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Abstract We present some developments in the particle
finite element method (PFEM) for analysis of complex cou-
pled problems in mechanics involving fluid–soil–structure
interaction (FSSI). The PFEM uses an updated Lagrangian
description to model the motion of nodes (particles) in both
the fluid and the solid domains (the later including soil/rock
and structures). A mesh connects the particles (nodes) defin-
ing the discretized domain where the governing equations for
each of the constituent materials are solved as in the standard
FEM. The stabilization for dealing with an incompressibil-
ity continuum is introduced via the finite calculus method.
An incremental iterative scheme for the solution of the non
linear transient coupled FSSI problem is described. The pro-
cedure to model frictional contact conditions and material
erosion at fluid–solid and solid–solid interfaces is described.
We present several examples of application of the PFEM to
solve FSSI problems such as the motion of rocks by water
streams, the erosion of a river bed adjacent to a bridge founda-
tion, the stability of breakwaters and constructions sea waves
and the study of landslides.
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1 Introduction

The analysis of problems involving the interaction of flu-
ids, soil/rocks and structures is of relevance in many areas
of engineering. Examples are common in the study of land-
slides and their effect on reservoirs and adjacent structures,
off-shore and harbour structures under large waves, construc-
tions hit by floods and tsunamis, soil erosion and stability of
rock-fill dams in overspill situations, etc.

These studies can be considered as an extension of the
so-called fluid–structure interaction (FSI) problems [46].
Typical difficulties of FSI analysis in free surface flows using
the FEM both the Eulerian or ALE formulation include the
treatment of the convective terms and the incompressibility
constraint in the fluid equations, the modelling and tracking
of the free surface in the fluid, the transfer of information
between the fluid and the moving solid domains via the con-
tact interfaces, the modeling of wave splashing, the possibil-
ity to deal with large motions of multi-bodies within the fluid
domain, the efficient updating of the finite element meshes
for both the structure and the fluid, etc. Examples of 3-D
analysis of FSI problems using ALE and space-time FEM
are reported in [4,6,26,27,31,34,40].

Most of the above problems disappear if a Lagrangian
description is used to formulate the governing equations of
both the solid and the fluid domains. In the Lagrangian for-
mulation the motion of the individual particles are followed
and, consequently, nodes in a finite element mesh can be
viewed as moving material points (hereforth called “parti-
cles”). Hence, the motion of the mesh discretizing the total
domain (including both the fluid and solid parts) is followed
during the transient solution.

A powerful Lagrangian method for FSI analysis is the
so-called Soboran Grid CIP technique, which has been suc-
cessfully applied to different class of 3-D problems [44].
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The authors have successfully developed in previous
works a particular class of Lagrangian formulation for solv-
ing problems involving complex interactions between (free
surface fluids) and solids. The method, called the particle
finite element method (PFEM, www.cimne.com/pfem), treats
the mesh nodes in the fluid and solid domains as particles
which can freely move and even separate from the main
fluid domain representing, for instance, the effect of water
drops. A mesh connects the nodes discretizing the domain
where the governing equations are solved using a stabilized
FEM.

An advantage of the Lagrangian formulation is that the
convective terms disappear from the fluid equations [11,48].
The difficulty is however transferred to the problem of ade-
quately (and efficiently) moving the mesh nodes. We use a
mesh regeneration procedure blending elements of different
shapes using an extended Delaunay tessellation with special
shape functions [17,19]. The theory and applications of the
PFEM are reported in [2,7,10,18,20,21,23,26,32,34–39].

The FEM solution of (incompressible) fluid flow prob-
lem implies solving the momentum and incompressibility
equations. This is not a simple problem as the incompress-
ibility condition limits the choice of the FE approximations
for the velocity and pressure to overcome the well known
div-stability condition [11,48]. In our work we use a stabi-
lized mixed FEM based on the finite calculus (FIC) approach
which allows for a linear approximation for the velocity and
pressure variables [15,29–31,33,34]. Among the other sta-
bilized FEM with similar features we mention the PSPG
method [41], multiscale methods [3,6,8,9] and the CBS
method [9,48].

The aim of this paper is to describe recent advances of
the PFEM for fluid–soil–structure interaction (FSSI) prob-
lems. These problems are of relevance in many areas of civil,
hydraulic, marine and environmental engineering, among
others. It is shown that the PFEM provides a general analysis
methodology for treat such complex problems in a simple
and efficient manner.

