as

M.EU#14

 Acceptable : same as

M.EU#14

 Good : same as

M.EU#14

Absolute Time Linux Command: grep
“TCVMR=.* sec” log_file

Search for trace
“TCVMR = Value
sec” into Query
Manager Log File.
Should be user
independent.

M.EU#22 User session
logout trace

Validate that
the User is log
out into the
Platform.

Non-applicable Log out trace for a concrete
User Session into the Platform.

Absolute Credentials VELaSCCo Excell Log file. Search for User
Name and Security
Token in Access
Library associated log
file.

Table 1. GQM Metrics Extended Table for EU Dimension

The metrics M.EU#15 and M.EU#16 will not be evaluated because they depend solely on the implementation of visualization clients GiD and
IFX, but not VELaSCCo architecture platform.

 DELIVERABLE D5.2. Architecture Evaluation

Page 22 of 57

3.2 Architecture Extended Table

The GQM process for architecture dimension is based on ISO 9126 [9] . From the
conceptual point of view the metrics included in Table 2, we can group the metrics into
the following groups:

 Reliability Metrics [9] : “related to the behaviors of the system of which the

software is a part during execution testing to indicate the extent of reliability of

the software in that system during operation. Systems and software are not

distinguished from each other in most cases”. The reliability metrics are divided

into:

a. Maturity Metrics [9] : “related to attributes as the software freedom of

failures caused by faults existing in the software itself”. The metrics

codes grouped in are: MAR#3, MAR#4, MAR#5, MAR#6, MAR#7 and

MAR#8.

b. Fault Tolerance Metrics [9] : “related to the software capability of

maintaining a specified performance level in cases of operation faults or

infringement of its specified interface”. The metrics codes grouped in

are: MAR#11.

c. Recoverability Metrics [9] : “to measure such attributes as the software

with system being able to re-establish its adequate level of performance

and recover the data directly affected in the case of a failure”. The

metrics codes grouped in are: MAR#16, MAR#17, MAR#18, MAR#19,

MAR#20 and MAR#21.

 Efficiency Metrics [9] : “to measure such attributes as the time consumption

and resource utilization behavior of computer system including software during

testing or operations”.

a. Time Behavior Metrics [9] : “to measure such attributes as the time

behavior of computer system including software during testing or

operations”. The metrics codes grouped in are: MAR#22, MAR#23,

MAR#24, MAR#25, MAR#26 and MAR#27.

b. Resource Utilization Metrics [9] : “to measure such attributes as the

utilized resources behaviour of computer system including software

during testing or operating”. The metrics codes grouped in are:

MAR#28, MAR#29, MAR#30, MAR#32, MAR#33, MAR#34, MAR#35,

MAR#36, MAR#37 and MAR#38.

 DELIVERABLE D5.2. Architecture Evaluation

Page 23 of 57

 Maintainability Metrics [9] : “to measure such attributes as the behaviour of

the maintainer, user, or system including the software, when the software is

maintained or modified during testing or maintenance”.

a. Analyzability Metrics [9] : “to measure such attributes as the

maintainer’s or user’s effort or spent of resources when trying to

diagnose deficiencies or causes of failures, or for identifying parts to be

modified”. The metrics codes grouped in are: MAR#39, MAR#40,

MAR#41, MAR#42, MAR#43 and MAR#44.

b. Testability Metrics [9] : “to measure such attributes as the maintainer’s

or user’s effort or spent of resources when trying to diagnose

deficiencies or causes of failures, or for identifying parts to be modified”.

The metrics codes grouped in are: MAR#51 and MAR#52.

 Portability Metrics [9] : “to measure such attributes as the behaviour of the

operator or system during the porting activity”.

a. Adaptability Metrics [9] : “to measure such attributes as the behaviour

of the system or the user who is trying to adapt software to different

specified environments”. The metrics codes grouped in are: MAR#53,

MAR#54 and MAR#55.

b. Installability Metrics [9] : “to measure such attributes as the behaviour

of the system or the user who is trying to install the software in a user

specific environment”. The metrics codes grouped in are: MAR#56 and

MAR#57.

c. Co-existence Metrics [9] : “to measure such attributes as the behaviour

of the system or the user who is trying to use the software with other

independent software in a common environment sharing common

resources”. The metrics codes grouped in are: MAR#58.

d. Replaceability Metrics [9] : “to measure such attributes as the behaviour

of the system or the user who is trying to use the software in place of

other specified software in the environment of that software”. The

metrics codes grouped in are: MAR#59, MAR#60 and MAR#61.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 24 of 57

Metric Description Purpose Formula Interpretation Metric
Scale Type

Measure
Type

Tool Technique

M.AR#3 Estimated
latent fault
density

How many problems
still exist that may
emerge as future
faults?

X= {ABS(A1 - A2)} /
B where, A1 = total
number of predicted
latent faults in
Platform, A2 = total
number of actually
detected faults and
B= Platform size

0<=X
It depends on stage of
testing. At the later stages,
smaller is better.

Absolute Count/Size All SW Module Log
files defined in
VELaSCCo Platform.
Architecture
Diagram (B=
Number of SW
Modules)

Count the number of
faults detected during
a defined trial period
and predicts potential
number of future faults
using a reliability
growth estimation
model.

M.AR#4 Failure density
against test
cases

How many failures
were detected during
defined trial period?

X= A1 / A2, where A1
= number of detected
failures, and A2 =
number of performed
test cases.

0<=X
It depends on stage of
testing. At the later stages,
smaller is better.

Absolute Count/Size All SW Module Log
files defined in
VELaSCCo Platform.

Count the number of
detected failures and
performed test cases

M.AR#5 Failure
resolution

How many failure
conditions are
resolved?

X= A1 / A2, where A1
= number of resolved
failures, and A2 =
total number of
actually detected
failures.

