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Abstract

The evolution of biomechanics and the huge growth of computational capac-
ities in the past decades have enabled a wide application of computational
mechanics to the analysis of human physiology. Amongst these problems,
a very important and complex one is human phonation. Physically, voice
involves complex interactions between laminar and turbulent airflow; vi-
brating, deforming, colliding elastic solids; and sound waves resonating in
a contorting duct. So far, these mechanisms have had to be studied one
at a time, using disparate tools and often gross approximations, for each of
the subproblems. Traditionally, most of the works devoted to human voice
focused on its synthetization for applications related to robotics, communi-
cation and security, but these advances have allowed the simulation of the
physical phenomena behind the generation and propagation of human voice
as a whole, which together with the availability of more precise monitoring
and imaging techniques, can lead to very powerful tools for medical research
in computer assisted surgery, but also for more everyday aspects of our life
such as human sciences, pedagogy, linguistics and arts.

The solution of the human phonation problem applying computational
mechanics is covered by several research branches, such as Computational
Fluid Dynamics (CFD), biomechanics or acoustics among others. In the
present thesis, the problem is approached from the Computational Aeroa-
coustics (CAA) point of view and the first main objective consists in devel-
oping numerical methods of general application that can take part in the
solution of any scenario related to human phonation with affordable compu-
tational cost. In this sense, only the compressible Navier-Stokes equations
can describe all flow and acoustic scales without any modeling, which is
known as Direct Noise Calculation (DNC), but its computational cost is
usually unaffordable. Even in the case of Large Eddy Simulations (LES),
where the spatial discretization is coarse and the small scales are modeled,
the cost can still be a handicap due to the complexity of the problem. This
drawback worsens in the low Mach regime due to the large disparity be-
tween flow velocity and sound speed, which leads to an ill-conditioning of
the system of equations to be solved, specially for conservative schemes. At
this point, it makes sense to move towards the incompressible flow approx-



imation, bearing in mind the low velocities expected in human phonation
problems.

Incompressible flows do not yield any acoustics, for which a second prob-
lem containing the propagation of the sound sources needs to be modeled
and solved. These are the so called hybrid methods, which allow a better
conditioning of the problem by segregating flow and acoustic scales. The
first and most popular formulation within this family, Lighthill’s analogy,
has been taken as starting point for the present work, but its restriction to
free-field scenarios has motivated the extension of the method to arbitrary
geometries and non-uniform flows. The first development in this direction
corresponds to a splitting of Lighthill’s analogy into a quadrupolar and a
dipolar component, which does not change the original problem but allows
assessing the contribution of solid boundaries to the generation of sound.
The second step consists in the development of a stabilized Finite Element
(FEM) formulation for the Acoustic Perturbation Equations (APE’s), which
accounts for non-uniform mean flows and performs a complete filtering of
the acoustic scales. The final step assumes the compressible approach but
omitting the energy equation and thus considering both flow and acoustic
propagation as isentropic. In this case the solver is unified and hence com-
patible boundary conditions for flow and acoustics need to be implemented.
For this purpose a method combining weakly imposed essential and non-
radiating boundary conditions has been developed. Finally, the numerical
framework has been extended to dynamic phonation cases, such as sylla-
bles. The biomechanical aspects of the problem have not been taken into
account, but the hypothetical deformation of the domain has been included
in the formulations by expressing them in an Arbitrary Lagrangian Eulerian
(ALE) frame of reference and by developing a novel remeshing strategy with
conservative interpolation between meshes. In the present case, the syllable
/sa/ has been simulated in a 2D simplified vocal tract geometry with both
Lighthill’s analogy and the isentropic compressible approach.

In the last chapter a challenging case in human phonation has been chosen
for testing the developed computational framework: the fricative phoneme
/s/. Unlike vowels, which are voiced sounds defined by a few characteristic
frequencies called formants, fricatives cannot be simulated as the propaga-
tion of a known analytic solution (glottal pulse), because the sound sources
correspond to a wide range of turbulent scales. Therefore, a CFD calcu-
lation is mandatory in order to capture all the relevant eddies behind the
generation of sound. This problem is solved by using an LES formulation
together with the Variational Multiscale (VMS) stabilization method as tur-
bulence model, which is supplemented with several acoustic formulations in
the case of the incompressible approach. The analysis of the results has fo-
cused on the numerical representation of turbulence and the acoustic signal



at the far-field, which has been compared against experimental recordings
from an equivalent mechanical replica. Finally the role of the upper incisors
in the generation of the fricative sound has been evaluated. All simulations
have been run with the parallel multiphysics FEM code FEMUSS, based on
Fortran Object-Oriented-Programming (OOP) and the OpenMPI parallel
library.
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Chapter 1

Introduction

1.1 Framework

This thesis was originally planned for developing a series of numerical mod-
els within Computational Aeroacoustics (CAA) using incompressible flow,
the so called hybrid methods, which segregate the acoustic problem from
the Computational Fluid Dynamics (CFD) calculation. The main object of
study was the generation of human unvoiced sounds from a turbulent flow,
seen as an extension of the CFD solver implemented in the multiphysics
code FEMUSS and widely tested in [134, 54, 52]. However, the scope of the
work was progressively extended to a more general computational platform
that could establish a solid base for more complex human phonation simula-
tions. In this sense, apart from the original scope of the work, a formulation
based on compressible flow has been derived and the computational tools
for working with moving domains have also been developed.

To date, the numerical production of human voice using three dimen-
sional vocal tract geometries has mainly focused on the generation of static
vowel sounds. Simplified axisymmetric vocal tracts have lead to good qual-
ity synthesized vowels [see e.g., 153, 146, 6]. Yet the advantage of numerical
methods, and in particular of the finite element method (FEM), is that one
can directly deal with realistic vocal tracts obtained from magnetic resonance
imaging (MRI) or computer tomography (CT) data, in its full complexity.
This has offered the possibility of analyzing several aspects of vocal tract
acoustics influencing the production of vowels, such as the role played by lat-
eral cavities, like the valleculae and piriform fossae [see e.g., 149, 154, 148, 5],
or the effects of lips [4], head geometry [8] and vocal tract high order modes
[26, 27], on the radiated sound. Recently, the production of dynamic vowel
sounds, like diphthongs, has been also addressed, see [81]. The situation
becomes more complex because in this case one can no longer resort to the
acoustic wave equation or its frequency domain counterpart, the Helmholtz
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2 Chapter 1. Introduction

equation [82]. It is necessary to deal with the wave equation in mixed form
for the acoustic pressure and acoustic particle velocity [44, 11], to account
for waves propagating in a moving vocal tract that evolves from the shape
of one vowel to another.

Aside from static and dynamic vowel sounds, few works can be found in
literature addressing the numerical simulation of further voice sounds. The
reason for that is probably the complex physics beneath their generation and
the associated high computational cost. An exception that has received some
attention is that of unvoiced sounds (see e.g., [112]) and in particular fricative
sounds, for which some numerical works can be found. Fricative consonants
are produced when air is forced to pass through a narrow channel made
by placing two articulators (e.g., the tongue and the hard palate) close to-
gether. In [3] different Computational Fluid Dynamics (CFD) formulations
were tested for fricative sound /sh/ using realistic two (2D) and three (3D)
dimensional vocal tract geometries. The study compared the performance of
a compressible CFD simulation, an incompressible Large Eddy Simulation
(LES) and a Reynolds-Averaged Navier-Stokes (RANS) approach. Though
a rather coarse mesh was used, the study deemed interesting conclusions.
As expected, the RANS simulation provided no reliable results but the com-
pressible CFD and incompressible LES combined with an acoustic analogy
yielded proper outputs. Another interesting and unexpected result was that
although the flow field from 2D simulations did not match at all with the
3D one, that was not the case for the 2D acoustic pressure field, which was
quite similar to the 3D one.

The computation of aerodynamic sound in the second step of a hybrid
CAA approach is often performed by resorting to integral formulations like
the Boundary Element Method (BEM) [120], though FEM is also common
if the acoustic waves are to be computed at distances not too far from the
source region. This is precisely the case of human phonation problems, but
the main motivation for using FEM is the integration of several acoustic for-
mulations in the multiphysics code FEMUSS for building a common CAA
platform for a more general use. The other main characteristic of the nu-
merical framework is the Variational Multiscale Method (VMS), which acts
in three fronts: the stabilization of the convective term of the Navier-Stokes
equations, the fulfillment of the Ladyzhenskaya-Babuska-Brezzi (LLB) sta-
bility condition and the modeling of the small turbulent scales that cannot
be captured by the discretization in an LES.

1.2 Motivation

The present work has been mainly motivated by the EUNISON project
(2013−2016), which belonged to the FP7 framework of the European Com-
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mission. This project had a double target: on the one hand the simulation
of human voice by coupling fluid dynamics, acoustics, solid mechanics, and
muscle activation inputs, and on the other, the construction of a mechani-
cal replica of a human head for replicating voice only by injecting air. The
International Centre for Numerical Methods in Engineering (CIMNE), the
research institution where I have carried out this thesis, had the assignment
of developing a parallel aeroacoustic solver which allowed reproducing the
fricative phoneme /s/ and analyzing the physiological process that leads to
the generation and propagation of this sound, and validating it against the
experimental tests performed with the replica. In this sense, the task that
has been mainly covered by this thesis corresponds to Computational Aeroa-
coustics (CAA) based on incompressible flow, although a formulation based
on compressible flow has also been developed.

One of the main characteristics of fricative sounds is its fully turbulent
spectrum, which means that the accuracy of the final results depends on the
performance of the turbulence model of the CFD solver. For this reason,
the Large Eddy Simulation (LES) requires a very fine grid in order cap-
ture all relevant flow scales. Moreover, the Variational Multiscale Method
(VMS) method, whose main function consists in stabilizing the numerical
approximation of the Navier-Stokes equations, must reproduce a physical
turbulence pattern too. The validation of these features has been an impor-
tant incentive, as well as the subsequent complexity of the whole problem,
which has been extremely useful for testing the efficiency and the scalability
of the multiphysics parallel code FEMUSS. Although these kind of analyses
are out of the scope of this thesis, the performance of the code has been a
constant concern during the implementation and calculation phases in order
to ease the access to different High Performance Computing (HPC) clusters.

1.3 Objectives

Although Computational Aeroacoustics stems from the solution of a Compu-
tational Fluid Dynamics problem, the design of a proper numerical strategy
to calculate the sound produced by a flow in motion after impacting against
one or more obstacles is not as straightforward. In this framework only a few
methods are available: Direct Numerical Simulation (DNS), where all flow
scales are solved, Large Eddy Simulation (LES), where small scales cannot
be captured by the spatial discretization and need to be modeled, and finally
the Reynolds-Averaged-Navier-Stokes equations (RANS), which describe a
mean flow solution and model the turbulent part. All three can be applied
to the compressible flow equations and its incompressible counterpart, and
their target application is very well defined. However, when we want to ex-
tract the aerodynamic sound from a CFD simulation several problems arise.
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First of all, acoustics are only described by the compressible flow equations,
which must be solved in any case when dealing with high speed flows. The
conceptual discussion appears when the flow can be approximated as incom-
pressible but we are still dealing with a big sized problem with a complex
geometry like a 3D realistic vocal tract. Then, the acoustics will have to be
properly modeled in a separate problem taking care of the computational
cost.

Let us consider the compressible Navier-Stokes equations posed in a time
interval (0, T ) and in a domain Ω ⊂ Rd, being d the number of space dimen-
sions (d = 2 or 3). Let also t ∈ (0, T ) be a given time instant in the temporal
domain, x ∈ Ω a given point in the spatial domain and Γ the boundary of
the domain Ω. Considering a compressible, Newtonian and viscous fluid, the
governing equations are the conservation of mass (1.1), momentum (1.2), and
energy (1.3) written in conservation form, which in turn need to be comple-
mented with an equation of state for closing the problem. For this purpose,
the specific formulation for the ideal gas law has been included:

∂tρ+ ∂j (ρuj) = 0, (1.1)

∂t (ρui) + ∂j (ρujui) = ∂j (τji − pδji) + ρfi, (1.2)

∂tρ
(
e+

uiui
2

)
+ ∂j

(
ρuj

(
e+

uiui
2

))
= ∂j (ui(τij − pδij)− qj) + ρfiui + ρr,

(1.3)

where ∂t and ∂j refer to the Eulerian time derivative and ∂/∂xj, respectively.
The usual summation convention is implied in the equation presented before,
with indices running from 1 to d. In this relation ρ is the density, u is the
velocity, p is the pressure, τ is the viscous stress tensor, I = [δij] is the
identity or Kronecker tensor, f is a body force vector, e is the internal
energy, q is the heat flux vector, and r is a heat source/sink term.

The quantities conserved in the left hand side of equations (1.1), (1.2),
and (1.3), are the so-called conservative variables; indeed, ρ is the density,
m = ρu is the momentum, and etot is the total energy, which is defined as
etot = ρ (e+ u · u/2).

Hereafter, let us denote the transpose operation by the superscript >.
For Newtonian fluids considered in this work, the viscous stress tensor is
defined as

τij (u) = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2µ

3

(
∂ul
∂xl

)
δij, (1.4)

denoting by µ the viscosity of the fluid. We calculate the heat flux vector
using Fourier’s law,

qi (T ) = −λ ∂T
∂xi

, (1.5)
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where λ is the thermal conductivity and T is the temperature of the fluid.
The caloric equation e = cv (T )T and the ideal law for gases p = ρRT are
used to calculate the pressure and the acoustic speed c. In these relations
the specific heat at constant volume cv (T ) and the specific heat at constant
pressure cp (T ) are thermodynamic properties of the fluid. We also define
R = cp−cv for the specific gas constant. The non-dimensional Mach number
M = |u| /c is used to calculate the compressibility regime.

Although the compressible flow equations describe both aerodynamic
and acoustic flow scales in a direct fashion without any need for modeling,
their complexity and their poor numerical performance at the low-speed flow
range, specially in conservative schemes [19], make them a very costly ap-
proach for the present problem. For this reason, an alternative version using
primitive variables is often used to overcome the convergence problems at the
low Mach limit and to reduce the complexity of the conservative approach
[18]. In order to formulate the equations using primitive variables, we ex-
press the conservative unknowns U as a function of the primitive variables
Y = (p,u, T )>:

Dρ

Dt
+ ρ∇ · u = 0,

ρ
Du

Dt
+∇p = ∇ · (2µε′(u)) + ρg,

ρcp
DT

Dt
− βT Dp

Dt
= ∇ · (λ∇T ) + Φ +Q,

ρ = F (p, T ), (1.6)

where µ is the dynamic viscosity, ε′ is the deviatoric part of the rate of de-
formation tensor, Q are the external energy volumetric sources, Φ are the
Joule sources and F is the state function. In this work the ideal law for
gases is used, so that the isothermal compressibility β = 1/p. This set of
equations allows reaching the incompressible limit with an almost constant
density. In spite of the improvements, the computational cost is still too
high for a solver which will be mainly devoted to flows within the incom-
pressible range. The reason for that is the huge disparity between the flow
velocity and the wave propagation eigenvalues, which leads to a bad con-
ditioning of the system. In order to overcome these numerical difficulties
and taking into account the low velocities expected in human phonation
problems, it makes sense to move towards the incompressible flow approxi-
mation. Chapter 2 is devoted to the development of a new acoustic model
within the framework of hybrid methods based on incompressible flow, more
specifically Lighthill’s analogy. The main characteristic of hybrid methods
is the segregation of the aeroacoustic problem into a Computational Fluid
Dynamics (CFD) calculation and an acoustic problem. On the one hand,
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these schemes overcome the numerical inconveniences of a DNS, such as the
ill-conditioning of the problem, and allow a more flexible treatment of the
problem according to the flow regime and the geometry of the domain, but
on the other, the acoustic scales must be partly modeled and thus simplistic
assumptions might be taken. In this sense, Lighthill’s analogy has been the
most popular option for unbounded flows [115]. First, an incompressible
CFD simulation is carried out and the double divergence of the Reynolds
tensor is computed from it as an approximation to Lighthill’s tensor (see
[57, 138, 145] for a detailed justification). The latter is propagated with a
wave operator to get the acoustic pressure radiated by flow motion. This
allows one to identify the problem of flow noise emission with that of sound
radiation by a distribution of quadrupoles in free space. It can be easily
derived from the mass and momentum conservation equations (1.1)(1.2) as
follows:

∂tρ+ ∂j (ρuj) =0, (1.7)

∂t (ρui) + ∂j (ρujui) =∂j (τji − pδji) + ρfi. (1.8)

Taking the time derivative of the mass conservation equation and subtracting
it from the divergence of the momentum equation, the following equality is
obtained:

∂ttρ− ∂j∂ipδji + ∂j∂iτji = ∂j∂i (ρujui) . (1.9)

Then, subtracting c2
0∂j∂iρδji on both sides of the previous equation, the

following wave equation in terms of ρ appears:

∂ttρ− c2
0∂j∂iρδji = ∂j∂i

(
ρujui − τji +

(
p− c2

0ρ
)
δji
)
, (1.10)

which can be compacted defining Tji = ρujui − τji + (p− c2
0ρ) δji as the

Lighthill turbulence stress tensor:

∂ttρ− c2
0∂j∂iρδji = ∂j∂iTji. (1.11)

At this point, the previous equations is still exact if it is used together
with a compressible flow solver, since no simplifications have been made yet.
Although it sounds contradictory, acoustic analogies and other hybrid meth-
ods that will be presented next, are also used in the context of compressible
flows [160], mainly for two reasons: for a better visualization of the acoustic
field and for a higher flexibility in the separate modelization and domain
discretization of the flow (e.g. LES) and the acoustic problem. However,
in the incompressible case, it is necessary to express the wave equations in
terms of the pressure instead of the density. For this purpose, we can express
ρ as a function of p using p− p0 = c2

0 (ρ− ρ0), where p0 and ρ0 are the pres-
sure and the density at stagnation state. This is a realistic approximation
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in the low-Mach regime, as well as neglecting the effects of viscosity in the
generation of sound. However, the first important simplification consists in
considering that p >> p0, which implies the hypothesis of propagation in a
medium at rest, yielding

c−2
0 ∂ttp− ∂j∂ipδji = ρ0∂j∂iujui. (1.12)

Therefore (1.12) can only be deployed with full precision in scenarios
where the wave propagation takes place in a free field. Another disadvantage
of not having any control on the mean flow variables has to do with the
visualization of the acoustic field, because at the near field the noise produced
by mean flow oscillations (pseudosound) will be captured by the acoustic
pressure, although these fluctuations do not yield any wave propagation.
Moreover, the role of solid boundaries in the generation and propagation
of sound will not be assessed by the method, since the model does not
include the separate contribution of dipolar sources. Though Lighthill is
indeed the most celebrated acoustic analogy, many other analogies have
been derived. Some emphasize the role of vorticity in aerodynamic noise
production [133, 95, 124], while others attempt at transferring mean flow
effects from Lighthill’s source term to the wave operator (see e.g., [116]
for a review and also [77]). Approaches standing on Acoustic Perturbation
Equations (APE) (e.g., [66, 101, 87]) derived from linearization of the Euler
equations (e.g., [145, 14]) are also quite common.

All the strategies in the precedent paragraph are intended for aerody-
namic sound propagation in the free field. To consider the effects of bodies
within the flow on aerodynamic noise, one could proceed analogously to what
is done for Lighthill’s acoustic analogy, but convolving the source term with
a tailored Green’s function that accounts for the body boundary conditions.
The problem is that for complex geometries tailored Green’s functions are
not available. Curle [59] proposed a way out to this difficulty by identifying
the influence of rigid bodies with that of a distribution of surface dipoles.
The free-space Green’s function can be used instead of the tailored one,
though at the price of taking into account a new source of sound in the
simulations. Curle’s formulation was extended for non-rigid bodies in the
well-known Ffowcs Williams-Hawkings equation [159]. Unfortunately, when
applied to low Mach number aeroacoustics, Curle’s formulation presents a
problem. The dipole surface integral term involves the gradient of the total
pressure in the normal direction to the boundary of the rigid body. The
total pressure includes the acoustic fluctuations, which cannot be obtained
from an incompressible CFD simulation. Recently, it has been proposed to
surpass this difficulty by just considering the gradient of the incompressible
flow pressure and by replacing the wave equation Green’s function with that
of the Laplacian operator [123]. Another strategy will be followed hereafter.
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This is based on the observation that Curle’s analogy is actually a sharp way
to account for aerodynamic noise generated by surfaces, though what it is
really happening, from a physical point of view, is that waves generated by
flow motion get diffracted by the rigid body [60, 55, 76]. For this reason, the
first main objective of this thesis consists in developing alternatives which
overcome these drawbacks without paying an excessive computational cost.
In this first step, a decomposition strategy of Lighthill’s analogy into two dif-
ferent problems has been developed for domains which do not fulfill the free
field condition. The output will be two components of the acoustic pressure
which will capture the noise generated by quadrupolar and dipolar sources
separately. This will bring several important advantages: on the one hand,
it will reproduce Curle’s strategy without any further implementation of a
dipolar source term, and on the other, it will provide a clearer representation
of the acoustic field radiated by the solid boundaries. The method has been
tested and validated with a 2D benchmark of the aeolian tones and with
a 3D simplified geometry of a vocal tract emulating the fricative phoneme
/s/. The latter has been intended as a first approach towards the evaluation
of the contribution of specific parts of the vocal tract to the generation of
fricative sound.

The previous method overcomes one of the main issues of Lighthill’s anal-
ogy, but does not improve the basic assumptions of the model. The next
step consists in exploring other formulations within hybrid methods which
yield a more accurate acoustic solution at near-field regions by accounting
for effects of non-quiescent flow areas on the propagation of aerodynamic
noise. For this purpose, convective and refraction effects have to be ex-
tracted from the acoustic source term and included in the wave operator (see
e.g., [15]), which has led to the development of more sophisticated analogies
(see e.g., [116, 77]) and to alternatives such as the linearized Euler equations
(LEE) [14]. This also means a better separation of the acoustic oscillations
from the mechanical ones, leading to a better visualization of the wave prop-
agation. In this sense, the incompressible-acoustic split method presented in
[89, 144] enriches the incompressible flow equations with a variable density
linked to pressure perturbations. Then, the time derivative of this perturbed
density is translated into isentropic fluctuations of velocity and pressure that
are propagated using a purely acoustic compressible solver after subtract-
ing the incompressible component of the flow field. In a similar way, some
formulations propagate the near field flow information to the far field with
the aforementioned Linearized Euler Equations (LEE) [30, 17, 142] or with
the Acoustic Perturbation Equations (APE) [66, 111], which consist in an
acoustic filtering of the LEE source term. Chapter 3 of this thesis is precisely
devoted to the development of a stabilized FEM formulation of the APE [87]
and its application to the 2D aeolian tones case with the aim of evaluating
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the effects of flow convection on the propagation of acoustic waves, as well
as the filtering of the acoustic solution from the scales captured by the CFD
calculation.

The APE manage indeed to solve most of the problems listed in the pre-
vious paragraphs, since they account for non-uniform flows and they provide
a purely acoustic solution. However, the implementation cost in a FEM code
and the computational complexity, including the numerical stabilization, of
this approach have turned to be rather demanding. In Chapter 4 a last
formulation has been developed in order to reduce the complexity of CAA
calculations without losing the accuracy gained with the APE. This last
formulation aims for a simplification of CAA based on compressible flows
and proposes a general framework that can be applied to any geometry, spa-
tial discretization or flow regime below the transonic range. It consists in
a compressible formulation with primitive variables without solving for the
energy equation, since both flow and acoustic propagation are considered
isentropic, which after condensing the density field becomes a system of two
equations in terms of the velocity and the pressure, like in incompressible
flow solvers. As a consequence, the implementation cost is very low when
one departs from an already implemented incompressible flow solver, since
the formulation reminds the artificial compressibility schemes [39]. Also, the
computational cost is reduced with respect to other methodologies due to the
following reasons: getting rid of the fully compressible approach and solving
only for velocity and pressure, solving all scales at once without acoustic
analogies and improving the condition number of the system for the incom-
pressible limit. This formulation provides two important advantages respect
to the acoustic analogies and other hybrid methods presented in the pre-
vious paragraph: first, it takes into account the acoustic feedback on the
flow scales and second, the validity of the acoustic field will not depend on
the motion of the flow or the presence of obstacles. These are precisely the
main and only advantages of a Direct Noise Computation (DNC). In fact,
for flows with M −→ 0 this solver is expected to converge to the solution of
a DNC, but with a much lower computational cost. The only drawback of
such a unified system will be, again like in a DNC, the lack of visualization
of the acoustic fluctuations at the near field, where the aerodynamic scales
are totally dominant and the wave propagation cannot be extracted like in
[139, 87, 86]. As in all compressible flow models, an adequate equation of
state needs to be chosen, in this case relating only density and pressure.
For simplicity the ideal gas law has been used to close the problem, but the
formulation can be easily extended to any other equation of state. Another
typical challenge related to compressibility is the prescription of appropriate
boundary conditions. In this case, compatible flow and acoustic boundary
conditions have been imposed in a weak sense [48, 65] so the acoustic waves
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can exit the domain through Dirichlet boundaries. In order to validate the
formulation in all its application range, two benchmarks have been com-
puted: first, the 2D aeolian tones case presented in [82] for checking the
performance in the incompressible limit and the convergence to a DNC, sec-
ond a 3D NACA0012 airfoil with a Mach number of 0.4 [160] and finally a
2D flow past an open cavity (M = 0.7) is benchmarked agains a DNS [75].

At this point, the numerical framework for simulating phonemes involv-
ing aeroacoustic noise in fixed geometries has been completed. However, the
general character of the proposed methods has motivated the extension of
the previous framework to dynamic phonation cases, such as syllables. In
this case, the irreducible second order wave equation is not appropriate for
taking into account the domain motion and it must be replaced by the wave
equation in mixed form, which can be directly derived from (1.1) and (1.2)
keeping the first order of the derivatives and taking the same simplification
of (1.12):

c−2
0 ∂tp+ ρ0∂jûj =0, (1.13)

ρ0∂tûi + ∂j (pδji) = −ρ0∂jujui, (1.14)

where û is the acoustic velocity. The biomechanical aspects of the prob-
lem have not been taken into account, but the hypothetical deformation
of the domain has been included in the formulations by expressing them
in an Arbitrary Lagrangian Eulerian (ALE) setting [61]. This reference al-
lows the computational grid to adapt its shape according to the motion of
the domain, but this progressive deformation of the mesh might lead to an
excessive distortion of the elements, specially in cases with irregular bound-
aries and large deformations. Since this is precisely the expected scenario in
the simulation of a syllable, a novel remeshing strategy has also been devel-
oped. This formulation has been conceived for general use and consists in a
point-by-point Lagrangian interpolation from a deformed mesh to a new one
followed by an a posteriori correction based on [94]. The method imposes
the conservation of relevant physical quantities, such as mass, momentum
or energy, through Lagrange multipliers in an optimization problem which
in turn minimizes the L2-norm between the corrected solution and the in-
terpolated one. Chapter 5 is completely devoted to the presentation of this
remeshing strategy in the context of flow problems in an ALE reference with
large domain deformations, establishing a solid ground towards a robust and
accurate calculation of CAA cases in moving domains, such as syllables, pro-
vided the proper geometry and the deformation mapping are given. Further-
more, Chapter 2 has been extended with Lighthill’s analogy using the mixed
form of the wave equation in an ALE frame of reference [81], and its de-
composition in quadrupolar and dipolar components as an alternative to the
Ffowcs-Williams-Hawkings method [159]. Analogously, Chapter 4 has been
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completed with the ALE formulation of the isentropic compressible solver.
This feature has been tested in two cases with moving domains which have
been computed with both compressible and incompressible aeroacoustic for-
mulations: a 2D version of the NACA0012 airfoil with a bounded oscillation
of the trailing edge and M = 0.2 and a 3D simulation of the syllable /sa/ us-
ing a simplified vocal tract geometry with one-dimensional vertical opening
motion.

After having developed and tested the whole theoretical CAA framework
for both fixed and mobile domains, the main application of the thesis is pre-
sented in Chapter 6. It consists in a large-scale simulation of the fricative
phoneme /s/ using a 3D realistic vocal tract geometry obtained with MRI
and the formulations presented previously, except the APE, whose cost has
not been affordable in regard to the available computational hours. A sibilant
fricative /s/ is generated when the turbulent jet in the narrow channel be-
tween the tongue blade and the hard palate is deflected downwards through
the incisors’ space, and impinges the inter-space between the lower incisors
and the lower lips. The flow eddies in that region become a source of direct
aerodynamic sound, which is also diffracted by the upper incisors and radi-
ated outwards. The numerical simulation of this phenomenon is complex.
The spectrum of an /s/ typically peaks between 4 − 10 kHz, which implies
using very fine computational meshes to capture the eddies producing such
high frequencies. In this work, the computation has been performed resort-
ing to two different acoustic analogies based on an incompressible LES using
the VMS stabilization method as turbulence model: Lighthill’s analogy and
its filtered version presented in [139]. It is to be noted that 3D LES simu-
lations of flow passing around teeth-shaped obstacles to better understand
the underlying physics of /s/ were already reported in [157, 156] and in [40].
Simulations of flow passing through simplified geometries with constrictions
of different sizes have also been conducted [41]. [127] also resorted to LES to
analyze the flow dynamics of /s/ in a realistic vocal tract geometry. As said
before, more recently, [162] presented simulations on a 3D realization of the
geometry in [96]. Also, the numerical strategy presented in Chapter 2 which
allows determining, in a single computational run, the separate contribu-
tions from the direct turbulent sound and the sound diffracted by the upper
incisors, has been applied to the radiated sibilant /s/. Results are presented
for points located close to the mouth exit showing the relative influence of
the sources of sound depending on frequency, and finally compared to exper-
imental data. Moreover, the same case has been calculated again with the
isentropic compressible formulation using the same LES-VMS approach and
the results have been compared to those obtained with the incompressible
acoustic analogies.
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1.4 Articles

This thesis has been structured in self-contained chapters that correspond
to published or submitted scientific articles. The following list summarizes
the connection between contents:

• Chapter 2 contains the material presented in two papers: ”Oriol Guasch,
Arnau Pont, Joan Baiges, and Ramon Codina. Concurrent finite el-
ement simulation of quadrupolar and dipolar flow noise in low Mach
number aeroacoustics, 133:129-139, Computers Fluids (2016)”, and
its ALE extension ”Oriol Guasch, Arnau Pont, Joan Baiges, and Ra-
mon Codina. Simultaneous finite element computation of direct and
diffracted flow noise in domains with moving walls”, which has been
published as a proceeding at the FLINOVIA II symposium and is cur-
rently being extended for submitting a journal article.

• Chapter 3 corresponds entirely to ”Oriol Guasch, Patricia Sánchez-
Mart́ın, Arnau Pont, Joan Baiges, and Ramon Codina. Residual-based
stabilization of the finite element approximation to the acoustic pertur-
bation equations for low Mach number aeroacoustics, 82:839-857, In-
ternational Journal for Numerical Methods in Fluids, (2016).”, which
has been mainly developed and implemented by Dr. Patricia Sánchez
and Prof. Oriol Guasch. The main contribution of the author has
consisted in providing the underlying CFD calculation and analyzing
the effect of non-quiescent flows on the propagation of acoustic waves
in the aeolian tones case.

• Chapter 4 contains the article ”Arnau Pont, Ramon Codina, Joan
Baiges, Oriol Guasch. Unified solver for fluid dynamics and aeroacous-
tics in isentropic gas flows”, accepted for publication by the Journal of
Computational Physics, and a small part of ”Simultaneous finite ele-
ment computation of direct and diffracted flow noise in domains with
moving walls” corresponding to the ALE extension of the isentropic
compressible formulation.

• Chapter 5 corresponds entirely to ”Arnau Pont, Ramon Codina, Joan
Baiges. Interpolation with restrictions between finite element meshes
for flow problems in an ALE setting, 110:1203-1226, International
Journal for Numerical Methods in Engineering (2017)”.

• Chapter 6 presents the main results of the thesis and corresponds to
the paper ”Arnau Pont, Oriol Guasch, Joan Baiges, Ramon Codina,
Annemie van Hirtum. Computational aeroacoustics to identify sound
sources in the generation of sibilant /s/”, submitted to International
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Journal for Numerical Methods in Biomedical Engineering. A final
section is added to this work in order to include the equivalent results
using the formulation presented in Chapter 4.
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Chapter 2

Concurrent finite element
simulation of quadrupolar and
dipolar flow noise in low Mach
number aeroacoustics

The computation of flow-induced noise at low Mach numbers usually relies
on a two-step hybrid methodolgy. In the first step, an incompressible fuid
dynamics simulation (CFD) is performed and an acoustic source term is de-
rived from it. The latter becomes the inhomegenous term for an acoustic
wave equation, which is solved in the second step, often resorting to bound-
ary integral formulations. In the presence of rigid bodies, Curle’s acoustic
analogy is probably the most extended approach. It has been shown that
Curle’s boundary dipolar noise contribution does in fact correspond to the
diffraction of the quadrupolar aerodynamic noise generated by the flow past
the rigid body. In this work, advantage is taken from this fact to propose
an alternative computational methodology to get the individual quadrupo-
lar and dipolar contributions to the total acoustic pressure. For any linear
acoustic wave operator, the unknown acoustic pressure can be split into
its incident and diffracted components and be computed simultaneously to
the incompressible flow field, in a single finite element computational run.
This circumvents the problem found in Curle’s analogy of needing the to-
tal pressure at the body’s boundary, which includes the acoustic pressure
fluctuations. The latter cannot be obtained from an incompressible CFD
simulation. The proposed unified strategy could be beneficial for a large
variety of problems such as those involving noise generated from duct termi-
nations, or those related with the simulation of fricatives in numerical voice
production, among many others. The whole method will be also adapted to
aeroacoustic problems in moving domains by using an Arbitrary Lagrangian

15
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Eulerian (ALE) frame of reference.

2.1 Background

In the direct noise computation (DNC) approach to aeroacoustics (see e.g.,
[29]), aerodynamic noise is straightforwardly obtained as a bypass product
of the unsteady and/or turbulent flow motion, driven by the compressible
Navier-Stokes equations. However, DNC is only feasible for academic cases,
and a few industrial ones, due to its high computational cost. As a con-
sequence, most computational aeroacoustics (CAA) strategies to date have
relied on hybrid approaches [15], which can be applied whenever there is no
important feedback from the acoustic field to the aerodynamic one. Hybrid
approaches usually consist of a first finite element (FEM), or finite volume,
computational fluid dynamics (CFD) simulation to obtain the aerodynamic
velocity and pressure fields, from which some acoustic sources can be de-
rived. The latter are set as the inhomogeneous term of a wave equation
that is solved to get the acoustic pressure field in a second numerical simula-
tion. The acoustic pressure is usually computed with the boundary element
method (BEM) if the sound pressure is to be found at long distances from
the source region, though FEM is also feasible if the computational domain
is not too large [128, 82, 83, 110, 13].

In this work, focus is placed on aeroacoustics at low Mach numbers. The
most popular option for unbounded flows probably is that of making use of
Lighthill’s acoustic analogy [115]. First, an incompressible CFD simulation
is carried out and the double divergence of the Reynolds tensor is com-
puted from it as an approximation to Lighthill’s tensor (see [57, 138, 145]
for a detailed justification). The latter is convolved with the free-space
Green function for the wave equation to get the acoustic pressure radiated
by flow motion. This allows one to identify the problem of flow noise emis-
sion with that of sound radiation by a distribution of quadrupoles in free
space. Though the most celebrated acoustic analogy is that of Lighthill,
many other analogies have been derived. Some emphasize the role of vor-
ticity in aerodynamic noise production [133, 95, 124] while others attempt
at transferring mean flow effects from Lighthill’s source term to the wave
operator (see e.g., [116] for a review and also [77]). Approaches standing on
acoustic perturbation equations (e.g., [66, 101, 87]) derived from lineariza-
tion of the Euler equations (e.g., [145, 14]) are also quite common.

All the strategies in the precedent paragraph are intended for aerody-
namic sound propagation in free field. To consider the effects of bodies
within the flow on aerodynamic noise, one could proceed analogously to
what is done for Lighthill’s acoustic analogy, but convolving the source term
with a tailored Green function that accounts for the body boundary condi-
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tions. The problem is that for complex geometries tailored Green functions
are not available. Curle [59] proposed a way out to this difficulty by iden-
tifying the influence of rigid bodies with that of a distribution of surface
dipoles. The free-space Green function can be used instead of the tailored
one, though at the price of taking into account a new source of sound in the
simulations. Curle’s formulation was extended for non-rigid bodies in the
well-known Ffowcs Williams-Hawkings equation [159].

Unfortunately, when applied to low Mach number aeroacoustics, Curle’s
formulation presents a problem. The dipole surface integral term involves
the gradient of the total pressure in the normal direction to the boundary of
the rigid body. The total pressure includes the acoustic fluctuations, which
cannot be obtained from an incompressible CFD simulation. Recently, it has
been proposed to surpass this difficulty by just considering the gradient of
the incompressible flow pressure and by replacing the wave equation Green
function with that of the Laplacian operator [123]. Another strategy will be
followed hereafter. This is based on the observation that Curle’s analogy is
actually a sharp way to account for aerodynamic noise generated by surfaces,
though what it is really happening, from a physical point of view, is that
waves generated by flow motion get diffracted by the rigid body [60, 55, 76].

In this chapter, we take advantage of this fact and propose a methodology
for the simultaneous computation of the flow field, and of the turbulent and
surface diffracted contributions to the total acoustic pressure field. At each
time step of the simulation, the flow incompressible aerodynamic velocity
and pressure are obtained by solving the incompressible Navier-Stokes equa-
tions, and input into a wave equation for the acoustic pressure, as if no rigid
body was present. This computed acoustic pressure generated by the wake
past the body has a quadrupolar character and plays the role of an incident
pressure field on the rigid body boundary. Therefore, the incident pressure is
used in turn to solve a wave equation for the acoustic pressure diffracted by
the rigid body, at the same computational time step. In this way, the com-
plete time evolution of the separate contributions to the acoustic pressure
generated by flow motion (quadrupolar) and by surface diffraction (dipolar)
is obtained at the end of the simulation. All the partial differential equations
involved in this methodology have been solved by means of FEM, resorting
to stabilization strategies when necessary. A preliminary, short version of
this work can be found in [85].