The layout of the paper is the following. In the next section,
the key ideas of the PFEM are outlined. Next the basic equa-
tions for a compressible/incompressible continuum using a
Lagrangian description and the FIC formulation are schemat-
ically presented. Then an algorithm for the transient solution
is briefly described. The treatment of the coupled FSSI prob-
lem and the methods for mesh generation and for identifi-
cation of the free surface nodes are outlined. The procedure
for treating the frictional contact interaction between fluid,
soil and structure interfaces is explained. We present several
examples of application of the PFEM to solve FSSI problems
such as the motion of rocks by water streams, the erosion
of a river bed adjacent to a bridge foundation, the stability of
breakwaters and constructions under sea waves and the study
of landslides falling into reservoirs.

2 The basis of the particle finite element method

Let us consider a domain containing both fluid and solid sub-
domains (the solid subdomain may include soil/rock mate-
rials and/or structural elements). The moving fluid particles
interact with the solid boundaries thereby inducing the defor-
mation of the solid which in turn affects the flow motion and,
therefore, the problem is fully coupled.

In the PFEM, both the fluid and the solid domains are mod-
elled using an updated Lagrangian formulation [47]. That is,
all variables are assumed to be known in the current config-
uration at time t . The new set of variables in both domains
are sought for in the next or updated configuration at time
t + !t . The finite element method (FEM) is used to solve
the equations of continuum mechanics for each of the sub-
domains. Hence a mesh discretizing these domains must be
generated in order to solve the governing equations for each
subdomain in the standard FEM fashion.

The quality of the numerical solution depends on the dis-
cretization chosen as in the standard FEM. Adaptive mesh
refinement techniques can be used to improve the solution
in zones where large motions of the fluid or the structure
occur.

2.1 Basic steps of the PFEM

For clarity purposes, we will define the collection or cloud
of nodes (C) pertaining to the fluid and solid domains, the
volume (V) defining the analysis domain for the fluid and the
solid and the mesh (M) discretizing both domains.

A typical solution with the PFEM involves the following
steps.

1. The starting point at each time step is the cloud of points
in the fluid and solid domains. For instance nC denotes
the cloud at time t = tn (Fig. 1).

2. Identify the boundaries for both the fluid and solid
domains defining the analysis domain n V in the fluid
and the solid. This is an essential step as some bound-
aries (such as the free surface in fluids) may be severely
distorted during the solution, including separation and
re-entering of nodes. The Alpha Shape method [12] is
used for the boundary definition.

3. Discretize the fluid and solid domains with a finite ele-
ment mesh n M . In our work we use an innovative mesh
generation scheme based on the extended Delaunay
tessellation [17,19,20].

4. Solve the coupled Lagrangian equations of motion for
the fluid and the solid domains. Compute the state vari-
ables in both domains at the next (updated) configuration
for t + !t : velocities, pressure and viscous stresses in
the fluid and displacements, stresses and strains in the
solid.
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Fig. 1 Sequence of steps to
update a “cloud” of nodes
representing a domain
containing a fluid and a solid
part from time n (t = tn) to time
n + 2 (t = tn + 2!t)
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5. Move the mesh nodes to a new position n+1C where n+1
denotes the time tn + !t , in terms of the time increment
size. This step is typically a consequence of the solution
process of step 4.

6. Go back to step 1 and repeat the solution process for the
next time step to obtain n+2C (Fig. 1).

3 FIC/FEM formulation for a Lagrangian continuum

3.1 Governing equations

The equations to be solved are the standard ones in continuum
mechanics, written in the Lagrangian frame of reference:

Momentum

ρ
∂vi

∂t
= ∂σi j

∂x j
+ bi in V (1)

Pressure–velocity relationship

1
K

∂p
∂t

− ∂vi

∂xi
= 0 in V (2)

In above equations vi is the velocity along the ith global
(cartesian) axis, p is the pressure (assumed to be positive in

compression) ρ and K are the density and bulk modulus of
the material, respectively, bi and σi j are the body forces and
the (Cauchy) stresses. Eqs. (1) and (2) are completed with
the constitutive relationships:

Incompressible continuum

t+1σi j = 2µε̇i j − t+1 pδi j (3)

Compressible/quasi-incompressible continuum

t+1si j = t σ̂i j + 2µε̇i j + λε̇i iδi j (4a)

where σ̂i j are the component of the stress tensor [σ̂ ]

[σ̂ ] = 1
J

FT SF (4b)

where S is the second Piola–Kirchhoff stress tensor, F is the
deformation gradient tensor and J = det F [22,47]. Param-
eters µ and λ take the following values for a fluid or solid
material:

Fluid: µ: viscosity; λ = !t K − 2µ
3

Solid: µ = !tG
J

; λ = 2Gν!t
J (1 − 2ν)

, where ν is the Poisson

ration, G is the shear modulus and !t the time
increment.
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In Eqs. (3) and (4a), (4b), si j are the deviatoric stresses,
ε̇i j is the rate of deformation, µ is the viscosity and δi j is the
Kronecker delta. t (·) denotes values at time t .