0<=X<= 1

The closer to 1.0 is better
as more failures are
resolved.

Absolute Count Bug Tracking tool is
needed.

Count the number of
failures that did not
reoccur during defined
trial period under the
similar conditions.

M.AR#6 Fault density How many faults
were detected during
defined trial period?

X= A / B, where
A = number of
detected faults, and B
= VELaSCCo Platform
Size.

0<=X
It depends on stage of
testing. At the later stages,
smaller is better.

Absolute Count/Size All SW Module Log
files defined in
VELaSCCo Platform.

Count the number of
detected faults and
compute density.

M.AR#7 Fault removal How many faults have
been corrected?

a) X= A1 / A2,
where A1 = number
of corrected faults,

0<=X<= 1. The closer to 1.0
is better as fewer faults
remain.

Absolute Count Bug Tracking tool is
needed.

Count the number of
faults removed during
testing and compare

 DELIVERABLE D5.2. Architecture Evaluation

 Page 25 of 57

and A2 = total
number of actually
detected faults

b) Y= A1 / A3, where
A3 = total number of
predicted latent faults
in the software
release.

0<=Y. The closer to 1.0 is

better as fewer faults

remain

with the total number
of faults detected and
total number of faults
predicted.

M.AR#8 Mean time
between
failures

How frequently does
the software fail in
operation?

a) X = T1 / A

b) Y = T2 / A

T1 = operation time
T2 = sum of time
intervals between
consecutive failure
occurrences
A = total number of
actually detected
failures (Failures
occurred during
observed operation
time)

0<X, Y. The longer is the

better. As longer time can

be expected between

failures.

Ratio Time/Count Nagios, and SW
Module Log files
defined in
VELaSCCo Platform.

Count the number of
failures occurred
during a defined period
of operation and
computes the average
interval between the
failures.

M.AR#11 Breakdown
avoidance

How often the
software causes the
breakdown of the
total deployment
environment?

X= 1- A / B, where A=
Number of
breakdowns, and B=
Number of failures

0<=X<= 1. The closer to 1.0

is the better.

Absolute Count Nagios and SW
Module Log files
defined in
VELaSCCo Platform.

Count the number of
breakdowns
occurrence with
respect to number of
failures.

M.AR#16 Availability How available is the
system for use during
the specified period
of time?

a) X= { To / (To + Tr) }

b) Y= A1 / A2

To = operation time

Tr = time to repair

0<=X<=1. The larger and
closer to 1.0 is better, as
the user can use the
software for more time.

0<=Y<=1. The larger and

Absolute X is Time,
and Y is
Count

Nagios Test system in a
production like
environment for a
specified period of
time performing all
user operations.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 26 of 57

A1= total available
cases of user’s
successful software
use when user
attempt to use

A2= total number of
cases of user’s
attempt to use the
software during
observation time. This
is from the user
callable function
operation view.

closer to 1.0 is the better.
Measure the repair
time period each time
the system was
unavailable during the
trial.

Compute mean time to
repair.

M.AR#17 Mean down
time

What is the average
time the system stays
unavailable when a
failure occurs before
gradual start up?

X= T / N

T= Total down time
N= Number of
observed breakdowns

The worst case or
distribution of down
time should be
measured.

0<X. The smaller is the
better; system will be down
for shorter time.

Ratio Time/Count Nagios Measure the down
time each time the
system is unavailable
during a specified trial
period and compute
the mean time

M.AR#18 Mean recovery
time

What is the average
time the system takes
to complete recovery
from initial partial
recovery?

X= Sum(T) / B

T= Time to recovery
downed software
system at each
opportunity

N= Number of cases
which observed
software system
entered into
recovery.

0<X. The smaller is the
better.

Ratio Time/Count Nagios Measure the full
recovery times for
each of the time the
system was brought
down during the
specified trial period
and computes the
mean time.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 27 of 57

M.AR#19 Restartability How often the system
can restart providing
service to users
within a required
time?

X = A / B

A= Number of
restarts which met to
required time during
testing or user
operation support

B= Total number of
restarts during testing
or user operation
support

0<=X<=1. The larger and
closer to 1.0 is better, as
the user can restart easily.

Absolute Count Nagios Count the number of
times the system
restarts and provides
service to users within
a target required time
and compare it to the
total number of
restarts, when the
system was brought
down during the
specified trial period

M.AR#20 Restorability How capable is the
software in restoring
itself after abnormal
event or at request?

X= A / B

A= Number of
restoration cases
successfully done
B= Number of
restoration cases
tested as per
requirements.

0<=X<=1. The larger and
closer to 1.0 is better, as he
product is more capable to
restore in defined cases.

Absolute Count Nagios Count the number of
successful restorations
and compare it to the
number of tested
restoration required in
the specifications.

M.AR#21 Restore
effectiveness

How effective is the
restoration
capability?

X= A / B

A= Number of cases
successfully restored
meeting the target
restore time
B= Number of cases
performed

0<=X<=1. The larger and
closer to 1.0 is the better,
as the restoration process
in product is more
effective.

Absolute Count Nagios Count the number of
tested restoration
meeting target
restoration time and
compare it to the
number of restorations
required with specified
target time.

M.AR#22 Response Time What is the time
taken to complete
a specified
VQuery?

RT(VQ) = CT - VQST
where CT = Current
Time and VQST=
VQuery Start Time.

RT(VQ) > 0 Absolute Time Linux Command:
grep “VQ.* sec”
log_file

Run a specified
VQuery. Measure the
time it takes to
complete the
operation.
Keep a record of each
attempt in Query

 DELIVERABLE D5.2. Architecture Evaluation

 Page 28 of 57

Manager Log File using
the format “VQXXX =
Value sec”. VQueries
considered are:
VQ002, VQ010,
VQ012, VQ217,
VQ114, VQ100,
VQ214, VQ215,
VQ216.