The chapter is organized as follows. The basic theory and problem state-
ment, as well as the continuous and discrete formulation using FEM for static
domains (Eulerian reference) are presented in Section 2. A reminder is made
of Curle’s analogy as a diffraction problem and the proposed methodology
for flow noise computation is detailed for general wave operators, then the
weak formulation of the equations is first exposed and finally we proceed
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to their space and time discretization. Section 3 focuses on the numerical
approximation of the Navier-Stokes and wave equations in an ALE frame
of reference, reminding first the Ffowcs-Williams-Hawkings method (FWH)
as the extension of Curle’s analogy for moving surfaces. In section 4, four
numerical examples are presented. The first one, used for verification and
testing purposes, deals with aerodynamic noise generated by flow past a
two-dimensional cylinder (aeolian tones). The second one concerns noise pro-
duced by flow past a sharp constraint at the exit of a three-dimensional rect-
angular duct. This second example is of importance to analyze the physics
involved, for instance, in the generation of voice sibilant sounds like /s/.
The third one consists in an oscillating 2D NACA0012 airfoil and the last
one presents a schematic example of a syllable in a simplified vocal tract in
opening motion. Conclusions close the chapter in section 5.

2.2 Problem statement for fixed domains

2.2.1 Curle’s analogy as a diffraction problem

As a motivation for this work, let us first review the connection between
Curle’s analogy and the diffraction of aerodynamic sound by a rigid body.
We will closely follow [76] for that purpose. Consider the situation depicted
in Fig. 2.1, where a low Mach, high Reynolds number gas flow impinges
on a rigid body Ωb and as a result, a wake develops past the body. The
evolution of the aerodynamic velocity u0(x, t) and the aerodynamic pressure
p0(x, t) will be driven to a good extent by the incompressible Navier-Stokes
equations. These are to be solved in a computational domain ΩNS ⊂ Rd

(where d = 2, 3 is the number of space dimensions) with boundary ∂ΩNS

and prescribed initial and boundary conditions. Splitting ∂ΩNS into three
disjoint sets ∂ΩNS = Γb ∪ ΓD ∪ ΓN , the mathematical problem to be faced
reads

∂tu
0 − ν∆u0 + u0 · ∇u0 +∇p0 = f in ΩNS, t > 0, (2.1a)

∇ · u0 = 0 in ΩNS, t > 0, (2.1b)

u0 (x, 0) = u0
0 (x) in ΩNS, t = 0, (2.1c)

u0 (x, t) = 0 on Γb, t > 0, (2.1d)

u0 (x, t) = u0
D (x, t) on ΓD, t > 0, (2.1e)

n · σ (x, t) = tN (x, t) on ΓN , t > 0, (2.1f)

where ν stands for the kinematic viscosity and f for the external force. σ
is the Cauchy stress tensor, and n and tN respectively denote the outward
normal at the boundary and the traction. ∂t denotes the first order time
derivative. In his celebrated work, Lighthill [115] reordered the compressible
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Figure 2.1: Flow noise problem. The dipolar contribution from the rigid
body Ωb in Curle’s analogy corresponds to the diffraction of the quadrupolar
flow noise generated at the wake past the body.

Navier-Stokes equations into a wave equation whose source term involved
the double divergence of the so-called Lighthill’s tensor, Tij. In the partic-
ular case of low Mach and high Reynolds numbers one can neglect viscous
dissipation and refraction in Tij, and approximate the tensor solely in terms
of the incompressible velocities

Tij ≈ ρ0u
0
iu

0
j , (2.2)

with ρ0 standing for the flow constant density. According to Lighthill’s
acoustic analogy we can then obtain the flow induced noise by solving the
wave equation

∂2
ttp− c2

0∇2p = ρ0∂
2
ij(u

0
iu

0
j) in Ωac, t > 0, (2.3a)

∇p · n = 0 on Γb, t > 0, (2.3b)

∇p · n = c−1
0 ∂tp on Γ∞, t > 0, (2.3c)

p (x, 0) = 0, ∂tp (x, 0) = 0 in Ωac, t = 0. (2.3d)

In (2.3), p represents the acoustic pressure and c0 the speed of sound. Γ∞
corresponds to the outer boundary where a Sommerfeld like condition is to
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be imposed to avoid waves propagating outwards to reflect back into the
computational domain. Besides, it is assumed for the time being that the
source term in the r.h.s of (2.3a) vanishes outside ΩNS ⊂ Ωac. The flow
is therefore at rest in Ωac − ΩNS. On the other hand, we have used ∂i to
denote the first order spatial derivative with respect to coordinate xi, i.e.,
∂i ≡ ∂/∂xi. The summation convention for repeated indices is also assumed
in what follows unless explicitly specified.

An integral solution to (2.3) could be found provided a tailored Green
function G(x, t | y, τ) satisfying the boundary conditions at Γb was known.
This would result in the acoustic pressure field

p (x, t) = ρ0

∫ ∞
−∞

∫
Ωac

G(x, t | y, τ)∂2
ij(u

0
iu

0
j)d

3ydτ. (2.4)

Unfortunately, tailored Green functions are only available for bodies with
very simple geometrical shapes. In the particular case of the typical wave-
length of the generated sound being larger than the body principal dimen-
sion, one can make use of compact Green functions [98] and extend the
number of situations where (2.4) could be applied in practice. Nonetheless,
for more general applications it would be desirable to find a way out to
solve (2.3) making use of the more simple free space Green function for the
wave equation

GF (x, t | y, τ) =
1

4π|x− y|
δ

(
t− τ − |x− y|

c0

)
, (2.5)

where δ stands for the Dirac delta function. This was achieved by Curle [59]
using an ingenious procedure, which allowed one to identify the rigid body
contribution to flow noise with that of a dipole source distribution radiating
into free space. Curle’s final integral formulation for the acoustic pressure
reads

p (x, t) = ρ0∂
2
ij

∫
Ωac

1

4π|x− y|
[
u0
iu

0
j

]
t′
d3y − ∂i

∫
Γb

1

4π|x− y|
[p′ij]t′njd

2y,

(2.6)

with p′ij = Pδij − σij, P denoting the full compressible pressure to be eval-
uated at the body’s boundary. As said, we are considering high Reynolds
numbers so that p′ij ≈ Pδij and the second term in the r.h.s of (2.6) simplifies
to ∂i

∫
Γb

(4π|x−y|)−1[P ]t′nid
2y. As usual for retarded potentials, the squared

brackets in (2.6) denote evaluation at the retarded time t′ := t− |x− y|/c0.
According to (2.6), the acoustic pressure at a far field point in Ωac−ΩNS

has two contributions, namely the quadrupolar one directly stemming from
flow motion (volume integral term in the r.h.s of (2.6)), and the dipolar one
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due to the presence of the rigid body Ωb within the flow domain (surface
integral term in the r.h.s). However, as commented in the Introduction, a
severe difficulty appears for low Mach number flows if the acoustic source
term is derived from an incompressible CFD computation. Whereas the
incompressible velocity in the volume integral of (2.6) can be readily obtained
from the solution of (2.1), this is not the case for the source term in the
surface integral, because the integrand P involves not only the aerodynamic
pressure at Γb but also the acoustic pressure fluctuations on it. In [123],
an approximation was proposed to circumvent this problem that consists in
making use of the incompressible pressure at the surface Γb and in replacing
the free field Green function for the wave equation (2.5) by that of the
Poisson equation. An alternative to that approach will be proposed hereafter
that involves less assumptions. This is based on the fact that, as noted by
several authors (see e.g. [60, 55, 76]), the acoustic pressure contribution of
the surface integral in (2.6) corresponds to the diffraction of the aerodynamic
noise produced, in the case of Fig. 2.1, by the flow wake past the rigid body.

The tailored Green function in (2.4) can be decomposed as

G(x, t | y, τ) = GF (x, t | y, τ) +GD(x, t | y, τ), (2.7)

with GF being the free-space Green function in (2.5) and GD its diffracted
(read also scattered) field correction that accounts for the presence of bound-
aries. Substituting (2.7) into (2.4) results in

p (x, t) = ρ0∂
2
ij

∫
Ωac

1

4π|x− y|
[
u0
iu

0
j

]
t′
d3y + ρ0

∫ ∞
−∞

∫
Ωac

GD∂
2
ij(u

0
iu

0
j)d

3ydτ.

(2.8)

A direct comparison with (2.6) allows one to identify

−∂i
∫

Γb

1

4π|x− y|
[P ]t′nid

2y = ρ0

∫ ∞
−∞

∫
Ωac

GD∂
2
ij(u

0
iu

0
j)d

3ydτ. (2.9)

It becomes then apparent that the Curle surface integral, which represents
an acoustic dipole source distribution, does in fact correspond to the body
diffraction of the turbulent noise generated by the flow wake.

2.2.2 Proposed methodology

In view of (2.8), one may consider the possibility of obtaining the individual
flow quadrupolar turbulent contribution as well as the dipolar one due to
diffraction all at once, as the outputs of a single FEM computational run.
This would prove very useful in some aeroacoustics situations where the
influence of each type of sources is needed, for example, for noise reduction
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remedial purposes, or for a better understanding of the underlying noise
generation mechanisms of a given physical phenomenon.

Let us split the total acoustic pressure into its incident and diffracted
components p = pi + pd in (2.3), as commonly done for diffraction problems.
This results in the two wave equations,

∂2
ttpi − c2

0∇2pi = ρ0∂
2
ij(u

0
iu

0
j) in Ωac ∪ Ωb, t > 0, (2.10a)

∇pi · n = c−1
0 ∂tpi on Γ∞, t > 0, (2.10b)

pi (x, 0) = 0, ∂tpi (x, 0) = 0 in Ωac ∪ Ωb t = 0, (2.10c)

and

∂2
ttpd − c2

0∇2pd = 0 in Ωac, t > 0, (2.11a)

∇pd · n = −∇pi · n on Γb, t > 0, (2.11b)

∇pd · n = c−1
0 ∂tpd on Γ∞, t > 0, (2.11c)

pd (x, 0) = 0, ∂tpd (x, 0) = 0 in Ωac, t = 0. (2.11d)

Instead of resorting to an integral formulation, it is herein proposed to
solve the problem of aerodynamic sound generation by solving (2.1), (2.10)
and (2.11) all together, in a single simulation. The weak form of these
equations will be discretized in space using FEM and in time using finite
difference schemes. At each time step of the simulation the incompressible
velocity obtained from (2.1) will be used in (2.10) to compute the incident
acoustic pressure field (i.e., the direct quadrupolar contribution), which in
turn will be used in (2.11) to compute the diffracted pressure field (i.e.,
the direct dipolar surface contribution). This strategy avoids the problem
of having to deal with the total pressure in the surface integral of Curle’s
analogy and independently provides the contributions pi and pd to the to-
tal acoustic pressure p, which could not have been obtained from the direct
FEM solution of (2.3). Alternatively, one could also attempt at solving (2.3)
and (2.10) and obtain the diffracted contribution by subtracting the incident
acoustic pressure field from the total one.

2.2.3 Generalization to other wave operators and sound
sources

Though posing Curle’s analogy as a diffraction problem has motivated the
approach in the preceding section to compute the quadrupolar and dipolar
contributions to aerodynamic sound, that methodology can be generalized
to other linear wave operators and source terms that include phenomena
neglected in Lighthill’s tensor approximation (2.2). Let us denote by L
a generic linear wave operator acting on the acoustic pressure p defined
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in Ωac, Bb a linear operator defining the boundary conditions at the rigid
body (including e.g., a prescribed impedance value at Γb) and B∞ a linear
operator describing a non-reflecting boundary condition at Γ∞. Q will stand
for a generic aerodynamic source term obtained from an incompressible CFD
computation solving (2.1). Then, the aerodynamic noise problem of solving

Lp = Q in Ωac, t > 0, (2.12a)

∇p · n = Bbp on Γb, t > 0, (2.12b)

∇p · n = B∞p on Γ∞, t > 0, (2.12c)

p (x, 0) = 0, ∂tp (x, 0) = 0 in Ωac, t = 0. (2.12d)

can always be split using p = pi + pd as

Lpi = Q in Ωac ∪ Ωb, t > 0, (2.13a)

∇pi · n = B∞pi on Γ∞, t > 0, (2.13b)

pi (x, 0) = 0, ∂tpi (x, 0) = 0 in Ωac ∪ Ωb t = 0, (2.13c)

and

Lpd = 0 in Ωac, t > 0, (2.14a)

∇pd · n−Bbpd = −∇pi · n+Bbpi on Γb, t > 0, (2.14b)

∇pd · n = B∞pd on Γ∞, t > 0, (2.14c)

pd (x, 0) = 0, ∂tpd (x, 0) = 0 in Ωac, t = 0. (2.14d)

Equations (2.3), (2.10) and (2.11) are nothing but a particular case of (2.12),
(2.13) and (2.14). Another example, could be that of identifying L with the
convective wave equation L ≡ [c−2

0 (∂t+U0·∇)2−∇2] to account for the effects
of a uniform mean flow velocity U0 in the wave operator. With regard to
the source term, one could consider, for instance, the double time derivative
of the incompressible pressure instead of the double divergence of (2.2) as
a source term, i.e., Q ≡ c−1

0 ∂2
ttp

0 (see e.g., [139]). The boundary condition
operator Bb could involve the admittance coefficient at the surface, µ, and
be identified e.g., with Bb ≡ −µc−1

0 ∂t. Besides, one could also attempt to
extend the above procedure for the wave equation in mixed form [44], or for
the more complex acoustic perturbation equations [66], though this is out of
the scope of the present work.

Finally, we would like to note that in the case of dealing with N diffract-
ing disjoint bodies instead of just one the problem becomes totally analogous
to (2.13) and (2.14) if one is interested in knowing their quadrupolar and
dipolar contributions as a whole. One simply has to consider that for such
situations Ωb =

⋃
j=1...N Ωbj with

⋂
j=1...N Ω̄bj = ∅, each Ωbj representing the

j-th diffracting or scattering body (depending on the relation between wave-
length and object characteristic size). An example of such a type would be
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that of determining the noise generated by a grille at the exit of a ventilation
system, or knowing the influence of the upper and lower incisors in the voice
generation of a fricative sound like /s/.

2.2.4 Numerical discretization

Continuous weak formulation

To present the numerical discretization of the proposed methodology we will
focus on equations (2.1), (2.10) and (2.11). Resorting to a FEM approach
for the spatial discretization of these equations demands working with their
corresponding weak forms. Let us introduce some notation for that pur-
pose. In what follows, for any two functions (or distributions) f and g, the
integral of their product over the computational domain will be designated
by (f, g) ≡

∫
Ω
fgdΩ. This integral will typically represent a scalar product

or a duality pair. A subscript will indicate that the integral is performed
on a boundary, e.g., (f, g)Γb

. As usual, Lp(0, T |X) will stand for the space
of time dependent vector functions such that their X-norm is Lp(0, T ), Lp

denoting the space of functions whose p-power (1 ≤ p < ∞) is integrable
within Ω. On the other hand, Hm(ω) will represent the space of functions
whose distributional derivatives up to m ≥ 0 (m integer) belong to L2(Ω).
The subspace of functions in Hm(Ω) that vanish on ∂Ω will be designated
by Hm

0 (Ω). The vector counterparts of all these spaces will be indicated
by bold letters. Let us finally also identify V := H1(Ω) (V := H1(Ω)),
V0 := H1

0 (Ω) (V0 := H1
0 (Ω)) and L0 := L2(Ω)/R. The weak form of the

Navier-Stokes equations (2.1) is found as usual by multiplying them by a
test function v0 for the velocity and q0 for the pressure, and integrating over
the computational domain ΩNS. The variational problem to be solved is
that of finding [u0, p0] ∈ L2(0, T |V)× L∞(0, T |L0) such that

(∂tu
0,v0) + (u0 · ∇u0,v0) + ν(∇u0,∇v0)− (p0,∇ · v0)

= (f ,v0) + (tN ,v
0)ΓN , (2.15a)

(q0,∇ · u0) = 0, (2.15b)

for all [v0, q0] ∈ V0×L0, and supplemented with the weak form of the initial
conditions in (2.1c). Analogously, multiplying (2.10) by the test function q
and integrating now over the domain Ωac∪Ωb we get the variational problem
of obtaining the incident acoustic pressure pi ∈ C2(0, T |L0) ∩ C0(0, T |V)
which fulfills

(∂2
ttpi, q) + c2

0(∇pi,∇q)− c0(∂pi, q)Γ∞ = (u0 · ∇u0,∇q), (2.16)

for all q ∈ V0. Note that it has been reasonably assumed that u0 vanishes
on ∂ΩNS, and, again, the weak forms of the initial conditions (2.10c) are



2.2. Problem statement for fixed domains 25

to be considered to solve the problem. Finally, the weak formulation for
the diffracted acoustic pressure problem (2.11) becomes that of getting the
pressure pd ∈ C2(0, T |L0) ∩ C0(0, T |V) such that

(∂2
ttpd, q) + c2

0(∇pd,∇q)− c0(∂pd, q)Γ∞ = c2
0(∇pi · n, q)Γb

, (2.17)

for all q ∈ V0. In this case volume integrals take place over Ωac and initial
conditions (2.11d) have to be also appended to the variational form.

Spatial discretization

A FEM approach has been applied for the space discretization of all the
involved variational equations in the preceding section. Let us first focus
on the weak form of the Navier-Stokes equation in (2.15). For this case, it
is well-known that the standard Galerkin FEM solution suffers from many
numerical problems. On the one hand, a compatibility inf-sup condition
has to be satisfied to control the pressure that does not allow one to use
equal interpolations for the incompressible velocity and pressure fields. On
the other hand, instabilities also appear in the case of strong convection as
happens for high Reynolds number flows. Numerical instabilities may also
trigger at the early stage of evolutionary processes when using small time
steps.

It is possible to solve the above difficulties by resorting to stabilized finite
element approaches. In particular, the subgrid scale stabilization methods
(also known as variational multiscale or residual-based stabilization meth-
ods) [102, 43] are of special interest for the simulation of turbulent flows.
This is so because, if well designed, they not only allow one to circumvent
the above mentioned numerical problems, but also act as implicit large eddy
simulation models [43, 93, 20, 53, 84]. The basic idea of subgrid scale meth-
ods is that of splitting the problem unknowns, u0 and p0 for (2.15), and the
test functions, v0 and q0, into large scale components, u0

h and p0
h (h refers

to the mesh size), which can be resolved by the computational mesh and
small scale components, ũ0 and p̃0, which cannot be captured and whose
effects onto the large scales have to be modeled. Substituting u0 = u0

h + ũ0,
p0 = p0

h + p̃0, v0 = v0
h + ṽ0 and q0 = q0

h + q̃0 in (2.15) yields two coupled
equations, one driving the dynamics of the large scales but containing the
influence of the small scales, and the other one governing the dynamics of the
subscales, which in turn depend on the large scales. The solution to the latter
is usually approximated considering the subscales to be directly proportional
to the residual (in the algebraic subgrid scale (ASGS) version [102, 103]) or
taking the residual component perpendicular to the finite element space (in
the orthogonal subgrid scale (OSS) approach [43]). The proportionality is
characterized by means of a matrix of the so-called stabilization parameters.
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For the simulations in the present work we have resorted to the ASGS
formulation, assumed quasi-static subscales and neglected the influence of
the pressure subscales. The space-discrete variational problem for the large
scales then becomes that of finding [u0

h, p
0
h] ∈ L2(0, T |Vh ⊂ V)×L∞(0, T |L0h ⊂

L0) such that

(∂tu
0
h,v

0
h) + (u0

h · ∇u0
h,v

0
h) + ν(∇u0

h,∇v0
h)− (p0

h,∇ · v0
h)

+ (q0
h,∇ · u0

h) + (tN ,v
0
h)ΓN − (f ,v0

h) + (ũ0 · ∇u0
h,v

0
h)− (ũ0, ũ0 · ∇v0

h)

−
∑
Ωel

(ũ0, ν4v0
h + u0

h · ∇v0
h +∇q0

h)Ωel = 0, (2.18)

for all [v0
h, q

0
h] ∈ V0h×L0h ⊂ V0×L0. The incompressible velocity subscales

ũ0 in (2.18) which solve the small scales equation are computed as

ũ0 = τ(f − ∂tu0
h − u0

h · ∇u0
h + ν4u0

h −∇p0
h), (2.19)

with the stabilization parameter τ being given by

τ =

[
c1
ν

h2
+ c2
|u0

h|
h

]−1

, (2.20)

and c1 and c2 in (2.15) standing for algorithmic parameters. From numerical
experiments the values c1 = 4 and c2 = 2 have been deemed appropriate for
them. The influence of the subscales ũ0 has been neglected in the non-linear
term of the residual in (2.19), and in the stabilization parameter as well.

Observe that the first line of (2.18) is nothing but the Galerkin FEM
approach to the variational Navier-Stokes problem whereas the second line
contains the subscale contributions to the material derivative, as well as the
stabilization terms which mitigate the numerical problems mentioned above.
The notation (f, g)Ωel in the second line refers to integration within an ele-
ment domain (subscales are assumed to vanish at the interelement bound-
aries). The reader is referred to [53] for a detailed derivation of the above
equations. These arise as a particular case of the most general situation
in which subscales are tracked in time and all its non-linear contributions
retained.

In what concerns the wave equations, (2.16) and (2.17) do not present
special spatial discretization difficulties because they only involve the Lapla-
cian operator. A standard Galerkin FEM proves accurate enough. The
spatial discrete version of (2.16) is that of finding pih ∈ C2(0, T |L0h ⊂
L0) ∩ C0(0, T |Vh ⊂ V) which satisfies

(∂2
ttpih, qh) + c2

0(∇pih,∇qh)− c0(∂pih, qh)Γ∞ = (u0
h · ∇u0

h,∇qh), (2.21)
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for all qh ∈ Vh0 ⊂ V0. Analogously, the spatial discrete version of (2.17)
consists in obtaining the diffracted pressure pdh ∈ C2(0, T |L0h ⊂ L0) ∩
C0(0, T |Vh ⊂ V such that

(∂2
ttpdh, qh) + c2

0(∇pdh,∇qh)− c0(∂pdh, qh)Γ∞ = c2
0(∇pih · n, qh)Γb

, (2.22)

for all qh ∈ Vh0 ⊂ V0.
The main numerical difficulties with (2.21) and (2.22) usually arise from

its time discretization (to be dealt with in the forthcoming subsection) or
from undesired reflections at the boundary of the finite computational do-
main. Although simple Sommerfeld radiation conditions have proved pre-
cise enough for the numerical tests in the present study, the use of perfectly
matched layers (PML) for the irreducible wave equation is certainly recom-
mendable [100, 109, 6].

Finally, we point out that to get the matrix versions of the above equa-
tions one has to expand as usual the unknowns u0

h, p
0
h, pih, pdh, and their cor-

responding test functions, as linear combinations of polynomial basis func-
tions and nodal unknowns, and rearrange (2.18), (2.21) and (2.22). Needless
to say that the equations are to be supplied with the corresponding discrete
initial conditions in weak form.

Fully discretized numerical scheme in space and time

To approximate the first and second order time derivatives in (2.18), (2.21)
and (2.22) second order backward finite difference schemes (BDF2) have
been used. Let us partition the time interval [0, T ] into N equal time steps
of size δt := tn+1 − tn so that 0 ≡ t0 < t1 < . . . < tn < . . . < tN ≡ T . Given
a generic time dependent function g(t), the following notation will be used
for the BDF2 approximation to the first time derivative,

∂tg|tn ≈ δtg
n :=

1

2δt
(3gn − 4gn−1 + gn−2), (2.23)

whilst the BDF2 second order time derivative will be designated by

∂2
ttg|tn ≈ δ2

ttg
n :=

1

(δt)2
(2gn − 5gn−1 + 4gn−2 − gn−3). (2.24)

As usual, gn denotes evaluation of g at time step tn.
Given that the proposed concurrent FEM formulation for aeroacoustics

is not intended for sound propagation at very far distances (for which an
integral approach would probably be more efficient), the above BDF2 time
discretization schemes prove accurate enough. Otherwise, if acoustic wave
propagation was required for distances involving several tenths or hundreds
of wavelengths, one should resort to high-order schemes (e.g., fourth order
Runge-Kutta [2, 117]) or to symplectic integrators (e.g. of the Verlet-type).
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At an arbitrary time step of the numerical simulation, the final fully dis-
cretized implicit scheme in space and time proposed to solve equations (2.3),
(2.10) and (2.11) reads as follows. From known u0,n−2

h and u0,n−1
h , com-

pute the incompressible velocity and pressure at time step tn, [u0,n
h , p0,n

h ] ∈
Vh × L0h such that

(δtu
0,n
h ,v0

h) + (u0,n
h · ∇u

0,n
h ,v0

h) + ν(∇u0,n
h ,∇v0

h)− (p0,n
h ,∇ · v0

h)

+ (q0
h,∇ · u

0,n
h )− (fn,v0

h) + (tnN ,v
0
h)ΓN + (ũ0,n · ∇u0,n

h ,v0
h)

− (ũ0,n, ũ0,n · ∇v0
h)−

∑
Ωel

(ũ0,n, ν4v0
h + u0,n

h · ∇v
0
h +∇q0

h)Ωel = 0, (2.25)

for all [v0,n
h , q0,n

h ] ∈ Vh0 × L0h. Then, from known u0,n
h , pn−3

i h, p
n−2
i h and

pn−1
i h, find the incident acoustic pressure at time step tn, pni h ∈ Vh that

satisfies

(δ2
ttp

n
i h, qh) + c2

0(∇pni h,∇qh)− c0(∂pni h, qh)Γ∞ = (u0,n
h · ∇u

0,n
h ,∇qh), (2.26)

for all qh ∈ Vh0. Finally, from pni h, p
n−3
d h, p

n−2
d h and pn−1

d h compute the
diffracted acoustic pressure at time tn, pdh ∈ Vh such that

(δ2
ttp

n
dh, qh) + c2

0(∇pndh,∇qh)− c0(∂pndh, qh)Γ∞ = c2
0(∇pni h · n, qh)Γb

, (2.27)

for all qh ∈ Vh0.
Usually, knowing the acoustic field generated by the initial transients of

the NS equations is of no interest at all, so the acoustic module in the above
scheme (equations (2.26) and (2.27)) gets activated after a certain period of
time. On the other hand, note that at each time step of the simulation a
linearization process is needed for the convective term in the NS equations.
This can be achieved either by means of a simple Picard’s scheme or by a
Newton-Raphson’s one.

Finally, it is worth mentioning that the proposed strategy presents a
somehow tricky point because the computational domains for the variational
NS equation (2.25) and for the two wave equations (2.26) and (2.27) are not
the same. At each time step of the simulation, after solving (2.25) the
domain Ωb has to be switched on and included for the computation of the
incident acoustic pressure in (2.26), and then switched off to compute the
diffracted sound field in (2.27). Besides, it should be noted that special care
should be taken when interpolating the results from the CFD domain to the
acoustic one to avoid spurious errors [122, 113, 58].

2.3 Problem statement for moving domains

Next, a complete aeroacoustic formulation based on incompressible flow is
presented. As stated in the Introduction, one of the main objectives is the
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derivation and implementation of numerical methods that can take part
in a coupled simulation of any human phonation case, which includes dy-
namic sounds such as diphthongs and syllables. First, the incompressible
Navier-Stokes equations are reformulated in an ALE frame of reference in
the parallel FEMUSS code following the example of [92]. In Chapter 4, the
isentropic compressible equations will undergo the same procedure. More-
over, Lighthill’s analogy and the splitting of the acoustic pressure into a
quadrupolar and a dipolar component will also be formulated and imple-
mented departing from [81].

2.3.1 Incompressible flow problem in an Arbitrary La-
grangian Eulerian frame of reference

The arbitrary Lagrangian-Eulerian (ALE) description [61] is intended to
profit from the advantages of the two classical kinematic descriptions, the La-
grangian and the Eulerian, while minimizing considerably their drawbacks.
In the Lagrangian formulation each node of the computational mesh follows
the motion of the material particle it represents. This description is very
suitable for structural mechanics and specific applications related to the
tracking of free surfaces and interfaces between different materials. How-
ever, it is not capable to absorb large deformations of the domain unless a
remeshing strategy is implemented. On the other hand Eulerian algorithms
consider a fixed mesh with respect to the moving continuum, which allows
large irregularities in the motion of the material. For this reason they are
basically used in fluid mechanics. However, it is not able to capture with
precision interfaces and other details of the flow. In the ALE description,
the nodes may either follow the continuum in a Lagrangian fashion, or be
held fixed in an Eulerian manner, or they can even be prescribed a com-
pletely independent velocity, for instance in case of a flow motion driven by
deformation of the physical domain. Therefore, this approach admits larger
distortions of the continuum than a purely Lagrangian method and offers
a higher resolution than a purely Eulerian description. These considera-
tions do not affect the numerical calculation of static speech sounds, like the
sibilant fricative /s/ presented in chapter 6. However, when the object of
study is a diphthong or a syllable, like the present case, the kinematics of
the domain must be taken into account in both the flow and the acoustic
problem.

Following the change of reference operation presented in [61], the material
derivative for any magnitude f in an ALE frame of reference will be

Df

Dt
=
∂f

∂t
+ (c · ∇) f,

c = u− udom, (2.28)
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where c is the advection velocity in the new reference, u is the velocity in
the Eulerian reference and udom refers to the motion of the domain.

Once the nodal displacements of the mesh have been computed, the mesh
velocity udom is computed by time derivation and sent to the physical prob-
lems to be solved in an ALE frame of reference. As shown previously, the
ALE frame of reference modifies the second term of the material deriva-
tive of a certain magnitude, which in turn affects the convective term of
the incompressible Navier-Stokes problem. This involves both the momen-
tum equation and the stabilization terms. Moreover, boundary conditions
must be also adapted to the new reference by adding the domain velocity to
the Dirichlet prescribed values and recomputing the external normal of the
boundaries for the Neumann conditions. Departing from the incompressible
flow problem presented in section 2.2.1 and using the same notation, the
ALE formulation of the continuous problem will be

∂tu
0 − ν∆u0 +

(
u0 − udom

)
· ∇u0 +∇p0 = f in ΩNS(t), t > 0, (2.29a)

∇ · u0 = 0 in ΩNS(t), t > 0, (2.29b)

u0 (x, 0) = u0
0 (x) in ΩNS(t), t = 0, (2.29c)

u0 (x, t) = udom (x, t) on Γb(t), t > 0, (2.29d)

u0 (x, t) = u0
D (x, t) + udom (x, t) on ΓD(t), t > 0, (2.29e)

n · σ (x, t) = tN (x, t) on ΓN(t), t > 0. (2.29f)

The fully discrete formulation of the problem using FEM can be easily de-
rived as in 2.2.4. For the sake of conciseness it will not be presented again.

In spite of using an ALE reference which follows the deformation of the
domain, an excessive distortion of the mesh elements might take place in
cases with large displacements or when dealing with geometries that tend to
localize deformation in small regions. For this reason a remeshing strategy
which allows a conservative transmission of results between computational
grids will be presented in Chapter 5. For the cases presented next, which
consist in a bounded rotation of a 2D NACA0012 airfoil and the opening
of a 2D simplified vocal tract emulating the syllable /sa/, the regularity
of the geometry and its simple motion do not require any remeshing stage
if the mesh undergoes a virtual elastic problem presented in [36]. Unlike
the Poisson problem, which yields a smooth and homogeneous propagation
of the prescribed displacements from the boundary to the interior nodes of
the mesh, this method allows minimizing element distortion by adapting the
mechanical properties of each mesh element at every time step. In a first run,
after prescribing the motion of the domain boundaries, the principal stresses
and strains resulting from the mesh deformation are computed locally using
a uniform Young’s modulus Ē, from which the distortion energy density is
derived. This scalar field will then be used in a second and definitive elastic



2.3. Problem statement for moving domains 31

problem to modify Young’s modulus at each element E:

E =
Ē

12 (1 + ν)

[
(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2] , (2.30)

where ν is Poisson’s ratio and εi are the principal strains at each element.

2.3.2 FWH analogy as a diffraction problem

The main goal now consists in showing how to extend the above splitting
procedure to the case of flow noise generated in domains with moving walls.
The previously presented Curle’s analogy accounts for the contribution of
rigid fixed walls. For moving or flexible surfaces one has to resort to the
Ffowcs-Williams-Hawkings method (FWH) [159], which also departs from
Lighthill’s analogy and includes both dipolar and monopolar source terms
in the form of surface integrals. The first one can be also found in [59],
whereas the second describes sound generated by a pulsating displacement
of air produced by a moving surface:

Hc2
0 (ρ− ρ0) =

∂2

∂xi∂xj

∫
V (Ω)

[Tij]
dV

4π | x− y |

− ∂

∂xi

∫
S(Ω)

[
ρvi (vi − v̄j) + p′ij

] dSj (y)

4π | x− y |

+
∂

∂t

∫
S(Ω)

[ρvi (vi − v̄j) + ρ0v̄j]
dSj (y)

4π | x− y |
. (2.31)

If the surface S (Ω) is rigid, then vj = v̄j on S (Ω) and the terms can be
rearranged as follows:

Hc2
0 (ρ− ρ0) =

∂2

∂xi∂xj

∫
V (Ω)

[Tij]
dV

4π | x− y |
− ∂

∂xi

∫
S(Ω)

[
p′ij
] dSj (y)

4π | x− y |

+
∂

∂t

∫
S(Ω)

[ρ0v̄j]
dSj (y)

4π | x− y |
, (2.32)

where the first term corresponds to Lighthill’s quadrupolar sources, the sec-
ond one to the dipolar sources and the final one to the monopolar noise. Like
in Curle’s analogy, the problem can be separated into a free field Green’s
function (G) and a diffracted component (GD), which now will include a
monopolar term.

Once again, this methodology has the problem of Curle’s when using an
incompressible flow solver, which is not able to provide the acoustic pressure
fluctuations on S (Ω). Therefore, the same strategy is applied to this case,
but taking into account that it becomes no longer possible to resort to the
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acoustic wave equation in irreducible form when dealing with acoustic waves
propagating in moving domains. The linearized continuum and momentum
conservation equations used to derive the latter need to be expressed in an
ALE frame of reference, which precludes obtaining a scalar wave equation
for the acoustic pressure [81]. One is then forced to work with the linearized
momentum and continuity equations, sometimes referred to as the wave
equation in mixed form (see e.g., [44]). This reads

1

ρ0c2
0

∂tp+∇ · u = Q, (2.33a)

ρ0∂tu+∇p = f , (2.33b)

where p stands anew for the acoustic pressure while u represents the acoustic
particle velocity. Q denotes a volume source distribution and f an external
body force per unit volume.

To express (2.33) in an ALE domain one follows the same procedure
applied to (2.29) obtaining

1

ρ0c2
0

∂tp−
1

ρ0c2
0

udom · ∇p+∇ · u = Q, (2.34a)

ρ0∂tu− ρ0udom · ∇u+∇p = f . (2.34b)

The source terms corresponding to Lighthill’s analogy and the acoustic
filtered version in [139] are given by,

• Lighthill’s analogy: fi = −ρ0∂j(u
0
iu

0
j), Q = 0

• Filtered Lighthill: f = 0, Q = −(1/ρ0c
2
0)
[
∂tp

0 − udom · ∇p0
]

To solve (2.34) in a computational domain Ωac(t), t > 0, we need to sup-
plement the equation with appropriate boundary conditions and initial con-
ditions. Assuming again a rigid body for simplicity we get,

u · n = 0 on Γb(t) t > 0 (2.35a)

u · n =
1

Z0

p on Γ∞ t > 0 (2.35b)

p (x, 0) = 0 u (x, 0) = 0, in Ωac(t), t = 0 (2.35c)

where (2.35b) is the Sommerfeld radiation condition for the wave equation
in mixed form (see e.g., [65]) and Z0 = ρ0c0.

2.3.3 Proposed methodology

We can next apply the splitting strategy into incident and diffracted fields
for the ALE mixed wave equation (2.34). Notice that the general linear
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operator L in (2.12) herein acts both on the acoustic pressure p and on the
acoustic particle velocity u. Taking u = ui + ud and p = pi + pd in (2.34)
we get the incident field problem

1

ρ0c2
0

∂tpi −
1

ρ0c2
0

udom · ∇pi +∇ · ui = Q in Ωac(t) ∪ Ωb(t), t > 0, (2.36a)

ρ0∂tui − ρ0udom · ∇ui +∇pi = f in Ωac(t) ∪ Ωb(t), t > 0, (2.36b)

ui · n =
1

Z0

pi on Γ∞, t > 0, (2.36c)

pi (x, 0) = 0, ui (x, 0) = 0, in Ωac(t) ∪ Ωb(t), t = 0,
(2.36d)

and the diffracted field one,

1

ρ0c2
0

∂tpd −
1

ρ0c2
0

udom · ∇pd +∇ · ud = 0 in Ωac(t), t > 0, (2.37a)

ρ0∂tud − ρ0udom · ∇ud +∇pd = 0 in Ωac(t), t > 0, (2.37b)

ud · n = −ui · n on Γb(t), t > 0, (2.37c)

ud · n =
1

Z0

pd on Γ∞, t > 0, (2.37d)

pd (x, 0) = 0, ud (x, 0) = 0, in Ωac(t), t = 0. (2.37e)

Our goal consists in solving equations (2.36) and (2.37) together with the
Navier-Stokes equations (also in an ALE framework) to get the source terms,
using a finite element approach.

2.3.4 Numerical discretization

Continuous weak form

The FEM discretization of equations (2.36) and (2.37) rely on their weak
formulation rather than on the differential one. The continuous weak forms
of the equations can be found multiplying equations (2.36a) and (2.37a) with
a scalar test function q, and equations (2.36b) and (2.37b) with a vector test
function v, and then integrating over the respective computational domains
Ωac(t) ∪ Ωb(t) and Ωac(t). Assuming that we want to solve the problem in
a given time interval [0, T ], the variational problems for the incident and
diffracted acoustic pressure and velocity can be posed as follows.

