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INTRODUCTION

The aim of this document is to perform a comprehensive review of existing numerical methods related to multidisciplinary problems in aeronautics with a focus in aeroelasticity, coupled thermal-flows, aero-acoustics, vibro-acoustic and fluid-atmospheric environment (pollution flows). This review includes details on the different numerical methods including the possibilities and limitations of each one, the grid generation requirements and the pre-processing system. 

Coupled problems arise frequently in engineering applications. As defined in reference [53],”coupled systems and formulations are those applicable to multiple domains and dependent variables which describe different physical phenomena and in which (a) neither domain can be solved while separated from the other; and (b) neither set of dependent variables can be eliminated at the differential equation level”. It is also usual [53] to classify coupled systems in two categories: 

(I) Those problems in which coupling occurs on domain interfaces via the boundary conditions imposed there: This is the case of fluid structure interaction in aeroelasticity (Navier Stokes + Solid Mechanics equations), coupling of different flow behaviours (viscous-inviscid flows, compressible-incompressible flows, 3D Navier Stokes-shallow water equations), etc. In this case, the model equations can be summarized as follows:
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(II) Those problems in which the coupling comes from different physical phenomena which occur on (totally or partially) overlapping domains: This is the case of thermally coupled flows (Navier Stokes + heat equations), reactive flows (Navier Stokes equations + reaction of chemical species), Aeroacoustics (Navier Stokes + (acoustic analogy) + Helmholtz equations), Magnetohydrodinamics (Navier Stokes + Maxwell equations), etc. In this case, the model equations can be written as follows:
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Numerical methods applied to these coupled problems lead to the solution of a set of nonlinear algebraic equations which necessarily involve the (nodal) variables corresponding to the various domains (for Class I) or to the various physical phenomena (for Class II). Thus, the alternatives to solve a coupled problem are two-fold:

(A) To treat all the domains and physical phenomena simultaneously(full coupling). This leads to a single set of algebraic equations involving all the relevant variables.  In general, these variables will not be homogeneous, as they represent discretization of different domains and/or different physical phenomena.

(B) To treat the domains and/or physical phenomena one at the time, considering the coupling terms as forcing terms on the right-hand side of the equations. This leads to several sets of algebraic equations (one per domain/physical phenomena), each of them to be solved solely for the variables related to one domain or physical phenomena, but with the right hand side depending on variables related to the rest of the problem.

FULL COUPLING

Full coupling (Strategy (A)) necessarily requires the development of a special-purpose code, probably involving collaboration from different expertise areas. Standard engineering software developed for uncoupled problems may be of little help when writing such a program, due to its particular structure. The outcome of this may well be a complicated code, difficult to maintain, modify or upgrade, and even difficult to use. This program could only be parallelized at basic instruction level. Moreover, even though for a “standard” coupled problem this alternative could make sense, the effort that it involves is hardly affordable for all the coupled problems one must be ready to solve in engineering practice. In this case, the discretization of the continuous problems to be considered will lead to a nonlinear algebraic system of the form:
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where x and y are the vectors of nodal unknowns at a certain time step corresponding to two different fields under consideration, f1 and f2 are the vectors of “force” terms and Aij, i,j=1,2, are matrices, the dependence of which on the unknowns x and y has been explicitly indicated. Expression (3) can be extended to other situations, such as several-fields problems or other nonlinear dependencies. Observe that in problem (3) a linear coupling of the first equation with the second is assumed, as well as a linear behaviour of y for a given x.

The algorithm for the direct solution of problem (3), Strategy (A), can be chosen among the variety of linearization schemes available for the solution of nonlinear problems. Here we can mention the well-known Newton-Rahpson method (or any of its variations, known as modified Newton-Rahpson method), the Picard method, or the somehow more sophisticated Quasi- and Secant-Newton methods (see, for instance, reference [62] for a discussion on the relative merits of theses schemes). 

The steps in the solution process would follow exactly those necessary to solve an uncoupled nonlinear problem of similar characteristics. One disadvantage of this strategy is that the structure of the global matrices Aij is such that entries come from the two different fields, and so, either integrals have to be evaluated in two different domains (Class I problems), or they represent physically different magnitudes (Class II problems). Another disadvantage is the larger size of the global matrix as compared with the ones arising from the different domains/fields. On the other hand, the advantage is that the final algorithm is easily and clearly defined, and its analysis, regarding for instance convergence, is feasible.