M.AR#23 Mean Time to
response

What is the average
wait time the user
experiences after
issuing a request until
the request is
completed within a
specified system load
in terms of
concurrent tasks and
system utilization?

X = Tmean / TXmean,

where Tmean = (Ti)
/ N, (for i=1 to N)
TXmean = required
mean response time,
Ti= response time for
i-th evaluation (shot),
and N= number of
evaluations (sampled
shots)

0 <= X. The nearer to 1.0
and less than 1.0 is the
better.

Absolute Time Linux Command:
grep “VQ.* sec”
log_file

Execute a number of
scenarios of
concurrent VQueries.
Measure the time it
takes to complete the
selected VQuery.

Keep a record of each
attempt in Query
Manager Log File using
the format “VQXXX =
Value sec” and
compute the mean
time for each scenario.

M.AR#24 Worst case
response time

In the worst case, can
user still get reply
from the software
within a time short
enough to be
tolerable for user?

X= Tmax / Rmax,
where Tmax= MAX(Ti)
(for i=1 to N), Rmax =
required maximum
response time,
MAX(Ti)= maximum
response time among
evaluations, N=
number of
evaluations (sampled

0 < X. The nearer to 1 and
less than 1 is the better.

Absolute Time Linux Command:
grep “VQ.* sec”
log_file

Emulate a condition
whereby the system
reaches a maximum
load situation. Run
application and keep a
record of each attempt
in Query Manager Log
File using the format
“VQXXX = Value sec”

 DELIVERABLE D5.2. Architecture Evaluation

 Page 29 of 57

shots), and
Ti= response time for
i-th evaluation (shot)

M.AR#25 Throughput How many VQueries
can be successfully
performed over a
given period of time?

X = A / T

A = number of
completed tasks

T = observation time
period

0 < X. The larger is the
better.

Ratio Count/Time Linux Command:
grep “VQ.* sec”
log_file

Start several job
VQueries. Measure the
time it takes for the
measured task to
complete its operation.
Keep a record of each
attempt in Query
Manager Log File using
the format “VQXXX =
Value sec”.

M.AR#26 Mean amount
of Throughput

What is the average
number of concurrent
VQueries the system
can handle over a set
unit of time?

X = Xmean / Rmean

Xmean = (Xi)/N

Rmean = required
mean throughput

Xi = Ai / Ti
Ai = number of
concurrent tasks
observed over set
period of time for i-th
evaluation

Ti = set period of time
for i-th evaluation
N = number of
evaluations

0 < X. The larger is the
better.

Absolute Count Linux Command:
grep “VQ.* sec”
log_file

Execute a number of
concurrent Vqueries.
Measure the time it
takes to complete the
selected VQuery in the
given traffic. Keep a
record of each attempt
in Query Manager Log
File using the format
“VQXXX = Value sec”.

M.AR#27 Worst case
throughput
ratio

What is the absolute
limit on the system in
terms of the number
and handling of
concurrent VQueries
as throughput?

X = Xmax / Rmax

Xmax = MAX(Xi) (for i
= 1 to N)

Rmax = required
maximum

0 < X. The larger is the
better.

Absolute Count Linux Command:
grep “VQ.* sec”
log_file

Emulate the condition
whereby the system
reaches a situation of
maximum load. Run
job VQueries
concurrently and

 DELIVERABLE D5.2. Architecture Evaluation

 Page 30 of 57

throughput.

MAX(Xi) = maximum
number of job tasks
among evaluations

Xi = Ai / Ti
Ai = number of
concurrent tasks
observed over set
period of time for i-th
evaluation

Ti = set period of time
for i-th evaluation
N= number of
evaluations.

monitor result(s).

M.AR#28 I/O devices
utilization

Is the I/O device
utilization too high,
causing
inefficiencies?

X = A / B

A = time of I/O
devices occupied
B = specified time
which is designed to
occupy I/O devices

0 <= X <= 1. The less than
and nearer to the 1.0 is the
better.

Absolute Time Nagios Execute concurrently a
large number of
VQueries, record I/O
device utilization, and
compare with the
design objectives.

M.AR#29 I/O loading
limits

What is the absolute
limit on I/O utilization
in fulfilling a
function?

X = Amax / Rmax

Amax = MAX(Ai), (for
i = 1 to N)

Rmax = required
maximum I/O
messages

MAX(Ai) = Maximum
number of I/O
messages from 1st to
i-th evaluation.

N= number of

0<= X. The smaller is the
better.

Absolute Count Nagios Emulate a condition
whereby the system
reaches a situation of
maximum load. Run
application and
monitor result(s).

 DELIVERABLE D5.2. Architecture Evaluation

 Page 31 of 57

evaluations.

M.AR#30 I/O related
errors

How often does the
user encounter
problems in I/O
device related
operations?

X = A / T

A = number of
warning messages or
system failures

T = User operating
time during user
observation

0 <= X. The smaller is the
better.

Ratio Count/Time Nagios Emulate a condition
whereby the system
reaches a situation of
maximum I/O load.
Run the application
and record number of
errors due to I/O
failure and warnings.

M.AR#32 Maximum
memory
utilization

What is the absolute
limit on memory
required in fulfilling a
function?

X = Amax / Rmax

Amax = MAX(Ai), (for
i = 1 to N)

Rmax = required
maximum memory
related error
messages

MAX(Ai) = Maximum
number of memory
related error
messages from 1st to
i-th evaluation

N= number of
evaluations

0<= X. The smaller is the
better

Absolute Count Nagios Emulate a condition
whereby the system
reaches a situation of
maximum load. Run
application and
monitor result(s)

M.AR#33 Mean
occurrence of
memory error

What is the average
number of memory
related error
messages and failures
over a specified
length of time and a
specified load on the
system?

