
Purple 0
An Open Source Numerical Optimization C++ Library.

www.cimne.com/purple

User’s Guide.

Roberto Lopez
International Center for Numerical Methods in Engineering (CIMNE)

Technical University of Catalonia (UPC)
Barcelona, Spain

E-mail: rlopez@cimne.upc.edu

June 1, 2006

Preface

Purple is a comprehensive class library for numerical optimization in the C++ pro-
gramming language. The library includes unconstrained and constrained example
objective functions, as well as local and global optimization algorithms. It also comes
with extensive documentation. Purple is placed under the GNU Lesser General Public
License.

i

Contents

1 Preliminaries 2
1.1 The Purple namespace . 2
1.2 The Vector and Matrix classes in Purple 2

2 The Objective Function 6
2.1 The unconstrained function optimization problem 6
2.2 The constrained function optimization problem 6
2.3 The objective function gradient vector 8
2.4 The objective function Hessian matrix 8
2.5 Some example function optimization problems 8

2.5.1 The De Jong’s function optimization problem 8
2.5.2 The Rosenbrock’s function optimization problem 9
2.5.3 The Rastrigin’s function optimization problem 10
2.5.4 The Plane-Cylinder function optimization problem 11

2.6 ObjectiveFunction classes in Purple . 12
2.6.1 The DeJongFunction class . 13
2.6.2 The RosenbrockFunction class 13
2.6.3 The RastriginFunction class . 14
2.6.4 The PlaneCylinder class . 14

3 The Optimization Algorithm 16
3.1 The function optimization process . 16
3.2 Line search algorithms . 17
3.3 The gradient descent method . 17
3.4 The conjugate gradient method . 18
3.5 The Newton’s method . 19
3.6 The random search optimization algorithm 20
3.7 The evolutionary algorithm . 20
3.8 OptimizationAlgorithm classes in Purple 21

3.8.1 The GradientDescent class . 22
3.8.2 The ConjugateGradient class . 23
3.8.3 The NewtonMethod class . 24
3.8.4 The RandomSearch class . 25
3.8.5 The EvolutionaryAlgorithm class 25

ii

4 The Software Model of Purple 28
4.1 The Unified Modeling Language . 28
4.2 The conceptual model . 28
4.3 Aggregation of associations . 29
4.4 Aggregation of derived classes . 29
4.5 Aggregation of attributes and operations 30

1

Chapter 1

Preliminaries

1.1 The Purple namespace

Each set of definitions in the Purple library is ’wrapped’ in the namespace Purple. In
this way, if some other definition has an identical name, but is in a different namespace, then
there is no conflict.

The using directive makes a namespace available throughout the file where it is written
[2]. For the Purple namespace the following sentence can be written:

using namespace Purple;

1.2 The Vector and Matrix classes in Purple

The Purple library includes its own Vector and Matrix container classes. The Vector and
Matrix classes are templates, which means that they can be applied to different types [2].
That is, we can create a Vector of int numbers, a Matrix of MyClass objects, etc.

For example, in order to construct an empty Vector of int numbers we use

Vector<int> vector1;

The following sentence constructs a Vector of 3 int numbers and sets the 0, 1 and 2
elements of the Vector to 1, 2 and 3, respectively. Note that indexing always starts at zero.

Vector<int> vector2(3);

vector2[0] = 1;

vector2[1] = 2;

vector2[2] = 3;

If we want to construct Vector of 5 int numbers and intialize all the elements 0, we can
use

Vector<int> vector3(5, 0);

The following sentence copies vector3 into vector1.

vector1 = vector3;

The method getSize(void) returns the size of a Vector.

int sizeOfVector1 = vector1.getSize();

2

In order to construct an empty Matrix of MyClass objects with 2 rows and 3 columns we
use

Matrix<MyClass> matrix1(2,3);

The methods getNumberOfRows(void) and getNumberOfColumns(void) return the num-
bers of rows and columns in a Matrix, respectively.

int numberOfRowsInMatrix1 = matrix1.getNumberOfRows();

int numberOfColumnsInMatrix1 = matrix1.getNumberOfColumns();

In order to put all these ideas together, we list below the source code of a sample appli-
cation which makes use of the Vector and Matrix container classes.

// Vector and Matrix Application

#include <iostream>

// Utilities includes

#include "../Library/Utilities/Vector.h"

#include "../Library/Utilities/Matrix.h"

using namespace Purple;

int main(void)

{

std::cout << std::endl

<< "Purple Neural Network. Vector and Matrix Application."

<< std::endl;

// Construct an empty vector of integers

Vector<int> vector1;

// Construct a vector of integers with 3 elements

Vector<int> vector2(3);

// Initialize all the elements of vector2 to 1

vector2[0] = 1;

vector2[1] = 1;

vector2[2] = 1;

// Construct a vector of integers with 5 elements and initialize them to 0

Vector<int> vector3(5, 1);

// Construct a vector which is a copy of vector2

Vector<int> vector4 = vector2;

// Get size of vector4

3

int size4 = vector4.getSize();

// Print the elements of vector4 to the screen

std::cout << std::endl

<< "Vector 4:" << std::endl;

for(int i = 0; i < size4; i++)

{

std::cout << vector4[i] << " ";

}

std::cout << std::endl;

// Construct an empty matrix of double precision numbers

Matrix<double> matrix1;

// Construct a matrix of double precision numbers with 2 rows and 3 columns

Matrix<double> matrix2(2,3);

// Initialize all the elements of matrix2 to 1

matrix2[0][0] = 1.0;

matrix2[0][1] = 1.0;

matrix2[0][2] = 1.0;

matrix2[1][0] = 1.0;

matrix2[1][1] = 1.0;

matrix2[1][2] = 1.0;

// Construct a matrix of double precision numbers with 4 rows and 2 columns,

// and initialize all the elements to 1

Matrix<double> matrix3(4,2,1.0);

// Construct a matrix which is a copy of matrix2

Matrix<double> matrix4 = matrix2;

// Get number of rows and columns of matrix4

int numberOfRows4 = matrix4.getNumberOfRows();

int numberOfColumns4 = matrix4.getNumberOfColumns();

// Print the elements of matrix4 to the screen

std::cout << std::endl

<< "Matrix 4:" << std::endl;

for(int i = 0; i < numberOfRows4; i++)

4

{

for(int j = 0; j < numberOfColumns4; j++)

{

std::cout << matrix4[i][j] << " ";

}

std::cout << std::endl;

}

std::cout << std::endl;

return 0;

}

5

Chapter 2

The Objective Function

The function optimization problem is formulated in terms of finding an extremal argument of
some objective function. In this way, the objective function defines the optimization problem
itself.

