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Crack initiation in crystalline materials often occurs at the boundaries between individual crystals.

An important cause for this failure mechanism is that grain boundaries act as weak barriers for plastic

slip. As a consequence, dislocations, which are the carriers of plastic slip, may pile-up against them, thus

causing elevated local stresses. In order to properly model such stress fields, recent approaches have been

developed using a higher-order crystal plasticity model which accounts for the presence and transport

of dislocations in terms of dislocation densities [3, 4]. The macroscopic continuum description of the

interactions of these dislocations can be expressed in terms of densities of dislocations, as illustrated in

[2, 5], as a set of coupled non-linear partial partial differential equations dominated by advection. This

latter feature introduces several numerical difficulties compromising the successful use of such models.

In order to overcome the difficulties associated with advection dominated problems, several stabilization

techniques have been developed and are available in the literature [1, 6]. The vast majority of them

developed in the context of the finite element methods have as final goal the numerical approximation of

the Navier-Stokes or other sets of equations of interest for the fluid dynamics community. However, some

important differences between the fluids case and the dislocation transport equations exist, such as the

type of boundary conditions, the presence of the non-linearity or the nature of the coupling between the

principal variables. These aspects make some of the most popular and classical stabilization techniques

unsuited in the present situation if applied in a straightforward manner.

For this reason, in the first part of this project, we have developed a stabilization technique which is

able to deal with the problem at hand. As a first result we show in figures 1 and 2 the distribution of

densities of positive and negative dislocations for a one-dimensional benchmark problem. The two figures

correspond to the case when a one-dimensional layer is subjected to shear stresses of σ = 0.1 GPa for

Figure 1, and σ = 1.0 GPa for Figure 2. When increasing σ, the problem becomes more dominated by

advection, causing the appearance of boundary layers which in turn harm the stability of the numerical

scheme. This causes the appearance of oscillations if classical finite elements are used on a too coarse

mesh, as can be observed on the left part of the figures. The right plots correspond to the case for which

our stabilization technique has been applied. It can be observed that the numerical approximations
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(a) Classical (b) Stabilized

Figure 1: Densities of dislocations with σ = 0.1 GPa

(a) Classical (b) Stabilized

Figure 2: Densities of dislocations with σ = 1.0 GPa

obtained are non-negative, smooth and free of any oscillation. The same mesh has been used in all cases.

This allows envisioning the use of the developed technique for the simulation of crystalline materials with

a tractable computational effort.

References

[1] Codina R. 1998. Comparison of some finite element methods for solving the diffusion-convection-reaction
equation, Computer Methods in Applied Mechanics and Engineering, 156 185-210.

[2] Dogge M., Peerlings R. and Geers M. 2014. Continuum modeling of dislocations transport in single slip:
Beyond GND interactions, Submitted.

[3] Groma I. 1997. Link between the microscopic and mesoscopic length-scale description of the collective behavior
of dislocations, Physical Review B, 56 5807-5813.

[4] Groma I., Csikor F.F. and Zaiser M. 2003. Spatial correlations and higher-gradient terms in a continuum
description of dislocation dynamics, Acta Materialia, 51 1271-1281.

[5] Hirschberger C., Peerlings R., Brekelmans W. and Geers M. 2011. On the role of dislocation conservation in
single-slip crystal plasticity, Modelling and simulation in Materials Science and Engineering, 19 085002.

[6] John V. and Schmeyer E. 2008. Finite element methods for time-dependent convectiondiffusionreaction equa-
tions with small diffusion, Computer Methods in Applied Mechanics and Engineering, 198 475-494.

2