X = Amean / Rmean

Amean = (Ai)/N

Rmean = required
mean number of
memory related error
messages

Ai = number of

0<= X. The smaller is the
better

Absolute Count Nagios Emulate a condition
whereby the system
reaches a situation of
maximum load. Run
the application and
record number of
errors due to memory
failure and warnings.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 32 of 57

memory related error
messages for i-th
evaluation

N = number of
evaluations

M.AR#34 Ratio of
memory
error/time

How many memory
errors were
experienced over a
set period of time and
specified resource
utilization?

X = A / T

A = number of
warning messages or
system failures

T = User operating
time during user
observation

0<= X. The smaller is the
better

Ratio Count/Time Nagios Emulate a condition
whereby the system
reaches a situation of
maximum load. Run
the application and
record number of
errors due to memory
failure and warnings.

M.AR#35 Maximum
transmission
utilization

What is the absolute
limit of transmissions
required to fulfil a
function?

X = Amax / Rmax

Amax = MAX(Ai), (for
i = 1 to N)

Rmax = required
maximum number of
transmission related
error messages and
failures

MAX(Ai) = Maximum
number of
transmission related
error messages and
failures from 1st to i-
th evaluation.

N= number of
evaluations

0<= X. The smaller is the
better

Absolute Count Nagios Evaluate what is
required for the
system to reach a
situation of maximum
load. Emulate this
condition. Run
application and
monitor result(s).

M.AR#36 Mean
occurrence of
transmission

What is the average
number of
transmission related

X = Amean / Rmean

Amean = (Ai)/N

0<= X. The smaller is the
better

Absolute Count Nagios Emulate a condition
whereby the system
reaches a situation of

 DELIVERABLE D5.2. Architecture Evaluation

 Page 33 of 57

error error messages and
failures over a
specified length of
time and specified
utilization?

Rmean = required
mean number of
transmission related
error messages and
failures

Ai = Number of
transmission related
error messages and
failures for i-th
evaluation

N = number of
evaluations

maximum load. Run
the application and
record number of
errors due to
transmission failure
and warnings.

M.AR#37 Mean of
transmission
error per time

How many
transmissions -related
error messages were
experienced over a
set period of time and
specified resource
utilization?

X = A / T

A = number of
warning messages or
system failures

T = User operating
time during user
observation

0<= X. The smaller is the
better

Ratio Count/Time Nagios Emulate a condition
whereby the system
reaches a situation of
maximum transmission
load. Run the
application and record
number of errors due
to transmission failure
and warnings.

M.AR#38 Transmission
capacity
utilization

Is software system
capable of performing
tasks within expected
transmission
capacity?

X = A / B

A = transmission
capacity

B = specified
transmission capacity
which is designed to
be used by the
software during
execution

0 <= X <= 1. The less than
and nearer to the 1.0 is the
better.

Absolute Size Nagios Execute concurrently
specified tasks with
multiple users, observe
transmission capacity
and compare specified
one.

M.AR#39 Audit trail
capability

Can user identify
specific operation

X= A / B

A= Number of data

0<=X. The closer to 1.0 is
the better.

Absolute Count Nagios and SW
Module Log files

Observe behaviour of
user or maintainer who

 DELIVERABLE D5.2. Architecture Evaluation

 Page 34 of 57

which caused failure?

Can maintainer easily
find specific
operation which
caused failure?

actually recorded
during operation

B= Number of data
planned to be
recorded enough to
monitor status of
software during
operation.

defined in
VELaSCCo Platform.

is trying to resolve
failures.

M.AR#40 Diagnostic
function
support

How capable are the
diagnostic functions
in supporting causal
analysis?

Can user identify the
specific operation
which caused failure?

X= A / B

A= Number of failures
which maintainer can
diagnose (using the
diagnostics function)
to understand the
cause-effect
relationship

B= Total number of
registered failures

0<=X<= 1. The closer to 1.0
is the better.

Absolute Count Nagios and SW
Module Log files
defined in
VELaSCCo Platform.

Observe behaviour of
user or maintainer who
is trying to resolve
failures using
diagnostics functions.

M.AR#41 Failure analysis
capability

Can user identify
specific operation
which caused failure?

Can maintainer easily
find cause of failure?

X=1- A / B

A= Number of failures
of which causes are
still not found

B= Total number of
registered failures

0<=X<= 1. The closer to 1.0
is the better.

Absolute Count Nagios and SW
Module Log files
defined in
VELaSCCo Platform.

Observe behaviour of
user or maintainer who
is trying to resolve
failures.

M.AR#42 Failure analysis
efficiency

Can user efficiently
analyze cause of
failure?

X= Sum(T) / N

T= Tout - Tin

Tout = Time at which
the causes of failure
are found out (or
reported back to
user)

0<=X. The shorter is the
better.

Absolute Time/count Nagios and SW
Module Log files
defined in
VELaSCCo Platform.

Observe behaviour of
user or maintainer who
is trying to resolve
failures.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 35 of 57

Tin = Time at which
the failure report is
received

N= Number of
registered failures

M.AR#43 Status
monitoring
capability

Can user identify
specific operation
which caused failure
by getting monitored
data during
operation?

X= 1- A / B

 A= Number of cases
which maintainer (or
user) failed to get
monitor data

B= Number of cases
which maintainer (or
user) attempted to
get monitor data
recording status of
software during
operation.

0<=X<= 1.The closer to 1.0
is the better.

Absolute Count Nagios and SW
Module Log files
defined in
VELaSCCo Platform.

Observe behaviour of
user or maintainer who
is trying to get
monitored data
recording status of
software during
operation.

M.AR#51 Availability of
built-in test
function

Can user and
maintainer easily
perform operational
testing without
additional test facility
preparation?

