Embedded approach for the FSI involving inflatable lightweight structures

P. Ryzhakov, R. Rossi, A. Larese

Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)

Outline

- 1. Motivation
- 2. Intro & State-of-the art
- 3. Embedded approach
 - Formulation
 - Algorithm
- 4. Examples
 - "Practical" observations
- 5. Conclusions & Future work

1. Motivation

Problem of interest: **inflatable structures** exposed to wind loads: **uLites project**

-Light-weight structures

-Fluid-structure interaction

CIMNE[®]

Characteristics of the problem of interest

- Very thin and light fabric PLASTEL 8820 (0.6 mm, 1250 kg/m3), E=0,31 GPa), without resistance to compression
- Constant internal pressure: 20 mbar
- "Peculiarities" of the internal fluid are of no interest
- Operating conditions: wind velocity range = 1 m/s up to 20 m/s

What must be in the model...

- Flow around the structure ("external" flow)
 Navier-Stokes, FEM
- "Internal" fluid=> constant pressure, no continuum mechanics equations
- Light-weight structure=>
 Membrane, FEM
- Interaction: strong 2-way coupling, accounting for large structural displacements

CIMNE[®]

2. State-of-the-art

- Interface fitting <u>moving mesh</u> approaches: ALE, Lagrangian
 - +Interface exactly defined by the nodes of the mesh
 - large motions of the structure=> re-meshing is necessary

2. State-of-the-art

• Embedded approaches: **Eulerian** fluid, **Lagrangian** structure. <u>Fixed fluid mesh</u>

+No restrictions for the structural motion

- +Different meshes can be used for both domains
- Necessity to locate the position of the structure within the fixed Eulerian mesh

Taking into account the problem of interest

- We need to handle problems where large deformations are expected
- Of industrial interest: millions DOFs
- Re-meshing is highly undesirable

embedded approach

(also known as "immersed boundary")

Gerstenberger A. and Wall W. *CMAME*, 197, 2008 Codina R. and Baiges J. *INJME*, 80, 2009

WCCM2014 - Barcelona

3 Embedded approach

- Eulerian fluid and Lagrangian structure
- Solved in a partitioned way
- Coupled using an iterative Dirichlet-Neumann algorithm
- Stability of the coupling => Interface Laplacian technique

Lagrangian structure: superimposed over Eulerian mesh

Lagrangian image: intersections of Lagrangian boundary with the Eulerian mesh

WCCM2014 - Barcelona

Pavel Ryzhakov

Lagrangian image: close-up

Quality of the Lagrangian image depends upon the resolution of the Eulerian mesh

WCCM2014 - Barcelona

Pavel Ryzhakov

International Center for Numerical Methods in Engineering

Embedded approach

Eulerian domain: fluid with the embedded Lagrangian image

Lagrangian domain: structure

CIMNE[®]

Parts of the Eulerian domain

 Lagrangian image splits the Eulerian domain into: real and fictitious parts. We also distinguish the "interface" elements

CIMNE[®]

Interface Dirichlet b.c.

• How to impose structural motion within an Eulerian mesh: velocity Dirichlet b.c. at the inteface

Codina R. and Baiges J. *INJME*, 80, 2009

Interface Dirichlet b.c.

• Interface Dirichlet b.c. explicit treatment

Ryzhakov P., Computers and Fluids, 2014, submitted

WCCM2014 – Barcelona

Pavel Ryzhakov

International Center for Numerical Methods in Engineering

Neumann b.c.

- Project the pressure from the interface elements of the Eulerian domain onto the boundary of the Lagrangian domain
- Add the corresponding Neumann term to the momentum equation of the structure: $\mathbf{F}_N = \int_{\Gamma_L} \mathbf{N} p_E \cdot \mathbf{n} d\Gamma$

Stabilization of the coupling

 In order to improve the coupling convergence (crucial when incompressible FSI with light-weight structure is considered), an interface Laplacian technique is used

Idelsohn et al., FSI problems with strong added-mass effect, *INJME*, **38**, 2009 Rossi R et al., *Met. Num. para Calculo y Diseño* en Ing. **27**, 2011

WCCM2014 - Barcelona

Pavel Ryzhakov

International Center for Numerical Methods in Engineering

Overall strategy

Step 1: Solve structure

Step 2: Find Lagrangian image within the Eulerian mesh

"Step 3: Represent the velocity of the structure within the Eulerian mesh: interface Dirichlet b.c. using the fictitious nodes of the interface elements

Step 4: Solve the Eulerian fluid (fictitious elements are switched off)

Step 5: Map the fluid pressure to the surface of the structure, apply interface Neumann b.c.

Step 6: Go To next time step

Example 1: FP7 project uLites

Eulerian domain + Lagrangian image

Lagrangian domain

Example 1: quantitative results

Membrane under internal pressure and self-weight

Membrane deformed due to external flow

Max. disp. = 0.62 m at wind velocity of v=10 m/s Span of the structure: 20 m

Practical considerations for the FSI with membranes

t1_st: t<t1_st stabilization time of the structure: when the "static" solution due to the internal pressure and the self-weight is obtained. FSI coupling is off

t2_st: t1_st<t<t2_st stabilization time of the structure due to the fluid pressure. Only 1-way coupling is on (membrane velocity is "assumed" to be zero in the interface Dirichlet b.c.

t>t2_st: iterative two way coupling

Also: t<t1_st fluid is solved with a Stokes solver, to "start" the coupling with a "good" solution WCCM2014 – Barcelona Par

CIMNE[®]

Example 2

CIMNE

Summary and conclusions

- Embedded, partitioned
- Coupling: Dirichlet-Neumann+interface Laplacian technique
- Arbitrary meshes, arbitrarily structural deformations can be handled
- The proposed explicit coupling using fictitious nodes works only when the structure is "closed", i.e. the fluid inside the structure does not need to be solved

Future work

Realistic wind profiles

• Multi-compartment structures (real tents)

Testing and comparison with experiments

Acknowledgements

uLites: Ultra-lightweight structures with integrated photovoltaic solar cells: design, analysis, testing and application to an emergency shelter prototype

FP7-SME-2012 GA-314891