Indexes in Eqs. (1)–(4a), (4b) range from i, j = 1, nd ,
where nd is the number of space dimensions of the problem
(i.e. nd = 2 for 2-D problems). These equations are com-
pleted with the standard boundary conditions of prescribed
velocities and surface tractions in the mechanical problem
[11,36,47,48].

3.2 Discretization of the equations

A key problem in the numerical solution of Eqs. (1)–(4a), (4b)
is the satisfaction of the mass balance condition for the
incompressible case (i.e. K = ∞ in Eq. (2)). A number
of procedures to solve his problem exist in the finite ele-
ment literature [11,48]. In our approach we use a stabilized
formulation based in the so-called finite calculus procedure
[15,29–31,33,34]. The essence of this method is the solution
of a modified mass balance equation which is written as

1
K

∂p
∂t

− ∂vi

∂xi
−

3∑

i=1

τ
∂q
∂xi

[
∂p
∂xi

+ πi

]
= 0 (5)

where q are weighting functions, τ is a stabilization param-
eter given by [34]

τ =
(

2ρ|v|
h

+ 8µ

3h2

)−1

(6)

In the above, h is a characteristic length of each finite ele-
ment and |v| is the modulus of the velocity vector. In Eq. (5)
πi are auxiliary pressure projection variables chosen so as to
ensure that the second term in Eq. (5) can be interpreted as
weighted sum of the residuals of the momentum equations
and therefore it vanishes for the exact solution. The set of
governing equations is completed by adding the following
constraint equation [32,36]
∫

V

τwi

(
∂p
∂xi

+πi

)
dV =0 i =1, nd (no sum in )i (7)

where wi are arbitrary weighting functions.
The rest of the integral equations are obtained by apply-

ing the standard weighted residual technique to the governing
Eqs. (1)–(3) and (5) and the corresponding boundary condi-
tions [11,22,48].

We interpolate next in the standard finite element fashion
the set of problem variables. For 3-D problems these are the
three velocities vi , the pressure p, the temperature T and the
three pressure gradient projections πi . In our work we use
equal order linear interpolation for all variables over meshes
of 3-noded triangles (in 2-D) and 4-noded tetrahedra (in 3-D).
The resulting set of discretized equations using the standard
Galerkin technique has the following form

Box 1 Basic PFEM algorithm for a Lagrangian continuum

1. LOOP OVER TIME STEPS, t = 1, NTIME Known values
t x̄, t v̄, t p̄, tπ̄ππ , t T̄ , tµ, t f, t q, t C, t V, t M

2. LOOP OVER NUMBER OF ITERATIONS, i = 1, NITER

• Compute nodal velocities by solving Eq. (8)
[

1
!t

M + K
]

t+1v̄i+1 = t+1f + Gt+1p̄i + 1
!t

Mt v̄

• Compute nodal pressures from Eq. (9)
[

1
!t

− LM̄
]

t+1 p̄i+1 = GT t+1v̄i+1 + Qt+1π̄ππ i + 1
!t

M̄t p̄

• Compute nodal pressure gradient projections from Eq. (10)

n+1π̄ππ i+1 = −M̂−1
D

[
QT ] t+1p̄i+1 , M̂D = diag

[
M̂D

]

• Update position of analysis domain nodes:
t+!t x̄i+1 = t xi + t+!t vi+1!t

Define new “cloud” of nodes t+1Ci+1

• Update strain rate and strain values

• Update stress values

Check convergence → NO → Next iteration i → i + 1

↓ YES

Next time step t → t + 1

• Identify new analysis domain boundary: t+1V

• Generate mesh:t+1 M

Go to 1

Momentum

M ˙̄v + Kv̄ − Gp̄ = f (8)

Pressure–velocity relationship

M̄ ˙̄p − Gv̄ − Lp̄ − Qπ̄ππ = 0 (9)

Pressure gradient projection

M̂π̄ππ + QT p̄ = 0 (10)

In Eqs. (8)–(10) ¯(·) denotes nodal variables, ˙̄(·) = ∂
∂t

¯(·).
The different matrices and vectors are given in [22,34,36].