2.1 The unconstrained function optimization prob-
lem

The simplest function optimization problems are those in which no constraints are posed on
the solution. The general unconstrained function optimization problem can be formulated as
follows:

Problem 1 (Unconstrained function optimization problem) Let X ⊆ Rn be a real
vector space. Find a vector x∗ ∈ X for which the function

f : X → R

x 7→ f(x)

takes on a minimum or a maximum value.

The function f(x) is called the objective function. The domain of the objective function
for a function optimization problem is a subset X of Rn, and the image of that function is
the set R. The integer n is known as the number of variables in the objective function.

The vector at which the objective function takes on a minimum or maximum value is
called the minimal or the maximal argument of that function, respectively. The tasks of
minimization and maximization are trivially related to each other, since maximization of
f(x) is equivalent to minimization of −f(x), and vice versa. Therefore, without loss of
generality, we will assume function minimization problems.

On the other hand, a minimum can be either a global minimum, the smallest value of the
function over its entire range, or a local minimum, the smallest value of the function within
some local neighborhood. Functions with a single minimum are said to be unimodal , while
functions with many minima are said to be multimodal .

2.2 The constrained function optimization problem

A function optimization problem can be specified by a set of constraints, which are equalities
or inequalities that the solution must satisfy. Such constraints are expressed as functions.
Thus, the constrained function optimization problem can be formulated as follows:

6

Problem 2 (Constrained function optimization problem) Let X ⊆ Rn be a real vec-
tor space. Find a vector x∗ ∈ X such that the functions

ci : X → R

x 7→ ci(x)

hold ci(x
∗) = 0, for i = 1, . . . , l, and for which the function

f : X → R

x 7→ f(x)

takes on a minimum value.

In other words, the constrained function optimization problem consists of finding an
argument which makes all the constraints to be satisfied and the objective function to be an
extremum. The integer l is known as the number of constraints in the function optimization
problem.

A common approach when solving a constrained function optimization problem is to
reduce it into an unconstrained problem. This can be done by adding a penalty term to the
objective function for each of the constrains in the original problem. Adding a penalty term
gives a large positive or negative value to the objective function when an infeasibility due to
a constrain is encountered.

For the minimization case, the general constrained function optimization problem can be
reformulated as follows:

Problem 3 (Reduced constrained function optimization problem) Let X ⊆ Rn be
a real vector space, and let ρi > 0, for i = 1, . . . , l, be real numbers. Find a vector x∗ ∈ X for
which the function

f̄ : X → R

x 7→ f̄(x),

defined by

f̄(x) = f(x) +

l∑
i=1

ρi (ci(x))2 ,

takes on a minimum value.

The parameters ρi, i = 1, . . . , l, are called the penalty term ratios, being l the number
of constraints. Note that, while the squared norm of the penalty term is the metric most
used, any other suitable metric can be used. For large values of the ratios ρi, i = 1, . . . , l,
it is clear that the solution x∗ of Problem 3 will be in in a region where ci(x), i = 1, . . . , l,
are small. Thus, for increasing values of ρi, i = 1, . . . , l, it is expected that the the solution
x∗ of Problem 3 will approach the constraints and, subject to being close, will minimize the
objective function f(x). Ideally then, as ρi →∞, i = 1, . . . , l, the solution of Problem 3 will
converge to the solution of Problem 2 [5].

7

2.3 The objective function gradient vector

Many optimization algorithms use the gradient vector of the objective function to search for
the minimal argument. The gradient vector of the objective function is written:

∇f =
(

∂f

∂x1
, . . . ,

∂f

∂xn

)
. (2.1)

While for some objective functions the gradient vector can be evaluated analytically, there
are many applications when that is not possible, and the objective function gradient vector
needs to be computed numerically. This can be done by perturbing each variable in turn,
and approximating the derivatives by using the central differences method

∂f

∂xi
=

f(xi + h)− f(xi − h)

2h
+O(h2), (2.2)

for i = 1, . . . , n and for some small numerical value of h.

2.4 The objective function Hessian matrix

There are some optimization algorithms which also make use of the Hessian matrix of the
objective function to search for the minimal argument. The Hessian matrix of the objective
function is written:

Hf =

∂2f

∂x2
1

· · · ∂2f

∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
· · · ∂2f

∂x2
n

 (2.3)

As with the gradient vector, there are many applications when analytical evaluation of
the Hessian is not possible, and it must be computed numerically. This can be done by
perturbing each argument element in turn, and approximating the derivatives by using the
central differences method

∂2f

∂xi∂xj
=

f(xi + ε, xj + ε)

4ε2
− f(xi + ε, xj − ε)

4ε2

− f(xi − ε, xj + ε)

4ε2
+

f(xi − ε, xj − ε)

4ε2
+O(h2). (2.4)

2.5 Some example function optimization problems

This section describes a number of test functions for optimization. These functions are taken
from the literature on both local and global optimization.

2.5.1 The De Jong’s function optimization problem

One of the simplest test functions for optimization is the De Jong’s function, which is an
unconstrained and unimodal function. The De Jong’s function optimization problem in n
variables can be stated as:

8

Problem 4 (De Jong’s function optimization problem) Let X = [−5.12, 5.12]n be a
real vector space. Find a vector x∗ ∈ X for which the function

f : X → R

x 7→ f(x),

defined by

f(x) =

n∑
i=1

x2
i , (2.5)

takes on a minimum value.