First, find pi ∈ Wp([0, T ],Vp) and ui ∈Wu([0, T ],Vu) such that

1

ρ0c2
0

(∂tpi, q)−
1

ρ0c2
0

(udom · ∇pi, q) + (∇ · ui, q) = (Q, q) ∀ q ∈ Vp, (2.38a)

ρ0(∂tui,v)− ρ0(udom · ∇ui,v) + (∇pi,v) = (f ,v) ∀ v ∈ Vu,
(2.38b)
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where Wp, Wu, Vp and Vu denote appropriate functional spaces not to be
detailed herein (see e.g., [81] for more details). As for the diffracted fields
we will have to find pd ∈ Wp([0, T ],Vp) and ud ∈Wu([0, T ],Vu) such that

1

ρ0c2
0

(∂tpd, q)−
1

ρ0c2
0

(udom · ∇pd, q) + (∇ · ud, q) = 0 ∀ q ∈ Vp, (2.39a)

ρ0(∂tud,v)− ρ0(udom · ∇ud,v) + (∇pd,v) = 0 ∀ v ∈ Vu. (2.39b)

The Dirichlet boundary conditions (2.36c), (2.37c) and (2.37d) are to be
imposed strongly on Γb(t) and Γ∞. Alternatively, one could integrate the
terms (∇·ui, q) in (2.38a) and (∇·ud, q) in (2.39a) to impose the conditions
weakly. The consequences of such an option are detailed in [11].

Finite element spatial discretization

The Galerkin FEM solution to variational mixed problems like (2.38) and
(2.39) is known to exhibit strong oscillations if equal order interpolations
are used for the pressure and velocities (see e.g., [44, 49, 81]). Moreover, the
ALE frame of reference introduces a convective term which also needs to be
stabilized. One could prevent them by resorting to stabilized FEM strategies
like the variational multiscale method (VMM) in [102, 103]. In this work,
orthogonal subgrid scales (OSS), see [43, 53], will be used to stabilize the
Galerkin FEM approach to (2.38) and (2.39), following the strategy depicted
in [81].

Let us consider the finite element spaces Vph ⊂ Vp and Vuh ⊂ Vu. The
discrete stabilized FEM approach to the incident problem (2.38) consists in
finding pih ∈ Wp([0, T ],Vph) and uih ∈Wu([0, T ],Vuh) such that

1

ρ0c2
0

(∂tpih, qh)−
1

ρ0c2
0

(udom · ∇pih, qh) + (∇ · uih, qh)

+
∑
Ωel

(τpP
[
− 1

ρ0c2
0

udom · ∇pih +∇ · uih −Q
]
,

− 1

ρ0c2
0

udom · ∇qih +∇ · vh)Ωe(tn) = (Qn+1, qh), (2.40a)

ρ0(∂tuih,vh)− ρ0(udom · ∇uih,vh) + (∇pih,vh)

+
∑
Ωel

(τuP
[
− ρ0udom · ∇uih +∇pih − f

]
,

− ρ0udom · ∇vh +∇qh)Ωe(tn) = (f ,vh), (2.40b)

for all qh ∈ Vph and vh ∈ Vuh .
The first and fourth rows in the above equations contain the Galerkin

FEM terms, whereas the second and fifth rows account for the stabilization
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terms. P in (2.40) stands for a projection to be applied either to scalars or
vectors depending on the argument. In the OSS method P it is computed
as P = I − Πh, with I being the identity and Πh being the L2-projection
onto the corresponding finite element space. On the other hand, the follow-
ing expressions can be obtained for the stabilization parameters τp and τu,
(see [81]),

τu =
h

C1ρ0|uh|+ ρ0c0C2

,

τp =
ρ0c

2
0h

C1|uh|+ c0C2

, (2.41)

with C1 and C2 being constants to be determined from numerical exper-
iments (a value of C1 = C2 = 100 was taken in [81]). Analogously, the
discrete stabilized FEM approach to the diffraction problem (2.39) is that
of finding pdh ∈ Wp([0, T ],Vph) and udh ∈Wu([0, T ],Vuh) such that

1

ρ0c2
0

(∂tpdh, qh)−
1

ρ0c2
0

(udom · ∇pdh, qh) + (∇ · udh, qh)

+
∑
Ωel

(τpP
[
− 1

ρ0c2
0

udom · ∇pdh +∇ · udh

]
,− 1

ρ0c2
0

udom · ∇qh +∇ · vh)Ωe(tn)

= 0, (2.42a)

ρ0(∂tudh,vh)− ρ0(udom · ∇udh,vh) + (∇pdh,vh)

+
∑
Ωel

(τuP
[
− ρ0udom · ∇udh +∇pdh

]
,−ρ0udom · ∇vh +∇qh)Ωe(tn) = 0,

(2.42b)

for all qh ∈ Vph and vh ∈ Vuh .

Fully discrete numerical scheme

To get the final numerical scheme, we need to discretize equations (2.40)
and (2.42) in time. We use again a second order backward differentiation
formula (BDF2) to approximate the first order time derivative of u and p.
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The time discrete version of the incident problem (2.40) then becomes

1

ρ0c2
0

(δtp
n+1
i h, qh)−

1

ρ0c2
0

(udom · ∇pn+1
i h, qh) + (∇ · un+1

i h, qh)

+
∑
Ωel

(τpP
[
− 1

ρ0c2
0

udom · ∇pn+1
i h +∇ · un+1

i h −Qn+1
]
,

− 1

ρ0c2
0

udom · ∇qh +∇ · vh)Ωe(tn) = (Qn+1, qh), (2.43a)

ρ0(δtu
n+1
i h,vh)− ρ0(udom · ∇un+1

i h,vh) + (∇pn+1
i h,vh)

+
∑
Ωel

(τuP
[
− ρ0udom · ∇un+1

i h +∇pn+1
i h − fn+1

]
,

− ρ0u
n+1
d h · ∇vh +∇qh)Ωe(tn) = (fn+1,vh). (2.43b)

Note that P(δtph) = 0 and P(δtuh) = 0 in (2.43) because we are considering
orthogonal subscales. Similarly, the time discrete version of the diffraction
problem (2.42) is given by

1

ρ0c2
0

(δtp
n+1
d h, qh)−

1

ρ0c2
0

(udom · ∇pn+1
d h, qh) + (∇ · un+1

d h, qh)

+
∑
Ωel

(τpP
[
− 1

ρ0c2
0

udom · ∇pn+1
d h +∇ · un+1

d h

]
,

− 1

ρ0c2
0

udom · ∇qh +∇ · vh)Ωe(tn) = 0, (2.44a)

ρ0(δtu
n+1
d h,vh)− ρ0(udom · ∇un+1

d h,vh) + (∇pn+1
d h,vh)

+
∑
Ωel

(τuP
[
− ρ0udom · ∇un+1

d h +∇pn+1
d h

]
,−ρ0u

n+1
d h · ∇vh +∇qh)Ωe(tn)

= 0. (2.44b)

Finally, let us mention that the motion of the computational mesh in the
numerical examples of the forthcoming sections has been driven through the
solution of an elastic problem [36]. Though efficient remeshing strategies are
currently available (see e.g., [131]), they can be avoided if the deformations
are not very large, which saves a considerable amount of computational cost.

2.4 Numerical examples

2.4.1 Aeolian tones

To test the above proposed methodology we will first address the classical
case of aeolian tones induced by flow vortex shedding past a cylinder. The
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(a) Quadrupolar incident pressure

(b) Dipolar diffracted pressure

(c) Total acoustic pressure

Figure 2.2: Snapshots of the incident (a), diffracted (b) and total (c) acoustic
pressure fields at time instant t = 0.3 s. The total pressure in (c) is obtained
from the summation of the incident and diffracted pressure fields in (a) and
(b). The colour scale has not been kept constant for better visualization of
the weak quadrupolar radiation.
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characteristic Reynolds number of the problem is Re = ρ0U
0D/µ, with U0

denoting the mean velocity impinging on the cylinder and D its diameter.
As long as Re is increased from an almost zero value, a set of bifurcations
take place until the flow past the cylinder becomes fully turbulent at high
enough Reynolds numbers (see e.g., [62]). Our interest is on that range of
Re where the flow first loses its steadiness and a set of periodic vortices form
behind the cylinder, known as the Von Kármán vortex street. The vortices
are shed at an approximate frequency of fsh = StU

0/D, with St denoting
the Strouhal number that slightly depends on Re as St = 0.198(1−19.7/Re)
(see e.g., [97]). The wake of vortices generate aerodynamic quadrupolar
noise which is diffracted by the cylinder. The diffracted noise exhibits a
strong dipolar character that clearly determines the acoustic pressure in the
far field. The emitted sound has a dominant frequency of fsh. Aeolian tones
can be appreciated in practice when wind impinges power transmission lines
and are also emitted, for instance, by train pantographs and tubular heat
exchangers.

For the simulations we have considered a two-dimensional cylinder with
diameter D = 0.1 m embedded in a circular acoustic computational domain
Ωac that has a diameter of DΩac = 50 m. An inner rectangular domain
ΩNS of dimensions 5 m × 10.4 m has been used for the CFD computation.
An inlet flow velocity of U0 = 50m/s has been prescribed in the horizontal
direction on its Dirichlet boundary, which has resulted in a vortex shedding
and emitted sound frequency of 120 Hz. We have considered a sound speed
of c0 = 343 m/s. The two-dimensional mesh for ΩNS consists of 55.881
linear finite elements while 194.322 linear elements have been used for the
acoustic domain Ωac. A time step of δt = 10−4 s has been chosen for the
time evolution. The variational equations (2.15), (2.16) and (2.17) have been
solved following the explanations in sections 3.2 and 3.3.

Representative snapshots at time instant t = 0.3 s of the generated acous-
tic pressure field have been plotted in Fig. 2.2. In Fig. 2.2a we present the
incident acoustic pressure field generated by the vortex wake which exhibits
a clear quadrupolar directivity pattern. We remind that this computation
is done in Ωac ∪ Ωb as if the cylinder was absent. The incident acoustic
pressure is diffracted by the cylinder which emits aerodynamic sound with a
dipole pattern. The colour scale in Fig. 2.2a has been set different from that
in Fig. 2.2b to better observe the quadrupolar radiation. It is to be noted
that the amplitude of the diffracted sound turns to be ∼ 6−7 times stronger
than the incident one, which is in accordance with the fact that the dipolar
contribution is of order M−1 times the quadrupolar one (see e.g., [76]). In
the present example the Mach number is M ≈ 0.146.

The total acoustic field has been plotted in Fig. 2.2c. As observed, except
for the area just past the cylinder, the results in Fig. 2.2c almost totally
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Figure 2.3: Evolution of the diffracted pressure at points (20 m, 0◦), green
line, (20 m, 45◦), blue line and (20 m, 90◦), red line.

match those in Fig. 2.2b confirming that the far field is governed by the
dipolar diffracted noise. This can also be appreciated in Fig. 2.3, where
we have plotted the acoustic pressure evolution at three points located at
distances and angles (20 m, 0◦), (20 m, 45◦) and (20 m, 90◦) from the center
of the cylinder. The acoustic pressure takes its maximum amplitude at the
axis perpendicular to the inlet inflow direction.

2.4.2 3D duct exit with sharp constraint

The second application case focuses on the validation of the presented method
for a benchmark test employed for better understanding the aeroacoustics in
the generation of the sibilant sound /s/. The test consists of a duct with a
sharp edge obstacle stuck at the end, which may be roughly viewed as a very
idealized representation of a vocal tract and the teeth [40]. When the flow
passes through the gap left by the constriction a turbulent wake develops
driven by a shedding frequency. This results in the generation of aerody-
namic noise which becomes diffracted by the teeth. As it will be shown, it
will be again this diffracted noise component the one that dominates the far
field acoustics. The computational domain for both, the CFD and acoustic
computations, consists of a three dimensional rectangular duct with dimen-
sions 10.2 cm×2.5 cm×2.5 cm and a hemisphere at its exit, 15 cm in radius,
to account for outward acoustic wave propagation. The teeth is placed close
to the duct exit leaving a gap of 0.15 cm × 2.5 cm which corresponds to
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Figure 2.4: Sketch of the computational domain for the 3D duct with sharp
constraint

6% of the duct section (see Fig. 2.4). The thickness of the edge of the
teeth is 1.25 mm. As regards the CFD computation, an inlet velocity of
(2.4, 0, 0)> m/s is imposed for the air at the duct entrance whereas a no-slip
boundary condition is prescribed on its walls. The Reynolds number accord-
ing to the height of the teeth gap and the inlet velocity is Re = 300. In what
concerns the acoustic simulations, the duct walls have been assumed to be

Figure 2.5: 3D isovorticity surfaces
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rigid and a Sommerfeld boundary condition has been imposed at the outer
surface of the hemisphere. The computational mesh is made of 42 550 677
P1/P1 finite elements with 6 798 782 nodes. A second order fractional step
scheme has been used to solve the incompressible Navier Stokes equations,
using a biconjugate gradient solver with a Hypre Pilut preconditioner for
the velocity and a Trilinos ML one for the pressure. The later has been also
used for the acoustic computations. In what refers the time discretization,
a BDF3 scheme has been used for the CFD simulations and a BDF2 for the
wave equation. The time step is given by δt = 2×10−6s. The CFD has been
first run for 1000 steps to surpass the initial transients without triggering the
acoustic module. Both, CFD and acoustic results have been then computed
from the subsequent 2 000 time steps. All simulations have been performed
using 1024 processors of a PDC Beskow machine at the KTH (Kungliga
Tekniska Högskolan) supercomputing center.

As a result of the CFD computation, and as mentioned above, a turbulent
wake develops past the teeth with some dominating shedding frequencies, the
most important one taking place at 6 kHz. In Fig. 2.5 we show a snapshot of
the isovorticity surfaces of the flow just past the teeth where the formation
of coherent vortex structures can be appreciated. In Figs. 2.6a and c, we
respectively present a vertical cut (at z = 0.0125m) and a horizontal cut
(at y = 0.0032m) for the velocity modulus, whereas the analogous ones
for the aerodynamic pressure are given in Figs. 2.6b and d. All of them
are plotted for t = 0.006s. In Fig. 2.7 we show the pressure spectrum
Epp in a log-log plot for a point located at the flow wake. According to
Kolmogorov’s theory, Epp ∼ k−7/3, k being the wavenumber, and making
use of the frozen-turbulence approximation (Taylor’s hypothesis) it can be
shown that the dependency with frequency also becomes Epp ∼ f−7/3 (see
e.g., [91, 132]). The slope −7/3 is plotted as a red line in Fig. 2.7. As it
can be observed, the computed spectrum closely matches the Kolmogorov
pressure spectrum prediction for fully developed isotropic turbulence. The
generated aerodynamic sound results in acoustic waves propagating outside
the duct exhibiting a spherical directivity pattern (see Fig. 2.8). In Fig. 2.10a
and b we respectively plot the incident and diffracted acoustic pressure for
the plane located at y = 0.0032m. The influence of the wake is apparent
for the incident field whereas it is logically absent for the diffracted acoustic
field. Again, we should remind that the incident acoustic field computation
is carried out by removing the teeth from the computational domain. By
the way, it is to be noted that Lighthill’s source term becomes strongly
concentrated at the wake past the teeth and quickly smears out when the
flow leaves the duct (see Fig. 2.9).

One can easily check that it is the noise diffracted by the teeth the one
that governs the acoustics at the far field, in accordance with theoretical
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(a) (b)

(c) (d)

Figure 2.6: Velocity profile at z = 0.0125m (a), velocity profile at y =
0.0032m (b), pressure profile at z = 0.0125m (c) and pressure profile at
y = 0.0032m (d) at t=0.006s.

models for sibilant sound production (see e.g., [96]). In Fig. 2.11a we have
plotted a sample of the total, incident and diffracted time history for the
acoustic pressure at a point located at the far field ((x, y, z)>). As observed,
the diffracted component almost justifies the total acoustic pressure at this
point. In Fig. 2.11b we present the Fourier transform for the incident and
diffracted acoustic pressure evolution. The diffracted spectrum presents a
clear peak at 6 kHz, corresponding to the dominant shedding frequency in
the turbulent wake (see Fig. 2.7). This frequency determines the main oscil-
lations observed in the diffracted and total pressure evolution in Fig. 2.11a.
This result is in accordance with experimental data presented in [126], where
several frequency spectra of the phoneme /s/ were recorded for different dif-
ferent languages, syllables, ages and gender. In this study, the peak can be
found at 6.8 − 8 kHz and the spectra are continuous and no characteristic
frequencies can be identified, which is not the case of the present work be-
cause the simplified geometry is totally symmetric and regular. However, in
both cases the main contribution to the sound generation takes place within
the range of 2− 10 kHz.
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Figure 2.7: Point pressure spectrum Epp in [Pa2] versus frequency f in Hz.

Figure 2.8: Total acoustic pressure front waves
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Figure 2.9: Lighthill source term ρ0∂
2
ij(u

0
iu

0
j) at plane z = 0.0125m.

(a)

(b)

Figure 2.10: Incident acoustic pressure at y = 0.0032m (a) and diffracted
acoustic pressure at y = 0.0032m (b) for t=0.006s.
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(a)

(b)

Figure 2.11: Time history for the total, incident and diffracted acoustic
pressure at a far field point (a) and Fourier transform of the incident and
diffracted acoustic components (b).

2.4.3 Aeroacoustics of an oscillating 2D NACA0012
airfoil. M = 0.1

To demonstrate the extended splitting approach for domains with moving
boundaries (see section 2.3), and to test as well the numerical proposal in
section 4, we have considered a two-dimensional example of a flow around a
NACA 0012 airfoil with an initial angle of attack of 5 degrees [160]. The flow
Reynolds number based on the airfoil chord (d = 0.1524) is Rec = 102, 000,
whereas the incident Mach number is M = 0.1. The problem has been
solved in an unstructured mesh of nearly 600, 000 linear elements using equal
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interpolation spaces for velocity and pressure, with a size of 4 ·10−5 m on the
airfoil surface (all units are in SI). The case has been run up to 0.045 s with
a time step δt = 10−5 s, departing from an initial incompressible solution in
order to ease the initial convergence of the solver.

The airfoil rotates around the leading edge, which in turn corresponds
to the origin of coordinates, with an angular frequency ω = 40 rad/s. The
consequent mesh deformation is calculated and minimized with the method
presented in [36] and the grid motion is taken into account by the flow
dynamics and the acoustics through the previously presented ALE formula-
tions. At a first stage, the airfoil reaches the horizontal position and the first
picture of the flow velocity and the two components of the acoustic pressure
are obtained, see Figs. 2.12a, 2.13a and 2.14a. After that, the tail reaches
its maximum height in see Figs. 2.12b, 2.13b and 2.14b, where it can be
clearly observed that the boundary layer detaches earlier from the wall lead-
ing to an increase of the turbulent quadrupolar sound radiation (incident
component). Finally, the airfoil passes through the original position until
the tail reaches its minimum height in Figs. 2.12c, 2.13c and 2.14c. At that
point, the profile has already suffered a considerable aerodynamic loss, for
which the intensity of both components of the noise increase.

(a)

(b)

(c)

Figure 2.12: Velocity profiles at three different positions of the airfoil.
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(a)

(b)

(c)

Figure 2.13: Incident acoustic pressure profiles at three different positions
of the airfoil.
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(a)

(b)

(c)

Figure 2.14: Diffracted acoustic pressure profiles at three different positions
of the airfoil.
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(a)

(b)

(c)

Figure 2.15: Total acoustic pressure profiles at three different positions of
the airfoil.
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One relevant aspect of the simulation is the continuous growth of the
diffracted acoustic pressure and subsequently the total one, see Figs. 2.13
and Fig. 2.15. This is a numerical issue related to the acoustic pressure
undetermination, since no Dirichlet boundary conditions are deployed in the
acoustic problem. The side effect is an unclear visualization of the acoustic
field due to the presence of a variable offset which does not allow a proper
scaling of the propagation. As no satisfactory solution has been found within
the numerical method, the time history of these two variables has been mod-
ified in a post-processing stage by computing a third order regression poly-
nomial and subtracting the latter from the former. In this way, a clean
oscillating signal has been obtained for a proper frequency analysis. For this
purpose, four points at the far-field have been selected: P1 = (−1.4, 0.0)>,
P2 = (0.0, 1.4)>, P3 = (1.4, 0.0)> and P4 = (0.0,−1.4)>. The importance
of satisfying the far-field condition lies on two facts: first, the hypothesis
of flow at rest for a valid wave propagation using Lighthill’s analogy, and
second for proving the dominance of the diffracted acoustic pressure (dipo-
lar source) over the turbulent noise (quadrupolar source). In this sense,
Figs. 2.16, 2.17, 2.18, 2.19 show, like in the previous static cases, the ex-
pected result. For P2 and P4, which are placed on the perpendicular axis
to the flow, there is a difference of approximately 30 dB between the two
components along the whole frequency range. For P1, which is located up-
stream, the offset decreases for high frequencies, whereas for P3, which lies
on the wake, the quadrupolar sources are relevant at low frequencies (large
eddies).

Figure 2.16: Incident and diffracted acoustic pressure frequency spectra at
P1.
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Figure 2.17: Incident and diffracted acoustic pressure frequency spectra at
P2.

Figure 2.18: Incident and diffracted acoustic pressure frequency spectra at
P3.

Next, Fig. 2.20 shows a time history of the total acoustic pressure at
the four selected points and the corresponding frequency spectrum. The
quantitative analysis and the subsequent validation of the results will be
performed in Chapter 4, where the same case will be computed with the
isentropic compressible formulation.
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Figure 2.19: Incident and diffracted acoustic pressure frequency spectra at
P4.

2.4.4 Aeroacoustics of a 2D opening teeth-shaped ob-
stacle

The second example of application problem with acoustics in moving do-
mains intends to show the degree of maturity of the formulation for sim-
ulating dynamic phonemes provided the proper biomechanical background.
The application to diphthongs using glottal pulses as acoustic source instead
of Lighthill’s stress tensor has already been presented in [81]. Now the ap-
proach is extended with the inclusion of a CFD calculation for any syllable,
which would allow the simulation of the sound /sa/. In fact, the present
case aims for a schematic representation of this syllable. The domain mo-
tion is prescribed with a velocity ramp that opens the gap between incisors
from 3 mm to a final distance of 18 mm, see Fig. 2.21. Since the analysis
focuses on the contribution of the incisors along the whole simulation, the
opening starts at t = 0.03 s, allowing the flow and the propagation to be
fully developed. Then the opening takes place progressively until t = 0.06
s. Finally, the geometry is left open up to the end at t = 0.09 s for ob-
taining a new stationary state. For simplicity, the same flow configuration
of 2.4.2 has been used with a time step δt = 10−5 s. The initial occlusion
causes a turbulent airjet which leads to the propagation of a wide range of
frequencies and to a high level of noise, see Figs. 2.22a, 2.23a and 2.24a.
At t = 0.045 the partial opening of the vocal tract has notably dissipated
the airjet and decreased the sound intensity, Figs. 2.22b, 2.23b and 2.24b.
It is important to remark that the incident component suffers a bigger loss
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Figure 2.20: Total acoustic pressure time history (top) and frequency spec-
trum (bottom) at the four selected points.

than the diffracted one, since the quadrupolar sources are directly tied to
the level of turbulence. Finally, at t = 0.06 and t = 0.09, which correspond
to the final open position, the flow has become laminar except for some old
vortices which still feed the incident component of the acoustic pressure at a
very low level, see Figs. 2.22c,d, 2.23c,d and 2.24c,d. On the other hand, the
diffracted component does not capture any propagation during this stage.

In order to evaluate the evolution and contribution of both acoustic pres-
sure components, the time history of a point placed at the upper left corner
of the outer domain is presented, see Fig 2.25. Unlike the airfoil case, where
the far-field conditions are clearly met, the present case does not show a clear
dominance of the dipolar sources over the quadrupolar ones, mainly due to
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Figure 2.21: Scheme of the computational domain close to the duct exit.
The obstacle evolves from minimum to maximum opening.

the small size of the domain. Another important difference that can explain
this fact is the confined character of this flow, which leads to the generation
of secondary vortices. Translated to the acoustics of the problem, it means
new sources of quadrupolar noise for the incident component. Once again,
the diffracted component is affected by the numerical issue of the evolving
offset.

2.5 Conclusions

This chapter suggests a methodology to obtain the turbulent quadrupolar
contribution to aerodynamic flow noise, as well as the dipolar one due to the
influence of rigid body surfaces, as a direct output of a single finite element
computational run. To that purpose use is made of Lighthill’s acoustic
analogy, although as shown, the procedure can be extended to any other
acoustic linear wave operator and acoustic source term. Instead of directly
solving the wave equation for the acoustic pressure, the latter becomes split
into an incident component, due to flow motion, plus a diffracted one, due to
the presence of bodies within the flow. At each time step of the simulation,
the incompressible Navier-Stokes equations are solved and an approximation
to Lighthill’s tensor is derived from them. This source term is inserted in
a wave equation for the incident pressure that is solved as if the rigid body
was absent for that time step. This provides the quadrupolar flow noise
contribution. The value of the incident pressure at the boundary of the rigid
body is then used to compute the dipolar acoustic pressure contribution
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(a) (b)

(c)

Figure 2.22: Evolution of the flow velocity: t = 0.03 (a), t = 0.045 (b),
t = 0.06 (c).

(a) (b)

(c) (d)

Figure 2.23: Evolution of the incident component of the acoustic pressure:
t = 0.03 (a), t = 0.045 (b), t = 0.06 (c), t = 0.09 (d).

due to the body’s diffraction. The proposed approach avoids the problem
of the standard Curle formulation for low Mach number aeroacoustics, of
knowing the acoustic pressure fluctuations in the surface integral, not just
the incompressible pressure that could stem from an incompressible CFD
simulation.
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(a) (b)

(c) (d)

Figure 2.24: Evolution of the diffracted component of the acoustic pressure:
t = 0.03 (a), t = 0.045 (b), t = 0.06 (c), t = 0.09 (d).

Figure 2.25: Time history of the incident and diffracted components of the
acoustic pressure at the far-field.

The extension to moving domains has also been derived departing from
the stabilized mixed wave equation in an ALE reference presented in [81]. In
spite of the considerable complexity jump respect to the fixed version, the
method has been able to simulate complex scenarios and could be used in
more realistic dynamic phonation cases provided the availability of accurate
geometries and deformation mappings.



Chapter 3

Residual-based stabilization of
the finite element
approximation to the acoustic
perturbation equations for low
Mach number aeroacoustics

The acoustic perturbation equations (APE) are suitable to predict aerody-
namic noise in the presence of a non-uniform mean flow. As for any hybrid
computational aeroacoustics approach, a first computational fluid dynamics
simulation is carried out from which the mean flow characteristics and acous-
tic sources are obtained. In a second step, the APE are solved to get the
acoustic pressure and particle velocity fields. However, resorting to the finite
element method (FEM) for that purpose is not straightforward. Whereas
mixed finite elements satisfying an appropriate inf-sup compatibility condi-
tion can be built in the case of no mean flow, i.e., for the standard wave
equation in mixed form, these are difficult to implement and their good per-
formance is yet to be checked for more complex wave operators. As a conse-
quence, strong simplifying assumptions are usually considered when solving
the APE with FEM. It is possible to avoid them by resorting to stabilized
formulations. In this work, a residual-based stabilized FEM is presented
for the APE at low Mach numbers, which allows one to deal with the APE
convective and reaction terms in its full extent. The key of the approach
resides in the design of the matrix of stabilization parameters. The perfor-
mance of the formulation and the contributions of the different terms in the
equations are tested for an acoustic pulse propagating in sheared solenoidal
and non-solenoidal mean flows, and for the aeolian tone generated by flow
past a two-dimensional cylinder.

57
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3.1 Background

In this work, a stabilized finite element method (FEM) is proposed to solve
the acoustic perturbation equations (APE). These equations can account for
aerodynamic sound propagation in areas with non-uniform mean flow. In
particular, we will herein focus on the low Mach number APE in [66], which
are derived after source filtering the linearized Euler equations (LEE) to get
rid of the vorticity and entropy modes, while leaving the acoustic ones.

The APE constitute a particular case of the so called hybrid methods
in computational aeroacoustics (CAA). These separate the computation of
aerodynamic sound into two steps. In the first one, a computational fluid
dynamics (CFD) simulation is carried out to obtain the acoustic source terms
from the aerodynamic velocity and pressure fields. In the second one, the
source terms are input into an acoustic wave operator. The latter can directly
be, for example, the standard linear wave equation in irreducible or mixed
form, their convective counterparts, or more complex operators like the ones
involved in the LEE.

The best known hybrid approaches are those in the category of acous-
tic analogies, being Lighthill’s the most celebrated one [115]. Lighthill’s
analogy states the problem of aerodynamic sound radiation into a quiescent
medium as that of noise radiated by a distribution of quadrupoles in free
space. For low Mach number flows, Lighthill approximates the source of
sound by the double divergence of the Reynolds tensor, which is built from
the products of the components of the aerodynamic velocity vector. Other
analogies place their emphasis on the role of vorticity in the generation of
sound [133, 95, 124]. Besides, it should be remarked that the influence
of rigid bodies within the flow on noise radiation was considered since the
birth of acoustic analogies (see [59]) and later generalized to flexible bodies
in [159].

As long as one aims to compute aerodynamic sound propagation in
non-quiescent flow areas, convective and refraction effects have to be ex-
tracted from the acoustic source term and included in the wave operator
(see e.g., [15]). This led to the development of more sophisticated analogies
(see e.g., [116, 77]) and to alternatives such as the linearized Euler equa-
tions [14], or resorting to perturbation equations [66, 145]. As mentioned
above, in this work we will attempt at solving the low Mach number formu-
lation of the APE in [66] using FEM. Refraction effects will be neglected for
simplicity.

The computation of aerodynamic sound in the second step of a hybrid
CAA approach is often performed by resorting to integral formulations,
though FEM is also common if the acoustic waves are to be computed at
distances not too far from the source region. Most aeroacoustic FEM works
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to date have dealt with Lighthill’s acoustic analogy, [128, 83, 110, 13], yet
convection effects have also been taken into account. In [82] the convec-
tive Helmholtz equation flow was considered, while a mixed convection wave
equation with uniform mean flow was considered in [101] as a simplification
of the APE in [66].

The numerical difficulties associated to the FEM solution of the various
wave operators involved in CAA are of a very different nature. Whereas
for the standard linear wave equation for the acoustic pressure most efforts
are placed on the time discretization schemes, given that the spatial dis-
cretization presents no serious difficulties (the Laplacian is a well-behaved
operator), this is not the case for its Fourier transform, the Helmholtz equa-
tion. The latter may become non-positive definite for large wavenumbers
and the standard Galerkin FEM approach fails to solve it. A large amount
of stabilization strategies have been devised to prevent the pollution error
associated to the Helmholtz equation [88]. With regard to mixed formu-
lations like the APE, which involve both, the acoustic pressure and the
acoustic particle velocity, the situation gets more intricate. In the case of
no convection the APE simply reduces to the wave equation in mixed form.
The variational formulation of the latter has to satisfy a compatibility inf-
sup condition for the problem to be well posed, which is not inherited by
the standard Galerkin FEM approach to it. It therefore becomes necessary
to work with finite elements having different interpolations for the acoustic
pressure and velocity fields to avoid the appearance of spurious oscillations in
the numerical solution [21, 22, 23]. An alternative to circumvent the discrete
inf-sup condition and consider the same interpolation fields for the acoustic
pressure and velocity is that of resorting to stabilization strategies, such as
the residual based multiscale methods [102, 103, 43]. These were applied to
the mixed wave equation in [44]. It was proved in [11] that the solution to
the problem is then bounded by the data in an energy norm that involves
all additional stabilization terms.

The situation worsens when one considers the presence of a mean flow.
As far as the authors know, it has not been checked yet whether the tailored
finite elements for the mixed wave equation could perform well in the pres-
ence of convection. Even if this was the case, their implementation is not an
easy task. Stabilized FEM offer a way out to these problems. A first sim-
plification to the APE is that of assuming a uniform mean flow so that they
reduce to the convective mixed wave equation. As previously commented,
this occurrence was addressed in [101], where a stabilizing flux term (as in
the discontinuous Galerkin method) and a penalization term were incorpo-
rated in the formulation. However, in the case of a non-uniform mean flow,
not only the convective terms in the APE become more complex, but one
also has to deal with a reaction term. With regard to the former, analogous
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non-uniform convective terms appear in the linearized modified Boussinesq
equation for shallow waters. The Galerkin FEM approach to it exhibits
high frequency oscillations [114, 119] that can be overcome by resorting to
stabilization strategies [90, 49]. The same type of instabilities are found
when setting the wave equation in mixed form in an arbitrary Lagrangian-
Eulerian (ALE) frame of reference, to deal with wave propagation in moving
domains [81].

In this chapter, a residual-based stabilized FEM will be proposed to solve
the APE equations that include the effects of the non-uniform convection and
of the reaction term due to the mean velocity gradient. This stabilization
strategy relies on splitting the problem unknowns into large scales that can
be resolved by the computational mesh, and small scales whose effects onto
the large scales have to be modelled. The key for the good performance
of the method depends upon the design of a proper matrix of stabilization
parameters, which can be achieved through a Fourier analysis of the subscale
equation [44, 49, 81].

The chapter is organized as follows. In section 2, we disclose the APE
equations, set them in matrix form and work out their variational formula-
tion. In section 3, we proceed to discretization. The residual-based stabilized
FEM approach is presented and the derivation of the matrix of stabilization
parameters is exposed in detail. The fully discretized numerical scheme in
time and space close the section. Three numerical examples are finally given
in section 4. These consist of three benchmark tests dealing with the wave-
front propagation in solenoidal sheared mean flows and in non-solenoidal
shear mean flows, and with the generation of an aeolian tone by flow past a
two-dimensional cylinder.

3.2 Problem statement

3.2.1 An acoustic perturbation equation for low Mach
numbers

Our starting point will be the acoustic perturbation equations (53)-(55) de-
rived in [66], in the particular case of only considering vortex sound for
low Mach numbers and neglecting the linear coupling between acoustic and
vorticity modes. These equations read

∂tρ
′ +∇ · (ρ′ū+ ρ̄ua) = 0, (3.1a)

∂tu
a +∇(ū · ua) +∇

(pa
ρ̄

)
= 0, (3.1b)

∂tp
a − c̄2∂tρ

′ = −∂tph, (3.1c)
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and are obtained from manipulation of the linearized Euler equations for
the enthalpy and velocity fields (the reader is referred to [66] for details). ∂t
stands for the first order time derivative and c̄ denotes the speed of sound.
The above equations are based on the following decompositions for the com-
pressible velocity u, pressure p and density ρ,

u = ū+ u′ with u′ := uh + ua, (3.2a)

p = p̄+ p′ with p′ := ph + pa, (3.2b)

ρ = ρ̄+ ρ′ with ρ′ := ρh + ρa. (3.2c)

In (3.1)-(3.2) an overbar indicates a time averaged mean quantity i.e.,

g(x) := limT→∞(1/T )
∫ t0+T

t0
g(x, t)dt, with t0 standing for the initial time

of the averaging process and T for its total duration. The mean values are
independent of t0 once the initial transients of a simulation/measurement
have been surpassed. Likewise, a prime g(x, t)′ denotes a perturbation from
the mean value. The velocity fluctuation u′ in (3.2a) becomes split into two
components, a hydrodynamic solenoidal perturbation uh and an irrotational
acoustic perturbation ua. Similarly, the pressure and density fluctuations
p′ and ρ′ in (3.2b)-(3.2c) consist of two terms, a hydrodynamic component
ph and ρh responsible for the production of pseudo-sound, and an acoustic
component pa and ρa that will propagate as acoustic waves outwards the
source region.

Equation (3.1) can be further simplified if we neglect sound refraction by
assuming that neither the time averaged sound speed nor the time averaged
density have a spatial dependence, i.e., c̄ ≡ c0 and ρ̄ ≡ ρ0. Assuming
p′ = c2

0ρ
′, this allows one to express (3.1) solely in terms of the velocity and

pressure variables

1

ρ0c2
0

∂tp
a +

1

ρ0c2
0

ū · ∇pa +∇ · ua +
1

ρ0c2
0

pa∇ · ū = − 1

ρ0c2
0

∂tp
h

− 1

ρ0c2
0

ū · ∇ph − 1

ρ0c2
0

ph∇ · ū =: Q, (3.3a)

ρ0∂tu
a + ρ0 ū · ∇ua +∇pa + ρ0 u

a · ∇ū = 0. (3.3b)

In the event that ū and ph are obtained from a previous computational
fluid dynamics (CFD) simulation, (3.3) will provide the solution for the
acoustic field taking into account the convection of acoustic disturbances by
the mean flow. Given that we are dealing with low Mach numbers, we can
resort to an incompressible CFD simulation to do so, so that ū ≡ ūinc and
ph ≡ phinc = pinc − p̄inc, subscript inc standing for incompressible. In such
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situation we get ∇ · ūinc = 0 and (3.3) further simplifies to

1

ρ0c2
0

∂tp
a +

1

ρ0c2
0

ūinc · ∇pa +∇ · ua = − 1

ρ0c2
0

∂tp
h − 1

ρ0c2
0

ūinc · ∇ph, (3.4a)

ρ0∂tu
a + ρ0 ūinc · ∇ua +∇pa + ρ0 u

a · ∇ūinc = 0. (3.4b)

3.2.2 Differential matrix problem and variational for-
mulation

It is possible to rewrite equations (3.3a) and (3.3b) in matrix form for con-
venience as

µ∂tu+Ai∂iu+ Su = F , (3.5)

where the summation convention over repeated indexes is assumed here-
inafter. The index i will run from 1 to the number of spatial dimensions
with ∂i standing for the first order spatial derivatives. The following vector
and matrix identifications have been made

u =


pa

ua1
ua2
ua3

 , F =


Q
f1

f2

f3

 , µ =


µp 0 0 0
0 µu 0 0
0 0 µu 0
0 0 0 µu

 ,

A1 =


µpū1 1 0 0

1 µuū1 0 0
0 0 µuū1 0
0 0 0 µuū1

 , A2 =


µpū2 0 1 0

0 µuū2 0 0
1 0 µuū2 0
0 0 0 µuū2

 ,

A3 =


µpū3 0 0 1

0 µuū3 0 0
0 0 µuū3 0
1 0 0 µuū3

 ,

S =


µp∇ · ū 0 0 0

0 µu∂1ū1 µu∂2ū1 µu∂3ū1

0 µu∂1ū2 µu∂2ū2 µu∂3ū2

0 µu∂1ū3 µu∂2ū3 µu∂3ū3

 . (3.6)

The parameters µp ≡ (ρ0c
2
0)−1 and µu ≡ ρ0 satisfying c0 = (µpµu)−1/2

in (3.6) have been introduced to ease the notation and ūi, i = 1, 2, 3, desig-
nate the components of the time averaged mean velocity vector. Note also
that, for completeness, we have included the possibility of an external force
acting on the momentum equation by means of the components fi.
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Problem (3.5) is to be solved in a computational domain Ω whose bound-
ary ∂Ω can be considered to be made from the union of two disjoint sets:
Γp where we will prescribe the acoustic pressure and Γu where the normal
component of the acoustic particle velocity is to be imposed. For simplicity,
we shall take homogeneous Dirichlet conditions on them in the forthcoming
expressions, i.e., pa = 0 on Γp, t > 0 and ua · n = 0 on Γu, t > 0, with n
standing for the outward normal of the domain’s boundary. Equation (3.5)
needs also to be suplemmented with initial conditions pa(x, 0) = pa0(x) and
ua(x, 0) = ua0(x) in Ω.