X= A / B

A= Number of cases
in which maintainer
can use suitably built-
in test function
B= Number of cases
of test opportunities

0 <= X <=1. The larger and
the closer to 1.0 is the
better.

Absolute Count SVN Unit test code. Observe behaviour of
user or maintainer who
is testing software
system after
maintenance.

M.AR#52 Re-test
efficiency

Can user and
maintainer easily
perform operational
testing and determine
whether the software
is ready for operation
or not?

X= Sum(T) / N

T= Time spent to test
to make sure whether
reported failure was
resolved or not

N= Number of
resolved failures

0<X. The smaller is the
better.

Ratio Time/Count SVN Unit test code,
Nagios and SW
Module Log files
defined in
VELaSCCo Platform.

Observe behaviour of
user or maintainer who
is testing software
system after
maintenance.

 DELIVERABLE D5.2. Architecture Evaluation

 Page 36 of 57

M.AR#53 Adaptability of
data structures

Can user or
maintainer easily
adapt software to
data sets in new
environment?

X = A / B

A = The number of
data which are
operable and but are
not observed due to
incomplete
operations caused by
adaptation limitations

B= The number of
data which are
expected to be
operable in the
environment to which
the software is
adapted

0<=X<=1.The larger and
closer to 1.0 is the better.

Absolute Count Acuario Cluster staff
report, EDIIE Cluster
staff report and
ATOS staff report
installing IFX and
GiD clients.

Observe user’s or
maintainer’s behaviour
when user is trying to
adapt software to
operation
environment.

M.AR#54 Hardware
environmental
adaptability

Can user or
maintainer easily
adapt software to
environment?
Is software system
capable enough to
adapt itself to
operation
environment?

X= 1 - A / B

A= Number of
operational functions
of which tasks were
not completed or not
enough resulted to
meet adequate levels
during combined
operating testing with
environmental
hardware

B= Total number of
functions which were
tested

0<=X<=1.The larger is the
better.

Absolute Count Acuario Cluster staff
report, EDIIE Cluster
staff report and
ATOS staff report
installing IFX and
GiD clients.

Observe user’s or
maintainer’s behaviour
when user is trying to
adapt software to
operation environment

M.AR#55 System
software
environmental
adaptability

Can user or
maintainer easily
adapt software to
environment?

X= 1 - A / B

A= Number of
operational functions

0<=X<=1. The larger is the
better.

Absolute Count Acuario Cluster staff
report, EDIIE Cluster
staff report and
ATOS staff report

Observe user’s or
maintainer’s behaviour
when user is trying to
adapt software to

 DELIVERABLE D5.2. Architecture Evaluation

 Page 37 of 57

Is software system
capable enough to
adapt itself to
operation
environment?

of which tasks were
not completed or
were not enough
resulted to meet
adequate level during
combined operating
testing with operating
system software or
concurrent
application software
B= Total number of
functions which were
tested

installing IFX and
GiD clients.

operation
environment.

M.AR#56 Ease of
installation

Can user or
maintainer easily
install software to
operation
environment?

X = A / B

A = Number of cases
which a user
succeeded to in
changing the install
operation for his/her
convenience

B = Total number of
cases which a user
attempted to change
the install operation
for his/her
convenience

0<=X<=1. The larger is the
better.

Absolute Count Acuario Cluster staff
report, EDIIE Cluster
staff report and
ATOS staff report
installing IFX and
GiD clients.

Observe user’s or
maintainer’s behaviour
when user is trying to
install software to
operation environment

M.AR#57 Ease of setup
retry

Can user or
maintainer easily re-
try set-up installation
of software?

X = 1 - A / B

A = Number of cases
in which user fails in
re-trying set-up
during set-up
operation

B = Total number of

0<=X<=1. The larger is the
better.

Absolute Count Acuario Cluster staff
report, EDIIE Cluster
staff report and
ATOS staff report
installing IFX and
GiD clients.

Observe user’s or
maintainer’s behaviour
when user is trying to
re-try set-up
installation of
software?

 DELIVERABLE D5.2. Architecture Evaluation

 Page 38 of 57

cases in which user
attempt to re-try
setup during set-up
operation.

M.AR#58 Available
coexistence

How often user
encounters any
constraints or
unexpected failures
when operating
concurrently with
other software?

X = A / T

A = Number of any
constraints or
unexpected failures
which user encounter
during operating
concurrently with
other software
T = Time duration of
concurrently
operating other
software

0<=X. The closer to 0 is the
better.

Ratio Count/Time Nagios and SW
Module Log files
defined in
VELaSCCo Platform.

Use evaluated
software concurrently
with other software
which user often uses.

M.AR#59 Continued use
of data

Can user or
maintainer easily
continue to use the
same data after
replacing this
software to previous
one?
Is software system
migration going on
successfully?

X = A / B

 A = number of data
which are used in
other software to be
replaced and are
confirmed that they
are able to be
continuously used

B = number of data
which are used in
other software to be
replaced and planned
to be continuously
reusable

0<= X <=1.The larger is the
better.

Absolute Count Nagios and SW
Module Log files
defined in
VELaSCCo Platform.

Observe user’s or
maintainer’s behaviour
when user is replacing
software to previous
one.

M.AR#60 Function
inclusiveness

Can user or
maintainer easily
continue to use

X = A / B

 A = number of
functions which

0<= X <=1.The larger is the
better.

Absolute Count Nagios and SW
Module Log files
defined in

Observe user’s or
maintainer’s behaviour
when user is replacing

 DELIVERABLE D5.2. Architecture Evaluation

 Page 39 of 57

similar functions after
replacing this
software to previous
one?
Is software system
migration going on
successfully?

produce similar
results as previously
produced and where
changes have not
been required

B = number of tested
functions which are
similar to functions
provided by another
software to be
replaced

VELaSCCo Platform. software to previous
one.