The De Jong’s function has a unique minimal argument x∗ = (0, . . . , 0), which gives a
minimum value f(x∗) = 0. Figure 2.1 is a plot of this function in 2 variables.

Figure 2.1: The De Jong’s Function in 2 variables.

The gradient vector for the De Jong’s function is given by

∇f = (2x1, . . . , 2xn) , (2.6)

and the Hessian matrix by

Hf =

 2 · · · 0
...

. . .
...

0 · · · 2

 (2.7)

2.5.2 The Rosenbrock’s function optimization problem

The Rosenbrock’s function, also known as banana function, is an unconstrained and unimodal
function. The optimum is inside a long, narrow, parabolic shaped flat valley. Convergence
to this optimum is difficult and hence this problem has been repeatedly used in assess the
performance of optimization algorithms. The Rosenbrock’s function optimization problem in
n variables can be stated as:

9

Problem 5 (Rosenbrock’s function optimization problem) Let X = [−2.048, 2.048]n

be a real vector space. Find a vector x∗ ∈ X for which the function

f : X → R

x 7→ f(x),

defined by

f(x) =

n−1∑
i=1

100(xi+1 − xi)
2 + (1− xi)

2 (2.8)

takes on a minimum value.

The minimal argument of the Rosenbrock’s function is found at x∗ = (1, . . . , 1). The
minimum value of this function is f(x∗) = 0. Figure 2.2 is a plot of the Rosenbrock’s
function in 2 variables.

Figure 2.2: The Rosenbrock’s function in 2 variables.

2.5.3 The Rastrigin’s function optimization problem

The Rastrigin’s function is based on the De Jong’s function with the addition of cosine
modulation to produce many local minima. As a result, this function is highly multimodal.
However, the location of the minima are regularly distributed. The Rastrigin’s function
optimization problem in n variables can be stated as:

Problem 6 (Rastrigin’s function optimization problem) Let X = [−5.12, 5.12]n be a
real vector space. Find a vector x∗ ∈ X for which the function

f : X → R

x 7→ f(x),

defined by

f(x) = 10n +

n∑
i=1

(x2
i − 10 cos (2πxi)) (2.9)

takes on a minimum value.

10

Figure 2.3: The Rastrigin’s function in 2 variables.

The global minimum of the Rastrigin’s Function is at x∗i = 0. At this minimal argument
the value of the function is f(x) = 0. Figure 2.3 is a plot of the Rastrigin’s function in 2
variables.

The gradient vector for the Rastrigin’s function is given by

∇f = (2x1 + 10 sin (2πx1)2π, . . . , 2xn + 10 sin (2πxn)2π) , (2.10)

and the Hessian matrix by

Hf =

 2 + 10 cos (2πx1)4π2 · · · 0
...

. . .
...

0 · · · 2 + 10 cos (2πxn)4π2

 (2.11)

2.5.4 The Plane-Cylinder function optimization problem

The problem in this example is to find the minimum point on the plane x1 + x2 = 1 which
also lies in the cylinder x2

1 + x2
2 = 1. Figure 2.4 is a graphical representation of this function

optimization problem.
This constrained function optimization problem can be stated as:

Problem 7 (Plane-cylinder function optimization problem) Let X = [−1, 1]2 be a
real vector space. Find a vector x∗ ∈ X such that the function

c : X → R

x 7→ c(x),

defined by

c(x) = x2
1 + x2

2 − 1, (2.12)

11

Figure 2.4: The plane-cylinder function optimization problem.

holds c(x∗) ≤ 0 and for which the function

f : X → R

x 7→ c(x),

defined by

f(x) = x1 + x2 − 1, (2.13)

takes on a minimum value.

This constrained problem can be reduced to an unconstrained problem by the use of a
penalty function:

Problem 8 (Reduced plane-cylinder function optimization problem) Let X ⊆ R2

be a real vector space, and let ρR+ be a positive real number. Find a vector x∗ ∈ X for which
the function

f̄ : X → R

x 7→ f̄(x),

defined by

f̄(x) = x1 + x2 − 1 + ρ
(
x2

1 + x2
2 − 1

)2
,

takes on a minimum value.

2.6 ObjectiveFunction classes in Purple

Purple includes the classes DeJongFunction, RosenbrockFunction, RastriginFunction, and
PlaneCylinder to represent the concepts of the De Jong’s, Rosenbrock’s, Rastrigin’s and
Plane-Cylinder objective functions, respectively.

12

2.6.1 The DeJongFunction class

To construct the default De Jong’s function object with 2 variables we can use the following
sentence:

DeJongFunction deJongFunction;

The getDomain(void) method returns the domain of the objective function,

Matrix<double> domain = deJongFunction.getDomain();

The getEvaluation(Vector<double>) method returns the evaluation of the objective
function for a given argument,

Vector<double> argument(2, 0.0);

argument[0] = 1.2;

argument[1] = -3.6;

double evaluation = deJongFunction.getEvaluation(argument);

On the other hand, the method getGradient(Vector<double>) returns the objective
function gradient vector for a given argument,

Vector<double> gradient = deJongFunction.getGradient(argument);

Similarly, the getHessian(Vector<double>) method returns the objective function Hes-
sian matrix for a given argument,

Matrix<double> hessian = deJongFunction.getHessian(argument);

2.6.2 The RosenbrockFunction class

To construct the default Rosenbrock’s function object with 2 variables object we use

RosenbrockFunction rosenbrockFunction;

The setNumberOfVariables(int) method sets a new number of variables in an objective
function. For example, to set 3 variables in the Rosenbrock’s function we can write

int numberOfVariables = 3;

rosenbrockFunction.setNumberOfVariables(numberOfVariables);

The setLowerBound(Vector<double>) and setUpperBound(Vector<double>) methods
set new lower and upper bounds in the the domain of the objective function,

Vector<double> lowerBound(numberOfVariables, -5.12);