Additionally, let us introduce the functional spaces Vp = {q ∈ H1(Ω)|ū ·
∇q ∈ L2(Ω), q = 0 on Γp} and Vu = {v ∈ L2(Ω)|∇ · v ∈ L2(Ω), ū · ∇v ∈
L2(Ω),v ·n = 0 on Γu} and use (f, g) to denote the integral of the product
of two arbitrary functions f and g, i.e., (f, g) :=

∫
Ω
fgdΩ. Next, consider

a test function q for the acoustic pressure and v for the acoustic velocity.
The weak form of (3.5) is found multiplying it by a vector test function
v ≡ [q,v]> and integrating over the computational domain Ω. Defining the
spaces L ≡ L2 ×L2 and V ≡ Vp × Vu, the problem becomes that of finding
u ≡ [pa,ua]> ∈ C1([0, T ],L) ∩ C0([0, T ],V) such that

(µ∂tu,v) + (Ai∂iu,v) + (Su,v) = (F ,v) ∀ v ∈ V . (3.7)

3.3 Numerical approximation

3.3.1 Residual-based stabilized finite element method

The standard discretized conforming Galerkin FEM approach to solve prob-
lem (3.7) aims at finding a finite element solution uh ∈ C1([0, T ],Lh ⊂
L) ∩ C0([0, T ],Vh ⊂ V) such that

(µ∂tuh,vh) + (Ai∂iuh,vh) + (Suh,vh) = (F ,vh) ∀ vh ∈ Vh. (3.8)

Here, Lh, Vh represent finite dimensional spaces built from a finite element
partition {Ωe} of Ω. The index e ranges from 1 to the total number of
elements nel in the computational mesh. However, the Galerkin FEM for-
mulation (3.8) is known to suffer from numerical instabilities which can be
overcome by resorting to a variational multiscale stabilization approach. The
latter basically consists in splitting the exact solution u into a large com-
ponent uh that can be captured by the finite element computational mesh,
plus a small component u′, which cannot be resolved by the mesh. u′ is usu-
ally referred to as the subscale. The effects of the subscales onto the large
scales have to be modeled. The procedure to do so give rise to different
stabilization methods.
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Substituting u = uh + u′ into (3.7) results in two equations. The first
one governs the dynamics of the large scales and is given by

(µ∂tuh,vh) + (µ∂tu
′,vh) + (Ai∂iuh,vh) + (Ai∂iu

′,vh)

+ (Suh,vh) + (Su′,vh) = (F ,vh). (3.9)

To better account for the influence of the subscales in the large scale equation
we can integrate the convective term by parts. Furthermore, if we assume
the subscales to be quasi-static, i.e., ∂tu

′ ≈ 0, equation (3.9) becomes

(µ∂tuh,vh) + (Ai∂iuh,vh) + (Suh,vh)

− (u′,A>i ∂ivh) + (u′, ∂iA
>
i vh) + (u′,S>vh) = (F ,vh). (3.10)

Notice that the first line in (3.10) contains the terms of the standard Galerkin
approach in (3.8), whereas the second line discloses the subscale stabiliza-
tion terms. The term (u′, ∂iA

>
i vh) in the second line plays the role of an

additional reaction weighted by the subscales.
On the other hand, the second equation driving the dynamics of u′ has

the expression

(µ∂tuh,v
′) + (Ai∂iuh,v

′) + (Ai∂iu
′,v′) + (Suh,v

′) + (Su′,v′) = (F ,v′),
(3.11)

which corresponds to the L2-projection of µ∂tuh+Ai∂iuh+Ai∂iu
′+Suh+

Su′ = F onto the space of subscales. If we use P to denote this projec-
tion, (3.11) can be rewritten as

P(Ai∂iu
′ + Su′) = P [F − (µ∂tuh +Ai∂iuh + Suh)] =: Rh, (3.12)

where the residual Rh of the finite element approximation onto the sub-
scale space has been introduced. The goal of the residual-based stabilization
approaches is to find an approximate solution to (3.12), which yields an
expression for u′ that could be substituted in (3.10) resulting in enhanced
stabilization properties.

A legitimate option consists in taking the subscales proportional to the
residual i.e., u′ = τRh, which is analogous to saying that P(Ai∂iu

′+Su′) ≈
τ−1u′, see [44, 49]. Here, τ stands for a symmetric, positive-definite matrix
of stabilization parameters that has to be determined. Once this has been
done, u′ = τRh can be substituted into the large scale equation (3.10) that
becomes

(µ∂tuh,vh) + (Ai∂iuh,vh) + (Suh,vh)

+

nel∑
e=1

(τP [F − (µ∂tuh +Ai∂iuh + Suh)],−Ai∂ivh + ∂iAivh + S>vh)Ωe

= (F ,vh). (3.13)
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Note that we have used the fact that the convective matrices Ai are sym-
metric in the above expression. With regard to the projection operator P
different options exist. In the more classical ASGS (Algebraic Subgrid Scale)
formulation, the projection is taken as the identity matrix over the space of
finite element residuals, i.e., P =. Alternatively, in the OSS (Orthogonal
Subgrid Scale) method the subscales are assumed to be orthogonal to the
finite element space and consequently, P = −Πh, with Πh standing for the
L2-projection onto the former [43, 53]. Let us also mention that the sub-
scales are presumed to be local and vanish at the interelemental boundaries.
When integrating over Ω, the integrals containing subscales are evaluated as
a summation of integrals over the finite element domains Ωe (as explicitly
indicated in (3.13)).

3.3.2 Dimensional rescaling considerations

To complete the stabilized formulation in (3.13), the crucial step of find-
ing an appropriate expression for the stabilization matrix τ remains to be
done. However, before addressing such an issue some considerations are to
be made concerning the scalar products in the variational formulations (3.6)
and (3.13). The r.h.s (right hand side) of these equations involves prod-
ucts of the type u>F = paQ + ua1f1 + ua2f2 + ua3f3 (see (3.6)). If we use
[·] to denote a dimensional group, it becomes necessary that [paQ] = [uai fi].
From the dimensions of the terms in the r.h.s of (3.3) it can readily be
checked that [paQ] = [uai fi] = MLT−3, with M , L and T standing for
dimensions of mass, length and time respectively. Yet, when deriving an
appropriate expression for τ in the next subsection we will have to deal
with products like F>F or u>u, which are not dimensionally well de-
fined. For instance, F>F = Q2 + f 2

1 + f 2
2 + f 2

3 but [Q2] 6= [f 2
i ]. Similarly,

u>u = pa2 + ua1
2 + ua2

2 + ua3
2 but again [pa2] 6= [uai

2]. Consequently, and as
quoted in [44, 49], it becomes necessary to rescale the original differential
equations for these products to make sense.

This is tantamount to introducing the weighting matrix M (see [44]),

M =


mp 0 0 0
0 mu 0 0
0 0 mu 0
0 0 0 mu

 , mp :=
√
µu/µp = ρ0c0, (3.14)

mu :=
√
µp/µu =

1

ρ0c0

, (3.15)

to define the weighted scalar product F>MF ≡ |F |2M which can be shown
to be dimensionally correct given that [mpQ

2] = [muf
2
i ] = ML−2T−3.

Analogoulsy, the inverse of M can be used to correctly define the prod-
uct u>M−1u ≡ |u|2M−1 . That is so because [m−1

p pa2] = [m−1
u uai

2] = MT−3.
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Therefore, M and M−1 are the appropriate weighthing matrices to define
products between any two force vectors F>1 MF2 and unknowns u>1M

−1u2.
We can also define an M -weighted product between two arbitrary matrices
B1 and B2 as B>1 MB2. The squared M -pointwise norm of a matrix B will
be given by |B|2M = sup{X>B>MBX}, ∀ X; |X|M−1 = 1. For regular
enough force vector functions it is also possible to introduce the following
vector function M -weighted scalar products,

(u,F ) =

∫
Ω

u>F dΩ, (F1,F2)M :=

∫
Ω

F>1 MF2dΩ, (u1,u2)M−1

:=

∫
Ω

u>1M
−1u2dΩ, (3.16)

whose induced norms are designated by ‖ · ‖, ‖ · ‖M and ‖ · ‖M−1 .

3.3.3 The matrix τ of stabilization parameters

A fruitful way to derive an expression for the matrix of stabilization param-
eters τ is from the spatial Fourier transform of the subscale equation (3.12).
Let us identify the linear operator L := Ai∂i +S and use a hat symbol for
Fourier transformed functions. Equation (3.12) can therefore be expressed
in the wavenumber domain as (hereafter ki denotes the i-th component of
the wavenumber adimensionalized by the characteristic mesh size h),

L̂ (k)û′ = −i
1

h
kjAjû

′ + Sû′ = R̂h, (3.17)

with squared M -norm

û′>L̂ (k)>ML̂ (k)û′

= û′>
( 1

h2
klkjA

>
l MAj + 2

i

h
kl[AlMS]A + S>MS

)
û′ = R̂>hMR̂h.

(3.18)

Here, [AlMS]A stands the skew-symmetric part of A>l MS. The induced
norm for the residual (see (3.16)) fulfills

‖R̂h‖2
M =

∫
|R̂h|2Mdk =

∫
|L̂ (k)û′|2Mdk ≤

∫
|L̂ (k)|2M |û′|2M−1dk

=

∫
|L̂ (k0)|2M |û′|2M−1dk = |L̂ (k0)|2M‖û′‖2

M−1

= ρ(L̂ (k0)>ML̂ (k0))‖û′‖2
M−1

≤
[
ρ
( 1

h2
k0
l k

0
jA
>
l MAj

)
+ ρ
(

2
i

h
k0
l [AlMS]A

)
+ ρ(S>MS)

]
‖û′‖2

M−1 ,

(3.19)
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where the existence of k0 in the second line is guaranteed by the mean
value theorem and ρ(B) denotes the spectral radius of an arbitrary matrix
B arising from the solution of the generalized eigenvalue problem Bu =
λM−1u, λ being an eigenvalue. All spectral radii in the fourth line of (3.19)
will be shown to be real (note that [AlMS]A is totally skew-symmetric and
therefore has imaginary eigenvalues).

On the other hand, from the Fourier transform of the approximation for
the subscales u′ = τRh, we can get the bound

‖R̂h‖2
M ≤ |τ−1|2M‖û′‖2

M−1 . (3.20)

The combination of (3.19) and (3.20) provides one way to find an expression
for the stabilization matrix given that

ρ(τ−1Mτ−1) ≤ ρ
( 1

h2
k0
l k

0
jA
>
l MAj

)
+ ρ
(

2
i

h
k0
l [AlMS]A

)
+ ρ(S>MS).

(3.21)

Without loss of generality, hereafter we will derive the stabilization matrix
for a two dimensional case, its extension to the three dimensional one being
straightforward. Let us first compute the spectral radii for the three terms
in the r.h.s (3.21). Taking into account the definitions of Ai in (3.6) and of
the scaling matrix M in (3.15), the matrix in the first term of (3.21) reads

1

h2
k0
i k

0
jA
>
i MAj =

1

h2
×mu|k0|2 + βp|k0 · ū|2 αk0

1(k0 · ū) αk0
2(k0 · ū)

αk0
1(k0 · ū) mp(k

0
1)2 + βu|k0 · ū|2 k0

1k
0
2mp

αk0
2(k0 · ū) k0

1k
0
2mp mp(k

0
2)2 + βu|k0 · ū|2


(3.22)

with

α ≡ (mpµp +muµu), βp ≡ mpµ
2
p, βu ≡ muµ

2
u. (3.23)

The spectrum of k0
i k

0
jA
>
i MAj can be analytically worked out and is given

by

SpecM−1(k0
i k

0
jA
>
i MAj)

=

{(
k0 · ū
c0

+ |k0|

)2

,

(
k0 · ū
c0

)2

,

(
k0 · ū
c0

− |k0|

)2}
. (3.24)
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The spectral radius of
(

1
h2
k0
l k

0
jA
>
l MAj

)
corresponds to the maximum eigen-

value

ρ
( 1

h2
k0
l k

0
jA
>
l MAj

)
=

1

h2

(
k0 · ū
c0

+ |k0|

)2

≡ 1

h2

(
C2|ū|
c0

+ C1

)2

=
1

h2

(
C1 + C2M

)2

, (3.25)

where M = |ū|/c0 stands for the flow local Mach number (do not confuse
the scalar Mach number M with the weighthing matrix M). Since k0 is an
unknown dimensionless number, we have taken k0 · ū = |k0||ū| cos θ ≡ C2|ū|
and |k0| ≡ C1 in the r.h.s of (3.25), C1 and C2 being constants that have to
be determined from numerical experiments.

Next, considering the expressions for Ai and S in (3.6) and for M
in (3.15), we get for the matrix in the second term of (3.21)

2
i

h
k0l [AlMS]A =

i

h
× (3.26) 0 muµuk0 · ∂1ū−mpµpk01∇ · ū muµuk0 · ∂2ū−mpµpk02∇ · ū

mpµpk01∇ · ū−muµuk0 · ∂1ū 0 −βuk0 · ū(∂1ū2 − ∂2ū1)
mpµpk02∇ · ū−muµuk0 · ∂2ū βuk0 · ū(∂1ū2 − ∂2ū1) 0

 .

(3.27)

The spectrum of this matrix is given by

SpecM−1(2
i

h
k0
l [AlMS]A)

=

{
1

h

[
(c2 + b2) +mud

2
]1/2

, 0,−1

h

[
(c2 + b2) +mud

2
]1/2
}
, (3.28)

with

c2 + b2 =
1

c2
0

|k0|2(∇ · ū)2 +
1

c2
0

[
(k0 · ∂1ū)2 + (k0 · ∂2ū)2

]
− 2

c2
0

∇ · ū
[
k0

1(k0 · ∂1ū) + k0
2(k0 · ∂2ū)

]
≤ 2

c2
0

|k0|2(∇ · ū)2 +
2

c2
0

[
(k0 · ∂1ū)2 + (k0 · ∂2ū)2

]
≤ 2

c2
0

|k0|2(∇ · ū)2 +
2

c2
0

|k0|2
[
(∂1ū)2 + (∂2ū)2

]
≤ 4

c2
0

|k0|2|∇ū|2F ,

m2
ud

2 = m2
uβu(k0 · ū)2(∂1ū2 − ∂2ū1)2 ≤ 1

c4
0

|k0|2|ū|2(∂1ū2 − ∂2ū1)2

≤ 1

c2
0

|k0|2M2|∇ū|2F , (3.29)
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|B|F denoting the Frobenius norm of an arbitrary matrix B. It follows that

c2 + b2 +m2
ud

2 ≤ 4

c2
0

|k0|2|∇ū|2F (1 +M2) ≤ 8

c2
0

|k0|2|∇ū|2F , (3.30)

where we have considered that we are dealing with low Mach number flows
and consequently M << 1. The above results allow one to bound the
spectral radius of 2 i

h
k0
l [AlMS]A by

ρ
(

2
i

h
k0
l [AlMS]A

)
≤ 1

h

C3

c0

|∇ū|F , (3.31)

C3 denoting a real constant.
Finally, the matrix in the third term of (3.21) reads

S>MS =

 βp(∇ · ū)2 0 0
0 βu|∂1ū|2 βu∂1ū · ∂2ū
0 βu∂1ū · ∂2ū βu|∂2ū|2

 , (3.32)

with spectrum

SpecM−1(S>MS) (3.33)

=

{
mu
2

[
(e+ f) +

√
(e− f)2 + 4g2,

1

c2
0

(∇ · ū)2,
mu
2

[
(e+ f)−

√
(e− f)2 + 4g2

}
,

where

(e+ f) = βu

[
(∂1ū)2 + (∂2ū)2

]
≤ βu|∇ū|2F ,

(e− f)2 = β2
u

[
|∂1ū|2 − |∂2ū|2

]2

≤ β2
u|∇ū|4F ,

4g2 = 4β2
u(∂1ū · ∂2ū)2 ≤ 4β2

u|∂1ū|2|∂2ū|2 ≤ 4β2
u|∇ū|4F . (3.34)

Therefore, the spectral radius of S>MS can be bounded as

ρ(S>MS) ≤ C4muβu|∇ū|2F =
C4

c2
0

|∇ū|2F , (3.35)

with C4 denoting a large enough real constant to be found again from nu-
merical experiments.

From (3.21), (3.25), (3.31) and (3.35) we get

ρ(τ−1Mτ−1) ≤ 1

h2

(
C1 + C2M

)2

+
1

h

C3

c0

|∇ū|F +
C4

c2
0

|∇ū|2F . (3.36)
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Taking into account that ∇ ∼ O(1/h) and redefining constants where ap-
propriate, we can check that the bound on the M -norm of the stabilization
matrix behaves as

ρ(τ−1Mτ−1) ≤ 1

h2
[C1 + C2O(M) + C3O(M2)]. (3.37)

Note that the discarded term involving M2 in (3.30)-(3.31) would have given
place to a term ∼ O(M3) in (3.37).

In order to get a simple expression for the stabilization matrix we may
take it to be diagonal, τ = diag(τp, τu, τu). Given that the scaling matrix
M in (3.15) is also diagonal, it follows that

SpecM−1(τ−1Mτ−1) =

{(
mp

τp

)2

,

(
mu

τu

)2

,

(
mu

τu

)2
}
. (3.38)

We may then force every eigenvalue of τ−1Mτ−1 in (3.38) to equal the
r.h.s of (3.36) and take into account the observation in (3.37). What we
actually need from the stabilization parameter is to provide a constant term
depending on the mesh size, a term to control the flow local mean velocity
ū and a term that controls the mean velocity derivatives through |∇ū|2F .
Therefore, our proposal for the stabilization parameters, directly generalizing
for the three dimensional case, is that of taking

τ =


τp 0 0 0
0 τu 0 0
0 0 τu 0
0 0 0 τu

 with,

τp =
ρ0c

2
0h[

(c0C1 + C2|ū|)2 + C3h2|∇ū|2F
]1/2

,

τu =
h

ρ0

[
(c0C1 + C2|ū|)2 + C3h2|∇ū|2F

]1/2
, (3.39)

where use has been made of the expressions for mp and mu in (3.15).
The matrix τ of stabilization parameters (3.39) has to be inserted into

(3.13) to get the final stabilized variational formulation proposed in this
article. It only remains to find the values of the constants C1, C2 and C3.
This will be done by means of the numerical experiments in Section 4.1.
As regards the constants, it should be pointed out that there is a certain
tolerance for them, in the sense that one does not necessarily need to get
their optimal values as long as they are able to provide enough stabilization.
For a given mesh size h, the error may be larger or smaller depending on the
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particular values of the constants, but the slope of the convergence curves
will remain unchanged for a wide range of values, which is what matters in
fact.

Finally, note that in the case of no mean flow, ū = 0, the stabilization
parameters for the standard wave equation in mixed form are recovered,

τp = Ch
√
µu/µp τu = Ch

√
µp/µu, (3.40)

with C standing for a constant (see [44]). Likewise, if there was no reaction
term, S = 0, the factors |∇ū|2F would have not appeared in (3.39), and we
would have recovered analogous stabilization parameters to those found for
the standard wave equation in mixed form in an ALE frame of reference [81],
or for the equations of wave propagation in shallow waters [49].

3.3.4 Fully discrete problem

In the above developments, the time variable has been left continuous. To
proceed to the time discretization we have equally split the time interval [0 T ]
into N steps 0 < t1 < t2 < . . . < tn < . . . < tN ≡ T with δt := tn+1 − tn
denoting the time step size. Hereafter, gn will stand for the evaluation of
a time dependent function g(t) at tn = nδt. Given that we are computing
the aeroacoustic field close to the source region, a second order backward
differentiation formula (BDF2) will prove accurate enough for the time dis-
cretization of (3.13). Identifying δtg

n+1 := (1/2δt)(3gn+1−4gn+gn−1) allows
one to write the time discrete version of (3.13) as

(µδtu
n+1
h ,vh) + (Ai∂iu

n+1
h ,vh) + (Sun+1

h ,vh)

+

nel∑
e=1

(τP[F n+1 − (δtu
n+1
h +Ai∂iu

n+1
h + Sun+1

h )], ∂iAivh −Ai∂ivh + S>vh)Ωe

= (F n+1,vh). (3.41)

Finally, if we choose the OSS approach for the stabilized spatial discretiza-
tion it will follow that P(δtuh) = 0 because P = −Πh. The expanded fully
discrete problem in time and space that results from accounting for (3.6)
in (3.41) and that has been implemented for the numerical examples in the
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Figure 3.1: (a) Shear mean velocity profile and (b) resulting vector field for
Cases 3 and 4.

forthcoming section reads

1

ρ0c2
0

[
(δtp

an+1

h , qh) + (ū · ∇pan+1

h , qh) + (∇ · ūpan+1

h , qh)
]

+ (∇ · uan+1

h , qh)

+

nel∑
e=1

(τpP
[
Qn+1 − 1

ρ0c2
0

ū · ∇pan+1

h −∇ · uan+1

h − 1

ρ0c2
0

∇ · ūpan+1

h

]
,

− 1

ρ0c2
0

ū · ∇qh −∇ · vh +
2

ρ0c2
0

∇ · ū qh)Ωe = (Qn+1, qh), (3.42a)

ρ0(δtu
an+1

h ,vh) + ρ0(ū · ∇uan+1

h ,vh) + (∇pan+1

h ,vh) + ρ0(ua
n+1

h · ∇ū,vh)

+

nel∑
e=1

(τuP
[
− ρ0ū · ∇ua

n+1

h −∇pan+1

h − ρ0u
an+1

h · ∇ū
]
,

− ρ0ū · ∇vh −∇qh + ρ0vh∇ · ū+ ρ0vh · ∇ū)Ωe = 0. (3.42b)

3.4 Numerical examples

3.4.1 Wave propagation in solenoidal convective and
shear mean flows

The purpose of this example is twofold. On the one hand it will allow
one to check the influence of the various terms appearing in the acoustic
perturbation equations (3.4). On the other hand, it will help determining
the values of the constants C1, C2 and C3 appearing in the stabilization
parameters of (3.39). Throughout section 4, the units of all quantities will
be those of the SI system and will be not explicitly written.

The example consists of a squared computational domain having dimen-
sions Ω = [−100, 100] × [−100, 100]. A time varying monopole source of
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strength,

Q = exp

[
− ln(2)

x2 + y2

9

]
cos(ωt), (3.43)

has been placed at the origin (0, 0) and generates acoustic waves of angular
frequency ω = 175. The propagation of the acoustic waves will be analyzed
for different solenoidal mean velocity profiles ūinc in the domain. That will
reveal the importance of the distinct APE terms in (3.4). The cases that
have been considered are:

• Case A.1: No mean flow, i.e., ūinc = 0. In this case the APE reduce
to the standard wave equation in mixed form.

• Case A.2: A constant mean flow with ūinc = (70, 0). The APE now
reduce to the convective wave equation in mixed form for uniform mean
flows.

• Case A.3: A solenoidal shear mean flow with the profile plotted in
Fig. 3.1a resulting from equation (3.44) below. This corresponds to
the convective wave equation in mixed form for the case of a non-
uniform mean flow. The reaction term ρ0 u

a · ∇ūinc in (3.4b) is not
taken into account in the simulation.

• Case A.4: The shear mean flow of Case 3 but now considering the
full APE in (3.4) with all non-uniform convective and reaction terms
included. This was the benchmark case proposed in [66] to test several
APE formulations.

To perform all the simulations for the cases above, the computational
domain has been discretized with an unstructured mesh of 87 616 triangu-
lar elements. Spurious reflections at the boundaries have been avoided by
means of a simple perfectly matched layer (PML) according to the model
in [149]. Two additional absorption terms αp and α∗u have been respectively
added to the equations (3.4a) and (3.4b). α is the attenuation coefficient
and α∗ := (µu/µp)α. The attenuation factor is set to zero within the com-
putational domain Ω, while it has been set to α = 0.0004 in the absorbing
PML surrounding Ω. The width of the PML is 50. With regard to the
values of the physical parameters in (3.4), we have considered an air density
of ρ0 = 1.14 and a sound speed of c0 = 350. The shear mean velocity for
Cases A.3 and A.4 is defined by (see Fig. 3.1a),

ūinc(x, y) = (Ū tanh(2y/δ), 0), (3.44)

where Ū is the maximal velocity with value Ū = 70 (Mach number M = 0.2)
and δ = 50 denotes the shear-layer thickness. The resulting mean velocity
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(a) (b)

(c) (d)

Figure 3.2: Acoustic pressure contours at time t = 0.5. (a) Case A.1: No
mean flow. (b) Case A.2: Uniform mean flow. (c) Case A.3: Shear flow
with reaction term excluded. (d) Case A.4: Shear flow with reaction term
included.
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Figure 3.3: Pressure cuts at t = 0.5 corresponding to Fig. 3.2. Case A.3
(dashed red), Case A.4: (continuous blue). (a) x- axis. (b) y-axis. (c)
x = y.

vector field is plotted in Fig. 3.1b. Finally, in what concerns time evolution,
an incremental step of δt = 7×10−4 has been chosen to discretize the interval
[0, 0.5].

The resulting acoustic pressure fields for Cases A.1-A.4 have been plotted
in Fig. 3.2 at the time instant t = 0.5. As observed in Fig. 3.2a, the wave-
fronts simply consist of concentric circles propagating outwards for Case A.1,
because there is no mean velocity in the domain. We thus recover the ex-
pected radiation pattern of a monopole source. When a uniform mean flow
is imposed moving from left to right in Case A.2 (Fig. 3.2b), the front waves
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travelling upstream get stretched and the wave length diminishes, whereas
the opposite effect takes place for waves propagating downstream. This is
nothing but the well-known Doppler effect. Cases A.3 and A.4 serve to show
the importance of taking into account the reaction term in the APE. It is ap-
parent from Figs. 3.2c and d that if one was to simulate sound propagation in
a shear flow, the use of a convective mixed wave equation with non-uniform
velocity (Case A.3) would lead to substantial differences when compared to
the predictions made by the full APE (Case A.4). These discrepancies might
be better appreciated by plotting the acoustic pressure along the positive x-
axis, positive y-axis and along a diagonal cut x = y in the second quadrant
of the subfigures Figs. 3.2c, d (see respectively Figs. 3.3a, b and c where
the dashed red line stands for Case A.3 and the blue continuous line for
Case A.4).

A final plot showing the differences in wave propagation for Cases A.1-
A.4 is that of Fig. 3.4. In that figure we see the time evolution of the
acoustic pressure tracked at an arbitrary point A with coordinates xA =
(49.6,−34.1). The differences in amplitudes and phases between cases be-
come again very visible. The zero pressure initial time steps correspond to
the time it takes for the first wavefront to travel from the origin, where the
source is placed, to A.

On the other hand, and as mentioned above, the second goal of this
section is to determine the values of the constants C1, C2 and C3 in the
stabilization parameters of (3.39). The simulations just reported have been
carried out following the numerical strategy in section 3.4, but the values
for that constants were yet to be presented. Let us remark that for Case
A.1, C1 is the only constant playing a role given that ūinc = 0. For Cases
A.2 and A.3, C1 and C2 get involved but not C3 because the reaction term
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Figure 3.4: Comparison of the evolution of the pressure in the point
(49.6,−34.1) for Case A.1 (dashed green), Case A.2 (dotted black), Case
A.3 (dot-dashed red) and Case A.4 (continuous blue).
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Figure 3.5: Relative error of the stabilized FEM formulation dependence on
the values of the constants in the stabilization matrix. (a) Case 3: relative
error dependence on C2. (b) Case 4: relative error dependence on C3.

is not contemplated. Finally, all constants are to be considered in Case A.4.

To find suitable values for the constants, we have compared the results
of the stabilized FEM simulations with those from a reference solution com-
puted with a very fine mesh of 420 585 elements. For such a fine mesh the
contribution of the stabilization terms has been checked to be almost negligi-
ble. To proceed we have chosen to compute the relative L2-error between the
computed acoustic pressure pa and that from the reference solution pr. This

is given by ε = ‖pa − pr‖2/‖pr‖2 with ‖pa − pr‖2 =
[∫

Ωε
(pa − pr)2dΩε

]1/2

.

The error is computed in the subdomain Ωε ⊂ Ω so as not to contact the
boundaries of Ω and avoid any possible pollution that could stem from the
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Figure 3.6: Reference acoustic pressure (blue line) versus stabilized FEM
acoustic pressure (red dashed line) for the domain diagonal taking C1 = 100,
C2 = 500 and C3 = 1000002. (a) Case A.3. (b) Case A.4.
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performance of the PML. It is to be noted that we could also have included
the relative error for the acoustic velocity in the process, or a weighted com-
bination of relative errors for both, the acoustic velocity and the acoustic
pressure. However, given that usually in acoustic problems the latter is the
main variable of interest, we have focused on the acoustic pressure.

The value of the C1 constant was already established in [44], where it
appeared in a slightly different form. Given that for ūinc = 0 the results
from [44] are to be recovered, we have fixed C1 = 100 to that purpose.
The constant C2 has been selected focusing on Case A.3. For the terms in
the denominator of (3.39) to have similar influence, C2 should not surpass
a value of 2 000. Having a look at the relative error plot in Fig. 3.5a we
observe that an appropriate value for C2 is C2 = 500. Once fixed C1 = 100
and C2 = 500, we have resorted to Case A.4 to adjust the constant C3.
This constant should not exceed 150 0002, and as observed from Fig. 3.5b,
the relative error get stabilized for C3 ≈ 100 0002. As in most stabilized
numerical methods, once tuned, the constants C1 = 100, C2 = 500 and
C3 = 100 0002 are expected to have a rather general character and therefore
to apply to many other numerical examples.

To conclude this example, we show the acoustic pressure for the stabilized
FEM and reference solutions for the diagonal x = y of the domain in Fig. 3.6.
As observed almost no differences can be appreciated.

3.4.2 Wave propagation in non-solenoidal shear mean
flows

The aim of this section is to test the reliability of the proposed FEM ap-
proach, with the stabilization constants derived in the previous subsection,
when facing wave propagation in non-solenoidal mean flows. This involves
dealing with the APE in (3.3). The same computational domain and bound-
ary conditions as for cases A.1 to A.4 are contemplated but now wave prop-
agation takes place on the following two non-solenoidal mean flows

• Case B.1: Mean flow ū = (1
3

√
x2 + y2, 1

3

√
x2 + y2).

• Case B.2: Mean flow ū = (Ū tanh(2y/δ), y), Ū = 70.

The results for the above two cases are shown in Fig. 3.7. Figs. 3.7a
and c respectively show the velocity fields for Cases B.1 and B.2. The
corresponding acoustic pressure fields are depicted in Figs. 3.7b and d.

We have computed the relative error of the proposed stabilized FEM
against a reference solution obtained with the same fine mesh of the previous
subsection. This has resulted in a value of Er = 5.6% for Case B.1 and
Er = 8.6% for Case B.2. The comparison between the acoustic pressure for



78
Chapter 3. Residual-based stabilization of the finite element approximation to

the acoustic perturbation equations for low Mach number aeroacoustics

−100 −50 0 50 100
−100

−50

0

50

100

x [m]

y
 [

m
]

−100 −50 0 50 100
−100

−50

0

50

100

x [m]

y
 [

m
]

(a) (b)

(c) (d)

Figure 3.7: Mean velocity fields and acoustic pressure contours at time t =
0.5. (a) Case B.1: Velocity field. (b) Case B.1: Pressure contours. (c) Case
B.2: Velocity field. (d) Case B.2: Pressure contours.
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Figure 3.8: Reference acoustic pressure (blue line) versus stabilized FEM
acoustic pressure (red dashed line) for the domain diagonal taking C1 = 100,
C2 = 500 and C3 = 1000002. (a) Case B.1. (b) Case B.2.
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(a) (b) (c)

Figure 3.9: Acoustic pressure contours at time t = 0.15. (a) Case C.1. (b)
Case C.2. (c) Case C.3.

the stabilized FEM and reference solution has been plotted for the positive
diagonal x = y in Fig. 3.8. Very slight discrepancies are found which confirms
that the stabilized FEM also performs well for the tested non-solenoidal
fields.

3.4.3 Aeolian tone generated by a single cylinder

As a final numerical test, we will apply the stabilized FEM approach to the
APE, to a more complex situation. This consists in the classical problem
of aeolian tone generation by flow past a cylinder. From a physical point of
view, the aeroacoustic problem of aeolian tones is well-known and described
in literature, see e.g., [97, 62] among many others. The problem consists of
a flow impinging on a cylinder. For a certain range of Reynolds numbers, a
wake of shedding vortices develops past the cylinder inducing lift fluctuating
forces on it. That results in the emission of acoustic waves, which exhibit a
dipolar radiation pattern at the acoustic far field. For low Mach numbers,
the problem can be solved by first performing an incompressible CFD sim-
ulation to extract the acoustic source terms and the mean flow, which can
then be inserted into the APE (3.4) to resolve the acoustic field. Our interest
in this example is that of showing again the role played by the convection
and reaction terms of the APE in the generated aeroacoustic pressure. Con-
sequently, no results will be presented concerning the CFD simulation (they
are rather standard and can be found elsewhere e.g., [82, 83]).

In a nutshell and as regards the CFD computation, a two-dimensional
cylinder with diameter D=0.1 has been embedded in a squared computa-
tional domain of dimensions ΩCFD = [−6, 6]× [−6, 6] with an impinging flow
velocity, in Cartesian coordinates, of u0 = (50, 0) (Mach number M ≈ 0.14
for a sound speed of c0 = 350). The Reynolds number of the problem is
Re = ρ0|u0|D/µ = 1 000, where µ denotes the air viscosity. The domain
ΩCFD has been meshed with 295 141 linear finite elements. The incompress-
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ible Navier-Stokes equations have been solved for a time range of 0.15, using
the second order BDF2 time marching scheme with a time step of 9× 10−5.
The solution has resulted in the generation of a Von Kármán vortex street,
with vortices shed at a frequency of 120.

The APE have been resolved in a larger computational domain Ωac =
[−12, 12] × [−12, 12], ΩCFD ⊂ Ωac, using an unstructured mesh of 421 804
linear elements. The CFD and acoustic meshes coincide in the domain ΩCFD.
The values for the constants in the stabilization parameters found in section
4.1 have been used for the simulations. Similarly to what has been done
in that subsection, the following three situations have been considered to
establish the influence of the various terms in the APE,

• Case C.1: No mean flow; the APE simplifies to the wave equation in
mixed form. The sources terms are obtained from the CFD computa-
tion.

• Case C.2: The APE using the mean flow and source terms from the
CFD computation but neglecting the reaction term. Namely, only
non-uniform convection effects are considered.

• Case C.3: The full APE taking into account non-uniform convection
and reaction terms.

In Fig. 3.9 we show the acoustic pressure contour levels at the far field
for each case. As observed from Fig. 3.9a, a clear dipole radiation pattern
emerges with waves propagating perpendicular to the incident inlet velocity,
in Case C.1. However, when convection is taken into account (Case C.2) the
wavefronts propagate upstream (see Fig. 3.9b) as expected [82], the effect
being more pronounced if one includes reaction (Case C.3, Fig. 3.9c).

The differences in phase and amplitude among Cases C.1-C.3 can be
also very clearly appreciated if we plot one-dimensional cuts of the domain
in the x, y and diagonal x = y directions (see Fig. 3.10a, b and c). Again,
this is also made apparent when plotting the time evolution of the acoustic
pressure at three arbitrary points located at x1 = (−0.2, 5.8), x2 = (3.1, 0)
and x3 = (9, 0), see Figs. 3.11a, b and c.
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Figure 3.10: Pressure cuts at t = 0.15 corresponding to Fig. 3.9. Case C.1
(continuous blue), Case C.2 (dashed red line), Case C.3 (dashed-dot green
line). (a) x- axis. (b) y- axis. (c) x = y.
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Figure 3.11: Comparison of the evolution of the pressure for Case C.1 (con-
tinuous blue), Case C.2 (dashed red line) and Case C.3 (dashed-dot green
line). (a) x1 = (−0.2, 5.8). (b) x2 = (3.1, 0). (c) x3 = (9, 0).

3.5 Conclusions

The FEM solution of wave operators in mixed form requires using tailored
finite elements that satisfy the discrete version of the continuous problem
inf-sup condition. However, these finite elements are difficult to implement
and though valid for the wave equation in mixed form, it has not been
tested if they could work well for more complex operators, like the ones in
the acoustic perturbation equations for low Mach numbers.

In this work, we have suggested to circumvent that problem by resort-
ing to a stabilizing variational multiscale FEM formulation for the APE.
The APE acoustic pressure and acoustic particle velocity get split into large
scales, which can be resolved by the computational mesh and small scales
whose influence onto the former has to be modelled. A residual-based model
has been chosen for that purpose, the key for its good performance being
the design of the matrix of stabilization parameters. The latter has been
achieved by setting the small scales equations in the wavenumber domain
and using appropriate inequality bounds for its norm as well as for the APE
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residual. The accomplishment of the proposed strategy has been checked by
means of some numerical examples involving wave propagating in solenoidal
and non solenoidal non-uniform mean flows, involving convection and shear.



Chapter 4

Unified solver for fluid
dynamics and aeroacoustics in
isentropic gas flows

The high computational cost of solving numerically the fully compressible
Navier-Stokes equations, together with the poor performance of most nu-
merical formulations for compressible flow in the low Mach number regime,
has led to the necessity for more affordable numerical models for Compu-
tational Aeroacoustics. For low Mach number subsonic flows with neither
shocks nor thermal coupling, both flow dynamics and wave propagation can
be considered isentropic. Therefore, a joint isentropic formulation for flow
and aeroacoustics can be devised which avoids the need for segregating flow
and acoustic scales. Under these assumptions density and pressure fluctua-
tions are directly proportional, and a two field velocity-pressure compress-
ible formulation can be derived as an extension of an incompressible solver.
Moreover, the linear system of equations which arises from the proposed
isentropic formulation is better conditioned than the homologous incom-
pressible one due to the presence of a pressure time derivative. Similarly
to other compressible formulations the prescription of boundary conditions
will have to deal with the backscattering of acoustic waves. In this sense,
a separated imposition of boundary conditions for flow and acoustic scales
which allows the evacuation of waves through Dirichlet boundaries without
using any tailored damping model will be presented. Finally, the discrete
formulation will be extended to an ALE frame of reference in order to re-
duce the complexity of the hybrid method for moving domains presented in
Chapter 2.