The solution in time of Eqs. (8)–(10) can be performed
using any time integration scheme typical of the updated
Lagrangian FEM [36,47]. A basic algorithm following the
conceptual process described in Sect. 2 is presented in Box 1.

4 Generation of a new mesh

One of the key points for the success of the PFEM is the fast
regeneration of a mesh at every time step on the basis of the
position of the nodes in the space domain. Indeed, any fast
meshing algorithm can be used for this purpose. In our work
the mesh is generated at each time step using the so-called
extended Delaunay tessellation (EDT) presented in [17,19].
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The CPU time required for meshing grows linearly with
the number of nodes. The CPU time for solving the equations
exceeds that required for meshing as the number of nodes
increases. This situation has been found in all the problems
solved with the PFEM. As a general rule for large 3D prob-
lems meshing consumes around 15% of the total CPU time
for each time step, while the solution of the equations (with
typically 3 iterations to reach convergence within a time step)
and the assembling of the system consume approximately 70
and 15% of the CPU time for each time step, respectively.
These figures refer to solutions obtained in a standard single
processor Pentium IV PC for all the computations and prove
that the generation of the mesh has an acceptable cost in
the PFEM. The cost of remeshing is similar to that reported
in [24]. Indeed considerable speed can be gained using par-
allel computation techniques.

5 Identification of boundary surfaces

One of the main tasks in the PFEM is the correct definition of
the boundary domain. Boundary nodes are sometimes explic-
itly identified. In other cases, the total set of nodes is the only
information available and the algorithm must recognize the
boundary nodes.

In our work we use an extended Delaunay partition for
recognizing boundary nodes [19]. Considering that the nodes
follow a variable h(x) distribution, where h(x) is typically
the minimum distance between two nodes. All nodes on an
empty sphere with a radius greater than αh, are considered
as boundary nodes. In practice α is a parameter close to, but
>one. Values of α ranging between 1.3 and 1.5 have been
found to be optimal in all examples analyzed. This criterion
is coincident with the Alpha Shape concept [12].

Once a decision has been made concerning which nodes
are on the boundaries, the boundary surface is defined by all
the polyhedral surfaces (or polygons in 2-D) having all their
nodes on the boundary and belonging to just one polyhedron.

The method described also allows one to identify isolated
fluid particles outside the main fluid domain. These particles
are treated as part of the external boundary where the pressure
is fixed to the atmospheric value. We recall that each particle
is a material point characterized by the density of the solid
or fluid domain to which it belongs. The mass which is lost
when a boundary element is eliminated due to departure of a
node from the main analysis domain is again regained when
the “flying” node falls down and a new boundary element is
created by the Alpha Shape algorithm.

The boundary recognition method is also useful for detect-
ing contact conditions between the fluid domain and a fixed
boundary, as well as between different solids interacting with
each other as detailed in the next section.

We emphasize that the main difference between the PFEM
and the classical FEM is just the remeshing technique and
the identification of the domain boundary at each time step.

6 Treatment of contact conditions in the PFEM

6.1 Contact between the fluid and a fixed boundary

The condition of prescribed velocities at the fixed bound-
aries in the PFEM is applied in strong form to the boundary
nodes. These nodes might belong to fixed external bound-
aries or to moving boundaries linked to the interacting solids.
Contact between the fluid particles and the fixed boundaries
is accounted for by the incompressibility condition which
naturally prevents the fluid nodes to penetrate into the solid
boundaries [32,36].

6.2 Contact between solid–solid interfaces

The contact between two solid interfaces is simply treated by
introducing a layer of contact elements between the two inter-
acting solid interfaces. This layer is automatically created
during the mesh generation step by prescribing a minimum
distance (hc) between two solid boundaries. If the distance
exceeds the minimum value (hc) then the generated ele-
ments are treated as fluid elements. Otherwise the elements
are treated as contact elements where a relationship between
the tangential and normal forces and the corresponding
displacement is introduced (Fig. 2).

This algorithm has proven to be very effective and it allows
to identifying and modeling complex frictional contact con-
ditions between two or more interacting bodies moving in
water in an extremely simple manner.