BLOCK ITERATIVE STRATEGIES

Strategy (B), on the other hand, allows each domain/problem to be tackled on its one. The codes used may be either new or existing programs, slightly modified to account for the coupling terms. Each of these codes may be developed by a different expert or team of experts on the particular field, using optimal (and different) strategies for each of them. The outcome of this should be a set of (relatively) simple programs, easy to maintain, modify or upgrade one independently of the others. Note that this approach is parallel by construction, and at module level. On a multi-user non-parallel machine, this approach turns the coupled problem being run into several interconnected processes. So, the kernel of the operating-system is working, automatically and inadvertedly, as a pseudo-parallel processor emulator.

The keywords that favour strategy B are: customization, independent modelling, software reuse, and modularity:

Customization. This means that each field can be treated by discretization techniques and solution algorithms that are known to perform well for the isolated system. The hope is that a partitioned algorithm can maintain that efficiency for the coupled problem if (and that is a big if) the interaction effects can be also efficiently treated. As discussed later, in the original problem that motivated the partitioned approach that happy circumstance was realized.

Independent Modeling. The partitioned approach facilitates the use of non-matching models. For example in a fluid-structure interaction problem the structural and fluid meshes need not coincide at their interface. This translates into project breakdown advantages in analysis of complex systems such as aircraft. Separate models can be prepared by different design teams, including subcontractors that may be geographically distributed.

Software Reuse. Along with customized discretization and solution algorithms, customized software (private, public or commercial) may be available. Furthermore, there is often a gamut of customized peripheral tools such as mesh generators and visualization programs. The partitioned approach facilitates taking advantage of existing code. This is particularly suitable to academic environments, in which software development tends to be cyclical and loosely connected from one project to another.

Modularity. New methods and models may be introduced in a modular fashion according to project needs. For example, it may be necessary to include local nonlinear effects in an individual field while keeping everything else the same. Implementation, testing and validation of incremental changes can be conducted in a modular fashion.

These advantages are not cost free. The partitioned approach requires careful formulation and implementation to avoid serious degradation in stability and accuracy. Parallel implementations are particularly delicate. Gains in computational efficiency over a monolithic approach are not guaranteed, particularly if interactions occur throughout a volume as is the case for thermal and electromagnetic fields. Finally, the software modularity and modelling flexibility advantages, while desirable in academic and research circles, may lead to anarchy in software houses.

In summary, circumstances that favour the partitioned approach for tackling a new coupled problem are: a research environment with few delivery constraints, access to existing software, localized interaction effects (e.g. surface versus volume), and widespread spatial/temporal component characteristics. The opposite circumstances: commercial environment, rigid deliverable timetable, massive software development resources, global interaction effects, and comparable length/time scales, favour a monolithic approach.

The block iterative strategies can be applied to those problems in which coupling occurs on domain interfaces via the boundary conditions imposed there (I), and in those problems in which the coupling comes from different physical phenomena which occur on (totally or partially) overlapping domains (II).

There are different block iterative strategies to solve problems (II), each of them with different properties. The most commonly used can be summarized as follows (see [63] for more details):

· Block Jacobi: in this case, each physical field has to be linearized independently. This scheme produces small systems of equations compared with the full coupling equations and it is relatively easy to implement. It produces a robust in time (stable) procedure but its convergence is, at most, linear.

· Coupling in multi-stage time integration schemes: This also produces small systems of equations and it is also easy to implement. On the other side, the accuracy of the coupling depends on the time step size and its robustness in time may deteriorate.

· Fractional step methods: This also produces small systems of equations being also easy to implement. Again, the accuracy of the coupling depends on the time step size and its robustness in time may deteriorate. This method is very popular in the CFD context.