83
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4.1 Background

The compressibility behind the acoustics in Computational Fluid Dynam-
ics (CFD) has been widely treated for several purposes along the history of
numerical methods. Towards the 70’s, the artificial compressibility method
introduced in [39] was developed with the objective of reducing the com-
putational cost of solving the incompressible Navier-Stokes equations in 3D
domains. In this framework, the artificially added compressibility through
a density or pressure perturbation term was not only a numerical artifact,
but a term that could be easily associated to the acoustics of a low speed
compressible flow. However, the artificial compressibility method did not
aim to describe the acoustic scales of the flow, but to introduce a numerical
relaxation parameter which allowed an easier fulfillment of the continuity
condition. The main modification of the incompressible Navier-Stokes con-
sisted in adding an artificial time derivative of the pressure to the dimen-
sionless continuity equation, which improved the condition number of the
final system to be solved. A similar method was later applied in [38] to the
low speed compressible Navier Stokes equations, in which a time derivative
of the primitive variables was added to the energy equation in order to re-
duce the big disparity between the flow velocity and the sound speed. The
Chorin method was extended for both incompressible and slow compressible
flows in [152] by adding similar terms to all equations in order to obtain
a symmetric hyperbolic problem. In other cases such as low Mach number
(M) compressible flows, the goal consisted precisely in going in the opposite
direction and identifying the acoustic scales of the flow in order to remove
them from the problem (see [64]), because they led to an ill-conditioning of
the system and to the backscattering of sound waves into the computational
domain.

While the addition of a certain amount of compressibility has made the
calculation of incompressible flows easier without taking into account the
consequent acoustic field, the inclusion of compressibility in the flow formu-
lation has been a drawback for calculating acoustics when dealing with low
speed flows. The conservative compressible flow equations are considered the
complete representation of the aeroacoustic problem because they describe
directly all flow and acoustic scales without any need for modeling, which in
terms of Computational Fluid Dynamics (CFD) is called Direct Numerical
Simulation (DNS) [19], and in acoustics is referred as Direct Noise Com-
putation (DNC) [16]. However, as stated above, this formulation performs
poorly for Mach numbers tending to zero due to the huge difference between
flow velocity and wave propagation speed, which causes convergence prob-
lems. In order to avoid the bad conditioning of the problem, a series of
hybrid methods, which segregate the acoustics from the CFD, were devel-
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oped. The so called acoustic analogies resolve the acoustic scales by means
of an inhomogeneous wave equation where the source term that represents
the aerodynamic noise comes from a previous flow calculation. The pioneer
work in this field is presented in [115]. This method has been progressively
extended to include diffraction by solid boundaries [59] and moving sur-
faces [159]. Other hybrid methods, such as the incompressible-acoustic split
method presented in [89, 144] enrich the incompressible flow equations with a
variable density linked to pressure perturbations. Then, the time derivative
of this perturbed density is translated into isentropic fluctuations of velocity
and pressure that are propagated using a purely acoustic compressible solver
after subtracting the incompressible component of the flow field. In a similar
way, some formulations propagate the near field flow information to the far
field with the Linearized Euler Equations (LEE) [30, 17, 142] or with the
acoustic perturbation equations [66, 111, 87], which consist in an acoustic
filtering of the LEE source term. All these methods allow a considerable
flexibility, for example the use of a different discretization for each problem,
as well as different flow and acoustic models. However, these models are
based on assumptions and the subsequent approximation errors need to be
properly assessed. In some cases, acoustic source terms need to be modeled
and might not be straightforward to implement in a finite element code.
Moreover, the segregated calculation of flow and acoustic components only
assumes a one-way coupling from flow to acoustics, but not the other way
around.

The formulation proposed in this work aims for a simplification of Com-
putational Aeroacoustics (CAA) of isentropic compressible flows and pro-
poses a general framework that can be applied to any geometry, spatial
discretization or flow regime below the transonic range. It consists in a com-
pressible formulation with primitive variables without solving for the energy
equation, since the flow is considered to be isentropic, which after condens-
ing the density field becomes a system of equations in terms of the velocity
and the pressure, like in incompressible flow solvers. As a consequence, the
implementation cost is very low when one departs from an already imple-
mented incompressible flow solver. Also, the computational cost is reduced
with respect to other methodologies due to the following reasons: getting
rid of the fully compressible approach and solving only for velocity and pres-
sure, solving all scales at once without acoustic analogies and improving the
condition number of the system for the incompressible limit. This formu-
lation provides two important advantages respect to the acoustic analogies
and other hybrid methods presented in the previous paragraph: first, it takes
into account the acoustic feedback on the flow scales and second, the valid-
ity of the acoustic field will not depend on the motion of the flow or the
presence of obstacles. These are precisely the main advantages of a DNC.
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In fact, for flows with M → 0 this solver should converge to the solution of
a DNC, but with a much lower computational cost. The only drawback of
such a unified system will be, again like in a DNC, the lack of visualization
of the acoustic fluctuations at the near field, where the aerodynamic scales
are totally dominant and the wave propagation cannot be extracted like in
[139] or [86]. As in all compressible flow models, an adequate equation of
state needs to be chosen, in this case relating only density and pressure.
For simplicity the ideal gas law has been used to close the problem, but the
formulation can be easily extended to any other equation of state.

Since the present chapter aims at solving both aerodynamics and acous-
tics scales in a single calculation, the prescription of compatible and accu-
rate boundary conditions for both components of the solution has been an
important aspect of this work. From a numerical point of view, the im-
position of boundary conditions can be performed as in the incompressible
case, avoiding the difficulties found in compressible flows. However, omit-
ting the acoustic scales in the treatment of the external boundaries leads to
undesired wave reflections which affect the accuracy and the stability of the
unified solver. Therefore, a new method including the combined imposition
of essential boundary conditions in a weak sense on the mean flow variables
[48], and a Sommerfeld boundary condition for the acoustic component of
the pressure will be presented [65]. This combination will allow the acoustic
wave to leave the domain through boundaries where the mean flow has been
prescribed a certain boundary condition.

As stated above, the present formulation has been implemented as an
update of an already existent FEM incompressible flow solver, but is not
restricted to this numerical framework. In fact, [158] presents a CAA formu-
lation based on the Lattice-Boltzmann Method (LLM) for isentropic flows,
although in this case flow and acoustic scales are segregated. Linear elements
have been used for simplicity, but the method can be also automatically ap-
plied to high-order grids leading to a decrease of the approximation error, as
long as the chosen element is stable. In this sense, stability is provided by
the Variational Multiscale Method (VMS), which in turn models the scales
that are not captured by the spatial discretization (subgrid scales) in form
of turbulent dissipation [54, 84].

The chapter is organized as follows: a detailed presentation of the isen-
tropic compressible equations is shown in Section 4.2. The details of the
aforementioned prescription of boundary conditions are presented in Section
4.3, and the stabilized time-discrete finite element formulation is derived in
Section 4.4. Then, this formulation is adapted to ALE references for cases
with moving domains in Section 4.5. Finally, numerical results are presented
in Section 4.6: three cases consisting in a 2D flow around a cylinder, a 3D
flow around a NACA0012 airfoil and a 2D open cavity will be presented and
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benchmarked against the Lighthill analogy [115] with incompressible flow,
the Ffowcs Williams Hawkings (FWH) acoustic analogy [159] using com-
pressible flow and a DNS, respectively. This analysis will allow to show the
performance of the present method in its whole application range. Further-
more, the oscillating airfoil simulated in Chapter 2 will be simulated again
for benchmarking both ALE formulations.

4.2 Problem formulation

4.2.1 The differential problem

The present work focuses in the study of the aerodynamic and acoustic
behavior of an ideal gas undergoing a reversible thermodynamical process,
which is a realistic hypothesis in most aeroacoustic problems without heat
transfer or shocks. This initial assumption allows a drastic simplification
of the compressible Navier-Stokes equations, since the energy equation does
not need to be solved and the primitive variables of the problem can be used.
Moreover, a general formulation can be derived for both slow and high speed
isentropic flows taking into account the following equalities (see e.g. [129]):

p0

p
=

(
1 +

γ − 1

2
M2

) γ
γ−1

, (4.1)

ρ0

ρ
=

(
1 +

γ − 1

2
M2

) 1
γ−1

, (4.2)

where γ is the adiabatic constant of the gas, p and ρ are the total pressure
and density fields including perturbations caused by the compressibility of
the medium, whereas p0 and ρ0 are the same fields at stagnation conditions
[129]. M is the Mach number, defined as:

M :=
|u|
c0

, (4.3)

where |u| is either the modulus of the pointwise velocity (or a characteristic
value of it if one wants to define a global Mach number) and c0 is the speed

of sound in an ideal gas, defined as c0 =
√

γRT0
M , where T0 is the temperature

field at stagnation, R [J/K-mol] is the universal gas constant andM [kg/mol]
is the molar mass of the gas. From Eq. (4.2) the following equality between
ρ and p can be easily obtained:

p0

p
=

(
ρ0

ρ

)γ
. (4.4)
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Then, differentiating with respect to time both sides of Eq. (4.4) and us-
ing the equation of state for an ideal gas, p0 = ρ0RT0

M , the next expression
connecting pressure and density time derivatives can be found:

∂tp =
p0

ρ0

γ

(
1 +

γ − 1

2
M2

)−1
∂ρ

∂t
=
RT0

M
γ

(
1 +

γ − 1

2
M2

)−1

∂tρ. (4.5)

The final time derivative of the equation of state for a low speed gas flow
can be approximated as

∂tp ≈ c2
0∂tρ, (4.6)

the approximation error being O
(
M2
)
. Otherwise the speed of sound c has

to be computed as follows:

c2 = c2
0

(
1 +

γ − 1

2
M2

)−1

, (4.7)

and then the following equation can be used:

∂tp = c2∂tρ. (4.8)

The same procedure can be applied to the pressure gradient, obtaining
the same relationship with respect to the density gradient. This explicit
connection between pressure and density variations allows one to greatly
simplify the compressible Navier-Stokes equations, since density perturba-
tions can be expressed in terms of pressure. It is important to highlight that
the limit M → 0 will lead to a problem which will be very similar to the
one resulting from the artificial compressibility method and will contain the
acoustic scales of the flow. This is remarkable if it is compared to other non-
isentropic formulations for low Mach numbers (see for instance [9]), where
density variations are linked exclusively to temperature oscillations, and as
a consequence no acoustics are captured.

Let us consider a computational domain Ω ⊂ Rd (where d = 2, 3 is the
number of space dimensions) with a domain boundary Γ = ∂Ω and let (0, T )
be the time interval of analysis. The isentropic compressible equations are
then:

ρ∂tu+ ρ (u · ∇)u− µ∇2u− 1

3
µ∇ (∇ · u) +∇p = 0 in Ω, (4.9)

∂tρ+ u · ∇ρ+ ρ∇ · u = 0 in Ω, (4.10)

where u is the velocity and µ the dynamic viscosity. Boundary and initial
conditions need to be appended to this problem. Using Eq. (4.5) ∂tρ can be
expressed in terms of ∂tp and the continuity equation becomes

1

c2
∂tp+

1

c2
u · ∇p+ ρ∇ · u = 0 in Ω, (4.11)
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where c (x, t) is given by Eq. (4.7) and x is the spatial coordinate vector.
Despite all simplifications, the previous equation still depends on the func-
tion c and two density dependent terms remain in the momentum equation.
Calculating these two fields as implicit functions of [u, p] would increase the
complexity of the new scheme with new non-linearities. In this sense, equa-
tions (4.2) and (4.7) will be used for closing the problem and obtaining a
formulation which only depends on the velocity and pressure fields.

4.2.2 Weak formulation

The next step consists in deriving the variational formulation of the previ-
ous problem. Let us denote with 〈·, ·〉ω the integral of the product of two
functions in the domain ω, with the subscript omitted when ω = Ω. Let
V and Q be the functional spaces where for each time t the velocity and
pressure solutions live, respectively, with appropriate regularity that we will
not analyze here. Then, defining the velocity and pressure test functions
v ∈ V and ρq ∈ Q, the variational formulation can be written in terms of
the forms:

B([u, p], [v, ρq]) =〈ρv, ∂tu〉+ 〈ρv, (u · ∇)u〉+ µ〈∇v,∇u〉

+
1

3
µ〈∇ · v,∇ · u〉 − 〈∇ · v, p〉

+
〈 1

c2
q, ∂tp

〉
+
〈 1

c2
q,u · ∇p

〉
+ 〈ρq,∇ · u〉, (4.12)

B̃B([u, p],v) =− 〈v,n · σ(u, p)〉Γ, (4.13)

where the stress tensor is defined as σ(u, p) = −pI+µ∇u+1
3
µ (∇ · u) I. The

Galerkin weak form of the problem prior to applying boundary conditions
can be written as follows: for all time t > 0, find u(t) ∈ V and p(t) ∈ Q,
with appropriate regularity in time, such that:

B([u, p], [v, ρq]) + B̃B([u, p],v) = 0 (4.14)

for all v ∈ V and ρq ∈ Q. Moreover, initial conditions need to be appended.
Boundary conditions will be defined in the following section, proposing a
new formulation for the form B̃B. This will give rise to a decomposition of
the form B̃B = BB − LB, with BB depending on the unknowns and LB on
the boundary data, so that it can be moved to the right-hand-side of (4.14).

4.3 Imposition of boundary conditions

4.3.1 Mean and acoustic components

Although the intricate prescription of boundary conditions of the fully com-
pressible formulation is avoided in the present problem, new challenges arise
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which need to be accounted for. Given that flow and acoustic scales need
to be resolved together, an appropriate boundary condition for the acoustic
component of the pressure must be used. The main objective of this bound-
ary condition is to avoid the sound waves being backscattered by the exter-
nal boundaries into the computational domain. There are several numerical
methods which deal with this problem, see for instance the reviews in [71]
and [79]. Here we highlight some of the most relevant ones. In [151] a non-
reflecting boundary condition (NRBC) was presented for the Euler equations
in multi-dimensional domains, modeling the waves using the characteristic
equations. However, the identification of waves is not so straightforward in
the Navier-Stokes equations and the assumption of one-dimensional flow on
the boundaries had to be made [130]. This method yields proper results
in boundaries where the solution is homogeneous and known, such as the
inlet. In [135], [136] and [161] the method was extended using low Mach
number asymptotics in order to account for viscous and transverse effects
on the wave. Another family of methods are the so called Perfectly Matched
Layer (PML) methods, see [24] and [99], which can work under near-field
conditions and thus allow for smaller computational domains to be used.
These methods use an auxiliary domain beyond the outer boundaries which
absorbs the incident waves without reflecting them back. A third alternative
for the non-reflection of waves is the use of radiative and outflow conditions
developed in [150] and extended in [28]. Similarly to the PML method, these
works also consider a secondary domain, but in this case a modified set of
equations minimizing reflection is solved at the far-field.

The treatment of the waves must be compatible with the flow velocity
boundary conditions. This is of most importance on Dirichlet boundaries
where the velocity needs to be prescribed. This need has motivated the
development of a method for a unified prescription of flow and non-reflecting
boundary conditions, which will be presented next. The method is able to
deal with subsonic flows solved in arbitrary geometries, and following the
aim of being a general formulation, it is compatible with any non-reflecting
model for the acoustic waves, which will not be part of the work scope. The
development of the method starts by splitting the two fields of the problem
into mean variables ū and p̄, and oscillatory components u′ and p′, as follows:

u (x, t) =ū (x, t) + u′ (x, t) ,

p (x, t) =p̄ (x, t) + p′ (x, t) , (4.15)

where

ū (x, t) :=
1

Tw

∫ t

t−Tw
u (x, s) ds

p̄ (x, t) :=
1

Tw

∫ t

t−Tw
p (x, s) ds (4.16)
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and Tw is an appropriate time window. The mean flow variables are allowed
to evolve during the calculation and they do not necessary need to be homo-
geneous along the boundary, but high frequency variations of these variables
are not allowed because they would interfere with [u′, p′], which can be iden-
tified as the acoustic fluctuations. In other words, eq. (4.16) acts as a low
pass filter that attenuates signals beyond a certain cutoff frequency that is
determined by Tw.

4.3.2 Split boundary conditions

In order to treat flow and acoustic boundary conditions in an appropriate
way, the boundary Γ has been divided into three disjoint subsets ΓS, ΓL and
ΓO, which will refer to the solid boundaries where velocity is prescribed to
zero, the lateral walls and the outflow, respectively. Whereas the first and
the latter ones have a clear physical meaning, ΓL is defined for numerical
convenience: it is composed of any outer boundary with at least one compo-
nent of the velocity prescribed to a known value, which means that it also
encompasses the inlet boundaries, see Fig. 4.1. The upper and lower walls
belong to ΓL because they have been assumed to be a mere truncation of
the computational domain. This artificial truncation of the domain, which
is performed with the objective of limiting the computational cost, does not
assume that the affected boundaries are part of the outflow because this may
not properly represent the physics of the flow and could even lead to numer-
ical instabilities. Therefore, the flow needs to be confined without affecting
the outward propagation of the waves. This boundary definition has been
used for the four cases presented in Section 4.6.

Figure 4.1: Schematic definition of domain boundaries.

On ΓL and ΓO, the far-field conditions assume that the acoustic scales are
dominant. This means that a naive approach using a zero traction boundary
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condition would lead to reflection of the waves into the domain. Therefore,
a non-reflecting numerical model must be applied on these boundaries, see
for example [65].

The proposed methodology for applying compatible flow and acoustic
boundary conditions on ΓL and ΓO is based on a weak or weighted pre-
scription of the Dirichlet conditions together with the use of a Sommerfeld
type boundary condition. The boundary conditions for the problem can be
formulated as described next.

On the solid boundary ΓS, where the velocity is known and the incident
waves are expected to reflect, we enforce:

u = ū+ u′ = uS on ΓS,

where uS is the prescribed velocity on the solid boundary.
On the truncation boundary ΓL, several conditions are going to be en-

forced: firstly, the mean value of the velocity is going to be prescribed to the
inlet (or truncation) boundary velocity uL:

ū = uL on ΓL.

Secondly, a Sommerfeld-like boundary condition for the fluctuating part of
the velocity and pressure fields is prescribed:

n · u′ = − 1

ρc
n · [n · σ (u′, p′)] on ΓL,

where n is the unit outward normal to ΓL. Let also m be any unit vec-
tor tangent to it. The fluctuating tractions in the tangential direction are
prescribed to zero:

m · [n · σ (u′, p′)] = 0 on ΓL.

Finally, on the outflow boundary ΓO, the following conditions are going
to be applied:

n · σ (ū, p̄) = tO on ΓO,

which enforces the mean value tractions to the prescribed value tO. Re-
garding the fluctuating values, the same approach used for ΓL is used, now
with a Sommerfeld-like condition in the normal direction and zero traction
prescribed in the tangential directions:

n · u′ =− 1

ρc
n · [n · σ (u′, p′)] on ΓO,

m · [n · σ (u′, p′)] =0 on ΓO.

Note that:
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• ΓS is a classical Dirichlet-type boundary. Velocity test functions will
vanish there and the condition u = uS can be prescribed in a strong
way.

• ΓL is a boundary where Dirichlet-type boundary conditions are pre-
scribed for ū and mixed boundary conditions for u′, namely the normal
component and the tangent associated stress. Both will be prescribed
weakly.

• ΓO is a boundary where Neumann-type boundary conditions are pre-
scribed for ū and mixed boundary conditions for u′, the same as on
ΓL. All these conditions will be prescribed weakly.

• For inviscid flows, the condition on the normal component of u′ re-
duces to Sommerfeld’s condition p′ = ρc (u′ · n). Obviously, other
non-reflecting boundary conditions could be used.

Let us see how to prescribe these boundary conditions in the variational
form of the problem. Let us start by noting that

−〈v,n · σ (u, p)〉Γ =− 〈v,n · σ (u, p)〉ΓL
− 〈v,n · σ (u, p)〉ΓO

=− 〈v,n · σ (ū, p̄)〉ΓL
− 〈v,n · σ (u′, p′)〉ΓL

− 〈v,n · σ (ū, p̄)〉ΓO
− 〈v,n · σ (u′, p′)〉ΓO

=− 〈v,n · σ (ū, p̄)〉ΓL
+ 〈ρcv · n,u′ · n〉ΓL

− 〈v, tO〉ΓO
+ 〈ρcv · n,u′ · n〉ΓO

. (4.17)

Note that no contribution on ΓS has been included, since in this boundary
usual Dirichlet boundary conditions are applied and the test functions vanish
on it. We still need to prescribe ū = uL, which will be done through
penalization using Nitsche’s method [108]. In the spirit of this method, it
is convenient to symmetrize the boundary terms. Taking this into account
we define the boundary terms, which can be written as BB([u, p], [v, q]) −
LB([v, q]), with

BB([u, p], [v, q]) :=− 〈v,n · σ (ū, p̄)〉ΓL
− 〈ū,n · σ (v, q)〉ΓL

+ β
µp

lp
〈v, ū〉ΓL

+ 〈ρcv · n,u′ · n〉ΓL
+ 〈ρcv · n,u′ · n〉ΓO

,

LB([v, q]) :=− 〈uL,n · σ (v, q)〉ΓL
+ β

µp

lp
〈v,uL〉ΓL

+ 〈v, tO〉ΓO
,

(4.18)

where β, µp, lp are numerical parameters, the first one dimensionless, the
second one with units of viscosity and the latter with units of length. We
are still at the continuous level. When a finite element approximation in
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space is performed, h being the element size, one can show that µp, lp can
be taken as µp = µ+ |u|h, and lp = h [47].

The only ingredient missing in the formulation is the definition of the
outflow traction tO. Assuming that ΓO is placed in a far-field region, where
p̄ ≈ 0 and ∇ū ≈ 0, then the natural condition to be imposed is tO = 0.

4.3.3 Domain truncation

The truncation of the domain is a problematic issue when dealing with acous-
tic waves. Sometimes, especially in case of low speed flows, the far field con-
ditions are reached within a small distance of the solid objects causing the
perturbation. In these cases the truncation of the domain will only depend
on the measure of the largest wavelength. Therefore, in such scenarios the
present formulation can be applied in a general way without further arti-
facts. However, when convection becomes dominant stagnation conditions
may be found far away from the perturbation, which results in a high compu-
tational cost if the full near-field domain needs to be simulated. Moreover,
many times the Sommerfeld non-radiating boundary condition is compro-
mised, since it assumes an orthogonal incidence of the wave with the external
boundary.

An example illustrating this situation is depicted in Fig. 4.2. In this
case a M = 0.4 flow over a wing profile is calculated departing from a
fully developed incompressible flow solution. Before any wave reaches the
boundary, the outlet is already reflecting the noise produced by the vortices
passing through it, see Fig. 4.2.

In the second numerical example shown in Section 4.6, this problem has
been solved by adding a spherical PML based on [149] in an artificial outlet
domain ΩPML, see Fig. 4.3. For this, we define the finite element contribution
of the PML layer in a new bilinear form BPML:

BPML([u, p], [v, q]) := (v, α∗u) + (q, ραp) (4.19)

where α is defined as

α (r) = 0.4
(r − r0)2

(rf − r0)3 (−2r + 3rf − r0) in ΩPML,

α (r) = 0 in Ω \ ΩPML, (4.20)

where α∗ = αρ2c2 and r0 and rf are the small and big radius of the PML,
respectively.

Taking the previous considerations into account, the final problem to be
solved consists of finding [u, p] such that

B([u, p], [v, q]) +BPML([u, p], [v, q]) +BB([u, p], [v, q]) = LB([v, q]) (4.21)
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Figure 4.2: Reflection of the sound generated by vortices approaching the
outflow.

for all test functions [v, q].

Unlike in Section 4.3, the importance of absorbing both hydrodynamic
and acoustic scales on the outlet justifies the application of the PML to
the whole variables [u, p]. The performance of this numerical tool will be
presented in Section 4.6.

4.4 Numerical approximation

In this section we present the finite element formulation for the space approx-
imation of the isentropic Navier-Stokes equations, including the stabilization
terms required for obtaining a stable formulation when using equal velocity-
pressure interpolations, in particular linear-linear (P1/P1) elements, as well
as the time discretization using finite differences.

Let us consider a finite element partition of the domain Ω of size h, and
use this letter as subscript to denote finite element functions and spaces.
Only conforming finite element approximations will be considered in what
follows. Let Vh ⊂ V be the finite approximation space for the discrete
velocity field and let us also define Qh ⊂ Q, the pressure approximation
space.
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Figure 4.3: A PML is attached to the original outlet of the domain Ω.

4.4.1 Time discretization

Concerning the time integration, the monolithic approach for solving the
incompressible Navier-Stokes equations consists in building a system with
both velocity and pressure degrees of freedom, which leads to the coupled
calculation of the momentum and mass equations in one single step. To
approximate the first order time derivatives, a second order backward finite
difference scheme (BDF2) has been used. Let us partition the time interval
[0, T ] into N equal time steps of size δt := tn+1 − tn so that 0 ≡ t0 < t1 <
. . . < tn < . . . < tN ≡ T . Given a generic time dependent function g(t), the
following notation will be used for the BDF2 approximation to the first time
derivative:

∂tg|tn+1 ≈ δtg
n+1 :=

1

δt

(
3

2
gn+1 − 2gn +

1

2
gn−1

)
, (4.22)

where gn denotes the evaluation of g at time step tn.
Obviously other time integration schemes could be used, both implicit

and explicit. The latter would require mass lumping to avoid the solution of
linear systems using a finite element approximation (see below); this is easy
only for linear elements. Moreover, implicit time integration allows reaching
the incompressible limit. We therefore favor the use of implicit integrators,
as BDF2.

4.4.2 Discrete boundary conditions

At an arbitrary time step of the numerical simulation, the final fully dis-
cretized implicit scheme in space and time can be derived using the finite
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element formulation described below. Moreover, the mean flow values must
be expressed according to the chosen integration scheme and the penalty
parameters of the weak essential condition on ΓL must be defined. We do
this as follows:

• As mentioned above, µp, lp can be taken as µp = µ+ |u|h, lp = h [47].

• If the temporal window presented at Eq. (4.16) is defined at a discrete
level as Tw = Nwδt and we use the trapezoidal rule for the integration,
then the mean values can be expressed as follows:

ūn+1
h =

δt

Tw

(
1

2
un+1
h +

n∑
k=n−Nw+2

ukh +
1

2
un−Nw+1
h

)
. (4.23)

This expression of the mean flow values keeps the temporal integration im-
plicit and second order accurate. Bearing in mind the (usually) sharp initial
pressure transient and the absence of a minimally developed mean flow, it
is important to run several time steps (Nw) before using the present for-
mulation in order to obtain representative mean flow variables. The same
procedure is applied to p and the fluctuating components will be also ex-
pressed from now on in terms of the full variables evaluated at tn+1. The
trapezoidal rule in eq. (4.23) can be viewed as a particular realization of a
causal finite impulse response (FIR) filter of order Nw + 1. By modifying
the coefficients that multiply the discrete velocities, one could design a time
scheme that filters the frequencies higher than a given cutoff value.

4.4.3 Finite element approximation

For clarity, the formulation will be arranged in five forms: B, BB, BPML,
LB and BS; the latter corresponds to the stabilization terms and will be
presented next. The final formulation reads as follows: from known un−2

h ,
un−1
h and unh, compute the compressible velocity and pressure at time step

tn+1,
[
un+1
h , pn+1

h

]
∈ Vh ×Qh, such that

Bn+1([uh, ph], [vh, qh]) +Bn+1
PML([uh, ph], [vh, qh]) +Bn+1

B ([uh, ph], [vh, qh])

+Bn+1
S ([uh, ph], [vh, qh]) = Ln+1

B ([vh, qh]), (4.24)
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for all test functions, where

Bn+1([uh, ph], [vh, qh]) =
〈
ρn+1vh, δtu

n+1
h

〉
+ 〈ρn+1vh,

(
un+1
h · ∇

)
un+1
h 〉

+ µ
〈
∇vh,∇un+1

h

〉
+

1

3
µ
〈
∇ · vh,∇ · un+1

h

〉
−
〈
∇ · vh, pn+1

h

〉
+
〈 1

(c2)n+1 qh, δtp
n+1
h

〉
+
〈 1

(c2)n+1 qh,u
n+1
h · ∇pn+1

h

〉
+
〈
ρn+1qh,∇ · un+1

h

〉
. (4.25)

Note that this expression involves both the unknowns at time step n+1 and
at previous time steps. For the rest of the terms in (4.24), the superscript
n+ 1 indicates that both the unknowns and the data are evaluated at time
step n+ 1.

As mentioned before, the condensation of ρn+1 and cn+1 is essential for
keeping the complexity of the formulation low. They are evaluated with the
converged unknowns of the problem at tn+1, as the implicit scheme requires:

ρn+1 = ρ0

(
1 +

γ − 1

2

|un+1
h |2

c2
0

)γ−1

,

(
c2
)n+1

= c2
0

(
1 +

γ − 1

2

|un+1
h |2

c2
0

)−1

. (4.26)

We have included the evaluation of ρn+1 and cn+1 in the non-linearity loop in
a fixed point manner, that is say, when computing the unknowns at a certain
iteration we use the values of ρn+1 and cn+1 at the previous one, and once
the unknowns are computed we update them. Note that they are required
at the integration points within each finite element domain. To simplify the
notation, since it is understood that ρ and c are only evaluated at tn+1, from
now on they will be referred as ρ and c instead of ρn+1 and cn+1.

Next, the bilinear form Bn+1
B and the linear form Ln+1

B can be easily
obtained using (4.18):

Bn+1
B ([uh, ph], [vh, qh]) = −〈vh,n · σh

(
ūn+1
h , p̄n+1

h

)
〉ΓL

− 〈ūn+1
h ,n · σh (vh, qh)〉ΓL

+ β
µp

lp
〈vh, ūn+1

h 〉ΓL
+ 〈ρcvh · n,u′n+1

h · n〉ΓL∪ΓO
,

Ln+1
B ([vh, qh]) = β

µp

lp
〈vh,un+1

L 〉ΓL
− 〈un+1

L ,n · σh (vh, qh)〉ΓL
,

where we have assumed that tO = 0. Applying the definition of the mean
values presented in Eq. (4.23) and expressing the fluctuating components in
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terms of the problem unknowns, Bn+1
B can be rewritten as follows:

Bn+1
B ([uh, ph], [vh, qh]) = − 1

2Nw

〈vh,n · σh
(
un+1
h , pn+1

h

)
〉ΓL

− 1

2Nw

〈un+1
h ,n · σh (vh, qh)〉ΓL

+
(

1− 1

2Nw

)
〈ρcvh · n,un+1

h · n〉ΓL∪ΓO

+
β

2Nw

µp

lp
〈vh,un+1

h 〉ΓL
+

β

Nw

µp

lp

[ n∑
k=n−Nw+2

〈vh,ukh〉ΓL
− 1

2
〈vh,un−Nw+1

h 〉ΓL

]
− 1

Nw

n∑
k=n−Nw+2

〈vh,n · σh
(
ukh, p

k
h

)
〉ΓL

+
1

2Nw

〈vh,n · σh
(
un−Nw+1
h , pn−Nw+1

h

)
〉ΓL

− 1

Nw

[ n∑
k=n−Nw+2

〈ukh,n · σh (vh, qh)〉ΓL
− 1

2
〈un−Nw+1

h ,n · σh (vh, qh)〉ΓL

]
− 1

Nw

n∑
k=n−Nw+2

〈ρcvh · n,ukh · n〉ΓL∪ΓO
− 1

2Nw

〈ρcvh · n,un−Nw+1
h · n〉ΓL∪ΓO

.

Ln+1
B ([vh, qh]) = β

µp

lp
〈vh,un+1

L 〉ΓL
− 〈un+1

L ,n · σh (vh, qh)〉ΓL
.

Note that several terms of Bn+1
B can be computed with values of velocities

and pressure of previous time steps, and therefore moved to the right-hand-
side in the final equation.

When a PML is mandatory, Bn+1
PML must be included in the formulation.

Using (4.19) the discrete bilinear form for the PML can be easily derived:

Bn+1
PML([uh, ph], [vh, qh]) = α∗

(
vh,u

n+1
h

)
ΩPML

+ α
(
qh, ρp

n+1
h

)
ΩPML

. (4.27)

The last ingredient for a robust and consistent formulation consists in
applying an appropriate stabilization for the convective terms and for the
fulfillment of the velocity-pressure inf-sup condition [103], since equal inter-
polation elements are being used. In the present case, the Algebraic Subgrid
Scale (ASGS) method for incompressible flows presented in [42] has been
taken as reference and extended to isentropic flows. This is the simplest
version of Variational Multiscale (VMS) finite element methods (see [46] for
a review). The only care that needs to be taken when designing the stabi-
lization terms is that the continuity equation now has two more additional
terms compared to the case of incompressible flows that need to be taken into
account, both in the residual of this equation and in the operator applied to
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the test functions that multiplies this residual. The final result is:

Bn+1
S ([uh, ph] , [vh, qh])

=
∑
K

τ1,K

〈
ρun+1

h · ∇vh +∇qh, ρδtun+1
h + ρun+1

h · ∇un+1
h −∇ · σn+1

h

〉
K

+
∑
K

τ2,K

〈
ρ∇ · vh +

1

c2
un+1
h · ∇qh,

ρ∇ · un+1
h +

1

c2
un+1
h · ∇pn+1

h +
1

c2
δtp

n+1
h

〉
K
, (4.28)

where K denotes a generic element domain, summation is done over all ele-
ments of the finite element mesh, and τ1,K and τ2,K are suitable stabilization
parameters defined in each element [43], that we compute as:

τ1,K =

[
c1
µ

h2
+ c2ρ

|un+1
h |K
h

]−1

, τ2,K =
h2

c1τ1,K

,

|un+1
h |K being the mean Euclidean norm of the velocity in element K. The

algorithmic constants c1 and c2 depend on the polynomial order of the inter-
polation. We set them to c1 = 4 and c2 = 2 for linear elements. Note that
in (4.33) we have not considered operator associated to the stresses applied
to the test functions multiplying the residual of the momentum equation.
Likewise, in order to keep the presentation concise we have not considered
neither time dependent subscales [53], nor orthogonal subgrid scales [43],
although we favor these two options.

4.5 Unified flow and acoustics isentropic com-

pressible solver using an ALE frame of

reference

In Chapter 2 it has been shown how the ALE formulation of Lighthill’s
analogy increases its numerical complexity because it does not allow using
the irreducible second order wave equation and requires solving it in a set
of two stabilized equations [81], which affects the computational cost in
regard to the static case [86]. On the contrary, the ALE formulation for
the incompressible flow equations, which has also been reviewed in Chapter
2, does not add a relevant degree of complexity to the static problem, for
which it makes sense to extend the isentropic compressible formulation for
being used in moving domains. Moreover, it will allow validating the results
corresponding to the rotating airfoil obtained with the hybrid method.
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4.5.1 Continuous problem

Unlike the problem presented in Section 2.3.3, the present formulation will
not be decomposed into an incident and a diffracted problem, since it would
involve the solution of two CFD problems. Using the notation defined in
Chapter 2, the continuous isentropic compressible equations using an ALE
frame of reference with appropriate initial and boundary conditions will read

∂tu− ν∆u− 1

3
ν∇(∇ · u) + (u− udom) · ∇u+∇p = f in Ω, t > 0,

(4.29a)

1

ρc2
∂tp+

1

ρc2
(u− udom) · ∇p+∇ · u = 0 in Ω, t > 0,

(4.29b)

u (x, 0) = u0 (x) in Ω, t = 0,
(4.29c)

u (x, t) = uS (x, t) + udom (x, t) on ΓS, t > 0,
(4.29d)

ū (x, t) = uL (x, t) + udom (x, t) on ΓL, t > 0,
(4.29e)

n · u′ = − 1

ρc
n · [n · σ (u′, p′)] on ΓL, t > 0,

(4.29f)

m · [n · σ (u′, p′)] = 0 on ΓL, t > 0,
(4.29g)

n · σ (ū, p̄) = tO (x, t) on ΓO, t > 0,
(4.29h)

n · u′ = − 1

ρc
n · [n · σ (u′, p′)] on ΓO, t > 0,

(4.29i)

m · [n · σ (u′, p′)] = 0 on ΓO, t > 0.
(4.29j)

Like in the Eulerian case, c and ρ will be condensated taking profit from
the equation of ideal gas.