Vector<double> upperBound(numberOfVariables, 5.12);

rosenbrockFunction.setLowerBound(lowerBound);

rosenbrockFunction.setUpperBound(upperBound);

The getEvaluation(Vector<double>) method returns the evaluation of the objective
function for a given argument,

13

Vector<double> argument(numberOfVariables, 1.2);

double evaluation = rosenbrockFunction.getEvaluation(argument);

On the other hand, the method getGradient(Vector<double>) returns the objective
function gradient vector for a given argument,

Vector<double> gradient = rosenbrockFunction.getGradient(argument);

Similarly, the getHessian(Vector<double>) method returns the objective function Hes-
sian matrix for a given argument,

Matrix<double> = rosenbrockFunction.getHessian(argument);

2.6.3 The RastriginFunction class

To construct the default Rastrigin’s function object with 2 variables we can use the following
sentence:

RastriginFunction rastriginFunction;

The getEvaluation(Vector<double>) method returns the evaluation of the objective
function for a given argument,

int numberOfVariables = rastriginFunction.getNumberOfVariables();

Vector<double> argument(numberOfVariables, 1.2);

double evaluation = rastriginFunction.getEvaluation(argument);

On the other hand, the method getGradient(Vector<double>) returns the objective
function gradient vector for a given argument,

Vector<double> gradient = rastriginFunction.getGradient(argument);

Similarly, the getHessian(Vector<double>) method returns the objective function Hes-
sian matrix for a given argument,

Matrix<double> = rastriginFunction.getHessian(argument);

2.6.4 The PlaneCylinder class

To construct the default plane-cylinder objective function object we can use the following
sentence:

PlaneCylinder planeCylinder;

The getError(Vector<double>) method returns the squared error made in the constraint
by a given argument,

Vector<double> argument(2, 1.5);

double error = planeCylinder.getError();

The getEvaluation(Vector<double>) method returns the evaluation of the objective
function for a given argument,

14

Vector<double> argument(2, 1.2);

double evaluation = planeCylinder.getEvaluation(argument);

On the other hand, the method getGradient(Vector<double>) returns the objective
function gradient vector for a given argument,

Vector<double> gradient = planeCylinder.getGradient(argument);

Similarly, the getHessian(Vector<double>) method returns the objective function Hes-
sian matrix for a given argument,

Matrix<double> = planeCylinder.getHessian(argument);

15

Chapter 3

The Optimization Algorithm

The procedure used to find the minimal argument of an objective function is called the
optimization algorithm. There are many different algorithms for numerical optimization of
functions. Some of the most widely used are the conjugate gradient or the evolutionary
algorithm.

3.1 The function optimization process

The objective function is, in general, a non linear function. As a consequence, it is not
possible to find closed optimization algorithms for the minimal argument. In this way, to
find the minimal argument of the objective function we start with an initial estimation of the
optimal argument x(0) (often chosen at random) and we generate a sequence of arguments

x(0),x(1), . . . ,

so that the objective function f is reduced at each iteration of the optimization algorithm,
that is

f(x(0)) ≥ f(x(1)) ≥

The optimization algorithm stops when a specified condition is satisfied. Some stopping
criteria commonly used are [1]:

1. A maximum number of iterations is reached.

2. A maximum amount of computing time has been exceeded.

3. Evaluation has been minimized to a goal.

4. The gradient norm of the objective function falls below a goal value.

Figure 3.1 is a state diagram of this iterative procedure, showing states and transitions
in the optimization process.

The optimization process determined by the way in which the adjustment of the optimal
argument takes place. There are many different optimization algorithms, which have a variety
of different computation and storage requirements. Moreover, there is not a optimization
algorithm best suited to all problems [10].

Optimization algorithms might require information from the objective function only, the
gradient vector of the objective function or the Hessian matrix of the objective function [7].
These methods, in turn, can perform either global or local optimization.

16

Create Initial Argument

Evaluate Objective Function Generate New Argument

Stopping Criteria = true

Stopping Criteria = false

Figure 3.1: State diagram for the numerical function optimization process.

Zero-order optimization algorithms make use of the objective function only. The most
significant zero-order optimization algorithms are stochastic, which involve randomness in the
optimization process. Examples of these are Random Search or the Evolutionary Algorithm,
which are global optimization methods [4] [3].

First-order optimization algorithms use the objective function and its gradient vector. Ex-
amples of these are the Gradient Descent Method , the Conjugate Gradient Method . Gradient
descent and conjugate gradient are local optimization methods [5].

Second-order optimization algorithms make use of the objective function, its gradient
vector and its hessian matrix. An example of a second-order method is the Newton’s method
which is a local optimization method [5].

3.2 Line search algorithms

Line search methods are function optimization algorithms in one variable. They are also
used by different optimization algorithms in many variables. In this section, we describe two
different line searches widely used, the golden section algorithm and the Brent’s method.

The golden section method brackets a minimum until the distance between the two outer
points in the bracket is less than a defined tolerance [7].

The Brent’s method performs a parabolic interpolation until the distance between the two
outer points defining the parabola is less than a tolerance [7].

3.3 The gradient descent method

One of the simplest optimization algorithms is gradient descent, sometimes also known as
steepest descent. Gradient descent is a local method which requires information from the
objective function, and the gradient vector, but not from the Hessian matrix.

The method starts at an initial argument x(0) and, until a stopping criterium is satis-
fied, moves from x(τ) to x(τ+1) along the line extending from x(τ) in the search direction

17

−∇(f(x(τ)), the local downhill gradient . In the gradient descent algorithm, the step size is
adjusted at each iteration. A search is made along the gradient descent direction to determine
the optimal step size, which minimizes the objective function along that line.

Therefore, starting from an initial argument x(0), the gradient descent method takes the
form of iterating

x(τ+1) = x(τ) − λ(τ)∇f(x(τ)), (3.1)

for τ = 0, 1, ..., and where λ(τ) is called the optimal step size. A search is made along the
negative gradient direction to determine the optimal step size, which minimizes the objective
function along that line.