Partitioned treatment of coupled systems involving structures

The use of a partitioned treatment of coupled systems was initially applied to systems were a structure was one of its components. The partitioned treatment of these systems emerged independently in the mid 1970s at three locations: Northwestern University by T. Belytschko and R. Mullen, CalTech by T. J. R. Hughes and W. K. Liu, and Lockheed Palo Alto Research Laboratories (LPARL) by J. A. De Runtz, C. A. Felippa, T. L. Geers and K. C. Park. These three groups targeted different applications and pursued different problem-decomposition techniques. For example, Belytschko and Mullen [9–11] studied node-by-node partitions and subcycling whereas Hughes, Liu and coworkers developed element-by-element implicit-explicit partitions [12–14]. The latter work evolved at Stanford into element-by-element iterative solvers [15]. The work of these two groups focused on structure-structure and fluid-structure interaction treated by all-FEM discretizations.

Research in Coupled Problems at LPARL originated in the simulation of the elastoacoustic underwater shock problem for the Navy. In this work a finite element computational model of the submerged structure was coupled to Geers’ Doubly Asymptotic Approximation (DAA) boundary-element model of the exterior acoustic fluid [16–19]. In 1975 a staggered solution procedure was developed for this coupling. This was presented in a 1977 article [8] and later extended to more general applications [20, 21]. The staggered solution scheme was eventually subsumed in the more general class of partitioned methods [22, 23]. These were surveyed in several articles during the 1980s [1, 24, 25].

In 1985-86 Geers, Park and Felippa moved from LPARL to the University of Colorado at Boulder. Park and Felippa began formation of the Center for Aerospace Structures or CAS (originally named the Center for Space Structures and Control). Research work in coupled problems continued at CAS but along individual interests. Park began work in computational control-structure interaction [26, 27], whereas Felippa began studies in superconducting electrothermomagnetics [28]. Charbel Farhat, who joined CAS in 1987, began research in computational thermoelasticity [29] and aeroelasticity [30]. The latter effort prospered as it eventually acquired a parallel-computing flavour and was combined with advances in the FETI parallel structural solver [31, 32].

Research in Coupled Problems at CAS was given a boost in 1992 when the National Science Foundation announced grantees for the first round of Grand Challenge Applications (GCA) Awards. This competition was part of the U. S. High Performance Computing and Communications (HPCC) Initiative established in 1991. An application problem is labelled as GCA if the computational demands for realistic simulations go far beyond the capacity of present sequential or parallel supercomputers. The GCA coupled problems addressed by the award were: aeroelasticity of a complete aircraft, distributed control-structure interaction, and electrothermomechanics with phase changes.

A renewal project to address multiphysics problems was awarded in 1997. This grant addresses application problems involving fluid-thermal-structural interaction in high temperature components, turbulence models, piezoelectric and control-surface control of aeroelastic systems, and optimization of coupled systems. These focus applications are interweaved with research in computer sciences, applied mathematics and computational mechanics.

Application to Aeroelasticity

The application of partitioned methods to exterior aeroelasticity was pioneered by Farhat and coworkers since 1990 [30, 33–39]. The long ambitious long term goal of this project is to fly and maneuver a flexible airplane on a massively parallel computer. The essential physics involves the interaction of an external gas flow described by the Navier-Stokes equations, with a flexible aircraft. The aircraft structure is modelled by standard shell and beam finite elements and is advanced in time by an A-stable integrator such as the midpoint rule. The fluid is modelled by fluid volume elements that form an unstructured mesh of tetrahedral and is advanced in time by implicit methods. Additional algorithmic and modelling details are provided in publications [36–39]. Three complicating factors appear in this application: the ALE (arbitrary Lagrangian-Eulerian) treatment [66], different response scales, and parallel computation.

ALE flow solver

This complication arises because the structure motions are described in a Lagrangian system, in which the structural mesh follows its motion, whereas fluid flow is described in a Eulerian system, in which the gas passes through the fluid mesh. 

One issue is that the fluid mesh, or at least a near-field portion of it, must displace in lockstep with the structural motions. In order to avoid the collapse of mesh cells, one of the possible approaches exploits an idea originally proposed by Batina [40]. A fictitious network of linear springs, which may be augmented by dampers and torsional springs [70], is laid down along the edges of the fluid volume elements. This network may be viewed as a coupled computational field embedded within the fluid partition. The springs are fixed at the outer edges of the region where ALE effects are deemed important. They are driven by the motion of the aircraft surface, and operate as transducers that feed this motion, appropriately decaying with distance, to the fluid mesh nodes. Chiandussi et al proposed a similar, but more elaborated approach based on a non homogeneous linear elastic media that can be seen in reference [60].