4.5.2 Weak formulation

The derivation of the continuous variational form of the momentum and
continuity equations in an ALE frame of reference, whose terms will be
grouped in a form BALE([u, p], [v, q]), will only contain one difference respect
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to the Eulerian formulation presented in the static case: the velocity and
pressure convective terms will be affected by the advection of the mesh.
Note that the boundary terms grouped together in the form BB([u, p], [v, q])
will not change because the mesh velocity only affects the Dirichlet value
on ΓS, which is not present anymore. However, ū = uL still needs to be
prescribed, which is done through penalization using Nitsche’s method [108]
and will be affected by the mesh velocity. In the spirit of this method, it
is convenient to symmetrize the boundary terms. The known terms will
then grouped in the form LALE

B (v, q) and sent to the RHS. Using the same
notation of Chapter 2 the variational formulation can be written as follows:

BALE ([u, p], [v, q]) = 〈ρv, ∂tu〉+ 〈ρv, ((u− udom) · ∇)u〉+ µ〈∇v,∇u〉

+
1

3
µ〈∇ · v,∇ · u〉 − 〈∇ · v, p〉+ 〈 1

c2
q, ∂tp〉+ 〈 1

c2
q, (u− udom) · ∇p〉

+ 〈ρq,∇ · u〉, (4.30a)

LALE
B ([v, q]) := −〈uL + udom,n · σ (v, q)〉ΓL

+ β
µp

lp
〈v,uL + udom〉ΓL

+ 〈v, tO〉ΓO
, (4.30b)

for all v ∈ V and ρq ∈ Q. β, µp, lp are numerical parameters, the first
one dimensionless, the second one with units of viscosity and the latter with
units of length. We are still at the continuous level. When a finite element
approximation in space is performed, h being the element size, one can show
that µp, lp can be taken as µp = µ+ |u−udom|h, and lp = h [47]. Moreover,
initial conditions need to be appended. Finally, the variational problem to
be solved will be

BALE ([u, p], [v, q]) +BB([u, p], [v, q]) = LALE
B ([v, q]) (4.31)

4.5.3 Fully discrete problem

At a discrete level, after discretizing using finite elements of size h and a
BDF2 time integrator like in the previous cases, the problem to be solved at
t = (n+ 1)δt will be

BALE
(
[un+1

h , pn+1
h ], [vh, qh]

)
+BB([un+1

h , pn+1
h ], [vh, qh])

+BALE
S ([un+1

h , pn+1
h ], [vh, qh]) = LALE

B ([vh, qh]) (4.32)

However, the solver must finally have two equations and two variables, for
which all mean flow and acoustic components must be expressed in terms of
(un+1

h , pn+1
h ). In order to keep the presentation consice, the full development

has been omitted. The only relevant modification has to do with the stabi-
lization method, which has to be expressed in the ALE reference modifying
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the residual and the convective stabilization operators:

BALE
S

([
un+1
h , pn+1

h

]
, [vh, qh]

)
=
∑
K

τ1,K

〈
(ρun+1

h − udom) · ∇vh +∇qh,

ρδtu
n+1
h + ρ(un+1

h − udom) · ∇un+1
h −∇ · σn+1

h

〉
K

+
∑
K

τ2,K

〈
ρ∇ · vh +

1

c2
(un+1

h − udom) · ∇qh,

ρ∇ · un+1
h +

1

c2
(un+1

h − udom) · ∇pn+1
h +

1

c2
δtp

n+1
h

〉
K
, (4.33)

where K denotes a generic element domain, summation is done over all ele-
ments of the finite element mesh, and τ1,K and τ2,K are suitable stabilization
parameters defined in each element [43], that we compute as:

τ1,K =

[
c1
µ

h2
+ c2ρ

|un+1
h − udom|K

h

]−1

, τ2,K =
h2

c1τ1,K

.

4.6 Results

For a proper validation of the present formulation four different scenarios
have been taken as reference. First, a 2D problem consisting in a low speed
Re = 1000 flow around a cylinder has been calculated with the isentropic
compressible equations for comparing the CFD results and the acoustic prop-
agation to those provided by an incompressible solver and the Lighthill anal-
ogy [82], and to those obtained when using a compressible flow formulation
with primitive variables presented in [18]. Second, a M = 0.4 flow around a
3D NACA 0012 airfoil has been calculated in order to evaluate the perfor-
mance of the formulation against a compressible flow solver and the Ffowcs
Williams & Hawkings (FWH) acoustic analogy. Then, a 2D M = 0.7 flow
past an open cavity has been simulated for a quantitative validation of the
solver in cases of acoustic feedback to the flow. Finally, a 2D version of
the second case has been computed again with an oscillating airfoil in an
ALE frame of reference. The main advantage of the isentropic compressible
formulation is that it can be treated numerically like the incompressible for-
mulation, although the flow regime might not be in the incompressible range
anymore. From the point of view of an end user, the only further require-
ment consists in introducing the four following parameters: the gas universal
constant R = 8.31 J/K·mol, the molar mass, the sound propagation speed
of the working gas and the bulk temperature. In both cases the values of
air at room temperature have been considered (M = 28.97 g/mol, c0 = 343
m/s and T0 = 293.15 K).
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4.6.1 Aerodynamic sound radiated by flow past a cylin-
der. M = 0.0583

The first benchmark case consists in a 2D flow around a cylinder of diameter
D = 0.3, which allows evaluating the aeolian tones of a low Mach viscous
flow [82]. The incident velocity of 20 leads to a Reynolds and Mach numbers
at the far field (away from the cylinder) of Re = 1000 and M = 0.0583 for a
sound speed of c0 = 343 (all units are in SI). The problem has been solved
in an unstructured mesh of nearly 1 million triangular linear elements using
equal interpolation for velocity and pressure, with a size of 3× 10−3D near
the cylinder surface. The case has been run up to 1.5 s with a time step
δt = 1×10−3 s, departing from an initial incompressible solution in order to
ease the initial convergence of the iterative solver. For the weak imposition of
boundary conditions it has been enough taking a penalty parameter β = 1.

The original case in [82] was computed with the incompressible Navier-
Stokes equations and Lighthill’s analogy, which is a realistic approach for this
flow range. However, one of the main goals of this work consists in showing
that, given a low Mach number and a fine enough discretization, the present
formulation converges to the solution of a Direct Numerical Simulation. For
this reason, the case has been also computed with the formulation in [18],
which despite a high computational cost manages to overcome the poor per-
formance of compressible conservative schemes in the incompressible range.

Regarding the flow solution, the first result to be analyzed is the vortex
shedding frequency and the dispersive error of the wave propagation along
the domain. In order to filter the main frequency mode from the noise
produced by secondary vortices, three points located on the perpendicular
direction to the flow have been selected. Point 1 is located just below the
cylinder, point 3 lays near the lower boundary of the domain and point
2 in the middle between 1 and 3. Table 4.1 presents the vortex shedding
frequency computed with the pressure time history for all three formulations
at the three chosen locations. The obtained ranges of values show that,
in spite of being near the incompressible limit and using the same spatial
discretization and the same temporal integrator, the dispersive error of the
isentropic approximation is similar to that of the fully compressible solver
and much smaller than the incompressible one.

Solver/Point 1 2 3
Incompressible 15.601 15.723 15.898

Isentropic compressible 15.576 15.601 15.625
Fully compressible 15.775 15.779 15.855

Table 4.1: Vortex shedding frequency (Hz) at four different points.
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(a)

(b)

(c)

Figure 4.4: DNS compressible flow velocity, incompressible flow velocity,
isentropic compressible flow velocity.

The fully developed velocity profiles are compared in Fig. 4.4. This very
good fitting between all three velocity profiles shows the possibility of re-
placing the incompressible solvers when their convergence is not satisfactory
even if the acoustics are not relevant, as well as the fully compressible for-
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mulation when dealing with low speed flows. Moreover, it confirms the good
performance of the weakly imposed inlet condition. Of course, one may
think that, despite this benefit, the compressibility brings the big drawback
of waves being reflected by the boundaries and polluting the flow solution.
However, Fig. 4.5 shows that this inconvenience is completely resolved by the
previously presented boundary conditions as no reflections are observed on
the external boundaries. This plot also validates qualitatively the acoustic
propagation at the far field. The present formulation is capable of capturing
the anisotropy of the aeolian tones as well as the amplitude of the acous-
tic waves. On the other hand, Fig. 4.6 aims for a quantitative validation
of the phenomenon. In this sense, the wave propagation obtained with the
isentropic compressible solver reproduces with small error the solution of
both incompressible and fully compressible formulations, from which we can
conclude that the method converges to a DNC at the low Mach range.

(a) (b)

(c)

Figure 4.5: DNS compressible flow pressure (a), acoustic pressure calculated
with the incompressible Lighthill analogy (b), isentropic compressible flow
pressure (c).
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Figure 4.6: Wave propagation at 90 degrees with respect to the flow direc-
tion.

A very important issue which has been already highlighted in the In-
troduction is the computational cost of the formulation in comparison to
the state-of-the-art incompressible and fully compressible approaches using
primitive variables. Table 4.2 shows the number of non-linearity iterations
and the cost per iteration using a Biconjugate Gradients linear solver with-
out any preconditioning. This non-optimized configuration has been chosen
because it has yielded convergence for all three formulations. The results
reveal the poor performance of monolithic incompressible schemes in prob-
lems of this size (∼ 360, 000 elements) due to the divergence-free condition,
as well as a huge cost saving respect to the fully compressible approach,
which has needed a ten times smaller time step for reaching convergence.

Solver # Picard iterations Cost/iteration (s)
Incompressible 10 65.0

Isentropic compressible 4 2.3
Fully compressible 4 3.8

Table 4.2: Computational cost for all three formulations using the same
linear solver and no preconditioner.
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4.6.2 Aerodynamic sound radiated by flow past an air-
foil. M = 0.4.

The simulation of turbulent compressible flows is a challenging problem that,
from the CFD point of view, has been often approached with the Reynolds
Averaged Navier-Stokes equations (RANS) [104] for reducing the computa-
tional cost. This case intends to show that the present formulation is capable
of facing large-sized problems involving high-speed subsonic turbulent flows
with a Large Eddy Simulation (LES), which a priori might sound too de-
manding for a fully compressible monolithic solver. The selected benchmark
case consists in a 3D flow around a NACA 0012 airfoil with an angle of attack
of 5◦ [160], with a Reynolds number based on the airfoil chord (d = 0.1524)
Rec = 408, 000 and an incident Mach number M = 0.4. The problem has
been solved in an unstructured mesh of nearly 20 million tetrahedral linear
elements using equal interpolation for velocity and pressure, with a size of
4× 10−4 on the leading edge and 6.5× 10−4 on the rest of the airfoil surface
(all units are in SI). The case has been run up to 0.050 s with a time step
δt = 10−5 s, departing from an initial incompressible solution in order to
ease the initial convergence of the iterative solver. For the weak imposition
of boundary conditions a penalty parameter β = 125 has been taken. Unlike
the previous low-speed flow, the present case generates an airjet that cannot
be dissipated before reaching the outlet, for which a PML has been placed
in this region. On the external boundaries the flow field has been prescribed
separately following the method presented in Section 4.3.

Figure 4.7: Vorticity profile on the airfoil.

The original case in [160] was computed with a compressible Large Eddy
Simulation (LES) for the flow scales and the Ffowcs Williams & Hawkings
(FWH) acoustic analogy for the acoustic component [159]. Since the object
of the present work does not consist in assessing the performance of the solver
in specific mesh typologies or in reproducing all the details of a particular
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Figure 4.8: Pressure isosurfaces.

problem, but in establishing a general framework for the calculation of a wide
range of flows, the goal of this analysis has been restricted to the following
points: the suitability of the present isentropic compressible formulation for
reproducing the mean flow patterns at M = 0.4, the proper propagation
of the captured acoustic modes, and finally the validation of the proposed
boundary conditions.

Figs. 4.7 and 4.8 show the calculated vorticity profile on the airfoil and
the pressure isosurfaces with the corresponding wave propagation, respec-
tively. Due to the highly aerodynamic character of this profile, the validation
of the formulation in regard to the mean flow variables is very dependent
to a proper description of the boundary layer. A wall-law with both buffer
and logarithmic regions has been prescribed on the airfoil and the result in
Fig. 4.9a has been obtained. Although the mean velocity field values are
properly reproduced, the boundary layer still suffers an early detachment
from the airfoil. In order to analyze in what extent the mesh element size,
and not the formulation, was the reason for this discrepancy, the same prob-
lem has been run in a 2D section of the original profile using a much finer
grid. Fig. 4.9b shows that the element size around the wall was indeed the
cause of the early boundary layer detachment.

The same dependence on the mesh resolution can be found when cap-
turing the acoustic modes. However, in this case the lack of accuracy does
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(a) (b)

Figure 4.9: Contours of time-averaged flow velocity calculated in a 3D do-
main (a), in a 2D domain (b) [160].

not affect the description of the acoustic scales generated by the interaction
between the fluid and the airfoil, but its propagation to the far-field. The
proper description of the wave requires dimensioning the element size at the
far-field according to the smallest relevant wavelength, which would suppose
an unaffordable problem size for a monolithic numerical approach. Fig. 4.10a
shows how the wave propagation in the nearest region around the airfoil is
not visible due to the presence of the much larger aerodynamic scale, but
beyond a certain point it arises with the same pattern of the solution cal-
culated with the FWH acoustic analogy in [160]. These challenges can only
be approached with a manufactured structured mesh, which optimizes the
spatial discretization according to the expected solution using elements with
a high aspect ratio. Nevertheless, these methods are not part of the scope
of the work.

(a) (b)

Figure 4.10: Calculated pressure at the near-field (a), at the far-field (b)
[160].

The behavior of waves abandoning the domain is one of the main con-
cerns in compressible flow calculations. In the previous case, due to the
low Mach and Reynolds regime, the size of the near-field region under influ-
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ence of the flow perturbations was very small compared to the domain size,
for which the separated prescription of boundary conditions considering a
mean flow component and an acoustic variation was conceptually very clear.
However, in the present case real far-field stagnation conditions cannot be
reached within a reasonably big domain and the aerodynamic pressure field
is not yet uniform on the external boundaries, see Fig. 4.2. In spite of this
theoretical drawback, the method manages to separate the two scales prop-
erly by updating the mean value at each time step, which allows the waves
to cross ΓL without any spurious reflection, see Fig. 4.10b. Furthermore, the
implemented PML on the outlet completely absorbs the incoming waves as
well as the noise produced by the airjet. It can be also observed how the flow
pressure field is not exactly flat on ΓL but no spurious reflections appear.
This is possible because the present method is able to account for variations
in the mean flow variables, but they must be smooth enough so they do not
interfere with the acoustic field, otherwise spurious reflections may appear.
Therefore, the truncation of the domain is not so immediate in this case since
it must be assessed in advance that the far-field variations are acceptable,
keeping always the computational cost in mind. It could be argued that this
compromise could be avoided by using a PML on all external boundaries.
Unfortunately this is only possible in solvers that compute the acoustic and
the flow scales separately. In compressible formulations where the full set
of variables is solved in a single calculation, like the present one, the inlet
cannot be in contact with a PML. Moreover, the use of a global PML on all
other external boundaries can lead to an unaffordable computational cost in
big 3D cases with large wavelengths, for which the use of a non-radiating
boundary condition has been prioritized.

4.6.3 Flow past an open cavity. M = 0.7.

The acoustic feedback to the flow, which is one of the advantages of using
unified solvers, has not been assessed yet. For this reason we next present
a simulation of cavity noise. The case of a 2D flow past an open cavity
(M = 0.7 and Re = 41, 000) is considered. Periodic vortices are formed just
downstream the leading edge of the cavity. When they impinge the trailing
edge, an acoustic pulse is generated that propagates upstream and triggers
flow instabilities, which result in flow separation at the leading edge. An
acoustically driven feedback loop is thus established. We have compared
the results to those provided by an equivalent DNS [75] for a more accurate
and quantitative validation. This case is characterized by an inlet velocity
U = 245 m/s and a rectangular cavity with a length L = 5.18 mm and a
depth D = 2.54 mm. The mesh used to discretize the computational domain
has 391, 000 linear elements and the time step size has been taken as 2×10−7.
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At M = 0.7 the acoustic scales are not negligible anymore respect to
the flow oscillations like in the previous cases, and its feedback to the flow
motion in the cavity becomes an important factor. This phenomenon affects
in turn the subsequent wave propagation, for which it can be assumed that
the coupling between scales is much stronger and the advantage of using a
unified compressible solver is far more evident than in the two past scenar-
ios. Fig. 4.11 shows vorticity and pressure isosurfaces in the cavity for four
different times during a complete shedding period. These sequences can be
directly compared to those presented in [75] because the same scaling has
been used for both fields, and it can be concluded that the present formula-
tion manages to reproduce the same flow patterns that were obtained with
the DNS.

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 4.11: Vorticity (a-d) and pressure (e-h) isosurfaces at four different
moments during the main oscillation period [75].

Unlike the previous open geometries, the partial confinement of the flow
in the cavity increases the non-linearity of the problem because the propaga-
tion of the exiting waves is clearly affected by the unsteadiness of the flow.
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In this sense, Figs. 4.12 and 4.13 show that the acoustic component of the
solution is also properly described by the isentropic solver. On the one hand,
the main oscillation mode is found at the same Strouhal number St = 0.68
and a similar slope is obtained for the pressure frequency spectrum at the
beginning of the acoustic region outside the cavity. On the other, the further
wave propagation to the far field is also properly described by the present
method, see Fig. 4.13 and [75].

Figure 4.12: Welch’s power spectrum computed with the flow pressure field
at the beginning of the acoustic region [75].

Figure 4.13: Pressure wave propagation [75].
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4.6.4 Aeroacoustics of an oscillating 2D NACA0012
airfoil. M = 0.1

As anticipated in Chapter 2, the same case has been computed again with
the ALE extension of the isentropic compressible flow formulation. In this
case, the pressure has not been split into two components because it would
lead to the excessive cost of computing to full CFD problems. However, it
will be very useful for validating the previously obtained flow velocity and
total acoustic pressure. Regarding the former, Fig. 4.14 shows the velocity
profile around the airfoil at the same positions of Fig. 2.22, obtaining very
similar results. The latter though shows relevant differences, see Fig. 4.15.
Although the oscillation ranges and the growing noise found in Fig. 2.15 are
also obtained in this case, in all three positions the wave propagation looks
cleaner because no offset interferes with the acoustic scales.

(a)

(b)

(c)

Figure 4.14: Velocity profiles at three different positions of the airfoil.
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(a)

(b)

(c)

Figure 4.15: Pressure profiles at three different positions of the airfoil.
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However, when pressure time histories and frequency spectra at the same
four points are compared, the methods look much more consistent, see
Figs. 4.16 and 2.20. Only one major discrepancy needs to be mentioned:
the noise in the wake region downstream. Whereas the isentropic compress-
ible solver yields a very low acoustic propagation in this area, Lighthill’s
analogy clearly overestimates the diffraction of high frequency sound at P3.
This disagreement might be caused by the lack of validity of this method in
regions where the flow is not uniform, like turbulent jets.

Figure 4.16: Pressure time history (top) and frequency spectrum (bottom)
at the four selected points.
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4.7 Conclusions

The presented finite element formulation offers a simplified framework for
dealing with subsonic adiabatic gas flows without facing the numerical incon-
veniences and the high computational cost of the state-of-the-art compress-
ible flow formulations. The minimal implementation cost when departing
from a monolithic incompressible solver makes this approach very attrac-
tive for solving aeroacoustic problems where heat transfer can be neglected.
Moreover, its validation against the incompressible Navier-Stokes equations
for a low-Mach regime has shown its suitability in problems where acoustics
are not relevant. On the other hand, it has been also shown that the present
formulation converges to a DNC when dealing with low speed flows.

The developed numerical method has successfully reproduced the acous-
tics of the incompressible Lighthill analogy and the FWH analogy with com-
pressible flow, as well as the acoustic feedback to the flow of a DNS. The
full subsonic range, from M = 0.058 to M = 0.7, has been covered and
therefore, one of the main goals of this research, the development of a gen-
eral numerical framework for all isentropic gas flows, has been successfully
accomplished. In this sense, the presentation of a novel method for pre-
scribing separate boundary conditions for the aerodynamic and the acoustic
components strives in the same direction of offering a general solution to
the problem of spurious wave reflection in aeroacoustic calculations. On the
most problematic boundary for such cases, the inlet, this formulation man-
ages to prescribe an incoming velocity while being transparent to the exiting
acoustic waves. Moreover, it is compatible with any kind of non-radiating
boundary condition and can be combined with a PML on the outlet in case
of highly convective jets.

Finally, the ALE extension of the isentropic formulation has reduced the
complexity of the aeroacoustic problem in moving domains in comparison
to the method presented in Chapter 2. Apart from validating the results
obtained with the hybrid method, it has yielded a better representation
of the acoustic field and, as expected, a more accurate propagation in the
turbulent flow region.
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Chapter 5

Interpolation with restrictions
between finite element meshes
for flow problems in an ALE
setting

The need for remeshing when computing flow problems in domains suffering
large deformations has motivated the implementation of a tool which allows
the proper transmission of information between finite element meshes. Since
the Lagrangian projection of results from one mesh to another is a dissipative
method, a new conservative interpolation method has been developed. A se-
ries of constraints, such as the conservation of mass or energy, are applied to
the interpolated arrays through Lagrange multipliers in an error minimiza-
tion problem, so that the resulting array satisfies these physical properties
while staying as close as possible to the original interpolated values in the
L2 norm. Unlike other conservative interpolation methods which require a
considerable effort in mesh generation and modification, the proposed for-
mulation is mesh independent and is only based on the physical properties
of the field being interpolated. Moreover, the performed corrections are nei-
ther coupled with the main calculation nor with the interpolation itself, for
which reason the computational cost is very low.

5.1 Background

The interpolation of numerical solutions between computational meshes is a
well known procedure with multiple applications, for example the transmis-
sion of arrays in case of problems with evolving domains, coupling between
different physical problems or computational codes, initialization or update
of boundary conditions or visualization of results. In some of these cases,

119
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a simple Lagrangian interpolation within the elements is acceptable, but in
other scenarios the non-conservative character of the interpolation opera-
tion can cause considerable dissipation and other kinds of numerical error.
This has led to the development of multiple methods for the transmission of
information between meshes in finite element computations.

The accurate projection of transmission conditions between two sub-
domains was the main motivation for the development of an interpolation
method based on the conservation of relevant magnitudes, [94], which has
already been applied to the fixed mesh ALE method by [50]. In this chapter,
the projection of vector fields corresponding to the transmission conditions
between subdomains in a domain decomposition problem is constrained by
the conservation of mass in a weak sense and by the conservation of the
L2 norm of the solution along the boundary. The application of these re-
strictions is performed by solving an optimization problem with constraints
controlled by Lagrange multipliers which enforce that the distance between
the interpolated and the corrected solutions is minimum in the L2 norm
and that the restrictions are fulfilled. This concept is the background of the
formulation presented in this work.

The pioneer works on conservative interpolation between computational
meshes were an answer to the needs regarding the domain deformation in
ALE (Arbitrary Lagrangian Eulerian) calculations, where the computational
nodes of the mesh may either remain fixed as in the Eulerian configuration
or can be prescribed an arbitrary velocity, [61]. The techniques for achiev-
ing the conservation of certain magnitudes during the interpolation process
consisted in either building a new mesh by locally modifying the original
one, or interpolating the results to a new random grid after computing the
intersections between both meshes. The first case corresponds to the local
rezoning, which normally takes place at every time step but at a low com-
putational cost. An example of such an algorithm is presented by [121], a
second order accurate scheme which divides the new cells taking into account
the intersections with the old ones and guarantees the conservation of the
mass fluxes along the edges of the finite volumes in 2D. This method was
extended to 3D domains by [74]. On the other hand, global remapping does
not assume any relation between the original and the target mesh, for which
reason these algorithms deal with the whole domain and increase the compu-
tational cost, although they might be used less often during the simulation.
In this sense, [137] and [63] present a remapping method which computes
the intersection volume between meshes with a surface integral and builds
the interpolated field performing an area-weight averaging. On the other
hand, some disciplines such as weather forecast use conservative numerical
methods in a semi-Lagrangian frame of reference which require the track-
ing of the trajectory and the interpolation of the convection velocity to an
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Eulerian frame of reference. An area-weighted interpolation is also used to
prevent loss of accuracy by [141]. The concept of interpolation with con-
straints is presented by [35] for finite volumes and finite differences, where
the integration weights and the interpolation coefficients are forced to fulfill
certain conditions. [1] propose a P1 exact, mass conservative interpolation
scheme which also fulfills the maximum principle by reconstructing the mass
field and its gradient with the elemental intersections between both meshes.
Another popular technique developed recently is the common-refinement or
the supermesh, [107], [69] and [68]. It consists in the construction of an in-
termediate mesh as a union of the original and the target meshes in order to
allow an efficient Galerkin projection of the results, which minimizes the L2

norm of the interpolation error. An important method regarding the formu-
lation that will be presented in this work is that of [37]. It is not based on
grid operations or algorithms but on the physics of the problem, in this case
the shallow water equations. The unknown velocity on the target mesh is
expressed as an L2 projection of the old one plus a correction factor defined
in terms of the gradient of a scalar function (pseudo-pressure), which leads
to an elliptic problem of the projected velocity correction. Additionally, this
method yields local mass conservation without changing the vorticity of the
velocity field.

As stated before, one of the main fields of application of conservative in-
terpolation methods is the transmission of loads between interfaces belonging
to non coincident meshes. This scenario happens in coupled problems such
as fluid-structure interaction or in domain decomposition methods. In the
first case, [34] propose the conservation of the load along the interface with a
node-projection scheme. On the other hand, [67] use a quadrature-projection
of the loads, which involves the transmission of the integration points to the
target mesh, and finally the local version of the common-refinement [107],
being this last one the only whose error is independent of the degree of mis-
matching between meshes. A comparison between them can be found in
[105], where the common-refinement method is recommended due to its gen-
eral good performance with a reasonable computational cost. In the case of
non-conforming domain decomposition methods, one of the most extended
methods of conservative interpolation is the mortar element, [25].

An alternative approach to the remeshing problem is that presented by
[36], which presents a method for a homogeneous distortion of moving com-
putational meshes by preventing those elements located near the boundaries
to collapse. This is achieved by solving a virtual structural problem on the
mesh and giving the problematic elements a higher Young modulus in order
to reach a uniform mesh displacement field. For problems involving moder-
ate deformations leading to high local mesh distortion, this method avoids
remeshing, whereas for large deformations it would reduce the remeshing
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frequency. For this reason, it is foreseen as a complementary tool to the
present work.

The presented methodology overcomes the typical difficulties related to
the described conservative schemes. First of all, the method is valid for all
discretizations and is independent of the degree of coincidence between them.
Moreover, neither algorithms related to the mesh, such as rezoning, nor com-
putation of local integrals are performed, for which reason the computational
cost will be low and only dependent on the size of the meshes. Another im-
portant property is that, unlike many of the aforementioned methods, the
conservation is achieved interpolating directly the solution values instead of
fluxes at overlapping boundaries. Although the conservation of magnitudes
will be global and not satisfied locally, the procedure presented in this work
allows to enforce conservation conditions of a general form which may not
be restricted to mass and momentum conservation.

5.2 Formulation

5.2.1 The concept

Let us consider a finite element partition Th,1 of a domain Ω ⊂ Rd, d ≥ 1,
and a discrete solution uh,1 of an arbitrary problem defined in the subspace
of functions Vh,1 ⊂ V , where V is the space of functions where the con-
tinuous solution lives. For the sake of conciseness, we will consider scalar
functions in this section. Given another finite element partition Th,2 of the
same domain, the objective is to construct uh,2 from uh,1 with the same ap-
proximation properties to the continuous solution as uh,1. We will call uh,2
the interpolation of uh,1 on Th,2 (see Fig. 5.1), and Vh,2 the corresponding
finite element space.

In order to simplify the notation for the rest of the chapter, the finite
element functions will be expressed in terms of the shape functions of each
finite element partition, which will be denoted as {Na

n}, where n = 1, 2 refers
to the mesh and the superscript to the nodes, so that a will run from 1 to
the number of nodes of each mesh. Denoting by Ua

n the corresponding nodal
values and assuming a standard Lagrangian interpolation, we may write

uh,n =
∑
a

Na
nU

a
n , n = 1, 2,

where summation is understood to run over the set of nodal values.

Let us describe two simple possibilities to compute uh,2.
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Figure 5.1: Interpolation of a finite element solution between two computa-
tional meshes.

Option 1: L2 projection

The interpolation uh,2 might consist in an L2 projection of uh,1 onto Vh,2.
This is equivalent to minimize the functional J (vh,2) = 1

2
‖vh,2 − uh,1‖2

L2(Ω),
and leads to the problem: find uh,2 ∈ Vh,2 such that∫

Ω

uh,2vh,2 =

∫
Ω

uh,1vh,2,

for all test functions vh,2 ∈ Vh,2. Using the shape functions and nodal values,
the problem to be solved becomes:∑

b

∫
Ω

Na
2N

b
2U

b
2 =

∑
c

∫
Ω

Na
2N

c
1U

c
1 , (5.1)

for all nodes a of Th,2. Let us call Un the array of nodal values of uh,n, M2 the
standard mass matrix of Th,2 and P21 the array whose components appear
in the right-hand-side of Eq. (5.1). The solution to this equation can thus
be written as

U2 = M−1
2 P21.

Apart from the cost of solving this algebraic system, the algorithmic difficulty
of this method is the evaluation of the components of P21. Suppose that
numerical integration associated to Th,2 is used, with integration points {xg2}
and associated weights {wg2}. Then∑

c

∫
Ω

Na
2N

c
1U

c
1 ≈

∑
c

∑
g

wg2N
a
2 (xg2)N c

1(xg2)U c
1

The difficulty is the evaluation of N c
1(xg2). This requires finding the element

domain K1 ∈ Th,1 where xg2 belongs. If node c belongs to this element K1,
then N c

1(xg2) can be computed from interpolation. Otherwise, it is zero.
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Option 2: standard Lagrangian interpolation

The method described above requires the solution of a system of equations,
which may be inconvenient from a computational point of view, even if it is
easy to invert the mass matrix. A simpler alternative is to obtain the nodal
values of uh,2 simply by interpolation, i.e.,

Ua
2 =

∑
b

N b
1(xa2)U b

1 ,

where xa2 are the coordinates of node a. This is a node of Th,2, whereas {N b
1}

are the shape functions of Th,1. Therefore, one needs to find the element
K1 ∈ Th,1 where xa2 belongs, and then proceed to interpolate as in the
previous approach.

Interpolation with restrictions

The approach described above has the drawback of being non-conservative
and very diffusive, which is precisely what the application of certain restric-
tions aims to compensate. However, it is more flexible and easier to paral-
lelize, whereas the L2 projection, in spite of yielding a smaller interpolation
error, is not completely conservative either and in some cases the mass and
other quantities should be corrected as well. Therefore, the idea we propose
consists in obtaining ũh,2 ∈ Vh,2 that satisfies two important features:

• It must remain the nearest solution to uh,2 in the L2 norm, uh,2 being
obtained from a standard Lagrangian interpolation, for example.

• It must fulfill some physical properties of uh,1, which could involve for
example the conservation of a set of magnitudes.

In order to describe the second point, let us define the restriction opera-
tors (forms). When applied to the finite element functions, these operators
give a scalar result corresponding to a relevant magnitude of the physical
problem being calculated. We write them as

Rn,i : Vh,n −→ R, (5.2)

where the subindex n = 1, 2 refers either to the donor 1 or to the target
mesh 2, and i = 1, ...,m is the restriction counter. Operators Rn,i can be
written in terms of their nodal values, so that

Rn,i(uh,n) =
∑
a

Ra
n,iU

a
n ,
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where Ra
n,i = Rn,i(N

a
n) for linear restrictions and Ra

n,i may depend on Un in
the case of non-linear ones.

Since it has been stated that the restriction consists in conserving the
value of these selected magnitudes, the following equalities must hold:∑

a

Ra
2,iŨ

a
2 =

∑
b

Rb
1,iU

b
1 , i = 1, . . . ,m, (5.3)

where Ũ2 denotes the nodal values associated to ũh,2. The computational
domain Ω remains the same for all stages of the process, since the interpola-
tion process is completely static although the simulation considers a dynamic
domain. In some cases, only a part of the domain needs to be interpolated,
for example in case of fluid-structure interaction (FSI) problems, where the
values at the interface must be exchanged between both subdomains. This
scenario will not be considered in the present work.

Although this method is only presented for some particular flow prob-
lems, it can be extended to other physical problems. For example, the for-
mulation could be extended to flows with free surfaces in a straightforward
way by restricting the constraints to the flow subdomain, which would re-
quire subelemental integration, [50]. Problems in which the restrictions are
inequalities rather than equalities could also be treated by embedding the
scheme in a iterative loop that requires to solve a sequence of problems with
equality constraints, as it is done in optimization; these inequality restric-
tions are found for example in plasticity problems, where the stresses are
required to be admissible, [31]. This last example requires a further exten-
sion consisting in posing the restriction in terms of variables defined at the
numerical integration points, such as internal variables like plastic multipli-
ers or damage; it is only required to be able to express these variables in
terms of the nodal unknowns of the problem and proceed as we propose here.

At this point it is important to distinguish the current method from
the mortar method, [25]. Unlike the present method, the mortar method
consists in a domain decomposition technique which performs a L2 projection
along an interface between non-matching grids satisfying adequate matching
conditions. The restriction of these fluxes might be performed with Lagrange
multipliers. In our case, the interpolation is performed point by point and
the restrictions affect the whole domain.

5.2.2 Application to linear restrictions

Let us develop the concept introduced above in the case in which the re-
strictions are linear functionals. For example, bearing in mind that one of
the main issues in the numerical computations of incompressible flows is the
conservation of mass, it is reasonable to formulate a problem with this linear
restriction.
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The restrictions can be enforced through Lagrange multipliers λ =
(λ1, . . . , λm) ∈ Rm. Given uh,2 ∈ Vh,2, the interpolation of uh,1 ∈ Vh,1 on
Th,2, let us define the following functional L : Vh,2 × Rm −→ R:

L(vh,2,µ) =
1

2

∥∥∥∥∥∑
a

Na
2 (V a

2 − Ua
2 )

∥∥∥∥∥
2

L2(Ω)

−
m∑
i=1

µi

(∑
a

Ra
2,iV

a
2 −

∑
b

Rb
1,iU

b
1

)
,

(5.4)

where V a
2 are the nodal values of vh,2, µ ∈ Rm is an admissible set of La-

grange multipliers and the subscript in the norm indicates that it is the
L2(Ω) one. Then the solution that minimizes the distance to the interpo-
lated values and imposes the restrictions will be:

[ũh,2,λ] = arg inf
vh,2∈Vh,2

sup
µ∈Rm

[L (vh,2,µ)] . (5.5)

This is a saddle point problem. A necessary and sufficient condition for
it to be well posed is that the finite element space Vh,2 and Rm satisfy the
appropriate inf-sup condition. This in particular restricts the number of
Lagrange multipliers. However, since m is usually very small, we have not
encountered any stability problem.

The equations to be solved are obtained by differentiation of the func-
tional L with respect to the unknowns:

∂L

∂V b
2

= 0 =⇒
∑
a

∫
Ω

N b
2N

a
2 Ũ

a
2 −

m∑
i=1

λiR
b
2,i =

∑
a

∫
Ω

N b
2N

a
2U

a
2 , for all b,

(5.6)

∂L

∂µi
= 0 =⇒

∑
a

Ra
2,iŨ

a
2 =

∑
b

Rb
1,iU

b
1 , for all i. (5.7)

These two equations can be arranged into the following algebraic system:[
M2 −RT

2

R2 0

] [
Ũ2

λ

]
=

[
M2U2

R1U1

]
,

where Rn are the matrices of the linear restriction operators, n = 1, 2.
In order to avoid solving the full linear system, which can be expensive

and requires to add the Lagrange multiplier unknowns to the solver, we can
solve first the Schur complement problem for the Lagrange multipliers, and
later compute the nodal values Ũ2:

R2M
−1
2 RT

2 λ = R1U1 −R2U2, (5.8)

Ũ2 = U2 +M−1
2 RT

2 λ. (5.9)
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Note that system (5.8) is of small size m×m. The only difficulty for solving
this problem is the calculation of M−1

2 . This is trivial if the mass matrix
M2 is approximated by a diagonal matrix. If not, the problem can be solved
using iterative methods, each iteration of which requiring the solution of a
system of equations with matrix M2; it is known that these systems can be
solved with a small computational cost.

5.2.3 Non-linear restrictions

The same idea can be applied in the case in which the restrictions are non-
linear, i.e., mappings Rn,i in (5.2) are non-linear. Let us assume that we
write them as

Rn,i(vh,n) =
∑
a

Ra
n,i(Vn)V a

n ,

with the componentsRa
n,i(Vn) depending of the nodal values Vn. We consider

now the functional

L(vh,2,µ) =
1

2

∥∥∥∥∥∑
a

Na
2 (V a

2 − Ua
2 )

∥∥∥∥∥
2

L2(Ω)

−
m∑
i=1

µi

(∑
a

Ra
2,i (V2)V a

2 −
∑
b

Rb
1,i (U1)U b

1

)
. (5.10)

The optimization of this functional leads to the equations:

∂L

∂V b
2

= 0 =⇒
∑
a

∫
Ω

N b
2N

a
2 Ũ

a
2 −

m∑
i=1

λi

(
Rb

2,i(Ũ2) +
∑
a

∂Ra
2,i(Ũ2)

∂Ũ b
2

Ũa
2

)
=
∑
a

∫
Ω

N b
2N

a
2U

a
2 , for all b, (5.11)

∂L

∂µi
= 0 =⇒

∑
a

Ra
2,i(Ũ2)Ũa

2 =
∑
b

Rb
1,i(U1)U b

1 , for all i. (5.12)
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Using a fixed-point method for the first equation and a fixed-point or Newton-
Raphson linearization for (5.12) we have that

∑
a

∫
Ω

N b
2N

a
2 Ũ

a,(k)
2 −

m∑
i=1

λ
(k)
i

(
Rb

2,i(Ũ
(k−1)
2 ) +

∑
a

∂Ra
2,i(Ũ

(k−1)
2 )

∂Ũ b
2

Ũ
a,(k−1)
2

)
=
∑
a

∫
Ω

N b
2N

a
2U

a
2 , for all b, (5.13)

∑
b

(
Rb

2,i(Ũ
(k−1)
2 ) + γ

∑
a

∂Ra
2,i(Ũ

(k−1)
2 )

∂Ũ b
2

Ũ
a,(k−1)
2

)
Ũ
b,(k)
2

=
∑
b

Rb
1,i(U1)U b

1 + γ
∑
a

∂Ra
2,i(Ũ

(k−1)
2 )

∂Ũ b
2

Ũ
a,(k−1)
2 Ũ

b,(k−1)
2 , for all i.

(5.14)

For k = 1 the algorithm can be initialized taking Ũ
(0)
2 = U2. The

Newton-Raphson linearization for (5.12) corresponds to γ = 1, whereas a
fixed-point (Picard’s) method is obtained for γ = 0. Note that a Newton-
Raphson linearization of (5.11) would imply a modification of the term mul-

tiplying Ũ
a,(k)
2 in(5.13).

Let us introduce matrix R̂2(Ũ2), of components

R̂b
2,i(Ũ2) =

∑
a

∂Ra
2,i(Ũ2)

∂Ũ b
2

Ũa
2 .

We can now write (5.13)-(5.14) as[
M2 −RT

2 − R̂T
2 (Ũ

(k−1)
2 )

R2 + γR̂T (Ũ
(k−1)
2 ) 0

][
Ũ

(k)
2

λ

]
=[

M2U2

R1U1 + γR̂T (Ũ
(k−1)
2 )Ũ

(k−1)
2

]
.