The value of f will decrease at each successive step, eventually reaching a vector of free
parameters x∗ at which the necessary local minimum condition

∇f(x∗) = 0 (3.2)

is satisfied.
This method has the severe drawback of requiring many iterations for functions which

have long, narrow valley structures. In such cases, a conjugate gradient method is preferable.
See [5] for a detailed discussion of the gradient descent method.

3.4 The conjugate gradient method

The local downhill gradient is the direction in which the objective function decreases most
rapidly. Nevertheless, this does not necessarily produce the fastest convergence. In the
conjugate gradient algorithm search is performed along conjugate directions, which produces
generally faster convergence than steepest descent directions [1]. Conjugate gradient methods
have proved to be very effective in dealing with general objective functions [5].

In the conjugate gradient algorithm that we discuss now, the step size is adjusted at each
iteration. A search is made along the conjugate gradient direction to determine the optimal
step size, which minimizes the objective function along that line.

Let denote g ≡ ∇f and h the search direction vector. Then, starting with an initial
free parameter vector x(0) and an initial search direction vector h(0) = −g(0), the conjugate
gradient method constructs a sequence of search direction vectors from the recurrence

x(τ+1) = x(τ) + λ(τ)h(τ), (3.3)

for τ = 0, 1, ..., and where λ(τ) is called the optimal step size. A search is made along the
conjugate gradient direction to determine the optimal step size, which minimizes the objective
function along that line.

The value of f will decrease at each successive step, eventually reaching a vector of free
parameters x∗ at which the necessary local minimum condition

∇f(x∗) = 0 (3.4)

is satisfied.
The various versions of conjugate gradient are distinguished by the manner in which the

parameter γ(τ) is constructed. For the Fletcher-Reeves update the procedure is

γ
(τ+1)
F−R =

g(τ+1)g(τ+1)

g(τ)g(τ)
, (3.5)

18

where γ
(τ+1)
F−R is called the Fletcher-Reeves parameter [1].

For the Polak-Ribiere update the procedure is

γ
(τ+1)
P−R =

(g(τ+1) − g(τ))g(τ+1)

g(τ)g(τ)
, (3.6)

where γ
(τ+1)
P−R is called the Polak-Ribiere parameter [1].

For all conjugate gradient algorithms, the search direction is periodically reset to the
negative of the gradient. The standard reset point occurs every n iterations, where n is the
number of variables in the objective function.

Figure 3.2 is a state diagram for the optimization process with the conjugate gradient.
See [5] for a detailed discussion of the conjugate gradient method.

Create Initial Argument

Evaluate Objective Function

Generate New Argument

Get Search Direction
Get Optimal Step Size

Stopping Criteria = true

Stopping Criteria = false

Figure 3.2: State Diagram for the optimization process with the onjugate gradient.

3.5 The Newton’s method

The Newton’s method is a class of optimization algorithm which makes use of the Hessian
matrix of the objective function. Using a local quadratic approximation, we can obtain
directly an expression for the location of the minimum of the objective function,

x∗ = x−H−1g (3.7)

The vector H−1g is known as the Newton direction or the Newton step . Since the
quadratic approximation used to obtain (3.7) is not exact, it would be necessary to apply it
iteratively, with the Hessian being re-evaluated at each new search point.

There are several difficulties with such an approach, however. First, an exact evaluation of
the Hessian is computationally demanding. This evaluation would be prohibitively expensive
if done at each stage of an iterative algorithm. Second, the Hessian must be inverted, and

19

so is also computationally demanding. Third, the Netwon step in (3.7) may move towards
a maximum or a saddle point rather than a minimum. This occurs if the Hessian is not
positive definite, so that there exist directions of negative curvature. Thus, the objective
function evaluation is not guaranteed to be reduced at each iteration. Finally, the step size
predicted by (3.7) may be sufficiently large that it takes us outside the range of validity of
the quadratic approximation. In this case the algorithm could become unstable.

3.6 The random search optimization algorithm

Random search is the simplest optimization algorithm possible. It is a stochastic direct
search method which requires information from the objective function only, but not from the
gradient vector or the hessian matrix.

The random search method simply consists of sampling a stream of arguments

x(0),x(1), . . . (3.8)

distibuted at random in the objective function domain, while evaluating

f (0)(x(0)), f (1)(x(1)), . . . (3.9)

and until a stopping criterium is satisfied.
That sequence is guaranteed to converge, with probability one, to the global optimum of

the objective function. Unfortunately, convergence is extremely slow in most cases. Random
search can be used to obtain a good initial guess for other more efficient methods.

3.7 The evolutionary algorithm

A global optimization algorithm is the evolutionary algorithm, also called genetic algorithm.
The evolutionary algorithm is a stochastic direct search method based on the mechanics
of natural genetics and biological evolution which requires information from the objective
function only, but not from the gradient vector or the Hessian matrix.

The evolutionary algorithm can be used for problems that are difficult to solve with tra-
ditional optimization techniques, including problems that are not well defined or are difficult
to model mathematically. It can also be used when computation of the objective function is
discontinuous, highly nonlinear, stochastic, or has unreliable or undefined derivatives.

The evolutionary algorithm starts with an initial population of individuals, represented
by vectors of free parameters often chosen at random

P(0) =

 x
(0)
11 . . . x

(0)
1n

...
. . .

...

x
(0)
s1 . . . x

(0)
sn

where P is called the population matrix . The number of individuals in the population s is
called the population size .

The objective function is then evaluated for all the individuals

F(0) = {f (0)
1 (x

(0)
1), ..., f (0)

s (x(0)
s)}, (3.10)

where F is called the evaluation vector . The individual with best evaluation is then chosen.
If no stopping criterium is met the generation of a new population P(1) starts by performing
fitness assignment to the old population P(0).

