
Project: An isogeometric finite cell method for FSI in biomechanics

Abstract

During the past two decades,computational biomechanics has become more and more
popular and attracted the attention of the researchers in both medicine and engineering
communities. Modelling and simulation of complex biological processes are essential for
a better understanding and improved clinical treatments of human diseases.

Biological structures data are usually obtained through image-based techniques such
as CT-scan or MRI, and recently with the advent of computers, complex biological
structures can also be described by tools of Computational Geometry. Traditionally,
Finite Element Methods (FEM) have been used to perform analysis. However, the
preanalysis time in FEM can be very high for complex shape geometry, up to 80% of
the total analysis time [1]. Hence, for complex bio-systems, there is a need of reducing
the time of this preanalysis stage. Among advanced numerical methods, Isogeometric
analysis (IGA), where splines are used as basis functions, and immersed methods emerge
as the most potential candidates.

IGA, introduced by Hughes and co-workers in [2], is a framework in which the gap
between Computer Aided Design (CAD) and FEA is reduced. This is achieved in IGA
by employing the same basis functions to describe both the geometry of the domain of
interest and the field variables. While the standard FEM uses basis functions based on
Lagrange polynomials, the isogeometric approach utilizes more general basis functions
such as B-splines and NURBS that are commonly used in CAD geometries. The exact
geometry is therefore maintained at the coarsest level of discretization and remeshing is
seamlessly performed on this coarse level without any further communication with CAD
geometries. Furthermore, NURBS provide a flexible way to make refinement, derefine-
ment, and degree elevation They allow to achieve easily the smoothness of arbitrary
continuity in comparison with the C0 continuity provided by the traditional FEM

Immersed boundary methods (some other names are embedded domain methods,
fictitious domain methods), on the other hand, tackle the mesh burden issue from a
different perspective. The main idea is extending the physical domain of interest with
complex shape boundaries into a larger embedding domain of simple/regular geometry
where a mesh is easily built. The Finite cell method (FCM) introduced recently by Rank
and co-workers in [3] also belongs to this class. In FCM, a material parameter is used
to identify the inside and outside of the physical domain, while an adaptive integration
technique is employed to capture the geometry of the boundary.

By combining the two above ideas, we try to get the advantages of both worlds,
deriving from the higher regularity of IGA basis functions, and from the geometrical
flexibility of immersed boundary methods. Therefore, this approach has a great potential
of applications for solving fluid-structure interaction (FSI) problems in biomechanics,
which is the aim of the project. Some related researches on structural biomechanics can
be found in [4, 5].
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Figures from on-going work

Figure 1: Finite cell method discretization 4x4 cells along with Gauss points distribu-
tion; Red points: inside physical domain, Blue points: outside physical domain; here
refinement depth = 4
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Mixed Bspline FCM − TaylorHood − QuarterCylinder problem
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Figure 2: Finite cell method using B-spline TaylorHood elements for nearly incompress-
ible elasticity: (Top) solution with 8x8 cells and orderu = 3, orderp = 2 displacement x
and stress σx; (bottom) optimal convergences of the method
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