Another isssue arises from the fact that the discretization on a moving grid differs from that of the standard Eulerian formulation in the introduction of some geometric quantities involving the positions and velocities of the moving grid points. These geometric quantities should be evaluated so that the ALE time-integrator preserves the order of time-accuracy of its fixed grid counterpart [69]. Furthermore, they should also be evaluated so that the motion of the dynamic mesh must satisfy the geometric conservation law [37,67] since this law is a necessary and sufficient condition for some ALE numerical schemes to preserve on moving grids the nonlinear stability of their fixed grid counterparts [68].

Subcycling

In commercial aircraft aeroelasticity, structural motions are typically dominated by low frequency vibration modes. On the other hand, the fluid response must be captured in a smaller time scale because of nonstationary effects involving shocks, vortices, and turbulence. Thus the use of a smaller timestep for the fluid is natural. This device is called subcycling. The ratio of structural to fluid timesteps may range from 10:1 through as high as 1000:1, depending on problem characteristics and the use of explicit or implicit fluid solver.

Parallelization

The gradual evolution and acceptance of massively parallel computers over the past decade has brought new opportunities as well as challenges to partitioned analysis methods. The opportunities are obvious. Massive parallelization relies on divide and conquer: breaking down the simulation into concurrent tasks. Since partitioned analysis relies on spatial decomposition, it provides an appropriate top-level start. One may envision, for example, that in a FSI problem a parallel computer is able to advance the fluid and structure states simultaneously.

This picture, however, is a gross oversimplification. First, there is no guarantee that the computational load will be balanced. Second, existing parallel computers have more than two processors: typically 16 through 512 in commercial systems. Thousands of processors are available in the custom, fine-grained parallel machines installed or under procurement at several Department of Energy laboratories. To take advantage of such fine granularities, it is necessary to introduce additional decomposition levels. These are generically called subdomains. The decomposition is done by programs called domain decomposers or mesh decomposers. Unlike coupled field partitions, subdomain decomposition is computationally driven. Subdomains, or sets of subdomains, are then mapped to processors.

Information transfer between programs is of two types. Intrapartition transfers (such as structure to structure or fluid to fluid) are handled by standard message passing techniques based on protocols such as MPI. Interpartition transfers (such as structure to fluid or vice-versa) are also handled by messages but may require a mesh interpolation procedure because mesh nodes do not necessarily match at physical interfaces. The time stepping is carried out using staggered schemes suitably improved and refined for subcycling and computational load balancing.

Control-Structure Interaction

Partitioned solution methods have been also applied to the problem of interaction of an active control system with a “dry” structure; that is, a structure not coupled with a fluid [26, 27, 41, 42]. One novelty is the modelling of the control partition as a second-order system, which permits stabilization techniques previously studied for structure-structure interaction [22, 23] to be used as starting point.

The interaction of a control system with a “wet” structure (a structure that interacts with a fluid flow) is a more formidable problem which is the presently the subject of active research. Envisioned applications include piezoelectric flutter and vibration suppression in aircraft wings, and stall flutter reduction in helicopter blades [43, 44].

Gas Turbine Simulation: a Four Field Coupled System

The simulation of a high-temperature gas turbine (for aircraft, powerplants or micromotor applications) involves the interaction of four partitions: structure (moving and fixed), enclosed fluid flow, power (combustion, turbulence and transport) and heat conduction. This is an ambitious application that presently lies beyond actual modelling and computer power. It points the way, however, to the kind of systems that may be treated in the next century as petaflop parallel computers become available.

Ice accretion on aeronautical surfaces

Regarding modelling of ice accretion on aeronautical surfaces (components of aircrafts and helicopters), the Messinger model is currently used, based on mass and thermal balance, which assumes that all the impinging water forms a continuous thin layer (i.e. a water film covering the body) on the airfoil which in turn can freeze at the impact point or downstream. 

For the future, more advanced models should be considered which treat a more sophisticated water behaviour on the airfoil by considering isolated beads which in turn can form rivulets or a continuous film, thus simulating both the freezing of the super-cooled droplets at the impact point (rime ice) or their running back over the surface and the freezing more downstream (glaze ice). Due to the fact that aircraft certification process to fly under known icing conditions currently requires full-scale flight test campaign (very expensive and of long duration) and/or scaled wind tunnel testing (more affordable), the use of more credible analytical models for ice accretion prediction would allow to minimise flight and wind tunnel tests and recognise the most critical conditions worth to further investigations. More information can be seen in references [75-77].