Fig. 2 Modelling of contact conditions at a solid–solid interface with
the PFEM
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This algorithm can also be used effectively to model
frictional contact conditions between rigid or elastic solids
in structural mechanics applications [7,36].

7 Modeling of bed erosion

Prediction of bed erosion and sediment transport in open
channel flows are important tasks in many areas of river and
environmental engineering. Bed erosion can lead to insta-
bilities of the river basin slopes. It can also undermine the
foundation of bridge piles thereby favouring structural fail-
ure. Modeling of bed erosion is also relevant for predicting
the evolution of surface material dragged in earth dams in
overspill situations. Bed erosion is one of the main causes of
environmental damage in floods.

Bed erosion models are traditionally based on a relation-
ship between the rate of erosion and the shear stress level [25].
In a recent work we have proposed an extension of the PFEM
to model bed erosion [35,36]. The erosion model is based on
the frictional work at the bed surface originated by the shear
stresses in the fluid. The resulting erosion model resembles
Archard law typically used for modeling abrasive wear in
surfaces under frictional contact conditions [1].

The algorithm for modeling the erosion of soil/rock par-
ticles at the fluid bed is the following:

1. Compute at every point of the bed surface the resultant
tangential stress τ induced by the fluid motion. In 3-D
problems τ = (τ 2

s + τt )
2 where τs and τt are the tangen-

tial stresses in the plane defined by the normal direction
n at the bed node. The value of τ for 2-D problems can
be estimated as follows:

τt = µγt with γt = 1
2

∂vt

∂n
= vk

t

2hk
(11)

where vk
t is the modulus of the tangential velocity at the

node k and hk is a prescribed distance along the normal
of the bed node k. Typically hk is of the order of mag-
nitude of the smallest fluid element adjacent to node k
(Fig. 3).

2. Compute the frictional work originated by the tangential
stresses at the bed surface as

W f =
t∫

◦
τtγt dt =

t∫

◦

µ

4

(
vk

t

hk

)2

dt (12)

Eq. (12) is integrated in time as

Fig. 3 Modeling of bed erosion with the PFEM by dragging of bed
material

nW f = n−1W f + τtγt !t (13)

3. The onset of erosion at a bed point occurs when nW f
exceeds a critical threshold value Wc.

4. If nW f > Wc at a bed node, then the node is detached
from the bed region and it is allowed to move with the
fluid flow. As a consequence, the mass of the patch of
bed elements surrounding the bed node vanishes in the
bed domain and it is transferred to the new fluid node.
This mass is subsequently transported with the fluid.

5. Sediment deposition can be modeled by an inverse pro-
cess to that described in the previous step. Hence, a sus-
pended node adjacent to the bed surface with a velocity
below a threshold value is attached to the bed surface.

Figure 3 shows an schematic view of the bed erosion algo-
rithm described.

8 Examples

8.1 Dragging of rocks by a water stream

Predicting the critical speed at which a rock will be dragged
by a water stream is of great importance in many problems
in hydraulic, harbour, civil and environmental engineering.

The PFEM has been successfully applied to the study
of the motion of a 1Tn quasi-spherical rock due to a water
stream. The rock lays on a collection of rocks that are kept
rigid. Frictional conditions between the analyzed rock and the
rest of the rocks have been assumed. Figure 4a shows that a
water stream of 1 m/s is not able to displace the individual
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Fig. 4 Study of the drag of an individual rock of 1Tn under a water
stream at speeds of a water speed of 1 m/s. The individual rock cannot
be dragged by the stream and b water speed of 2 m/s. The individual
rock is dragged by the stream

rock. An increase of the water speed to 2 m/s induces the
motion of the rock as shown in Figure 4b.

8.2 Impact of sea waves on piers and breakwaters

Figures 5 and 6 show the analysis of the effect of breaking
waves on two different sites of a breakwater containing rein-
forced concrete blocks (each one of 4 × 4 m). The figures
correspond to the study of Langosteira harbour in A Coruña,
Spain using PFEM.

8.3 Soil erosion problems

Figure 7 shows the capacity of the PFEM for modelling soil
erosion, sediment transport and material deposition in a river
bed. The soil particles are first detached from the bed surface
under the action of the jet stream. Then they are transported
by the flow and eventually fall down due to gravity forces
into the bed surface at a downstream point.

Figure 8 shows the progressive erosion of the unprotected
part of a breakwater slope in the Langosteira harbour in
A Coruña, Spain. The non protected upper shoulder zone
is progressively eroded under the sea waves.