20

In rank-based fitness assignment the population evaluation is sorted. The fitness assigned
to each individual depends only on its position in the individuals rank and not on the actual
evaluation value,

Φ(0) = {Φ(0)
1 , ..., Φ(0)

s }, (3.11)

where Φ is called the fitness vector . Linear ranking assigns a fitness to each individual which
is linearly proportional to its rank. On the other hand, non-linear ranking assigns a fitness
non-linearly proportional to the rank [6]. Both operators are controlled by a single parameter
called selective pressure. Linear ranking allows values for the selective pressure in the interval
[1, 2]. Non-linear ranking allows values for the selective pressure in the interval [1, N − 2],
where N is the population size.

After fitness assingment has been performed, some individuals in the population are
selected for recombination, according to their level of fitness

S(0) = {S(0)
1 , ..., S(0)

s }, (3.12)

where S is called the selection vector . The simplest selection operator is roulette-wheel . A
better selection operator might be stochastic universal sampling [6].

Recombination produces a population matrix by combining the free parameters of the
selected individuals,

P =

 x11 . . . x1n

...
. . .

...
xs1 . . . xsn

In line recombination the arguments of the offspring are chosen in the hyperline joining

the arguments of the parents. In intermediate recombination the arguments of the offspring
are chosen somewhere in and around the hypercube defined by the arguments of the parents
[6]. Both line and intermediate recombination are controlled by a single parameter called
recombination size. The recombination size value must be equal or greater than 0.

Finally every offspring undergoes mutation to obtain the new generation,

P(1) =

 x
(1)
11 . . . x

(1)
1s

...
. . .

...

x
(1)
s1 . . . x

(1)
sn

The probability of mutating a free parameter is called the mutation rate [6]. The mutation

rate allows values in the interval [0, 1]. On the other hand, mutation is achieved by adding
or substracting a random quantity to the free parameter. Uniform mutation uses a random
number with uniform distribution. Normal mutation uses a random number with normal
distribution [6]. Both the uniform and normal mutation operators are controlled by a single
parameter called mutation range, which allows values equal or greater than 0.

The whole process is repeated until a stopping criterium is satisfied. That sequence is
guaranteed to converge, with probability one, to the global optimum of the objective function.
Figure 3.3 is a state diagram for the optimization process with the evolutionary algorithm.

3.8 OptimizationAlgorithm classes in Purple

Purple includes the classes GradientDescent, ConjugateGradient, NewtonMethod, RandomSearch
and EvolutionaryAlgorithm to represent the concepts of the different optimization algo-
rithms described in this chapter. That classes contain:

21

Create Initial Population

Number of Individuals:

Evaluate Objective Function

Generate New Population

Perform Fitness Assignment
Perform Selection

Perform Recombination
Perform Mutation

Selective Pressure:
Recombination Size:

Mutation Rate:
Mutation Size:

Choose Best Individual

Best Evaluation:

Stopping Criteria = true

Stopping Criteria = false

Figure 3.3: State Diagram for the training process with the evolutionary algorithm.

1. A relationship to an objective function object.

2. A set of training operators

3. A set of training parameters.

4. A set of stopping criteria.

3.8.1 The GradientDescent class

To construct a GradientDescent object associated, for example, to a De Jong’s function
object, we can use the following sentence

GradientDescent gradientDescent(&deJongFunction);

22

where &deJongFunction is a reference to a DeJongFunction object.
The method setInitialArgument(Vector<double>) sets an initial argument for the gra-

dient descent method.

Vector<double> initialArgument(numberOfVariables, 1.0);

gradientDescent.setInitialArgument(initialArgument);

where numberOfVariables is the number of variables in the objective function.
The method getMinimalArgument(void) gets the minimal argument of an objective func-

tion according to the gradient descent method.

Vector<double> minimalArgument =

gradientDescent.getMinimalArgument();

We can save or load a gradient descent object to or from a data file, by using the methods
save(char*) and load(char*), respectively. Figure 3.4 shows the format of a gradient descent
data file in Purple.

% Purple: An Open Source Numerical Optimization C++ Library.

% Gradient Descent Object.

% Any comment here.

InitialArgument:

OptimalStepSizeMethod:

FirstStepSize:

OptimalStepSizeTolerance:

EvaluationGoal:

GradientNormGoal:

MaximumTime:

MaximumNumberOfIterations:

WarningStepSize:

ShowPeriod:

Figure 3.4: Purple gradient descent file format.

3.8.2 The ConjugateGradient class

To construct a ConjugateGradient object associated to a Rosenbrock’s function object we
can write

ConjugateGradient conjugateGradient(&rosenbrockFunction);

23

where &rosenbrockFunction is a reference to a RosenbrockFunction object.
The method setSearchDirectionMethod(SearchDirectionMethod) sets the search direc-

tion method to be used by the conjugate gradient method. Similarly, the method setOptimalStepSizeMethod(OptimalStepSizeMethod)

sets the optimal step size method to be used by the conjugate gradient method. For example,
to use the Fletcher-Reeves search direction and the Brent’s method for the optimal step size,
we can write

conjugateGradient.setSearchDirectionMethod(ConjugateGradient::FletcherReeves);

conjugateGradient.setOptimalStepSizeMethod(ConjugateGradient::BrentMethod);

The method getMinimalArgument(void) searches for the minimal argument of an objec-
tive function according to the conjugate gradient method.

Vector<double> minimalArgument =

conjugateGradient.getMinimalArgument();

We can save or load a conjugate gradient object to or from a data file, by using the
methods save(char*) and load(char*), respectively. Figure 3.5 shows the format of a
conjugate gradient data file in Purple.

% Purple: An Open Source Numerical Optimization C++ Library.

% Conjugate Gradient Object.

% Any comment here.

InitialArgument:

SearchDirectionMethod:

OptimalStepSizeMethod:

FirstStepSize:

OptimalStepSizeTolerance:

EvaluationGoal:

GradientNormGoal:

MaximumTime:

MaximumNumberOfIterations:

WarningStepSize:

ShowPeriod:

Figure 3.5: Purple conjugate gradient file format.

3.8.3 The NewtonMethod class

To construct a NewtonMethod object associated to a De Jong’s function object we can write

NewtonMethod newtonMethod(&deJongFunction);

24

where &deJongFunction is a reference to a deJongFunction objective function object.
The method getMinimalArgument(void) returns the minimal argument of an objective

function according to the Newton’s method.