Coupling of aerothermodynamics and thermal and structural analyses

Regarding the coupling of aerothermodynamics and thermal and structural analyses to predicted the behaviour of  heat shielded space structures, it is currently used the Partitioned Integration, i.e. all the system components are treated as isolated entities which separately advance in time. The effects of the interactions between the different fields are viewed as forcing functions during the time advancing of a single field. The employed coupling approach is the tight or strong coupling, where data generated by the single systems during time advancing are exchanged among them (mutual interaction).

For the future, the monolithic or simultaneous integration approach should be developed, where the whole system is treated as a single entity, i.e. the fields are coupled at the level of governing equations (for aerothermodynamics, structures, thermal behaviour of materials) and advance simultaneously in time. A proper solution for the problem of the different (orders of magnitude) characteristic times of the phenomena should be found as a first step to developed an integrated aero-thermo-structural platform, with improved coupling procedures (for example, by using MPCCI, Mesh-based Parallel Code Coupling Interface
) and including other realistic effects such as surface deformation due to dynamic loads, surface ablation and consequent surface modifications, and their mutual effects with the external flow field. More information can be seen in reference [78].
GRID/MESH GENERATION REQUIREMENTS

Very often, mesh generation is the most manpower consuming part of a traditional single field computation, requiring substantial effort. This situation can be even worst when different domains have to be meshed and linked in a proper way to establish the possible connections between the physical phenomena taking place at each domain. In addition, it is well known that for a single field analysis, the quality of the numerical results is very much dependent of the quality of the used mesh and, for this reason, a big variety of the, so called, adaptive remeshing schemes try to produce the best possible mesh for each specific problem (see, for instance, ref. [53]). This dependence of the quality of the solution with respect to the mesh is also present in multidisciplinary problems.

Traditionally, the mesh generation task goes through the following steps:

1. Importing the definition of the geometry to be meshed from the CAD system where it has been designed and correction of all the possible inconsistencies and errors involved in it (see ref. [65]).

2. Generation of the corresponding mesh over the analysis domain defined by the corresponding geometry. 

3. Preparation of the data files for the analysis code. Application of the necessary boundary conditions and different solution parameters to the mesh prior to sending it to the analysis solver.

Importing of the geometry to be meshed

The first step requires the use of a standard file format allowing to communicate the CAD system with the corresponding mesh generation system (assuming that they are not the same). Different geometry file formats like IGES, VDA, STEP, DXF, etc. can be used for this purpose. Nevertheless, from the analysis point of view, traditional CAD systems do not take care about the correctness of the geometrical definition. 

CAD geometries are normally defined by a set of curved surface patches. Different mathematical descriptions of the shape of each of the surface patches exist (B-splines, Bezier, NURBS, etc.).  From the analysis point of view, in order to have a correct geometrical description it is necessary that the defined patches cover all the geometry (without gaps or holes) and that there is not any overlapping between them. Unfortunately, most of the actually existing CAD systems do not take care about it because these requirements are not necessary for just visualisation or numerical control purposes.

In addition, in order to proceed with the mesh generation task it is necessary to know the topological relation between the different patches including the information of which patches are the neighbours of a given one. This information is necessary for the correct generation of the mesh topology.

The mentioned aspects produce that in many occasions the “reparation” of the geometrical definitions obtained from the CAD systems consumes a lot of human dedication, specially if appropriated tools are not available. This fact makes that effective mesh generation packages must contain very powerful tools for the reparation of geometries that can be used in an almost automatic way.

Generation of the mesh

Once the geometry to be meshed is properly defined we can proceed with the mesh generation task. As it has been mentioned, the type of mesh to be generated depends on the CFD technique used to solve the fluid problem. From the historical point of view, the first CFD technique was the Finite Difference Method (FDM). This method requires the use of the so-called structured meshes and cannot deal with unstructured meshes. Due to that, the first mesh generation techniques produced structured meshes suitable to be used with FDM.