Figure 9 displays the progressive erosion and dragging of
soil particles in a river bed adjacent to the foot of bridge pile
due to the water stream (water is not shown in the figure).
Note the disclosure of the bridge foundation as the adjacent
soil particles are removed due to erosion.

Other applications of the PFEM to bed erosion problems
can be found in [35,36].

8.4 Falling of a lorry into the sea by sea wave erosion
of the road slope

Figure 10 shows a representative example of the progressive
erosion of a soil mass adjacent to the shore due to sea waves
and the subsequent falling into the sea of a 2-D object repre-
senting the section of a lorry. The object has been modeled
as a rigid solid.

Fig. 5 Breaking waves on breakwater slope containing reinforced concrete blocks. Mesh of 4-noded tetrahedra near the slope
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Fig. 6 Study of breaking waves on the edge of a breakwater structure formed by reinforced concrete blocks

Fig. 7 Erosion, transport and deposition of soil particles at a river bed due to an impacting jet stream

Fig. 8 Erosion of an unprotected shoulder of a breakwater due to sea
waves

This example, although still quite simple and schematic,
shows the possibility of the PFEM for modeling complex
FSSI problems involving soil erosion, free surface waves and
rigid/deformable structures.

8.5 Simulation of landslides

The PFEM is particularly suited for modelling and simulation
of landslides and their effect in the surrounding structures.
Figure 11 shows an schematic 2-D simulation of a landslide
falling on two adjacent constructions. The landslide material
has been modelled as a viscous incompressible fluid.

8.6 The landslide in Lituya Bay

A case of much interest is when the landslide occurs in the
vicinity of a reservoir [43]. The fall of debris material into
the reservoir typically induces large waves that can overtop
the dam originating an unexpected flooding that can cause
severe damage to the constructions and population in the
downstream area.
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Fig. 9 Erosion and dragging of
soil particles in a river bed
adjacent to the foot of a bridge
pile due to a water stream. Water
is not shown

Fig. 10 Erosion of a soil mass due to sea waves and the subsequent falling into the sea of an adjacent lorry

In the example, we present some results of the 3-D analy-
sis of the landslide produced in Lituya Bay (Alaska) on July
9, 1958 (Fig. 12). The landslide was originated by an earth-
quake and movilized 90 millions tons of rocks that fell on
the bay originating a large wave that reached a hight on the
opposed slope of 524 m.

Figure 13 show images of the simulation of the landslide
with PFEM. The sliding mass has been modelled as a quasi-

incompressible continuum with a prescribed shear modulus.
No frictional effect between the sliding mass and the under-
neath soil has been considered. Also the analysis has not
taken into account the erosion and dragging of soil material
induced by the landslide mass during motion.

PFEM results have been compared with observed values
of the maximum water level in the north hill adjacent to
the reservoir. The maximum water level in this hill obtained
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Fig. 11 Landslide falling on
two constructions 2-D
simulation using PFEM

Fig. 12 Lituya Bay landslide. Left geometry for the simulation. Right landslide direction and maximum wave level [13,14]

with PFEM was 551 m. This is 5% higher than the value
of 524 m. observed experimental by [13,14]. The maximum
height location differs in 300 m from the observed value [13,
14]. In the south slope the maximum water height observed
was 208 m, while the PFEM result (not shown here) was
195 m (6% error).

More information on the PFEM solutions of this example
can be found in [38,39].

9 Conclusions

The particle finite element method (PFEM) is a promising
numerical technique for solving fluid–soil–structure interac-
tion (FSSI) problems involving large motion of fluid and solid

particles, surface waves, water splashing, frictional contact
situations between fluid–solid and solid–solid interfaces and
bed erosion, among other complex phenomena. The success
of the PFEM lies in the accurate and efficient solution of the
equations of an incompressible continuum using an updated
Lagrangian formulation and a stabilized finite element
method allowing the use of low order elements with equal
order interpolation for all the variables. Other essential solu-
tion ingredients are the efficient regeneration of the finite
element mesh, the identification of the boundary nodes using
the Alpha-Shape technique and the simple algorithm to treat
frictional contact conditions and erosion/wear at fluid–solid
and solid–solid interfaces via mesh generation. The exam-
ples presented have shown the potential of the PFEM for
solving a wide class of practical FSSI problems in
engineering.
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Fig. 13 Lituya Bay landslide. Evolution of the landslide into the reservoir obtained with the PFEM. Maximum level of generated wave (551 m) in
the north slope
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