Vector<double> minimalArgument =

newtonMethod.getMinimalArgument();

We can save or load a Newton’s method object to or from a data file, by using the methods
save(char*) and load(char*), respectively. Figure 3.6 shows the format of a Newton’s
method data file in Purple.

% Purple: An Open Source Numerical Optimization C++ Library.

% Newton Method Object.

% Any comment here.

InitialArgument:

EvaluationGoal:

GradientNormGoal:

MaximumTime:

MaximumNumberOfIterations:

ShowPeriod:

Figure 3.6: Purple Newton’s method file format.

3.8.4 The RandomSearch class

To construct a RandomSearch object associated, for instance, to a Rosenbrock’s function
object, we can use the following sentence

RandomSearch randomSearch(&rosenbrockFunction);

where &rosenbrockFunction is a reference to a RosenbrockFunction object.
The method getMinimalArgument(void) searches for the minimal argument of an objec-

tive function according to the random search method.

Vector<double> minimalArgument =

randomSearch.getMinimalArgument();

We can save or load a random search object to or from a data file, by using the methods
save(char*) and load(char*), respectively. Figure 3.7 shows the format of a random search
data file in Purple.

3.8.5 The EvolutionaryAlgorithm class

To construct a EvolutionaryAlgorithm object associated to a Rastrigin’s function object we
can write

EvolutionaryAlgorithm evolutionaryAlgorithm(&rastriginFunction);

25

% Purple: An Open Source Numerical Optimization C++ Library.

% Random Search Object.

% Any comment here.

EvaluationGoal:

MaximumTime:

MaximumNumberOfEvaluations:

ShowPeriod:

Figure 3.7: Purple random search file format.

where &rastriginFunction is a reference to a RastriginFunction object.
The method getMinimalArgument(void) returns the minimal argument of an objective

function according to the evolutionary algorithm method.

Vector<double> minimalArgument =

evolutionaryAlgorithm.getMinimalArgument();

We can save or load an evolutionary algorithm object to or from a data file, by using
the methods save(char*) and load(char*), respectively. Figure 3.8 shows the format of an
evolutionary algorithm data file in Purple.

26

% Purple: An Open Source Numerical Optimization C++ Library.

% Newton Method Object.

% Any comment here.

PopulationSize:

NumberOfVariables:

FitnessAssignmentMethod:

SelectionMethod:

RecombinationMethod:

MutationMethod:

SelectivePressure:

RecombinationSize:

MutationRate:

MutationRange:

EvaluationGoal:

MaximumTime:

MaximumNumberOfGenerations:

ShowPeriod:

Population:

Figure 3.8: Purple evolutionary algorithm file format.

27

Chapter 4

The Software Model of Purple

In this chapter we present the software model of Puple. The whole process is carried out in
the Unified Modeling Language (UML), which provides a formal framework for the modeling
of software systems.

4.1 The Unified Modeling Language

The Unified Modeling Language (UML) is a general purpose visual modeling language that is
used to specify, visualize, construct, and document the artifacts of a software system [8].

UML class diagrams are the mainstay of object-oriented analysis and design. They show
the classes of the system, their interrelationships and the attributes and operations of the
classes.

In order to construct the software model of Purple, we follow a top-down development.
This approach to the problem begins at the highest conceptual level and works down to
the details. In this way, to create and evolve a conceptual class diagram for a numerical
optimization tool, we iteratively model:

1. Classes.

2. Associations.

3. Derived classes.

4. Attributes and operations.

4.2 The conceptual model

In colloquial terms a concept is an idea or a thing. In object-oriented modeling concepts are
represented by means of classes [9]. Therefore, a prime task is to identify the main concepts
(or classes) of the problem domain. In UML class diagrams, classes are depicted as boxes [8].

Through this work, we have seen that the numerical optimization problem is characterized
by an objective function and an optimization algorithm. The characterization in classes of
these two concepts is as follows:

Objective function The class which represents the concept of objective function in a func-
tion optimization problem is called ObjectiveFunction.

Optimization algorithm The class representing the concept of optimization algorithm is
called OptimizationAlgorithm.

Figure 4.1 depicts a starting UML class diagram for the conceptual model of Purple.

28

ObjectiveFunction OptimizationAlgorithm

Figure 4.1: The conceptual diagram of Purple.

4.3 Aggregation of associations

Once identified the main concepts in the model it is necessary to aggregate the associations
among them. An association is a relationship between two concepts which points some
significative or interesting information [9]. In UML class diagrams, an association is shown as
a line connecting two classes. It is also possible to assign a label to an association. The label
is typically one or two words describing the association [8].

The appropriate associations in the system are next identified to be included to the UML

class diagram of the system:

Objective function - Optimization algorithm An objective function is optimized by an
optimization algorithm.

Figure 4.2 shows the above UML class diagram with these associations aggregated.

ObjectiveFunction OptimizationAlgorithm
is optimized by

Figure 4.2: Aggregation of the associations to the conceptual diagram of Purple.

4.4 Aggregation of derived classes

In object-oriented programming, some classes are designed only as a parent from which sub-
classes may be derived, but which is not itself suitable for instantiation. This is said to be
an abstract class, as opposed to a concrete class, which is suitable to be instantiated. The
derived class contains all the features of the base class, but may have new features added or
redefine existing features [9]. Associations between a base class and a derived class are of the
kind ’is a’ [8].

The next task is then to establish which classes are abstract and to derive the necessary
concrete classes to be added to the system. Let us then examine the classes we have so far:

Objective function The class ObjectiveFunction is abstract, because it does not represent
a concrete objective function for an optimization problem.

Here we have seen a number of test functions, De Jong’s, Rosenbrock’s, Rastrigin’s
and plane-cylinder. In order to solve that function optimization problems we must
derive a concrete class for each of those objective functions. These are to be called
DeJongFunction, RosenbrockFunction, RastriginFunction and PlaneCylinderFunction,
respectively. It is necessary to derive a new objective function for any new optimization
problem it is required to be solved.