The matrix of this system can be made symmetric only if γ = 1.
As for the linear problem, we could proceed to compute first λ by solving

the corresponding Schur complement system, and then compute Ũ2.

5.3 Implementation

The implemented interpolator is based on a search octree method which
has been extended for MPI parallel computing. This algorithm builds cubic
boxes around the selected entities (points, elements or subdomains) and or-
ganizes them hierarchically in a way that the search can proceed forwards
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and backwards recursively without having to apply brute force every time,
[118]. First of all, an octree of subdomains links each node of the target
mesh with the processor containing this coordinate at the old mesh. Each
subdomain has its own octree of elements that finds the element of the old
mesh which corresponds to a node of the new one. Once all connections
have been made and communicated between processors, all arrays of the
physical problem can be projected to the target mesh by performing a La-
grangian interpolation within the found element. Finally, the obtained array
can go through the optimization problem with restrictions in a completely
independent subroutine (see Fig. 5.2).

Figure 5.2: Scheme showing the computational implementation of the inter-
polation method. Example with 4 subdomains.

5.4 Application to the incompressible Navier-

Stokes equations

The presented formulation has been applied to the incompressible Navier-
Stokes equations solved in an ALE frame of reference. Our motivation to
develop the formulation described here is to use it as a first step towards a
complete ALE aeroacoustics calculation using Lighthill’s acoustic analogy,
[115], with incompressible flow and 3D dynamic realistic vocal tract geome-
tries. The simulation of syllables with a CFD code represents a challenge
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in regard to the accuracy of the interpolation of velocity and pressure fields
during the remeshing stages. If we consider the numerical calculation of the
syllable [as], sharp gradients are expected to appear when the upper inscis-
sors approach the lower teeth, which combined with the large deformation of
the domain from the initial open position to the final closed configuration,
makes a conservative interpolation method extremely necessary in order to
prevent the propagation of important numerical error sources.

5.4.1 Continuous problem

The incompressible Navier-Stokes equations model the motion of isentropic,
low-speed viscous flows which do not involve relevant compressibility effects.
These are to be solved in a computational domain Ω ⊂ Rd (where d = 2, 3
is the number of space dimensions) with boundary ∂Ω and prescribed initial
and boundary conditions. Splitting ∂Ω into two disjoint sets ∂Ω = ΓD ∪ΓN,
the mathematical problem to be faced reads

∂tu− ν∆u+ u · ∇u+∇p = f in Ω, t > 0,

∇ · u = 0 in Ω, t > 0,

u (x, 0) = u0 (x) in Ω, t = 0,

u (x, t) = uD (x, t) on ΓD, t > 0,

n · σ (x, t) = tN (x, t) on ΓN, t > 0,

where u is the velocity, p the pressure, f the vector of body forces, ν the
kinematic viscosity, u0 the velocity initial condition, uD the velocity Dirich-
let condition, n the exterior unit normal to ∂Ω, σ = −pI + νn · ∇u and tN
the prescribed (pseudo-)traction.

Let VD the space of vector functions with components in H1(Ω) and equal
to uD on ΓD, and V0 the analogous space of functions vanishing on ΓD. Let
also Q = L2(Ω), being the mean of these functions zero if ΓN is empty. Let
〈·, ·〉ω be the integral of the product of two functions in the domain ω (with
the subscript omitted when ω = Ω) and (·, ·) the L2(Ω)-inner product. The
weak form of the Navier-Stokes equations can be written as follows: for all
time t > 0, find u(t) ∈ VD and p(t) ∈ Q, with appropriate regularity in
time, such that

(∂tu,v) + 〈u · ∇u,v〉+ ν(∇u,∇v)− (p,∇ · v) = 〈f ,v〉+ 〈tN,v〉ΓN
,

(q,∇ · u) = 0,

for all v ∈ V0 and q ∈ Q, and supplemented with the weak form of the initial
conditions.

When the domain Ω is time dependent, this dependency can be taken
into account using an ALE formulation. If udom is the velocity of the points
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in Ω, the only modification that needs to be introduced to the previous
equations is the replacement of the advection velocity in the convective term
by u− udom.

5.4.2 Finite element approximation and time integra-
tion using a monolithic scheme

Let us consider a finite element partition of the domain Ω of size h, and use
this letter as subscript to denote finite element functions and spaces. Only
conforming finite element approximations will be considered in what follows.

Concerning the time integration, the monolithic approach for solving
the incompressible Navier-Stokes equations consists in building a linearized
system with both velocity and pressure degrees of freedom, which leads to
the coupled calculation of the momentum and mass equations in one single
step. To approximate the first order time derivative, a third order backward
finite difference scheme (BDF3) has been used. Let us partition the time
interval [0, T ] into N equal time steps of size δt := tn+1 − tn so that 0 ≡
t0 < t1 < . . . < tn < . . . < tN ≡ T . Given a generic time dependent function
g(t), the following notation will be used for the BDF3 approximation to the
first time derivative:

∂tg|tn+1 ≈ δtg
n+1 :=

1

δt

(
11

6
gn+1 − 3gn +

3

2
gn−1 − 1

3
gn−2

)
,

where gn denotes evaluation of g at time step tn. At an arbitrary time step
of the numerical simulation, the final fully discretized implicit scheme in
space and time reads as follows. From known un−2

h , un−1
h and unh, compute

the incompressible velocity and pressure at time step tn+1,
[
un+1
h , pn+1

h

]
∈

VD,h ×Qh, such that(
δtu

n+1
h ,vh

)
+ 〈un+1

h · ∇un+1
h ,vh〉+ ν

(
∇un+1

h ,∇vh
)
−
(
pn+1
h ,∇ · vh

)
+
(
qh,∇ · un+1

h

)
= 〈fn+1,vh〉+ 〈tn+1

N ,vh〉ΓN
, (5.15)

for all test functions [vh, qh] ∈ V0,h ×Qh. This is the standard Galerkin ap-
proximation of the problem. Stabilization is required to deal with convection-
dominated flows. Likewise, the pressure and velocity spaces have to satisfy
an adequate inf-sup condition or, otherwise, a stabilization technique is also
required. In our calculations we use the approach described in [43].

5.4.3 Examples of restrictions for incompressible flows

Let uh,1 be the velocity computed from (5.15) at a certain time step and
with a mesh Th,1. Suppose now that Ω is remeshed and the new finite
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element partition is Th,2. Using the notation of the previous section, if uh,1 =∑
aN

a
1U

a
1 , the straightforward interpolation will produce uh,2 =

∑
bN

b
2U

b
2 .

From this, we wish to compute now ũh,2, an approximation to uh,2 satisfying
certain restrictions.

The imposition of restrictions is obviously problem-dependent. In the
case of the incompressible Navier-Stokes equations, we will consider conser-
vation of mass, conservation of kinetic energy and conservation of linear
momentum. The first and last restrictions are linear, whereas the second is
non-linear (quadratic). They can be written as:∫

Ω

∇ · ũh,2 =

∫
Ω

∇ · uh,1, (5.16)∫
Ω

|ũh,2|2 =

∫
Ω

|uh,1|2, (5.17)∫
Ω

ũh,2 =

∫
Ω

uh,1. (5.18)

Note that density can be cancelled in all these conditions, as well as the
factor 1/2 of the kinetic energy in (5.17). The mass conservation equation
(5.16) is crucial; even if we may assume uh,1 to be mass-conserving, i.e., the
right-hand-side of (5.16) to be zero, this property cannot be guaranteed for
uh,2, and therefore it may be very important to explicitly impose it.

Let λ1, λ2 and λ2+j, j = 1, . . . , d, be the Lagrange multipliers to enforce
(5.16), (5.17) and (5.18), respectively. In this case, the Lagrangian functional
to be minimized, whose generic expression is (5.10), is given by

L(vh,2,µ) =
1

2

∫
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2 −U a
2 )
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−
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1,j

)
. (5.19)

The restrictions have been expressed in terms of the velocity nodal values,
that now are vectors whose components have been identified with subscript
j.

Now we can proceed as in the general case, taking the derivatives of L
with respect to the nodal unknowns and the Lagrange multipliers to obtain



5.4. Application to the incompressible Navier-Stokes equations 133

the optimality conditions, and then linearizing the resulting non-linear prob-
lem, the non-linearity being due to the imposition of conserving the kinetic
energy.

The optimality conditions read:
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Using the notation introduced for the general case, a Newton-Raphson lin-
earization of the problem yields:∑
a
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In the case of a Picard’s scheme for the third equation, it would read

∑
a,b

d∑
j=1

∫
Ω

N b
2N

a
2 Ũ
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Let Rn,1 and Rn,3 be the matrices that arise from the imposition of
the conservation of mass and linear momentum, respectively, on mesh n,
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n = 1, 2. Let also λ3 = (λ3, . . . , λ2+d). Using Picard’s linearization for the
conservation of kinetic energy, the system to be solved at each iteration is

M2 −RT
2,1 −2M2Ũ

(k−1)
2 −RT

2,3

R2,1 0 0 0

(Ũ
(k−1)
2 )TM2 0 0 0
R2,3 0 0 0



Ũ

(k)
2

λ1

λ2

λ3

 =


M2U2

R1,1U1

UT
1 M1U1

R1,3U1

 .
As a measure of convergence of this iterative scheme, we have used pre-

cisely the kinetic energy of Ũ2. In general, convergence is quite fast, but it
can deteriorate when dealing with fields with sharp gradients and highly non-
coincident meshes. Convergence can be improved using under-relaxation.

As in the general case, the Lagrange multipliers can be solved first from
a Schur complement system, which is trivially constructed if M2 is approxi-
mated by a diagonal matrix.

5.4.4 Time integration using a fractional step scheme
and pressure interpolation

Instead of using the monolithic approach to integrate in time the Navier-
Stokes equations, one can use a fractional step scheme, in which the calcu-
lation of the velocity and the pressure are segregated. The interest of this
approach is well known; in particular, it is known that the computational
cost is drastically reduced, particularly for problems with many degrees of
freedom. In general, within each time step fractional step schemes consist
in the computation of a non divergence-free velocity in a first stage and a
Poisson problem for the pressure in a second step; finally, the velocity is
corrected in order to fulfill the incompressibility condition and consistency
(see [10] for a review).

Let us consider the simplest backward Euler discretization of the Navier-
Stokes equations combined with a second order fractional step method. Sup-
posing that there are only Dirichlet conditions, the equations to be solved
are:

1

δt

(
ûn+1
h − unh,vh

)
+ 〈ûn+1

h · ∇ûn+1
h ,vh〉+ ν

(
∇ûn+1

h ,∇vh
)
− (pnh,∇ · vh)

= 〈fn+1,vh〉,(
∇pn+1

h ,∇qh
)

= (∇pnh,∇qh) +
1

δt

(
∇ · ûn+1

h , qh
)
,

1

δt

(
un+1
h − ûn+1

h ,vh
)

+
(
∇pn+1

h ,vh
)
− (∇pnh,vh) = 0,

where û is the non-solenoidal intermediate velocity. Once again, the sta-
bilization terms needed for using equal interpolation for the velocity and
pressure fields have been omitted for the sake of simplicity.



5.5. Numerical results 135

An important particularity of the second order fractional step scheme
presented is that the momentum equation uses the pressure field of the
previous time step. If the computational domain is remeshed at a certain
time step, not only the velocity, but also the pressure must be interpolated
to the target mesh when the calculation restarts. In order to ensure an
accurate interpolation, the conservation of the L2-norm of the pressure can
be imposed as a restriction. Proceeding as described for the general case,
the calculation of the pressure nodal values P̃2 from P2, computed from the
standard interpolation of P1, consists in the optimization of the functional:

L(qh,2,µ) =
1

2

∥∥∥∥∥∑
a

Na
2 (Qa

2 − P a
2 )
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2
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2 −
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P d
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d
1N

c
1P

c
1

)
, (5.20)

where we have assumed that functions in the pressure spaces are interpolated
also with the shape functions {Na

i }, i = 1, 2.
Now we can proceed as for the velocity interpolation with restrictions,

obtaining the optimality conditions for (5.20), linearizing them, solving for
the optimal Lagrange multiplier λ from a Schur complement problem and,
finally, obtaining P̃2 as a correction of P2 with λ known. Details are omitted.

5.5 Numerical results

5.5.1 Method validation: interpolation between iden-
tical translated meshes

Before proceeding to analyze the correction performed by the restrictions on
the interpolated field in common application cases, such ALE calculations,
a first case consisting in an analytical solution is presented to assess the
dissipation caused by the non-conservative interpolation and the efficiency
of the compensation introduced by the present method. This function is
interpolated from an original structured mesh of bilinear elements with di-
mensionless size h = 0.025 covering the domain Ω = [0, 1] × [0, 1] to an
identical mesh which has been shifted to the right a distance of h/2, so the
old and the new nodes do not coincide at all, see [32]. Afterwards, the func-
tion is interpolated back to the original mesh, repeating this sequence up to
20 times. The analytical solution is given by u = (ux, uy), with

ux = 2x2y (x− 1)2 (y − 1) (2y − 1) ,

uy = −2y2x (y − 1)2 (x− 1) (2x− 1) .
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Original value 0.013650
After Interp. without restrictions 0.013621

Interp. with restrictions 0.013653

Table 5.1: Maximum values of |u| at the first interpolation stage.

Original value 0.013650
After Interp. without restrictions 0.012244

Interp. with restrictions 0.013261

Table 5.2: Maximum values of the final norm of |u|.

Since u|Γ = 0, where Γ = ∂Ω, only the conservation of momentum and
L2 norm are applied. Table 5.1 shows the evolution of the maximum of |u|
during the first interpolation process: after a 2% loss caused by the point-by-
point interpolation, the correction brings the maximum back to its original
value with a small overflow. In spite of the benefit, this scenario shows that
this global method does not respect the local features of the solution, such
as peak values. However, this deviations are very small and new spurious
peaks are not possible because the method enforces that the final solution
remains the nearest possible to the interpolated one. The same happens
with the sign preservation and the monotonicity of the solution, since the
method does not enforce them explicitly and some unwanted sign changes
might appear at points where the function or its derivative are very close to
zero. Nonetheless, these errors will be always negligible for the same reason.

Next, the accumulation of the interpolation error along the whole se-
quence and its compensation are analyzed. After the 20th interpolation the
dissipation is considerable as it can be seen in the following series of plots
of |u|, see Fig 5.3, which use the same scale in order to reflect the degra-
dation of the solution. Fig. 5.3d and Table 5.2 show how the imposition of
momentum and L2 norm conservation compensate most of the dissipation.

5.5.2 Flow around a cylinder

In order to show the benefit of the presented formulation in a straightforward
way, a simple Re = 500 flow around a cylinder benchmark case has been
computed with the monolithic approach of the incompressible Navier-Stokes
equations in a static domain and a fine finite element mesh (see [83] for
more details). During 2000 time steps, 5 equispaced interpolations to a
coarse mesh have been performed in two different ways: without applying
any restrictions and enforcing the conservation of mass, momentum and
kinetic energy to the velocity field. After each interpolation, the results
have been projected back to the original mesh after only one time step, in
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a) b)

c) d)

Figure 5.3: a) Original profile of |u|, b) final profile of |u| after interpolating
without restrictions, c) final profile of |u| after interpolating with restrictions,
d) Superposition of the previous profiles at y = 0.5.

order to avoid further distortion of the solution than that caused by the
interpolation error. This procedure allows the comparison of the results to a
reference case which undergoes the same interpolation stages, but projecting
the velocity field always to the same, slightly moved, fine mesh. Therefore,
in this case no accuracy losses are expected other than those due to the
interpolation between meshes and the results can be considered as ideal for
our purpose. The mesh parameters of the simulation are listed in Table 5.3.

In spite of the small differences expected for only five bidirectional in-
terpolations in an overall run of 2000 time steps, a considerable phase error
between the reference curve and the solution computed without applying
restrictions can be clearly observed in Fig. 5.4, which shows the last steps of
the velocity time history. On the other hand, the red curve, corresponding to
the velocity interpolated with restrictions, nearly fits the reference solution.
This proves that the imposition of the restrictions leads to a reduction of
the interpolation error and its propagation.
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Mesh Fine Coarse

#elements 63,413 13,860
#nodes 32,445 7,079

Element type Stabilized P1/P1 Stabilized P1/P1

Table 5.3: Parameters for the flow over a cylinder example.

Figure 5.4: Time history of the last time steps of the velocity field.

5.5.3 A problem in aero-acoustics using an ALE de-
scription and remeshing

Following the practical motivation of this work, a preliminary case represent-
ing the syllable [as] is presented next. It consists in an air flux (density 1.2
kg/m3 and viscosity 1.5·10−5 Pa s) flowing through a constriction in a simpli-
fied 2D geometry based on the 3D simplified model of a vocal tract, [40]. The
computation starts from a developed flow computed with the incompressible
Navier-Stokes equations on the initial open configuration corresponding to
the phoneme [a], (see Fig. 5.6). The upper part of the vocal tract has been
prescribed an initial velocity ramp followed by a constant vertical velocity
of −5 m/s until the final position corresponding to the fricative sound is
reached, which happens after a total closure path of 5.15 cm at t = 0.012 s.
During this dynamic phase an ALE frame of reference is used and a total of
7 remeshing stages are performed due to the fast distortion of the elements.
Moreover, the domain velocity and the closure itself change the flow char-
acteristics, for which reason the time step has been changed progressively



5.5. Numerical results 139

from the initial value δt = 10−5 s to a final size of δt = 2.5 · 10−6 s. The
computational domain, from now on referred as Ω, with an inlet velocity of
(2.4, 0) m/s, rigid walls with a non-slip condition except the vertical out-
let boundary, has been discretized with two different finite element meshes
(see Fig. 5.5), whereas the time integration scheme is BDF3 in all cases.
Therefore, three time components of the velocity are interpolated in order
to guarantee a smooth and accurate restart of the computation on the new
mesh.

It will be shown how the accuracy of the interpolation, and hence the
impact of the restrictions, depend, as expected, on the degree of coincidence
between the donor and the target mesh. Therefore, the same case will be
run twice: first interpolating always to a similar mesh as usual, and then
going from the original fine mesh to a coarse mesh and vice-versa. This
scenario might not be usual in ALE calculations, but is indeed common in
the computation of coupled problems with two or more different meshes, such
as FSI and aero-acoustics, where the acoustic source term arising from the
CFD calculation can be projected to a coarser mesh for the less demanding
wave equation, [111]. The results will be also analyzed from both a static
and a dynamic point of view. In the first one, the effect of the restrictions
within the interpolation will be assessed, whereas the latter will focus on the
propagation of the interpolation error along a complete simulation.

Figure 5.5: Original fine mesh (left) and coarse mesh used at the first inter-
polation (right). Dimensions in mm.

Monolithic scheme

As stated above, the presented case has been run twice for analyzing the
dependence of the formulation on the degree of coincidence between meshes.
In both cases the following restrictions for the velocity field of the incom-
pressible Navier-Stokes equations have been applied together: conservation
of mass, conservation of momentum in x and y, and conservation of kinetic
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Figure 5.6: Initial geometry corresponding to phoneme [a] (top), final geom-
etry corresponding to phoneme[s] (bottom).

energy. On the other hand, when they are applied separately the compen-
sation performed by each one turns to be nearly the same, for which reason
the decoupled case will not be presented. Moreover, this fact reveals that
the non-diagonal terms of the system matrix, which force the simultane-
ous fulfillment of all restrictions, scarcely modify the values of the Lagrange
multipliers and only compensate the linearization. A direct solver has been
used in order to better evaluate the interpolation error at the remeshing
stages and its propagation, since it provides the exact discrete solution of
the problem.

Static analysis This subsection intends to illustrate the performance of
the restrictions in a single interpolation. The procedure is called static be-
cause the projection of results takes place in a fixed domain. Table 5.5 sum-
marizes the corrections performed by each restriction in all the remeshing
stages from the initial geometry [a] to the final configuration [s] in the afore-
mentioned two different cases: projection to a similar fine mesh (F → F )
and intercalation of coarse meshes (F → C or C → F ). It shows the amount
of mass as well as the deviation percentage of momentum and kinetic energy
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Initial mesh Fine Coarse

#elements 254,907 16,784
#nodes 131,058 8,706

Element type Stabilized P1/P1 Stabilized P1/P1
max. size 0.001 0.005
min. size 10−5 2 · 10−4

Table 5.4: Mesh parameters for the aero-acoustics example.

# interp 1 1 2 2 3 3

F → F F → C F → F C → F F → F F → C

Mass 8.4e-5 0.029 1.0e-5 1.7e-4 3.4e-6 0.014

MomX (%) 0.029 0.542 0.034 0.022 0.027 0.174

MomY (%) 4.3e-4 0.004 0.002 1.8e-4 4.9e-3 0.113

Kinet. (%) 0.027 0.328 0.049 0.031 0.079 0.514

4 4 5 5 6 6 7 7

F → F C → F F → F F → C F → F C → F F → F F → C

5.0e-5 5.7e-4 1.8e-4 9.2e-3 2.5e-4 1.3e-3 2.9e-4 0.052

0.031 0.016 0.040 0.332 0.052 0.022 0.026 1.263

9.3e-3 4.3e-3 3.7e-3 0.145 4.9e-3 8.0e-3 0.013 0.069

0.101 0.062 0.143 1.208 0.201 0.116 0.267 1.908

Table 5.5: Corrections performed by each restriction at all interpolation
stages.

that needs to be compensated at each interpolation when all restrictions
are applied together. First of all, the first interpolation to the coarse mesh
with restrictions will be compared to that without them and to the equiv-
alent ideal projection to a similar fine mesh, in order to check how far this
method can compensate a non-accurate interpolation. Later on, the most
critical interpolation will be carefully analyzed by evaluating the contribu-
tion of the restrictions, not only as a whole, but seeing how they perform
individually.

It can be clearly seen, as expected, that the interpolations going from a
fine mesh to a coarse one (F → C) are far more inaccurate than the oth-
ers due to the low degree of coincidence between nodes. If we consider the
first interpolation, which departs from the same solution in both cases, an
interesting analysis regarding the peak value can be derived. The current
formulation does not conserve explicitly the peak value, since this would re-
quire local restrictions, which are not part of the scope of this global method.
However, the injection of mass, energy and momentum by the imposition of
restrictions performs indeed a correction on the peak values which have been
shaved by the interpolation. Table 5.6 shows the maximum values of the ve-
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Original value 29.637
Target mesh fine coarse

Interp. without restrictions 29.591 29.397
Interp. with restrictions 29.600 29.435

Table 5.6: Maximum values of the velocity norm at the first remeshing stage

locity norm, which appear around the obstacle, at the first remeshing stage.
Although the resulting peak value after applying the restrictions will

mostly depend on the capability of the mesh of capturing local sharp gradi-
ents, which is not always possible given a low degree of coincidence between
meshes and a coarse resolution of the target mesh, the method manages to
restore partially the lost peaks, above all in the coarse solution, which needs
a greater correction than the fine one.

The last interpolation to the coarse mesh is clearly the most critical
one. The losses of mass and momentum are considerable, but the most
remarkable fact is the loss of kinetic energy, which nearly reaches the 2%.
The next series of plots show the correction performed by each restriction
separately and all together to the velocity field in Fig. 5.7, which corresponds
to the last remeshing stage at the final geometry, (see Fig. 5.6).

Figure 5.7: Velocity field before the last interpolation to the coarse mesh.

Fig. 5.8 shows the non-conservative interpolation of the velocity field
to the coarse mesh. For a better tracking of the whole process, the same
scaling has been used. The conservation of mass is achieved by injecting
fluid through the only open boundary, the outlet, as shown in (Fig. 5.9),
taking into account the divergence theorem. Then, the mass is diffused into
the bulk by a consistent mass matrix. However, the correction is essentially
restricted to the boundary nodes because it must also satisfy that the final
solution remains the nearest possible to the interpolated field. The correction
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Figure 5.8: Velocity field after the last interpolation to the coarse mesh
before being corrected by the restrictions.

Figure 5.9: Correction of the velocity field performed by the conservation of
mass.

of momentum follows a mesh dependent discontinuous pattern, since the
corresponding restriction operator is the integral of the shape functions at the
nodes (see Fig. 5.10). On the other hand, the correction of the kinetic energy
follows perfectly the motion of the flow because it can be understood as the
conservation of the velocity L2 norm. Bearing in mind that this correction
has a quadratic effect, the injection of kinetic energy will be proportional to
the velocity field in order to minimize the relative variation of the solution
(see Fig. 5.11). The total correction scale (see Fig. 5.12) shows the key
importance of this method when dealing with highly non-coincident grids, a
typical scenario that can be found in some coupled problems, otherwise the
solution could get distorted in just one time step. Finally, Fig. 5.13 shows
the final velocity field after applying the previous correction, which recovers
most of the flow features of the original field that hat been lost during the
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Figure 5.10: Correction of the velocity field performed by the conservation
of momentum.

Figure 5.11: Correction of the velocity field performed by the conservation
of kinetic energy.

non-conservative interpolation, (see Figs. 5.7 and 5.8).

Dynamic analysis. Up to now, only the static transmission of informa-
tion between two meshes has been analyzed. However, the most important
features are the degradation of the results and the accumulation of error
during a dynamic calculation when no restrictions are applied, as well as
the global effect of the restrictions along the simulation. It is not easy to
quantify the benefit just by adding the effect of the successive application
of the restrictions because after losing mass, momentum and energy at one
interpolation, the numerical solution of the Navier-Stokes equations is com-
puted again and this interpolation error is partially compensated by the
imposition of the incompressibility condition as well as by the injection of
momentum and kinetic energy coming from the inlet boundary condition.
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Figure 5.12: Total correction of the velocity when applying all restrictions
together.

Figure 5.13: Final velocity field after applying all restrictions.

For this reason, if we did not apply the restrictions and we measured the
losses at the last interpolation, these values would not reveal the accumu-
lated error, but just a frozen picture of the accuracy of a single interpolation.
Instead, the accumulation of error arises from an interpolated value which
does not fulfill the physical problem features and that is later propagated
when the computation restarts.

In this case, only interpolations to similar fine meshes have been con-
sidered. Unlike the previous case, the numerical error cannot be assessed
comparing the velocity before and after the interpolation stage, since the
high degree of coincidence between meshes avoids a visible dissipation. The
matter of study here is the accumulation of this error, hence the time histo-
ries of the velocity at a point below the tooth (78.7, 5.33) mm during the last
two stages of the simulation, (see Figs. 5.15 and 5.16), and the final velocity
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a) b)

Figure 5.14: Final velocity profile applying no restrictions (a), final velocity
profile applying all restrictions (b)

fields at the configuration [s] have been compared, (see Fig. 5.14). In spite
of keeping the same mean value, the solutions start diverging when the first
vortices go across the analyzed point. Between interpolations 5 and 6 the
tooth is approximating its final position but the flow below the obstacle has
not yet experimented important oscillations and the two solutions show a
good agreement. However, at the following stage between interpolations 6
and 7, just before reaching the final position, the sudden presence of sharp
velocity gradients amplifies the propagation of the initial interpolation er-
ror, leading to different peak values and to a considerable phase change. The
impact of the application of the restrictions in the oscillating solution can
be clearly observed in Fig. 5.17, where the Fast Fourier Transform of both
velocity time histories has been computed.

Second order fractional step scheme

The same case as for the monolithic scheme is now solved using a fractional
step scheme. The same computational meshes have also been used. The
problem has been computed again three times: without restrictions, with
only velocity restrictions and with velocity and pressure restrictions as pre-
sented in Section 5.4, in order to evaluate the benefits of the interpolation
procedure applied to the pressure field (see Fig. 5.18).

Once again, in spite of showing some similar patterns, the solutions yield
significant discrepancies regarding the peak value and the phase of oscilla-
tion. Unlike the monolithic case, the solutions with and without restrictions
diverge at the stage between interpolations 5 and 6. Fig. 5.19 shows that
the red solution starts oscillating earlier than the blue one. In this case,
the solution without enforcing the pressure constraint has not been plotted
because it coincides perfectly with the solution applying all restrictions. On
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Figure 5.15: Time history of the velocity between interpolations 5 and 6.

Figure 5.16: Time history of the velocity between interpolations 6 and 7.

the other hand, at the following stage (Fig. 5.20), these two solutions finally
diverge once sharp gradients appear at the analyzed point below the tooth,
which shows that the enforcement of the pressure L2 norm conservation is
as important as the velocity restrictions to prevent phase error.
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Figure 5.17: FFT of the velocity between interpolations 6 and 7.

5.6 Conclusions

The presented formulation has proved to be very effective in compensating
the interpolation error when using two highly non-coincident computational
grids, where it was already expected that the loss of mass, momentum and
kinetic energy would be relevant in flow problems. It has also turned to be
of crucial importance in scenarios, such as in Arbitrary Lagrangian Eulerian
calculations, where the interpolations take place between similar fine meshes.
In this case, the effect of the restrictions on the interpolated array is not so
relevant but the accumulation and propagation of this theoretically small
error due to the non-conservative interpolation turns to be relevant indeed
after several thousands of time steps. One of the most important factors
regarding the accuracy of the interpolation between meshes is the presence
of sharp gradients as well as the mesh resolution and coincidence to capture
them. Although this is a global method, it also manages to partially restore
the lost peaks in the interpolated field.

The method has been applied successfully to the solution of the incom-
pressible Navier-Stokes equations. In this case, the most relevant restriction
is the conservation of kinetic energy. It has also been proved that the prop-
agation of interpolation error when using a non-conservative interpolation
becomes considerable after several hundreds of time steps. Although the
mean value is conserved, the oscillation pattern becomes clearly divergent
when the vorticity increases. In a similar way, for second order fractional
schemes the conservation of the pressure L2 norm has turned to be necessary
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a) b)

c)

Figure 5.18: Final velocity profile applying no restrictions (a), final velocity
profile applying only velocity restrictions (b), final velocity profile applying
all restrictions (c)

Figure 5.19: Time history of the velocity between interpolations 5 and 6.
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Figure 5.20: Time history of the velocity between interpolations 6 and 7.

Figure 5.21: FFT of the velocity between interpolations 6 and 7.

to prevent phase error.
From a computational point of view, the method yields a fast convergence

and a very low computational cost, and is flexible enough for being easily
extended to other physical problems, like acoustics, with other restrictions
to be imposed. In the present context, this tool would allow dealing with
complex vocal tract deformation in cases of dynamic phonation, where the
elastic problem solved in the previous chapters for minimizing the distortion
of the elements [36] might not be robust enough.



Chapter 6

Computational aeroacoustics to
identify sound sources in the
generation of sibilant /s/

A sibilant fricative /s/ is generated when the turbulent jet in the narrow
channel between the tongue blade and the hard palate is deflected downwards
through the space between upper and lower incisors, and impinges the space
between the lower incisors and the lower lip. The flow eddies in that region
become a source of direct aerodynamic sound, which is also diffracted by the
upper incisors and radiated outwards. The numerical simulation of these
phenomena is complex. The spectrum of an /s/ typically peaks between
4 − 10 kHz, which implies that very fine computational meshes to capture
the eddies producing such high frequencies are needed. In this work, a
large-scale computation of the aeroacoustics of /s/ has been performed for a
realistic vocal tract geometry, resorting to two different acoustic analogies. A
stabilized finite element method that acts as a large eddy simulation model
has been adopted to solve the flow dynamics. Also, a numerical strategy has
been implemented which allows determining, in a single computational run,
the separate contributions from the direct turbulent sound and the sound
diffracted by the upper incisors, to the radiated sibilant /s/. Results are
presented for points located close to the lip opening showing the relative
influence of the sources of sound depending on frequency.

6.1 Background

In this work, we aim at better understanding the generation and radiation
mechanisms of sibilant /s/, by means of computational aeroacoustics (CAA)
performed on a realistic vocal tract geometry. In particular, we are interested
in determining the separate acoustic contributions to points near the lip

151
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Figure 6.1: Welch averaged power spectral density for the measurements
with subject utterances in [126].

opening from the flow noise generated in that region, and from its diffraction
by the upper incisors.

The sibilant fricative /s/ is produced when the turbulent jet leaving the
glottis is accelerated in the constriction between the tongue blade and the
hard palate, passes through the space between upper and lower incisors, and
impinges the cavity between the lower incisors and the lower lip. This re-
sults in the generation of aerodynamic noise, which in turn gets diffracted
by the incisors and radiated outwards. The emitted sound has a character-
istic wide-band spectral content which can be observed in Fig. 6.1, where we
reproduce the measurements of uttered sibilants in [126]. Recordings with
a microphone and a digital spectrograph were provided in that reference for
the pronunciation of /s/ in the context of phonemes /si/ and /su/. Sibilant
/s/ was recorded for an adult woman and also for a three year old child.
The curves in the figure correspond to the sound pressure level of the Welch
averaged power spectral density of the recorded acoustic pressure [106]. As
observed, strong differences can be appreciated at low frequencies, yet the
general trends of the spectra are similar. They all exhibit a decay from low
frequencies to a dip between ∼ 1−3 kHz, followed by a strong level increase
with frequency up to ∼ 8 − 9 kHz, and two peaks whose locations change
depending on each realization. The latter can be clearly distinguished for
the measurements corresponding to phoneme /si/, and to a less extent for



6.1. Background 153

the adult woman when pronouncing phoneme /su/. It should be remarked
that there are significant variations between the spectral shapes of speak-
ers reported in literature, because of morphological differences. Yet the
general trends described before can be recognized in most sibilant measure-
ments [126, 143, 12, 125, 106].

A detailed analytical model to describe the physics behind the produc-
tion of /s/ was proposed in [96]. In that model, the diffraction of the sound
generated by the turbulent boundary layer (TBL) attached to the incisors
was considered as the main noise contributor. A compact Green’s function
that accounted for a simplified geometry of the incisors and the vocal tract
was deduced and convolved with a theoretical model for the wall pressure
wavenumber-frequency spectrum [97], to predict the acoustic pressure at the
far-field. More recently, in [162] large eddy simulations (LES) have been pre-
sented on a 3D realization of the geometry in [96], and lately compared it
with a realistic one in [147]. Those works reported that it is actually in the
cavity between the lower incisors and the lower lip where most of the aeroa-
coustic source terms concentrate. The simulations in the present work, also
with a realistic vocal tract, support that conclusion. In addition, they will
essentially show that for points in the vicinity of the mouth, the direct aero-
dynamic sound contribution from the eddies within the lower incisors-lips
cavity dominate the acoustic spectrum at low frequencies, whereas diffrac-
tion by the upper incisors governs the high frequency range of the spectrum.
As regards the numerical simulations of sibilants, we note that although the
articulators are constantly in movement during speech [78], stationary vocal
tract walls are always assumed in computational models for simplicity.

To validate the above assertions, the numerical strategy in [86] has been
implemented. We note that in most hybrid approaches to CAA a two step
procedure is followed (see e.g., [15]). First, an LES computation is carried
out by means of a finite element (FEM) (or a finite volume) approach, to
obtain the aerodynamic noise source terms. Secondly, these terms are input
into an acoustic analogy that is solved using an integral formulation (see
e.g., [59, 159]), which becomes discretized by a boundary element method
(BEM). Yet, the proposal in [86] relies on different grounds. The method
only makes use of a single FEM code that allows one to solve, in a single
computational run, an LES for the incompressible Navier-Stokes equations,
a first wave equation for the direct flow noise contribution, and a second wave
equation for the sound diffracted by the incisors. This procedure circumvents
an inconsistency related to the numerical solution of Curle’s dipolar integral
term for low Mach numbers [59], given that the total pressure to be input
in that integral cannot be obtained from an incompressible LES simulation
[123, 86].

In this work, the focus will be placed on the acoustic results of the above
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strategy rather than on the LES ones, which will be only described qual-
itatively, together with the implemented FEM strategy. It is to be noted
that 3D LES simulations of flow passing around teeth-shaped obstacles to
better understand the underlying physics of /s/ were already reported in
[157, 156] and in [40]. Simulations of flow passing through simplified geome-
tries with constrictions of different sizes had also been conducted in [41].
The work in [127] also resorted to LES to analyze the flow dynamics of /s/
in a realistic vocal tract geometry. As said before, more recently, [162, 147]
presented simulations on a 3D realization of the geometry in [96] and com-
pared it with realistic ones. On the other hand, the LES in the present work
has been solved with the stabilized FEM method in [53], which behaves as
an implicit LES model (see e.g., [140, 80]). In implicit LES methods, the
additional terms included in the equations to avoid numerical instabilities
simultaneously act as a turbulence model. These have been proven succesful
on well-known benchmark turbulent tests for the strategy in [53], (see e.g.,
[134, 54, 52]), as well as through analytical reasoning [84].

In what concerns the acoustic formulations to get the contributions from
the direct flow noise in the lower incisors-lips cavity, and from the between-
incisors diffraction, one should ideally resort to approaches that could ac-
count for the unsteady flow acoustics in the vocal tract. The most relevant
ones for that purpose are probably the linearized Euler equations (see e.g.,
[14]), or some of its source filtered counterparts to leave aside the vorticity
and entropy modes, like the acoustic perturbation equations (APE), see [66].
In [101], a low Mach number for the APE was introduced (see [87] for a full
numerical solution retaining all terms). In the case of very low Mach number
flows, like those encountered in voice production, the APE in [101] can be
further simplified to the acoustic analogy in [139]. The wave operator in
this analogy is just the standard wave equation, like in Lighthill’s analogy
[115], yet the double time derivative of the incompressible pressure field is
used as the source term, instead of the double divergence of the Reynolds
tensor of the incompressible velocity field. It can be shown that this allows
the filtering of some pseudosound at the flow region (the term pseudosound
refers to pressure fluctuations indistinguishable by a single microphone from
proper sound, see, e.g., [56]). In this piece of research both Lighthill’s and
the analogy in [139] will be employed.

