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- 1.1 Dissipation approach for constitutive modelling

Ch.1. Thermodynamical foundations of

constitutive modelling



Power

Power, W(t) , is the work done per unit of time.

In some cases, the power is an exact differential of a field, which,
then is termed energy g’(t):
d&(t
W(t):—( )
at
It will be assumed that the continuous medium obtains power from

the exterior through:

Mechanical Power: the work performed by the mechanical actions
(body and surface forces) acting on the medium.

Thermal Power: the heat entering the medium.



External Mechanical Power
_—

o1 The external mechanical power is the work done by the body
forces and surface forces per unit of time.

® In spatial form it is defined as:

I%(t):jvpb-VdV+jth-vdS
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Theorem of the expended mechanical

power
—
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Kinetic energy K Stress power s

-

external mechanical power

entering the medium | |

P ()= A0+,

The stress power is the mechanical power entering the system which is not spent
in changing the kinetic energy. It can be interpreted as the work done, per unit of
time, by the stresses in the deformation process of the medium.

A rigid solid will have zero stress power.



External Heat Power

The external heat power is the incoming heat in the continuum medium
per unit of time. A ¢ &

The incoming heat can be due to:

Non-convective heat transfer across the e,

body surface (characterized by q(x,t) )
—_—

heat conduction €

flux vector
Xy

non convective (conduction) incoming heat J“l s '
unit of time s
Internal heat sources (characterized by r(x,t) )
X3 4 —_—

heat source

field

é; heat generated by internal sources _[ Yy

unit of time

\Y



External Heat Power
-

The external heat power is the incoming heat in the continuum
medium per unit of time.

m It is defined as:

Where:
q(x,t) is the heat flux per unit of spatial surface area.

r(x,'[) is an internal heat source rate per unit of mass.



Total Incoming Power
-

o1 The total power entering the continuous medium is:

P, (t) Q. (t)

W, =P +Q. ——W_C)Q %r av[q: ndS\>

—

kinetic energy  stress power In’rerndl heq'r External heat
\ J |\ source | | conduction




Stored Mechanical Power
Mechanical Dissipation

Stored mechanical power: is that part of the incoming
mechanical power that can be eventually returned by the body:

d 1 d dC dV
P =— j —pvidV +—  |ppdv =—+

da )2 a dt

t= N J
Kinetic energy K Stored mechanical
energy V
Density of free energy  Stored mechancical energy
PV (x,1) = — .
(Helmholtz energy) unit of volume

Mechanical dissipation: is that part of the incoming mechanical
power that is not stored (eventually can be Ios’r)
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Second principle of the thermodynamics

Dissipation

o Mechanical dissipation

di d}’
+

1 Thermal dissipation :

Dy =—| P NV + [ :d AV
V \Y

o

/‘_—\ .
B \ D, =-— J‘p 0 dV S(x,t) — Density of enthropy
__,} 0(x,t) — Absolute temperature (>0)
D=D._ +D,, = —j[p(\p+se)+a d]dV =0 VAV cV

/

Global (integral) form of the second principle of thermodynamics




Second principle of the thermodynamics

Dissipation
o

t(x, ) Dissipation

2D(x,t) — Density of dissipation=—
unit of volume

D:jpdV=j[—p(\i;+sé)+a:d]dvzo VAV cV
~ V=V Vv Vv

A

|

) Ap "Localization" process

D(x,))=—p(y+)+0:d 20 Vx Vi

Local (differential) form of the second principle of the thermodynamics




Alternative forms of the Dissipation

The internal energy per unit of mass (specific internal energy) is :

u(x,t) :=y+sf—-

(U(X, 1) — Total stored energy
Y(X,t) — Mechanical stored stored energy

Taking the material time d

| SO(X,1) — Thermal stored stored energy

erivative,

U=\+S0+%9 =)  y+s9=0-65

and introducing-it-into the Dissipation inequality

D=-p(y+s6)+0:d20

=) D=—p(Uu-6%)+0:d>0

For infinitessimal deformation, d=¢ ,

the Clausius-Planck inequality
becomes: —p(y+s0)+06:£€=0



Dissipation in a continuum medium

The dissipation of a continuum medium is defined as:
D=—p(U-68)+0:d=0
corresponding to the Clausius-Planck Inequality.

In terms of the Helmholtz free energy, dissipation may be written as:

D=—p(\y+s9)+0:d20

d(x,t)=¢(x,t)
p(x,t) = p,

Infinitesimal deformation:

Hypotheses assumed {

Hence, the dissipation may be written as:

D=—p,(y+s0)+0:£20



1.2 A thermodynamic framework for constitutive
modeling

Ch.1. Thermodynamical foundations of

constitutive modelling



Sets of thermo-mechanical variables

In a thermo-mechanical problem we will consider the set of all the
variables of the problem:

vV :={V1,V2,...,an} v,(x,t) ie{L,2,..,n }

which will be classified into:

Free variables:

Fo={2,2,...,2, } At ie{l,2,..,n.}

ceo N

which are physically observable variables, whose evolution along
time is unrestricted

A (x,1)

Zi(x,t) = o

— any



Sets of thermo-mechanical variables

Internal/Hidden variables:

J = {al,az,...,anl} o (x,t) ie{l,2,...,n,}

are non-observable variables. Their evolution is limited along time in terms
of specific evolution equations defined as:

o = do(x,1) _ Gi(h(x,t),a(x,t)) ie {1,2,..n}

| ot ,
instantaneous
values (at time t)

which account for micro-structural mechanisms.