Optimization algorithm The class OptimizationAlgorithm is abstract, because it does
not represent a optimization algorithm for an objective function of an optimization
problem.

29

An optimization algorithm which is applicable to any differentiable objective function,
is gradient descent, but it has some limitations. A faster optimization algorithm, with
the same properties as gradient descent, is conjugate gradient. Thus, classes repre-
senting the gradient descent and the conjugate gradient optimization algorithms are
derived. These are called GradientDescent and ConjugateGradient, respectively. The
main disadvantage of the gradient descent and the conjugate gradient optimization al-
gorithms is their local nature. In order to include global optimization algorithms in the
model we derive the classes RandomSearch and EvolutionaryAlgorithm. It is always
possible to derive any new optimization algorithm to be added to the system.

Figure 4.3 shows the UML class diagram of Purple with all the derived classes included.

ConjugateGradientDeJongFunction

EvolutionaryAlgorithm

GradientDescent NewtonMethod

ObjectiveFunction OptimizationAlgorithm

RastriginFunction RandomSearch

RosenbrockFunction

PlaneCylinderFunction

is optimized by

is a is a

is a is a

is a is a

is a

is a

is a

Figure 4.3: Aggregation of the derived classes to the conceptual diagram of Purple.

4.5 Aggregation of attributes and operations

An attribute is a named value or relationship that exists for all or some instances of a class.
An operation is a procedure associated with a class [9]. In UML class diagrams, classes are
depicted as boxes with three sections: the top one indicates the name of the class, the one in
the middle lists the attributes of the class, and the bottom one lists the operations [8].

An objective function has the following attributes:

1. A number of variables.

2. A domain.

and performs the following operations:

1. Get the evaluation for a given argument.

2. Get the gradient vector for a given argument.

3. Get the Hessian matrix for a given argument.

An optimization algorithm has the following attributes:

1. A relationship to an objective function. In C++ this is implemented as a pointer to
an objective function object.

2. Optimization operators.

3. Optimization parameters.

4. Stopping criteria.

and performs the following operations:

1. Get the minimal argument of an objective function.

30

Bibliography

[1] H. Demuth and M. Beale. Neural Network Toolbox for Use with MATLAB. User’s Gide.
The MathWorks, 2002.

[2] B. Eckel. Thinking in C++. Second Edition. Prentice Hall, 2000.

[3] D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE Transactions
on Neural Networks, 5(1):3–14, 1994.

[4] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley, 1988.

[5] D.G. Luenberger. Linear and Nonlinear Programming. Addison Wesley, 1984.

[6] H. Pohlheim. Geatbx - genetic and evolutionary algorithm toolbox for use with matlab.
http://www.geatbx.com, 2005.

[7] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in
C++: The Art of Scientific Computing. Cambridge University Press, 2002.

[8] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Addison Wesley, 1999.

[9] B. Stroustrup. The C++ Programing Language. Addison Wesley, 2000.

[10] D. H. Wolpert and W. G. MacReady. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

31

Index

abstract class, 29
association, 29
attribute, 30

Brent’s method, 17

central differences, 8
class diagram, 28
conceptual model, 28
concrete class, 29
conjugate gradient, 17
conjugate gradient method, 18
constrained function optimization problem, 6

derived class, 29
domain, objective function, 6

evaluation vector, 20
evolutionary algorithm, 17, 20

fitness vector, 21
Fletcher-Reeves parameter, 19

genetic algorithm, see evolutionary algorithm,
17, 20

global minimum, 6
golden section, 17
gradient descent, 17
gradient descent method, 17
gradient vector, objective function, 8

Hessian matrix, objective function, 8

image, objective function, 6
individual, 20
intermediate recombination, 21

line recombination, 21
line search, 17
linear ranking, 21
local minimum, 6
local minimum condition, 18

maximal argument, 6
maximization, 6
minimal argument, 6

minimization, 6
multimodal function, 6
mutation, 21
mutation range, 21
mutation rate, 21

namespace, 2
Newton direction, 19
Newton’s method, 17, 19
non-linear ranking, 21
normal mutation, 21
number of variables, 6

objective function, 6
objective function gradient, 8
objective function Hessian, 8
operation, 30
optimal step size, 18
optimization algorithm, 16

penalty term ratio, 7
Polak-Ribiere parameter, 19
population, 20
population matrix, 20
population size, 20

random search, 17, 20
recombination, 21
recombination size, 21
roulette-wheel, 21

search direction, gradient descent, 18
selection, 21
selection vector, 21
selective pressure, 21
steepest descent method, 17
stochastic universal sampling, 21
stopping criteria, 16

tolerance, Brent’s method, 17
tolerance, golden section, 17

UML, unified modeling language, 28
unconstrained function optimization problem,

6
uniform mutation, 21
unimodal function, 6

32

	Preliminaries
	The Purple namespace
	The Vector and Matrix classes in Purple

	The Objective Function
	The unconstrained function optimization problem
	The constrained function optimization problem
	The objective function gradient vector
	The objective function Hessian matrix
	Some example function optimization problems
	The De Jong's function optimization problem
	The Rosenbrock's function optimization problem
	The Rastrigin's function optimization problem
	The Plane-Cylinder function optimization problem

	ObjectiveFunction classes in Purple
	The DeJongFunction class
	The RosenbrockFunction class
	The RastriginFunction class
	The PlaneCylinder class

	The Optimization Algorithm
	The function optimization process
	Line search algorithms
	The gradient descent method
	The conjugate gradient method
	The Newton's method
	The random search optimization algorithm
	The evolutionary algorithm
	OptimizationAlgorithm classes in Purple
	The GradientDescent class
	The ConjugateGradient class
	The NewtonMethod class
	The RandomSearch class
	The EvolutionaryAlgorithm class

	The Software Model of Purple
	The Unified Modeling Language
	The conceptual model
	Aggregation of associations
	Aggregation of derived classes
	Aggregation of attributes and operations

