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1. Motivation
Problem of interest: inflatable structures exposed 

to wind loads: uLites project

– Light-weight structures

– Fluid-structure interaction
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Characteristics of the problem 
of interest

• Very thin and light fabric PLASTEL 8820 (0.6 mm, 1250 kg/m3), 
E=0,31 GPa), without resistance to compression

• Constant internal pressure: 20 mbar

• “Peculiarities” of the internal fluid are of no interest

• Operating conditions: wind velocity range = 1 m/s up to 20 m/s

pint=20mbar 
=const

t=0.6-1 mm

Internal fluid

External fluid
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• Flow around the structure (“external” flow)

 Navier-Stokes, FEM

• “Internal” fluid=> constant pressure, 

     no continuum mechanics equations

• Light-weight structure=>

Membrane, FEM

• Interaction: strong 2-way coupling, accounting for 
large structural displacements

What must be in the model...
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2. State-of-the-art
• Interface fitting moving mesh approaches: ALE, 

Lagrangian

+Interface exactly defined by the nodes of the mesh

- large motions of the structure=> re-meshing is 
necessary

DEFORMATION
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2. State-of-the-art
• Embedded approaches: Eulerian fluid, Lagrangian 

structure. Fixed fluid mesh

+No restrictions for the structural motion

+Different meshes can be used for both domains

- Necessity to locate the position of the structure within the 
fixed Eulerian mesh

DEFORMATION
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Taking into account the problem of 
interest

• We need to handle problems where large 
deformations are expected

• Of industrial interest: millions DOFs

• Re-meshing is highly undesirable

           

             embedded approach
(also known as “immersed boundary”)
Gerstenberger A. and Wall W. CMAME, 197, 2008
Codina R. and Baiges J. INJME, 80, 2009
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3 Embedded approach
Eulerian fluid and Lagrangian structure 
Solved in a partitioned way
Coupled using an iterative Dirichlet-Neumann algorithm
Stability of the coupling => Interface Laplacian technique

Lagrangian image: intersections of 
Lagrangian boundary with the Eulerian mesh

Lagrangian structure:
superimposed over Eulerian mesh
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Lagrangian image: close-up

Courtesy: A. Larese

Quality of the Lagrangian image depends upon the resolution of the Eulerian mesh
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Embedded approach

Lagrangian domain: 
structure

Eulerian domain: fluid 
with the embedded 
Lagrangian image
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Parts of the Eulerian domain
• Lagrangian image splits the Eulerian domain into: real and 

fictitious parts. We also distinguish the “interface” elements

Real fluid

Interface elements

“Fictitious internal” fluid
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Interface Dirichlet b.c.
• How to impose structural motion within an Eulerian mesh: 

velocity Dirichlet b.c. at the inteface

Real fluid: Navier-Stokes

Interface: Dirichlet

Fictitious fluid: 
only use the 
nodes of the 
interface 
elements for the 
b.c. imposition

Codina R. and Baiges J. INJME, 80, 2009
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• Interface Dirichlet b.c. explicit treatment

Ryzhakov P., Computers and Fluids, 2014, submitted

Interface Dirichlet b.c.
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Neumann b.c.

• Project the pressure from the interface elements of the 
Eulerian domain onto the boundary of the Lagrangian domain

• Add the corresponding Neumann term to the momentum

equation of the structure: 

A

B C

i
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Stabilization of the coupling

• In order to improve the coupling 
convergence (crucial when 
incompressible FSI with light-weight 
structure is considered), an interface 
Laplacian technique is used

Idelsohn et al., FSI problems with strong added-mass effect, INJME, 38, 2009
Rossi R et al., Met. Num. para Calculo y Diseño en Ing. 27, 2011
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Overall strategy

Step 1: Solve structure

Step 2: Find Lagrangian image within the Eulerian mesh

Step 3: Represent the velocity of the structure within the Eulerian  
mesh: interface Dirichlet b.c. using the fictitious nodes of the 
interface elements

Step 4: Solve the Eulerian fluid (fictitious elements are switched off)

Step 5: Map the fluid pressure to the surface of the structure, apply 
 interface Neumann b.c.

Step 6: Go To next time step
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Example 1: FP7 project uLites

pint=20mbar 
=const

t=0.6 mm

Wind v=10 m/s
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Eulerian domain + Lagrangian image
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Lagrangian domain
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Example 1: quantitative results

Membrane under 
internal pressure
and self-weight

Membrane 
deformed due to 
external flow

Max. disp. = 0.62 m
at wind velocity of 
v=10 m/s
Span of the 
structure: 20 m
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Practical considerations for the 
FSI with membranes

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

DISPLACEMENT 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

VELOCITY

Time, s

Time, s

t1_st t2_st

t1_st: t<t1_st 

stabilization time of the 
structure: when the “static” 
solution due to the internal 
pressure and the self-weight is 
obtained. FSI coupling is off

t2_st: t1_st<t<t2_st stabilization 
time of the structure due to the 
fluid pressure. Only 1-way 
coupling is on (membrane 
velocity is “assumed” to be zero 
in the interface Dirichlet b.c.

t>t2_st: iterative two way 
coupling

Also: t<t1_st fluid is solved with a 
Stokes solver, to “start” the 
coupling with a “good” solution
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Example 2
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Summary and conclusions

• Embedded, partitioned

• Coupling: Dirichlet-Neumann+interface 
Laplacian technique

• Arbitrary meshes, arbitrarily structural 
deformations can be handled

• The proposed explicit coupling using 
fictitious nodes works only when the 
structure is “closed”, i.e. the fluid inside 
the structure does not need to be solved
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Future work

• Realistic wind profiles

• Multi-compartment structures (real tents)

• Testing and comparison with experiments
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