Table 2. GQM Metrics Extended Table for AR Dimension.

The metrics M.AR#5 and M.EU#7 will not be evaluated because they require the use of a Bug Tracking tool to manage the software
development process which is not in the scope of the VELaSCCo project. The Changeability Metrics MAR#45, MAR#46, MAR#47 and MAR#48
and the Stability Metrics MAR#49 and MAR#50 nor will be evaluated because of its dependence with the software development process
management.

 DELIVERABLE D5.2. Architecture Evaluation

Page 40 of 57

4 Data Collection

This chapter focuses on obtaining empirically values associated to architecture metrics
defined above. To do so, several architecture metrics are having been chosen as well
as specific tools and techniques to calculate them.

Architecture metrics aims to measure a wide set of features related to specific use
cases below. At this stage of project development, some of them will be retrieved after
using some tools (logs, TestComplete, Nagios, etc.) and other will be calculated in next
evaluation iterations, which will be indicated with acronym TBC* (To Be Calculated).
This issue will depend on VQueries development for future iterations.

4.1 DEM Use Case: Fluidized Bed (Small)

This simulation is composed of three different files: FluidizedBed_small.p3c,
FluidizedBed_small.p3p and FluidizedBed_small.p3w. Metrics below summarize results
after ingestion of three files in a unique model on HBase and therefore some metrics
can be calculated querying to HBase tables. Besides this, some metrics are related to
Visualization Clients time responses: the clients used to measure so are GiD and iFX.

Table 3 displays data collected for DEM Use Case:

Metric Description Dimension SW Components
Involved

Testing Tool Value

M.EU#1 Number of files
which the
simulation is
composed by.

End User Funct. Non-applicable Non-applicable. 3

M.EU#2 Number of Data
Events
generated.

End User Funct. Data Injector,
Flume Agents

Flume
monitoring
service.

3683

M.EU#3 Number of
Hbase nodes

End User Funct. Hbase Hbase
monitoring
service.

9

M.EU#4 Injection Time End User Funct. Data Injector,
Flume Agents and
Hbase

Data Injector
REST service.

3 sec.

M.EU#5 Simulation File
Size

End User Funct. Non-applicable Non-applicable. 115 Mb

M.EU#6 Number of
particles (p3p)

End User Funct. HBase Non-applicable 11880

M.EU#7 Number of End User Funct. Non-applicable Non-applicable 3500

 DELIVERABLE D5.2. Architecture Evaluation

Page 41 of 57

contacts (p3c
and p3w)

M.EU#8 Number of
computational
time steps

End User Funct. HBase Non-applicable 100

M.EU#9 Number of
results at
particle level

End User Funct. HBase Non-applicable 6

M.EU#10 Number of
results at
contact level

End User Funct. Non-applicable Non-applicable 3

M.EU#11 User Credentials End User Funct. GiD/IFX and
AccessLib

TestComplete,
VELaSCCo Logs

velassco/*****
GiD: 6024 ms
iFX: 9544 ms

M.EU#12 Security Token AccessLib TestComplete,
VELaSCCo Logs

TBC*

M.EU#13 Time of opening
model query
execution

End User Funct. GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

On-going

M.EU#14 Time of getting
simplified mesh
query execution

End User Funct. GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#15 GiD Model
Rotation Velocity

End User Funct. GiD, AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#16 IFX Model
Rotation Velocity

End User Funct. IFX, AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#17 Time of getting
original mesh
query execution

End User Funct.
GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#18 Time of getting
result on a
vertex over time

End User Funct. GiD/IFX,
AccessLib,
QueryManager,
StorageModule,

TestComplete,
VELaSCCo Logs

TBC*

 DELIVERABLE D5.2. Architecture Evaluation

Page 42 of 57

HBase

M.EU#19 Time of getting
the contour fill
for a concrete
result

End User Funct. GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#20 Time of getting a
cut in a volume
mesh

End User Funct. GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#21 Time of getting a
cut in a volume
mesh with
results

End User Funct. GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#22 User session
logout trace

End User Funct. GiD/IFX,
AccessLib

TestComplete,
VELaSCCo Logs

“User velassco
logged out”
GiD: 1023 ms
iFX: 3478 ms

M.AR#3 Estimated latent
fault density

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#4 Failure density
against test
cases

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#6 Fault density
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#8 Mean time
between failures

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#11 Breakdown
avoidance

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

 DELIVERABLE D5.2. Architecture Evaluation

Page 43 of 57

M.AR#16 Availability
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#17 Mean down time
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#18 Mean recovery
time

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#19 Restartability
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#20 Restorability
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#21 Restore
effectiveness

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#22 Response Time
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#23 Mean Time to
response

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#24 Worst case
response time

Architecture GiD/IFX,
AccessLib,

Nagios TBC*

 DELIVERABLE D5.2. Architecture Evaluation

Page 44 of 57

QueryManager,
StorageModule,
HBase, Flume and
Data Injector

M.AR#25 Throughput
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#26 Mean amount of
Throughput

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#27 Worst case
throughput ratio

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#28 I/O devices
utilization

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#29 I/O loading limits
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#30 I/O related
errors

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#32 Maximum
memory
utilization

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#33 Mean
occurrence of
memory error

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,

Nagios TBC*

 DELIVERABLE D5.2. Architecture Evaluation

Page 45 of 57

HBase, Flume and
Data Injector

M.AR#34 Ratio of memory
error/time

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#35 Maximum
transmission
utilization

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#36 Mean
occurrence of
transmission
error

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#37 Mean of
transmission
error per time

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#38 Transmission
capacity
utilization

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#39 Audit trail
capability

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#40 Diagnostic
function support

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#41 Failure analysis
capability