The Boundary Element Methods (BEM), Finite Element Methods (FEM) and Finite Volume Methods (FVM) can deal with unstructured meshes as well as with structured ones. This provides a big flexibility regarding the mesh generation technique to be used with any specific geometry.

Structured Grids 

Structured grids are typically generated using either algebraic functions or solution of partial differential equations which describe the transformation between a physical domain and a rectangular computational domain. Advantages of structured grids are the simplification of the programming, the reduction of the memory requirements due to the consecutive numbering of grid lines, and the regular structure of the matrix of algebraic equations that permits the use of a variety of efficient solvers (see [64]).

A single-block structured grid offers limited possibilities for local refinement. Concentration of points in a certain region, e.g. near the wall, may produce unnecessarily small spacing in other parts of the solution domain and lead to bad cell aspect ratios. Also, a sudden change of the geometry form may cause strong deformation of the grid. 

Multi-block grids then may provide a useful compromise between the simplicity of single-block grids and the ability to handle complex geometry that completely unstructured grids allow. They offer enough flexibility for a big variety of geometries. The first step of multi-block grid generation is the construction of the grid topology, i.e., subdividing the calculation domain into a reasonable number of blocks for the grid generation. This is not at all straightforward; the quality of the topology influences the quality of the numerical grid directly (angle between grid lines, aspect ratio of control volumes, and the size ratio of two neighbouring volumes). The simplest domain decomposition approaches require regular connections between the grids in adjacent blocks; i.e. matching grid lines at interfaces. A more general technique allows non-matching sub-domain grids. This provides much flexibility, in particular the possibility of using different grid resolution in different blocks (local refinement), and reduces the effort for the grid generation. Although the connectivity information between the cells faces at the sub-domains interfaces increases the memory requirements and computing time compared to a traditional multi-block technique, it is still less than for an unstructured grid. On the other hand, in most cases the spatial discretisation between the different non-matching sub-domains is only first order, which affects the quality of the results. Also, for non-planar interfaces, grid gaps or overlapping can easily occur when different grid resolutions at both sides of the interface are applied.
One disadvantage of multi-block grid comes into play as soon as parallelization is considered. Since good performance makes good load-balancing necessary multi-block grid have either a weak performance on parallel computers or the number of blocks has to be increased by subdividing the existing block in to smaller ones of almost equal size. The latter guarantees a better load balance, but may degrade performance since the ration between communication of the data along all the block boundaries and actual computation time get worse.

Composite or Overlapping Multi-block (Chimera) Grids

Overlapping grid techniques overcome the difficulty of matching the boundary surfaces between the different sub-domains and the necessity of applying complex grid topologies. In this case, each piece of the geometry can be treated as a complete separate component grid, which itself may consist of a multi-block grid. Also regions with large gradients such as boundary layers may be covered with separate grids embedded into one or more background grids.

A method is needed to interconnect the offset grids, create proper hole regions and define interfaces between overlapping grids at which boundary conditions for one block are obtained by interpolating the solution from the other overlapped block. The disadvantage of these grids is that conservation is not easily enforced at the interpolated irregular block boundaries (see [64]).

The largest advantage of this technique is its applicability to complex geometries with moving bodies like a propeller. In this case, one or more blocks are covering the body and moving with it, while a static grid covers the surroundings. 
Of course, the Chimera approach is also possible for unstructured grids discussed in the following, while the comment on parallelization of multi-block grid can also apply for structured Chimera grids. 
Unstructured Grids

This is the most flexible type of grid, which can fit an arbitrary solution domain boundary. Unstructured grids are usually used with finite element methods and, increasingly, with finite volume methods. The elements or control volumes may have any basic shape but in practice tetrahedra or hexahedra are most often used. The aspect ratio can be easily controlled and the grid may be locally refined. Unstructured grids are very preferred for automation of grid generation. On the other hand, such grids require connectivity tables which identify the neighbours of each node; due to indirect addressing, larger memory requirement, and more complicated solvers for the linear equation systems, the computing time per iteration is usually longer on unstructured than on block-structured grids.

