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1.1 Dissipation approach for constitutive modelling

Ch.1. Thermodynamical foundations of 
constitutive modelling



 Power,           , is the work done per unit of time.

 In some cases, the power is an exact differential of a field, which, 
then is termed energy        :

 It will be assumed that the continuous medium obtains power from 
the exterior through:
 Mechanical Power: the work performed by the mechanical actions 

(body and surface forces) acting on the medium.
 Thermal Power: the heat entering the medium.

Power

( )W t

( ) ( )d t
W t

dt
=


( )t



 The external mechanical power is the work done by the body 
forces and surface forces per unit of time.
 In spatial form it is defined as:
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Theorem of the expended mechanical
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REMARK
The stress power is the mechanical power entering the system which is not spent 
in changing the kinetic energy. It can be interpreted as the work done, per unit of 
time, by the stresses in the deformation process of the medium.
A rigid solid will have zero stress power.



 The external heat power is the incoming heat in the continuum medium 
per unit of time.

 The incoming heat can be due to:
 Non-convective heat transfer across the 

body surface (characterized by            )

 Internal heat sources (characterized by           )
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 The external heat power is the incoming heat in the continuum 
medium per unit of time.
 It is defined as:

Where:
is the heat flux per unit of spatial surface area.
is an internal heat source rate per unit of mass.
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 The total power entering the continuous medium is:

Total Incoming Power 
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 Stored mechanical power: is that part of the incoming 
mechanical power that can be eventually returned by the body:

 Mechanical dissipation: is that part of the incoming mechanical 
power that is not stored (eventually can be lost)

Stored Mechanical Power
Mechanical Dissipation 
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Second principle of the thermodynamics 
Dissipation
 Mechanical dissipation

 Thermal dissipation :

Global (integral) form of the second principle of thermodynamics
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"Localization" process
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 The internal energy per unit of mass (specific internal energy) is :

 Taking the material time derivative, 

and introducing it into the Dissipation inequality

Alternative forms of the Dissipation

Clausius-Planck Inequality 
in terms of the

specific internal energy
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REMARK
For infinitessimal deformation,          , 
the Clausius-Planck inequality 
becomes:
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Dissipation in a continuum medium

 The dissipation of a continuum medium is defined as:

corresponding to the Clausius-Planck Inequality.

 In terms of the Helmholtz free energy, dissipation may be written as:

 Hypotheses assumed
 Infinitesimal deformation:

Hence, the dissipation may be written as: 
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1.2 A thermodynamic framework for constitutive 
modeling

Ch.1. Thermodynamical foundations of 
constitutive modelling



Sets of thermo-mechanical variables 

In a thermo-mechanical problem we will consider the set of  all the 
variables of the problem:

which will be  classified into:

 Free variables:

which are physically observable variables, whose evolution along 
time is unrestricted 
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 Internal/Hidden variables: 

are non-observable variables. Their evolution is limited along time in terms 
of specific evolution equations defined as:  

which account for micro-structural mechanisms.

 Dependent variables:

are the remaining of the variables of the problem (depending on the          
previous ones):
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Example:
 Problem variables:

 Free variables:

 Internal/Hidden variable: 

 Dependent variables:
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 1) Definition of the  free variables of the problem

 2) Choice of the internal variables of the problem

 3) Definition of  the corresponding evolution equations,

 4) Postulate a specific form of the free energy:

Elements of a constitutive model

provides the constitutive equation
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through the dissispation inequality
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Example: Thermo-elastic material

 Linear relation stresses-strains

 1D:

 3D:

Isotropic elastic material: 
being a second order tensor,  and      and

the  Lamé constants.
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Tensor Notation (reminder)

 Open product
 Of two first-order tensors:

 Between two second order tensor:

 Identity tensors
 First order identity tensor

 Second order tensor identity tensor
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REMARK
Einstein notation (summation of 
repeated indices) is considered



 Adding the thermal effects (thermoelasticity)

Thermo-elastic material (reminder)

Thermal property

Thermal expansion coefficient
1 2

β
να

β

=→
−= →

Linear thermo-elastic material
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Coleman’s Method

 Theorem

 Proof:
 Taking
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Elastic Material formulation

 Variable sets definition
 Free variables:

 Internal variables:

 Dependent:

 Potential
 Helmholtz free energy:

 Dissipation 
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Thermo-elastic Material formulation

 Variable sets definition
 Free variables:
 Internal variables:

 Dependent:

 Potential definition
 Helmholtz free energy:

Dissipation
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 Using the Coleman’s method:

and differentiating the Helmholtz free energy:
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Thermo-elastic Material formulation
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