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

 DELIVERABLE D5.2. Architecture Evaluation

Page 46 of 57

M.AR#42 Failure analysis
efficiency

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#43 Status
monitoring
capability

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#51 Availability of
built-in test
function

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#52 Re-test efficiency
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#53 Adaptability of
data structures

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#54 Hardware
environmental
adaptability

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#55 System software
environmental
adaptability

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#56 Ease of
installation

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#57 Ease of setup
retry

Architecture GiD/IFX,
AccessLib,

Nagios TBC*

 DELIVERABLE D5.2. Architecture Evaluation

Page 47 of 57

QueryManager,
StorageModule,
HBase, Flume and
Data Injector

M.AR#58 Available
coexistence

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#59 Continued use of
data

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#60 Function
inclusiveness

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

Table 3. Data collection Table for DEM Use Case

4.2 FEM Use Case: Telescope (Small)

FEM Use case is composed by two types of files: Mesh files (.msh) and Result files
(.res). These two types contain all information needed to calculate metrics in table
below. Another particularity of FEM Use case is that several partitions files are created
in order to avoid handle large simulation files which could affect to performance.

Table 4 displays all values calculated for metrics associated to FEM Use Case:

Metric Description Dimension SW Components
Involved

Testing Tool Value

M.EU#1 Number of files
which the
simulation is
composed by.

End User Funct. Non-applicable Non-applicable. 256

M.EU#2 Number of Data
Events
generated.

End User Funct. Data Injector,
Flume Agents

Flume
monitoring
service.

283718

M.EU#3 Number of
Hbase nodes

End User Funct. Hbase Hbase
monitoring
service.

9

 DELIVERABLE D5.2. Architecture Evaluation

Page 48 of 57

M.EU#4 Injection Time End User Funct. Data Injector,
Flume Agents and
Hbase

Data Injector
REST service.

29:25 min.

M.EU#5 Simulation File
Size

End User Funct. Non-applicable Non-applicable. 8.4Gb

M.EU#6 Number of
particles (p3p)

End User Funct. HBase Non-applicable 23,870,544
tetrahedrons

M.EU#7 Number of
contacts (p3c
and p3w)

End User Funct. Non-applicable Non-applicable Non-applicable
for FEM
simulations.

M.EU#8 Number of
computational
time steps

End User Funct. HBase Non-applicable 19 time-steps

M.EU#9 Number of
results at
particle level

End User Funct. HBase Non-applicable 2 (Pressure and
Velocity
(vector))

M.EU#10 Number of
results at
contact level

End User Funct. Non-applicable Non-applicable Non-applicable
for FEM
simulations.

M.EU#11 User Credentials End User Funct. GiD/IFX and
AccessLib

TestComplete,
VELaSCCo Logs

Velassco/*****
GiD: 7833 ms
iFX: 10514 ms

M.EU#12 Security Token AccessLib TestComplete,
VELaSCCo Logs

TBC*

M.EU#13 Time of opening
model query
execution

End User Funct. GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

On-going

M.EU#14 Time of getting
simplified mesh
query execution

End User Funct. GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#15 GiD Model
Rotation Velocity

End User Funct. GiD, AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#16 IFX Model
Rotation Velocity

End User Funct. IFX, AccessLib,
QueryManager,
StorageModule,

TestComplete,
VELaSCCo Logs

TBC*

 DELIVERABLE D5.2. Architecture Evaluation

Page 49 of 57

HBase

M.EU#17 Time of getting
original mesh
query execution

End User Funct.
GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#18 Time of getting
result on a
vertex over time

End User Funct. GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#19 Time of getting
the contour fill
for a concrete
result

End User Funct. GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#20 Time of getting a
cut in a volume
mesh

End User Funct. GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#21 Time of getting a
cut in a volume
mesh with
results

End User Funct. GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase

TestComplete,
VELaSCCo Logs

TBC*

M.EU#22 User session
logout trace

End User Funct. GiD/IFX,
AccessLib

TestComplete,
VELaSCCo Logs

“User velassco
logged out”
GiD: 1422 ms
iFX: 3524 ms

M.AR#3 Estimated latent
fault density

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#4 Failure density
against test
cases

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#6 Fault density
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#8 Mean time
Architecture GiD/IFX, Nagios TBC*

 DELIVERABLE D5.2. Architecture Evaluation

Page 50 of 57

between failures AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

M.AR#11 Breakdown
avoidance

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#16 Availability
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#17 Mean down time
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#18 Mean recovery
time

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#19 Restartability
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#20 Restorability
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#21 Restore
effectiveness

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#22 Response Time
Architecture GiD/IFX,

AccessLib,
QueryManager,

Nagios TBC*

 DELIVERABLE D5.2. Architecture Evaluation

Page 51 of 57

StorageModule,
HBase, Flume and
Data Injector

M.AR#23 Mean Time to
response

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#24 Worst case
response time

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#25 Throughput
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#26 Mean amount of
Throughput

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#27 Worst case
throughput ratio

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#28 I/O devices
utilization

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#29 I/O loading limits
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#30 I/O related
errors

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and

Nagios TBC*

 DELIVERABLE D5.2. Architecture Evaluation

Page 52 of 57

Data Injector

M.AR#32 Maximum
memory
utilization

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#33 Mean
occurrence of
memory error

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#34 Ratio of memory
error/time

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#35 Maximum
transmission
utilization

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#36 Mean
occurrence of
transmission
error

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#37 Mean of
transmission
error per time

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#38 Transmission
capacity
utilization

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#39 Audit trail
capability

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

 DELIVERABLE D5.2. Architecture Evaluation

Page 53 of 57

M.AR#40 Diagnostic
function support

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#41 Failure analysis
capability

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#42 Failure analysis
efficiency

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#43 Status
monitoring
capability

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#51 Availability of
built-in test
function

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#52 Re-test efficiency
Architecture GiD/IFX,

AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#53 Adaptability of
data structures

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#54 Hardware
environmental
adaptability

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#55 System software
environmental

Architecture GiD/IFX,
AccessLib,

Nagios TBC*

 DELIVERABLE D5.2. Architecture Evaluation

Page 54 of 57

adaptability QueryManager,
StorageModule,
HBase, Flume and
Data Injector

M.AR#56 Ease of
installation

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#57 Ease of setup
retry

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#58 Available
coexistence

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#59 Continued use of
data

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

M.AR#60 Function
inclusiveness

Architecture GiD/IFX,
AccessLib,
QueryManager,
StorageModule,
HBase, Flume and
Data Injector

Nagios TBC*

Table 4. Data collection Table for FEM Use Case.