Especially, among finite volume methods hybrid unstructured grids have become quite popular, where the near-wall region of the flow field is discretized by layers of prisms or hexahedrons, while the outer part is composed of tetrahedrons with some pyramids as intermediate elements. By this approach boundary layers can be solved for with quite good accuracy similar to structured body conforming meshes, while at the same time a local mesh refinement, e.g. for shocks or vortices in the flow field is possible, which is hard to do in three dimensional structured grids.
Although unstructured grids lead usually to higher computing times per point and iteration (or time step) they can make up for this if it comes to parallelization on distributed memory computers. Since node connections are given via index lists domain decomposition for parallel codes can done be very efficiently, even minimizing the amount of data transfer between blocks and making best use of e.g. the memory available per processor.
Nevertheless, genuine anisotropic grid generation techniques for both surface and volume discretisations has to be addressed in order to reduce the number of nodes provided by isotropic unstructured grid generation, and to obtain a grid quality close to those of structured grids with more or less a similar number of grid points.
Preparation of the data files for the analysis code 

Once the mesh has been generated it is necessary to store it in a suitable format to be read by the corresponding CFD analysis code. In addition, it is necessary to compile all the necessary information for the CFD analysis including the boundary conditions and the different parameters that control the analysis code. Depending on the mesh generation and the CFD codes, the mentioned task requires the use of an interface between them.

The application of the boundary conditions for the analysis over the mesh can also be a time consuming task, unless the mesh generation code is well prepared to do it. This task can be developed in two ways:

· The boundary conditions are defined over the mesh once it has been generated.

· The boundary conditions are defined over the geometrical definition of the domain and the mesh generator transfers it to the mesh.

The main drawback of the first possibility is that a modification of the mesh, which is a quite common requirement, involves a new definition of the boundary conditions. On the other side, if the boundary conditions have been defined over the geometry, like in the second possibility, then the modifications of the mesh do not involve any additional work. 

RESEARCH AREAS

Some areas that deserve further study in conjunction with the partitioned analysis of coupled systems are listed below:

Stability. This is an important concern. The ideal goal is: a partitioned treatment should not degrade the numerical stability of the individual subsystems. More specifically:

1. If each partition is treated by unconditionally stable time-stepping methods, the integration of the overall coupled system should retain unconditional stability.

2. If one or more partitions are treated explicitly and the maximum stable timestep is hmax , the integration of the overall system should be stable up to that stepsize.

These goals may be difficult or impossible to achieve without a reformulation (by augmentation) of the original field equations.

Stability analysis by standard Fourier techniques using a scalar test equation is not generally possible because modes of individual subsystems are not modes of the coupled problem. For diagonalizable linear models it is possible to use test systems containing as many modes as partitions, as outlined in the Appendix.

Accuracy. In linear problems response tracing accuracy is generally checked only after a stable algorithm is developed. Accuracy degradation is of concern in many applications. A common scenario is: second-order accurate algorithms are used in each subsystem, but the accuracy of the partitioned integration is only first order. An analysis technique based on the Modified Equation Method is outlined in the Appendix for linear systems. This backward-error analysis, if applicable, provides the global accuracy order directly. A related research area is the study of tradeoffs between interfield iteration versus timestep reduction.

For nonlinear problems stability and accuracy are often interwined and should be studied concurrently. The most promising approach seems to be the use of energy methods applied either to the entire system [36], or to interfield energy exchanges [55]. A general theory of stability of discrete and semidiscrete nonlinear coupled systems remains to be developed. Recently, some progress has bee made in the design of formally second-order time-accurate and yet loosely coupled partitioned procedures for the solution of nonlinear fluid-structure interaction (FSI) problems [74].

Interface Modeling. This topic has received increased attention with the development of domain decomposition solvers over the past 15 years. These solvers exploit information transfer between matching or nonmatching intrafield meshes. For example: structure to structure, and fluid to fluid. Much remains to be done, however, for interfield nonmatching discretizations [38,71,72,73] and silent boundaries .

Nonsmooth Problems. The use of partitioned analysis procedures in applications involving contact and impact merits study to assess whether those methods can provide breakthroughs in modelling and computational power. Related to this topic are problems involving sliding solid and fluid meshes, as in turbomachinery, parachuting, and store separation.

Treatment of Volume and Nonlocal Couplings. Problems of fluid turbulence, transport and mixing fall into this category, as do applications in metal and plastic forming and thermochemical processes such as combustion. The propagation of nonlocal effects across partition boundaries can incur significant computational overhead unless clever mesh overlappings or rezoning techniques are developed.
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