Dependent variables: |} = {dl,dz,,,,,an} d (x,t) ie{l,2,..,n,}

are the remaining of the variables of the problem (depending on the

previous ones): d =ya) —>d =¢0,air)ic{l2,. .n,}

V=FulubD FAI=FNnD=INnD=Y



Example:

Problem variables:  V:={p 6,e,u,p,5,6,a]

Free variables: F:={p,¢e} Vp,Vé

Internal/Hidden variable: 7 = {OK} o=y(p,E )
Dependent variables: )= {,é,o,,é,u, l//,S,H,ﬂ}

v =y(p.&a)
V] = y(p,e,&’,p,é,d(p,eaa)) - ﬂpje,a’p’é}

\f— .
not depending on
the internal variable
evolution, o

o =0(p,&q)

o=¢(p.&apE alpeEa) )=0(p,Ea,p,E)

—
provided by the
evolution equation




Elements of a constitutive model

1) Definition of the free variables of the problem

Fo={A, 2.4 }
—

2) Choice of the internal variables of the problem

I = {al,az,...,anl}

D'

o

3) Definition of the corresponding evolution equations,

o, =o,(A,a) iedl,2,.n}

4) Postulate a specific form of the free energy:

provides the constitutive equation

=vy(Ad,a,t) > :
V=l ) {through the dissispation inequality



Example: Thermo-elastic material
—

Linear elastic material

1 Linear relation stresses-strains

1D: —‘E—:> c=Ee

3D: o0 =C:¢g or O = Cijklekl

Isotropic elastic material: C ikl — A1 ®1+2ul

being C ijki @ second order tensor, and A and 2

the Lamé constants.

6 = Atr(e)+ 2 ue
6, = Agy 0, +2use; i,je{1,2,3}




Tensor Notation (reminder)

Open product
Of two first-order tensors: [a ® b]i,j =aibj

Between two second order tensor: [A®B], =A
ij j

BkI
|dentity tensors

First order identity tensor
1 1=
[l]ij = 5ij = {

0 1# ]
Second order tensor identity tensor

I, je{1,2,3}

1 .
[V ], :5[5”(5“ +0,0,1 i, .k le{l,2,3}

REMARK
Einstein notation (summation of
repeated indices) is considered



Thermo-elastic material (reminder)
N

Linear thermo-elastic material

1 Adding the thermal effects (thermoelasticity)

6 = Atr(e)+2ue— fAO1
G, = Ag 0, +2ue; —(BAB)S, i, je {1,2,3}

,5' =—> Thermal property
1-2v

o = > Thermal expansion coefficient




Coleman’s Method
-

1 Theorem

DXy, % ¥) = F (X% Y)X+ g% Y)Y 20 vx,y:{f(x’y)zo
’ - g(xy)=0

1 Proof:
Taking y=0 |:> D=t(Xy)x20 VX [ 1

If f(X,Y)<0 taking x>0 m==) 2=F(XY)X<0 \o7possELE

If f(X,y)>0 taking %<0 I:{>D:f(x,y)xio_ 4
f(xy)=0

Taking x=0 ) 2=g(XY)y=0 Vy r )
If g(X,y)<0 taking y>0 m==) ng(xa)’))":()_ NOT POSSIBLE
Iif 9(X,Y)>0 taking Y<0 =) 2 =g(x y)y<0 4L

9(%y)=0




Elastic Material formulation

1 Variable sets definition
Free variables: F .= {8}

Internal variables: 7 .={J} — No evolution equation

Dependent: D ={c,y} ___)

o Potential pW(g)=78:C:¢

Helmholtz free energy:

=1 Dissipation

IPYE) _ (..
oe '

Constituve ecfu(ation o=2(¢)

=

Isothermal case

D=-p,(y+ s6)+c:£20 —> P=(0-

rc(e) —> 6=

,001//(8) — /Ool/] =

dp, Y (€)
o€

)

D

0

f(€)

JIo(€) .

Jp,W(€)

e . €

):£20 Ve f(g)=0



Thermo-elastic Material formulation

]
1 Variable sets definition
Free variables: F = {8, 9}
Internal variables: 7 = {@} (
_J0(&,0) .,  90(E0)

Dependent: D={o,y} - o€ 06
p I,.V= apOW(e: 9) ’é+ apOW(e: 9) . 0
Y e 06

-1 Potential definition
Helmholtz free energy: p,W(e,0)=1e:C:e-B(0-6,)1

;\/__/

A6
Dissipation D:—po(\j;+sé)+o:é20




Thermo-elastic Material formulation

1 Using the Coleman’s method:

IYE,0) _

o€
IYE,0) _ f‘>

€,0)=p,S+
g( ) IOO IOO ae

f(e,0)=6-p,

_9p, (e, 0)
e fle,0)=0_ _
o V&0 | g(e,6)=0
00

and differentiating the Helmholtz free energy:

P (,0)=1e:Cie-B(0-6,) Lig —

Constitutive

7/'9—’ Tr () equations
oy (o-— aw(e,é’)_(c. _ AA6I
=1g:C+1C:e—(BAON=C:e—(BAON ||FTPo— 5o =%
o Ca | 0w, 1
< l/jg,
S=-— = Tr
T w0 o
0
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