 DELIVERABLE D5.2. Architecture Evaluation

Page 55 of 57

5 Interpretation of Data Collected

Data collected on chapter before provides information about basic functionalities
aspects of VELaSCCo platform developed so far. At this stage of the project, the more
advanced modules developed are those related with database storage in a proper data
model, simulation data ingestion and client visualization tools. The main challenge so
far has been the proper interaction among these services to allow complete workflow
execution successfully.

In this context, metrics presented above display satisfactory results in terms of
functionalities achieved, because both Use Cases have been finally assessed and
platform environment has been able to manage them successfully. To fulfil this
objective, Use Cases have been implemented by using small simulations examples, in
order to prioritize functionalities and modules compatibility over performance metrics.
According to this, it is observed how metrics calculated are those related with services
main requirements (M.EU#1-M.EU#8) whereas hardware-related metrics (M.AR#N)
have been postponed to next evaluation iterations. Some of the most interesting
metrics are those related to data ingestion and access: for instance, M.EU#2 and
M.EU#4 indicates the number of events generated during data ingestion process and
the time taken on finishing such ingestion process respectively. Both metrics measure
empirically the performance of data ingestion which can provide an idea about size
limit for VELaSCCo platform supported simulations. Hence, scalability for future
iterations in terms of simulations size is directly related to these metrics.

Besides this, it is important to remark than VQueries are under development phase, so
currently not all of them have been available to be exhaustively evaluated. This is the
reason why main metrics related to Client visualization (GiD/iFX) are M#EU.11 and
M#EU.22, related to user login and logout process. According to this, once that module
interoperability is assured and visualization client can load simulation models properly,
next evaluation should be able to measure Open Model times as well as execute
several VQueries over the models, like GetListOfAnalyses, GetListOfTimeSteps,
GetListOfMeshes, GetListOfMeshes, GetListOfAnalysis, GetListOfTimeSteps and
GetListOfResults.

 DELIVERABLE D5.2. Architecture Evaluation

Page 56 of 57

6 Conclusions

Initially the deliverable reports on the current status of the application of GQM
methodology to End User Functionalities and Architecture Dimensions. In addition to
that an overview of the study set-up is provided including a detailed description of
Acuario Cluster, Testing tools and Use case scenarios decomposed in tasks.

Subsequently the Measurement Plan associated to the two dimensions considered is
defined extending to the GQM Metrics table reported in D5.1 [1] . As a prelude to the
specification of the extended tables we provide a description about how to read and
use the metrics that appear in the GQM Metrics Extended Table, providing information
such as description, purpose, formula, interpretation of measured value, metric scale
type, measure type, tool and technique for each metric of the table.

From the conceptual point of view the metrics related to End User Functionalities
Dimension have been grouped into the following groups: Injection Metrics, Simulation
Configuration Metrics, Security Metrics and Performance Metrics. Respect to
Architecture Dimension the metrics defined have been grouped into the following
groups: Reliability Metrics (Maturity Metrics, Fault Tolerance Metrics, Recoverability
Metrics), Efficiency Metrics (Time Behavior Metrics, Resource Utilization Metrics),
Maintainability Metrics (Analyzability Metrics, Testability Metrics), and Portability
Metrics (Adaptability Metrics, Installability Metrics, Co-existence Metrics,
Replaceability Metrics).

Once Measurement Plan was defined the Data collection phase started. TestComplete,
Nagios and VELaSCCo System Logs were the mechanisms for data collection in order to
cover the different metrics proposed collecting and validating the data.

Due to the limited availability of features developed in visualization clients GiD and IFX
at 30/11/2015 only a minimum subset of the total metrics has been calculated. Most
VQueries needed to evaluate all assessment steps described in section 2.2.3 were not
available.

Analysing the data to assess conformance to the goals we can say that only a minimal
set of objectives has been achieved. In concrete only the goals related to Data injection
and the goals related to Connect and Disconnect from the Platform.

 DELIVERABLE D5.2. Architecture Evaluation

Page 57 of 57

7 References

[1] VELaSCCo D.5.1. Evaluation Methodology.

[2] VELaSCCo D1.1. End‐users requirements and Users panel.

[3] VELaSCCo D1.5. Definition of criteria and methodology for system evaluation

[4] VELaSCCo D3.1. Query framework implementation in the project database system

& report.

[5] VELaSCCo D4.2. VELaSCCo First Prototype Of High Performance Visualization Client

[6] VELaSCCo D3.4. Engine able to perform first-time visualizations and simple queries

of the last results and over the unmodified domain or the transformations

performed in D3.2 (EDM) & report.

[7] VELaSCCo D4.1. Specifications of the GPU-driven representations and architecture

of the GPU-based scientific visualization pipeline.

[8] VELaSCCo D2.4. Design a petabyte sized engineering data solution.

[9] ISO/IEC 9126-2: Software engineering. Product quality. Part 2: External metrics.

http://www.cse.unsw.edu.au/~cs3710/PMmaterials/Resources/9126-

2%20Standard.doc