To end this introductory section, we would like to remark that aside
from static vowel sounds, for which a large literature is available (see e.g.,
[153, 149, 146, 6, 154, 70, 26, 8, 5, 4, 27]), few works can be found in litera-
ture addressing the numerical simulation of other speech sounds. The reason
for that is probably the complex physics beneath their generation and the
associated high computational cost. An exception that has received some
recent attention is that of vowel-vowel utterances in [81]. Also, attention
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Figure 6.2: 3D realistic vocal tract geometry for /s/ with upper incisors
highlighted in green. Measuring points P2 and P3 are placed at the far-field
in the x direction, and P4 and P5 in the z direction.

has been paid to some unvoiced sounds (see e.g., [112]) and in particular
to fricative sounds. Related to the present work, we shall cite [3] where
different computational fluid dynamics (CFD) formulations were tested for
fricative /S/, using realistic two (2D) and three (3D) dimensional vocal tract
geometries. That study compared the performance of a compressible CFD
simulation, an incompressible LES and a Reynolds averaged Navier-Stokes
(RANS) approach. Though a rather coarse mesh was used, the study ar-
rived at some interesting conclusions. As expected, the RANS simulation
provided no reliable results but the compressible CFD and incompressible
LES combined with an acoustic analogy yielded proper outputs. Another
interesting and unexpected result was that although the flow field from 2D
simulations did not match at all with the 3D one, that was not the case for
the 2D acoustic pressure field, which was quite similar to the 3D one.
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This chapter is organized as follows. The methodology that has been
followed to perform the simulations is detailed in Sec. 6.2, which includes a
description of the realistic vocal tract geometry for sibilant /s/, the formu-
lation of the acoustic analogies and the splitting strategy between turbulent
and diffracted sound that has been implemented. It also outlines the nu-
merical strategy used to solve the involved partial differential equations and
includes specific details on how the numerical simulations have been run.
The results of the latter are presented in Sec. 6.3, with special emphasis on
the characteristics of the generated aerodynamic sound. In Sec. 6.4 the same
scenario is calculated with the isentropic compressible approach presented in
Chapter 4, and the corresponding results are compared to the ones obtained
in Sec. 6.3. Conclusions close the chapter in Sec. 6.5.

6.2 Methodology

6.2.1 Vocal tract model

The vocal tract geometry used for the simulations was obtained from a cone-
beam CT scan (CB MercuRay, 512 slices of 512 pixel × 512 pixel grid with
accuracy ±0.1 mm) in [155] and [73], from which a physical replica was con-
structed. The geometry (see Fig. 6.2) corresponds to an adult male Japanese
native speaker with normal dentition (angle Class I) without any speech dis-
order, in normal sitting position. The subject was instructed to sustain
phoneme [s] at a medium loudness (with a flow rate ∼ 21 l/min) during
10 s. The entire vocal tract was imaged, but only the portion containing the
main tongue constriction and all structures downstream of it, including the
lip horn (∼ 32 mm), was reconstructed for the replica, see Fig. 6.2. This
simplification intends to focus on the region of the vocal tract where the
generating mechanisms take place, as in [96]. This includes the constricted
passage between the tongue blade and the hard palate (the section with
minimum area has a hydraulic diameter of 2.1 mm), the lower and upper
incisors (highlighted in green in the figure) and the lips. According to [155],
the initial flow conditions upstream (geometry and Reynolds number) do
have an influence on the modulation of the acoustic spectrum of fricatives,
but do not play an essential role in the physiological mechanisms that lead
to the generation of this phoneme.

6.2.2 Problem formulation

Acoustic analogies

As said in the Introduction, in this work the celebrated Lighthill acoustic
analogy [115] and the analogy in [139] will be used. For low Mach numbers,
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Lighthill’s tensor can be well approximated by the double divergence of the
Reynolds tensor of the incompressible velocity field. If one considers a com-
putational domain Ωv with outer boundary Γ∞, and a rigid body embedded
in it with boundary Γw and external normal n, the Lighthill acoustic analogy
problem reads (see Fig. 6.3),

1

c2
0

∂2p

∂t2
−∇2p = ρ0 (∇⊗∇) :

(
u0 ⊗ u0

)
in Ωv, (6.1a)

∂p

∂n
= − 1

c0

∂p

∂t
on Γ∞, t > 0, (6.1b)

∂p

∂n
= 0 on Γw, t > 0, (6.1c)

p = 0,
∂p

∂t
= 0 in Ωv, t = 0. (6.1d)

In Eq. (6.1), p(x, t) stands for the acoustic pressure fluctuations and u0 (x, t)
for the incompressible velocity field obtained e.g., from a CFD computation.
ρ0 stands for the flow density, c0 for the speed of sound and ⊗ for the
tensor product. In the second line, (6.1b) introduces a Sommerfeld non-
reflecting condition on Γ∞ and in the third one, (6.1c) expresses a rigid wall
assumption for the immersed body. The initial conditions are set in (6.1d).
The source term ρ0 (∇⊗∇) : (u0 ⊗ u0) in Eq. (6.1) is often rewritten as

ρ0 (∇⊗ u0) : (∇⊗ u0)
>

for computations (> denotes transpose), given that
∇ · u0 = 0 (see e.g., [83]).

With regard to the acoustic analogy in [139], it can be obtained from the
low Mach APE equations in [101], by simply neglecting the mean velocity
field and combining the momentum and continuity equations to get the scalar
wave equation for the acoustic pressure. Alternatively, the analogy was
originally derived from the following straightforward reasoning. Taking the
divergence of the Navier-Stokes momentum conservation equation results in
the Poisson equation ∇2p0 = −ρ0 (∇⊗∇) : (u0 ⊗ u0), which allows one to
replace Eq. (6.1a) with

1

c2
0

∂2p

∂t2
−∇2p = −∇2p0. (6.2)

This equation is interesting for the following reason. It is well known that the
acoustic pressure predicted by Lighthill’s analogy is only valid far away from
the source region, where no flow motion occurs. If one needs to determine
the acoustic pressure field close to the generation area it becomes necessary
to filter out the pseudosound due to non-acoustic pressure fluctuations. In
the case of a flow with very small mean convection velocity, [139] proposed to
do so by splitting the pressure into its incompressible pseudosound, p0(x, t),
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(a)

(b)

Figure 6.3: Domains for computing (a) the incident acoustic pressure and
(b) the diffracted acoustic pressure in the proposed splitting strategy for
aeroacoustics.

and acoustic, pa(x, t), components, i.e., p(x, t) = p0(x, t)+pa(x, t). Inserting
this factorization in Eq. (6.2) results in the following wave equation for the
acoustic pressure fluctuations

1

c2
0

∂2pa

∂t2
−∇2pa = − 1

c2
0

∂2p0

∂t2
, (6.3)

which is to be supplemented with the boundary and initial conditions (6.1b)-
(6.1d), now for pa(x, t).

Quadrupole and dipole contributions to the acoustic pressure

To determine the contributions to the utterance of /s/ from the quadrupole
noise generated by the turbulent jet exiting the mouth, and from the dipole
noise due to the acoustic pressure diffraction by the upper incisors, one could
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typically resort, as said before, to Curle’s formulation [59]. However, in the
case of low Mach number flows a severe difficulty appears when trying to
account for the rigid body (e.g., the incisors) contribution to the far field.
The reason is that the surface integral in Curle’s formulation involves the
total pressure, which includes both the incompressible and acoustic fluctua-
tions. Obviously, the later cannot be obtained from an incompressible CFD
simulation.

Though recently some proposals have been made to at least partially mit-
igate that problem in the framework of integral formulations (see e.g. [123]),
in [86], a very different approach was suggested. The approach considers
that the acoustic dipole distribution of Curle’s surface integral corresponds,
in fact, to the diffraction of the turbulent noise generated by the jet flow [76].
On the one hand, the proposed methodology circumvents the total pressure
difficulty in Curle’s surface term. On the other hand, it avoids the need to
resort to integral formulations, and one can obtain the flow field in the vocal
tract, the noise generated by the jet flow at the lip opening, and the noise
contribution from the incisors in a single computational run.

The cornerstone of the method consists in splitting the acoustic pressure,
p(x, t) in Eq. (6.1) (the same holds for pa(x, t) in Eq. (6.3)), into incident
and diffracted components p(x, t) = pi(x, t) + pd(x, t). This leaves one with
two wave equations, one for pi(x, t) and the other one for pd(x, t), which
are solved subsequently in slightly different domains (see Fig. 6.3). The
procedure goes as follows. Once an acoustic source term s(x, t) is obtained
from an incompressible CFD computation, for instance,

s(x, t) =

{
ρ0 (∇⊗∇) : (u0 ⊗ u0)
−c−2

0 ∂2p0/∂t2,
(6.4)

s(x, t) is used as the inhomogeneous term in the wave equation for the
incident pressure component,

1

c2
0

∂2pi
∂t2
−∇2pi = s in Ω (6.5a)

∂pi
∂n

= − 1

c0

∂pi
∂t

on Γ∞, t > 0 (6.5b)

pi = 0,
∂pi
∂t

= 0 in Ω, t = 0, (6.5c)

with Ω := Ωv ∪ Ω0, Ω0 being the volume occupied by the rigid body (see
Fig. 6.3a). In other words, the problem is solved as if the rigid body (in
our case the incisors) was absent. After having computed pi(x, t), the rigid
body is inserted again in the computational domain, which leaves one with
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Ωv (see Fig. 6.3b). The diffracted pressure pd(x, t) is then obtained knowing
the value of the incident pressure on the boundary Γw of the rigid body, that
is to say, solving

1

c2
0

∂2ps
∂t2
−∇2ps = 0 in Ωv (6.6a)

∂ps
∂n

= −∂pi
∂n

on Γw, t > 0 (6.6b)

∂ps
∂n

= − 1

c0

∂ps
∂t

on Γ∞, t > 0 (6.6c)

ps = 0,
∂ps
∂t

= 0 in Ωv, t = 0. (6.6d)

Note that the summation of problems Eqs. (6.5) and (6.6) recovers the
original Lighthill analogy in Eq.(6.1) or that in Eq. (6.3), depending on the
selected source term in (6.4).

When applied to the production of /s/, Eq. (6.5) will provide the incident
acoustic contribution pi(x, t) from the jet flow exiting the mouth to the
total sibilant sound, whereas the contribution from the aerodynamic sound
diffracted by the incisors will be given by the solution ps(x, t) to Eq. (6.6).
In this work the factorization into incident and diffracted components has
been performed for Lighthill’s analogy and only total values for the acoustic
pressure are given for that in [139]. However, the strategy could have also
been applied to the latter.

6.2.3 Numerical strategy

All the partial differential equations in this work have been solved using the
method of lines, i.e. the spatial discretization has been carried out with the
finite element method (FEM), while the finite difference method have been
adopted for the time discretization. A custom developed software has been
used for all computations.

As regards the incompressible Navier-Stokes equations, it is well known
that the Galerkin FEM solution suffers from strong instabilities for con-
vection dominated flows and for small time steps at the beginning of evo-
lutionary processes. Moreover, the spatial discrete problem has to satisfy
an inf-sup compatibility condition that implies using different interpolation
spaces for the incompressible pressure and velocity fields. An efficient way to
circumvent all these difficulties is to resort to residual-based stabilized vari-
ational multiscale (VMS) methods, see [102, 103]. The unknown variables
in the problem weak form become split into large components, resolvable
by the finite element mesh, and subgrid scales whose effects onto the large



6.2. Methodology 161

ones have to be modeled. In this work the subscales have been chosen or-
thogonal to the finite element space and the stabilization parameters have
been obtained from a Fourier analysis of the subgrid scale equation, see the
orthogonal subgrid scale (OSS) method in [43, 53]. As mentioned in the
Introduction, the OSS method acts as an implicit LES model. The stabi-
lized variational Navier-Stokes equations for the problem at hand have been
solved using the second order fractional step scheme presented in [45]. A
backward differentiation formula of order three (BDF3) has been used for
the time discretization.

At each discrete time step, the acoustic source terms in Eq. (6.4) are
computed by postprocessing the incompressible pressure and velocity output
from the fluid dynamics computation. In the case of Lighthill’s analogy, the
acoustic waves for the incident and diffracted acoustic pressure, Eqs. (6.5)-
(6.6), are then solved. The contribution analysis has not been performed for
the analogy in [139] as it would have yielded very similar results to those of
Lighthill (see Sec. 6.3.2 below). Therefore, only Eq. (6.3) has been solved in
this case.

From a computational point of view, the spatial discretization of the
wave equation poses no particular problem given that the Laplacian of the
acoustic pressure gives rise to a coercive term in the variational form of the
problem. Therefore, the main difficulty with the numerical solution of the
wave equation arises from the time discretization, which should prevent nu-
merical dissipation as a wave propagates. Given that the focus in this work
is on the aerodynamic acoustic pressure at points only a few wavelengths
from the mouth, a BDF2 scheme proves accurate enough to approximate
the time derivatives in the wave equation and its boundary conditions. An-
other issue to consider is that of imposing a proper non-reflecting condition
at the outer boundary of the computational domain. This often requires
the use of a perfectly matched layer (PML) formulation. However, the out-
ward propagating waves in the present simulations are nearly spherical and
impinge in the normal direction to the radiation boundary, which makes a
PML unnecessary. Spurious reflections have then been avoided by simply
imposing the Sommerfeld condition in [65], which has been tested in a wide
range of problems and geometries.

Interested readers are referred to [86] and references therein for a full
detailed description of the numerical strategy that has been just outlined.

6.2.4 Numerical simulations

To perform the numerical simulations the vocal tract in Fig. 6.2 has been set
in a circular, rigid, flat baffle. A hemispherical domain has been attached to
it to allow the flow to emanate from the mouth and the acoustic waves to
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(a)

(b)

Figure 6.4: (a) Meshed computational domain including the vocal tract
geometry and the far field (b) Zoom of the refined mesh region.

propagate outwards (see Fig. 6.4a).

The following boundary conditions have been applied to solve the incom-
pressible Navier-Stokes equations. A velocity of 2.4 m/s has been prescribed
at the inlet section. This has been scaled from the blower in [155] and cor-
responds to a Reynolds number of Re = 8850, according to the inlet section
diameter. Non-slip conditions have been applied to the whole vocal tract
and baffle surfaces, while the hemispherical surface has been considered an
open boundary, [40]. As regards the acoustic computations, the vocal tract
and baffle have been assumed rigid, whereas as mentioned, a non-reflecting
boundary condition has been applied at the hemispherical boundary and at
the flow inlet. The first order Sommerfeld boundary condition in [65] does
not lead to any spurious reflection in the present example. The following val-
ues have been taken for the physical parameters appearing in the equations:
an air density of ρ0 = 1.2 kg/m3, a kinematic viscosity of ν = 1.5×10−5 m2/s
and a sound speed of c0 = 343 m/s.

At low Mach numbers, M , an eddy of characteristic size l essentially
radiates sound of wavelength λ ∼ O(l/M). Taking into account that the
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Mach number according to the inlet velocity is M ∼ 0.007 (though it can
locally reach values up to M ∼ 0.23), and that frequencies up to 12 kHz
are to be captured to reproduce the physics of /s/, very fine spatial meshes
are required for the simulations. In this work a computational mesh of 45
million linear tetrahedral elements with equal interpolation for all variables
has been used (see Fig. 6.4a and b for a general view and mesh refinement
details). The mesh size ranges from h = 0.025 mm close to the incisors,
where the smallest turbulent flow scales are expected, to h = 2.5 mm outside
the mouth. The latter guarantees having about twelve nodes per wavelength
at 12 kHz (λ ∼ 30 mm).

As explained in the previous section, a total of three equations are solved
in the same finite element computational run (four if the acoustic analogy
in [139] gets included). Performing such computations with very large size
models, as the one in this work, is complex. To that purpose a domain
decomposition with an MPI distributed memory scheme has been carried
out so as to run the problem at the MareNostrum computer cluster, of the
Barcelona Supercomputing Centre (BSC). A period of 10.8 ms with a time
step of δt = 5×10−6 s has been simulated. This suffices to reach a statistical
stationary state. The computational run has lasted ∼ 30 hours using 256
processors. A Biconjugate Gradients solver with Pilut preconditioner of the
Hypre library has been used to solve the FEM algebraic matrix systems, all
of them integrated in PETSc.

6.3 Results

6.3.1 Flow field and acoustic sources

The qualitative results from the CFD simulation confirm the general theo-
retical framework describing the mechanisms of /s/ generation, and provide
some further insight to it as well. The jet flow is strongly accelerated in
the constriction between the tongue blade and the hard palate, to which the
flow is diverted, (see Fig. 6.5a). These phenomena can be explained with the
velocity profile shown at Fig. 6.5b, where it can be observed how the tongue
also closes the tract in the transversal direction, forcing the flow to con-
centrate in a small section of the path before impacting the upper incisors.
The flow is greatly accelerated again at the inter-teeth space reaching local
Mach numbers of M ∼ 0.2. Eddies are shed past the upper incisors and
impinge on the lower lips. A strong turbulent flow is generated in the cavity
between the lower incisors and lower lip, where most sound sources concen-
trate. This is shown in Fig. 6.5c where a snapshot of Lighthill’s source term,
ρ0 (∇⊗∇) : (u0 ⊗ u0), is presented. The strongest quadrupole sources can
be found in the direct path between the edge of the upper incisors, where
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(a)

(c)

(b)

Figure 6.5: Snapshot of (a) flow velocity profile in [m/s] on the vertical
midplane cut, (b) flow velocity profile on a plane tangent to the tract and
(c) Lighthill’s acoustic source term at t=0.0108 s in [kg m−3s−2].

flow separation takes place, and the top side of the lower lips.

To check that the LES is able to capture all turbulent scales down to
the inertial subrange, the incompressible pressure spectrum in time Epp at
an arbitrary point placed just in front of the upper incisors, at coordinates
P1 = (0, 0.0205,−0.012)>, has been plotted in Fig. 6.6, using a log-log scale.
The origin of coordinates is placed at the center of the flat section leading
to the realistic vocal tract geometry in Fig. 6.2. According to Kolmogorov’s
theory for isotropic turbulence, the energy spectrum at the inertial subrange
behaves as E ∼ k−5/3 while the pressure spectrum behaves as Epp ∼ k−7/3

(see e.g., [132]). Taylor’s hypothesis of frozen turbulence allows one to show
the latter also exhibits the same power dependence with frequency, namely
Epp ∼ f−7/3. Note that, at the near field, the assumptions of fully developed
isotropic turbulence do not apply due to the presence of walls. However, it is
observed in Fig. 6.6 that the present CFD simulation manages to reproduce
the behavior of the pressure spectrum at the inertial subrange, therefore
showing that the stabilized FEM formulation, combined with the fine com-
putational mesh, corresponds to a large eddy simulation approach.

Quantitative details on the flow dynamics simulation are left out of the
scope of this work, which essentially focus on the generated aerodynamic
sound results to be presented in the next subsection.
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Figure 6.6: Spectrum of the incompressible pressure at a near field point
showing the right f−7/3 dependence at the turbulent inertial subrange.

6.3.2 Incident and diffracted sound contributions to
the acoustic field

On the one hand, the quadrupole sources depicted in Fig. 6.5b directly ra-
diate sound which propagates outside the mouth. On the other hand, this
sound is partially diffracted by the upper incisors and also becomes radi-
ated outwards. As said before, this second mechanism is sought to be the
predominant one at the far-field [96, see e.g.,]. However, it will be shown
that the incident quadrupole radiation cannot be neglected for points in the
vicinity of the mouth.

The numerical strategy in Sec. 6.2.2 has been applied to compute the
contributions from the direct quadrupolar sound and the dipolar diffracted
one. Before proving more deeply the quantitative results, a snapshot showing
the spherical acoustic wavefronts emanating from the mouth is shown in
Fig. 6.7a, whereas a mid-cut showing the propagation of the acoustic waves
resulting from the between-incisors diffraction is presented in Fig. 6.7b, for
illustrative purposes.

Several time history occurrences for the acoustic pressure at two points
respectively located close and far from the mouth exit are presented in
Fig. 6.8. The first one is point P1, already introduced in the previous
Sec. 6.3.2, whereas the second one is not affected by the flow emanating
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(a)

(b)

Figure 6.7: (a) Total acoustic pressure isosurfaces and (b) mid-cut showing
diffracted pressure wavefronts. Units in [Pa]

from the mouth and is placed at P5 = (0, 0.035,−0.085)>, see Figure 6.2.
Figure 6.8a presents the incident and diffracted contributions to point P1
using Lighthill’s acoustic analogy. As known, Lighthill’s analogy is not valid
for points in the source region so the strong fluctuations from the incident
contribution in Fig. 6.8a (dashed blue line) correspond to pseudosound rather
than to acoustic fluctuations. These are one order of magnitude higher than
the acoustic contribution from the incisors’ diffraction (red continuous line).
The contributions for point P5 are presented in Fig. 6.8b. In this case
Lighthill’s acoustic analogy is perfectly valid to compute the generated aero-
dynamic acoustic pressure. As observed, at P5 the acoustic pressure from
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(c)

(a)

(c)

(b)

(d)

Figure 6.8: Time evolution of the acoustic pressure. (a) Incident pseu-
dosound (dashed blue) and diffracted (continuous red) components at the
near field point P1 from Lighthill’s analogy, (b) incident turbulent (dashed
blue) and incisor diffracted (continuous red) contributions to the far field
point P5, (c) Incisors’ diffracted contribution using Lighthill’s analogy
(dashed blue) versus total acoustic pressure (continuous red) using the anal-
ogy in [139] at the near field and (d) total acoustic pressure at the far field
using Lighthill’s analogy (dashed blue) and the analogy in [139] (continuous
red).

the diffracted component is clearly higher than that provided by the direct
turbulent flow contribution. In Fig. 6.8c, a comparison is presented between
the contribution of the incisors’ diffraction to point P1 (dashed blue line),
already plotted in Fig. 6.8a, and the total acoustic pressure (continuous red
line) computed with the acoustic analogy in [139]. Both contributions have
amplitudes of the same order showing that the analogy in Eq. (6.3) is capa-
ble of filtering the pseudosound and extracting the acoustic component from
the pressure fluctuations, at very low Mach numbers. When evaluated at
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(a)

(c)

(b)

(d)

Figure 6.9: Spectra of the incident, diffracted and total components of the
acoustic pressure at the far field. (a) Point P2, (b) Point P3, (c) Point P4,
(d) Point P5.

a point outside the acoustic source region like P5, both, Lighthill’s analogy
in Eq. (6.1a) and Eq. (6.3) should yield almost the same results. This is
what is observed in Fig. 6.8d where the time evolution for the total acoustic
pressure at P5 using both analogies is plotted. The two curves in the figure
show very similar trends in terms of amplitude and phase.

The spectra in dB (ref. 2× 10−5 Pa) at four points well separated from
the flow exiting the mouth are plotted in Fig. 6.9. Figs. 6.9a-d respectively
correspond to the following points:
P2 = (−0.075, 0.035,−0.0125)>,
P3 = (0.075, 0.035,−0.0125)>,
P4 = (0, 0.035, 0.06)> and
P5, see Figure 6.2.

The figures contain the total acoustic pressure at these points, together
with the contributions from the incident turbulent aerodynamic noise and
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Figure 6.10: Welch averaged power spectral density level at point P3.

from the sound diffracted by the incisors. As regards the total acoustic pres-
sure, very similar tendencies can be appreciated in all figures. The spectra
first decrease with frequency and exhibit a dip close to 2 kHz; then they
increase linearly showing two marked peaks close to 9 kHz and 10 kHz and
finally they decrease again with frequency. As regards the contributions, it
can be checked that in the range up to 2 kHz the incident turbulent compo-
nent clearly dominates. The size of the incisors are small compared to the
acoustic wavelengths at those frequencies so diffraction is not so important.
However, as frequency increases the situation changes and both the incident
and diffracted components contribute the same from 2 kHz to ∼ 8 kHz,
with a slight predominance of the former. Above ∼ 8 kHz the turbulent
contribution begins to decay and the spectra become mostly justified by the
diffracted component. Again, this is logical given that for smaller wave-
lengths the diffraction effects become more important. In addition, more
wavelengths are needed to reach the target points and dipolar sources be-
come more effective. For a fixed distance, the conditions of far-field are
sooner satisfied at higher frequencies, where the diffracted component is
predicted to dominate [96].

The spectra for the total acoustic pressure in Figs. 6.9a-d basically exhibit
the same spectral trend as those described in the Introduction for Fig. 6.1.
To better appreciate this point, the level of the Welch averaged power spec-
tral density at P3 has been plotted, after proper scaling, in Fig. 6.10. A
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comparison with Fig. 6.1 reveals that, despite considering different speakers
(woman and child) and scenarios (the reconstructed geometry portion is ob-
tained for sustained /s/ whereas the speech measurements are reported for
syllables), and taking into account that in [72] it is shown that the constric-
tion degree is greater for sustained phonemes than for phonemes in a syllable
context, qualitative good agreement is observed for spectral features. The
essentials of sibilant /s/ (see [106]) are well-recovered, namely the dip at mid
frequencies followed by a positive spectral slope, the frequency position of the
spectral peaks and the dynamic amplitude. Given the lack of experimental
data with the exact configuration of the numerical simulations, the authors
believe, however, that the recovery of the essential spectral features for /s/
validates in a first way that its underlying physics is being well-captured.

6.4 Numerical simulation of sibilant /s/ us-

ing the isentropic compressible flow equa-

tions

The simulation of this phoneme using an LES based on the isentropic com-
pressible approach presented in Chapter 4 is the last stage of the present
work. Bearing in mind taht the same flow configuration, geometry, spa-
tial and temporal discretizations of the incompressible approach have been
used, the compressible flow solution should converge to the one obtained in
Sec. 6.3. Therefore, we do not expect to find new information regarding
the flow dynamics, but regarding the acoustics, we must remember that the
present case, unlike Lighthill’s analogy, considers the wave propagation in
turbulent regions.

Another relevant aspect of this chapter is to show that this compress-
ible approach can be applied to complex phonation problems. As expected,
the computational cost increases drastically respect to the segregated in-
compressible approach (Fractional Step Method) and the convergence of the
solver becomes much more difficult. In order solve these two challenges si-
multaneously, a field-split preconditioner has been used iterating up to the
monolithic solution. Otherwise, the time step reduction for converging would
have led to an excessive computation time.

Like in Sec. 6.3, the analysis begins with the flow dynamic scales. Fig. 6.11
shows a profile of the developed flow velocity, which turns to be qualitatively
very similar to the incompressible flow motion shown in Fig. 6.5. Despite this
apparent consistency, the pressure frequency spectrum at P1, see Fig. 6.12,
does not exactly reproduce the same turbulence pattern obtained in Fig. 6.6.
Although several similarities can be found, the dissipative region of the tur-
bulence model is much more important in the present case, and this will
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Figure 6.11: Velocity profile using the isentropic compressible flow equations.

affect in a certain way the acoustic propagation.

The analysis of the acoustic scales generates an interesting room for dis-
cussion and research. Although the acoustic propagation of this approach
should converge to that of a Direct Noise Calculation (DNC) for such a low
Mach regime, Fig. 6.13 shows that, despite following a similar pattern, the
acoustic signal at the far-field has suffered a much higher dissipation than
the Lighthill counterpart, see Fig. 6.7. One could argue that the propaga-
tion of a solution in regions with coarse meshes requires the deployment of
high-order spatial discretizations, above all in compressible flow schemes.
Taking into account the dissipative character of the VMS turbulence model,
the effect of the Algebraic Subgrid-Scale(ASGS) stabilization method on the
wave dissipation is an important factor to be considered, bearing in mind
that the second order wave equation of Lighthill’s analogy does not include
any stabilization term. A possible solution to this problem would be the
Orthogonal Subgrid-Scale (OSS) method [43], known to be less dissipative
than the ASGS, together with the dynamic terms of the sub-scale problem
[51]. Another encouraging alternative can be found in the non-residual based
stabilized method Split-OSS [33], which gets rid of the cross terms and eases
the convergence of highly non-linear problems.

In spite of the previous discrepancy regarding dissipation, the pressure
frequency spectrum at all the selected points of the far-field in Fig. 6.14 does
not show relevant differences respect to Fig. 6.9. In fact, the differential
characteristics of each location described by Lighthill’s analogy are properly
reproduced by the present formulation: P3 has again the flattest spectrum
with the lowest intensity, whereas P5 has the steepest and loudest.
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Figure 6.12: Spectrum of the compressible pressure at a near field point
showing the right f−7/3 dependence at the turbulent inertial subrange.

6.5 Conclusions

In this work a large-scale numerical simulation of the aeroacoustics of a single
example of sibilant fricative /s/ has been carried out. Lighthill’s acoustic
analogy and an analogy that allows filtering pseudosound to some extent
at the source region have been implemented. A stabilized finite element
method which acts as an implicit large eddy simulation model has been used
to solve the incompressible Navier-Stokes equations. The acoustic field has
been resolved resorting to a splitting strategy that allows one to obtain the
contributions from the incident turbulent sound and the sound diffracted by
the upper incisors in a single computational run.

The spectra from the contributions to the total acoustic pressure at points
located close to the mouth exit (yet out of the flow wake) reveal a signif-
icant different behavior depending on the frequency range. At the lowest
side of the spectrum, the acoustic pressure level decreases and the incident
turbulent sound directly emanating from eddies in the cavity between in-
cisors and lips dominates. This is the case up to ∼ 2 kHz. From ∼ 2 kHz to
∼ 8−9 kHz, the level strongly increases and the contributions from both the
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Figure 6.13: Pressure wave propagation using the isentropic compressible
flow equations.

sound diffracted by the upper incisors and from turbulence are very similar.
At higher frequencies the diffracted sound becomes dominant. Though one
should bear in mind that the results reported in this work correspond to a
single vocal tract geometry extracted from a subject while uttering a partic-
ular realization of /s/, and therefeore lack of general validity, comparisons
with subject recordings in literature seem to validate the main trends of the
obtained results.

The final computational run using the isentropic compressible approach
has reached an important milestone: the aeroacoustic simulation of a tur-
bulent unvoiced sound. The method has proved to be consistent with the
incompressible approach in the solution of the flow dynamics and the acous-
tics, except for its excessive dissipation, which might be probably caused by
the stabilization method.



174
Chapter 6. Computational aeroacoustics to identify sound sources in the

generation of sibilant /s/

Figure 6.14: Spectra of the compressible pressure at the four selected points
of the far-field.



Chapter 7

Conclusions and future work

A series of aeroacoustic formulations, ranging from incompressible uniform
to isentropic compressible flows, have been proposed as an alternative to
fully compressible schemes with the aim of simulating human phonation
problems in HPC environments with an affordable computational cost. The
first approach has consisted in decomposing Lighthill’s analogy in two dif-
ferent problems corresponding to the quadrupolar sources (noise generated
by the vorticity of the flow) and to the dipolar ones (sound radiated by solid
walls). Although this artifact does not change the assumptions of the origi-
nal problem, it has proved to be very useful for evaluating the contribution
of solid boundaries in the generation of sound. A benchmark of the aeolian
tones has been calculated with this method and the results have revealed
that, as expected, the dipolar component reaches its maximum intensity at
the perpendicular direction of the flow and is much more relevant at the
far field than the quadrupolar one. In the same direction, a simplified 3D
vocal tract calculation of the phoneme /s/ has reached the same conclu-
sion obtained with analytical models [96], that the main contributors to the
phoneme /s/ are the upper incisors. Moreover, the dipolar acoustic pro-
file shows the same behavior of the purely acoustic pressure obtained with
the second order acoustic perturbation equation [139], for which it can be
concluded that the method can also be understood as an acoustic filtering
of Lighthill’s analogy, since the incompressible flow oscillations that do not
propagate are mainly captured by the quadrupolar component.

The second step has consisted in developing a stabilized finite element
formulation of the Acoustic Perturbation Equations [66, 111, 87], which are
the result of an acoustic filtering of the Linearized Euler Equations (LEE)
[30, 17, 142]. The main improvement regarding the description of the phys-
ical problem lays on the consideration of non-uniform mean flows, which
extends the validity of the acoustic solution to the near field or perturbed
region. In this sense, the aeolian tones solution appears convected by the
flow and totally filtered from flow oscillations, hence it can be concluded
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that this method overcomes all simplifications of Lighthill when using in-
compressible flow. In spite of the optimum result, the high implementation
and computational costs of this option have motivated a third alternative
which yields high accuracy with less complexity. Instead of extending an
incompressible formulation, the problem has been approached as a simplifi-
cation of a compressible solver, which assumes that both flow and acoustics
behave as isentropic processes. The two-field unified solver, together with
the developed method for prescribing compatible flow and acoustic bound-
ary conditions in a weak sense, has shown a great robustness in a wide range
of subsonic flows and has converged to a DNS at a very low Mach number.

The extension to dynamic domains has also been approached from two
sides: on one hand, the aforementioned splitting of the acoustic pressure has
been applied to the stabilized ALE formulation of Lighthill’s analogy in [81],
and on the other, the isentropic compressible solver has been extended to an
ALE frame of reference. In spite of some discrepancies, the methods have
proved to be consistent and have shown the readiness of the computational
platform to face the aeroacoustic simulation of dynamic voice sounds. Bear-
ing in mind the expected large deformation in some phonation scenarios, a
conservative remeshing strategy has also been presented. The solution of a
small optimization problem with restrictions imposing the conservation of
relevant magnitudes has compensated the loss of relevant information dur-
ing the Lagrangian interpolation of results. Moreover, it has avoided the
solution of a global system of equations.

Finally, the simulation of the fricative phoneme /s/ with several incom-
pressible acoustic formulations and the isentropic compressible approach has
proved the suitability of the presented numerical framework for representing
all relevant physical phenomena involved in the generation and propagation
of this sound. Both compressible and incompressible LES succeed in repro-
ducing a physical pattern for turbulence, and the local refinement of the
mesh has succeeded in capturing all relevant flow scales. The acoustic mod-
els which complement the incompressible flow solver provide a valid solution
at the far-field, where the results have been validated against experimental
data. Moreover, the identification of quadrupolar and dipolar sources has
confirmed the results obtained with the simplified geometry in Chapter 2
regarding the contribution of the upper incisors.

The present thesis has presented a basis towards a complete computa-
tional platform for the simulation of human voice in HPC environments.
However, there are still some crucial tasks to be done, specially in the field
of biomechanics. The multiphysics code FEMUSS has recently been up-
graded with some relevant features, such as a Fluid-Structure-Interaction
(FSI) solver and several solid constitutive models, which will allow the cal-
culation of phonemes involving deformation of tissues, e.g. /r/, or the be-
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havior of the vocal folds in the generation of vowels. However, the most
difficult challenge corresponds to the simulation of syllables and other dy-
namic sounds, which requires the inclusion of realistic deformation mappings
and the coupling with a mesher that automatically generates new grids on
the deformed domain when the distortion of the elements reaches a certain
threshold. Furthermore, a suitable contact model for different kind of mate-
rials (teeth, palate, lips, tongue) should be implemented.

Bearing in mind the difficulties and uncertainties that arise from a fully
coupled human phonation simulation, an alternative research line has been
envisaged and is already ongoing. It consists in a drastic simplification of the
simulation by getting rid of the CFD and thus reducing the computational
cost to a minimum, even for large-scale cases. In a first step, the reduction
will be applied only partially to the simulation of voiced fricatives and syl-
lables departing from an unvoiced fricative. At this stage, the basic CFD
simulation of the phoneme /s/ will be complemented with the propagation
of a known glottal pulse corresponding to the characteristic vocal fold vibra-
tion of the backflow in voiced sounds such as /z/. In the case of syllables, the
source term to be propagated by the wave operator will be a glottal pulse
representing the desired vowel, like in [6, 7], together with a simplified de-
formation mapping. In a second phase, the CFD will be completely replaced
by the direct propagation of a tailored distribution of quadrupoles near the
incisors, emulating the turbulent sound sources captured in the presented
simulations. Although this approach will not be part of the CAA framework
anymore, it might be very useful for obtaining real-time simulations for any
vocal tract geometry. An alternative to this approach is the Reduced Or-
der Model technique (ROM) applied to CFD calculations, which has been
recently implemented in the FEMUSS code yielding promising results.
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X. Pelorson, A. Van Hirtum, and O. Engwall. Influence of lips on
the production of vowels based on finite element simulations and ex-
periments. J. Acoust. Soc. Am., 139(5):2852–2859, 2016.

[5] M. Arnela, S. Dabbaghchian, R. Blandin, O. Guasch, O. Engwall,
A. Van Hirtum, and X. Pelorson. Influence of vocal tract geometry
simplifications on the numerical simulation of vowel sounds. J. Acoust.
Soc. Am., 140(3):1707–1718, 2016.

[6] M. Arnela and O. Guasch. Finite element computation of elliptical
vocal tract impedances using the two-microphone transfer function
method. J. Acoust. Soc. Am., 133(6):4197–4209, 2013.

[7] M. Arnela and O. Guasch. Two-dimensional vocal tracts with three-
dimensional behavior in the numerical generation of vowels. J. Acoust.
Soc. Am., 135(1):369–379, 2014.
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[154] T. Vampola, J. Horácek, and J. Svec. Modeling the influence of piri-
form sinuses and valleculae on the vocal tract resonances and antires-
onances. Acta Acust. united Ac., 101(3):594–602, 2015.

[155] A. Van Hirtum, Y. Fujiso, and K. Nozaki. The role of initial flow
conditions for sibilant fricative production. J. Acoust. Soc. Am.,
136(6):2922–2925, 2014.

[156] A. Van Hirtum, X. Grandchamp, J. Cisonni, K. Nozaki, and H. Bail-
liet. Numerical and experimental exploration of flow through a teeth-
shaped nozzle. Adv. Appl. Fluid Mech., 11:87–117, 2012.

[157] A. Van Hirtum, X. Grandchamp, X. Pelorson, K. Nozaki, and S. Shi-
mojo. LES and” in vitro” experimental validation of flow around a
teeth-shaped obstacle. Int. J. Appl. Mech., 2(02):265–279, 2010.

[158] E. Vergnault, O. Malaspinas, and P. Sagaut. Noise source identification
with the lattice boltzmann method. J. Acoust. Soc. Am., 133(3):1293–
1305, 2013.

[159] J. F. Williams and D. L. Hawkings. Sound generation by turbu-
lence and surfaces in arbitrary motion. Phil. Trans. Roy. Soc. A,
264(1151):321–342, 1969.



Bibliography 193

[160] W. R. Wolf and S. K. Lele. Trailing edge noise predictions using
compressible les and acoustic analogy. In Proceedings of the 17th
AIAA/CEAS Aeroacoustics Conference, AIAA Paper, volume 2784,
pages 1–25, 2011.

[161] C. S. Yoo and H. G. Im. Characteristic boundary conditions for simu-
lations of compressible reacting flows with multi-dimensional, viscous
and reaction effects. Combustion Theory and Modelling, 11(2):259–
286, 2007.

[162] T. Yoshinaga, N. Koike, K. Nozaki, and S. Wada. Study on production
mechanisms of sibilants using simplified vocal tract model. In INTER-
NOISE and NOISE-CON Congress and Conference Proceedings, vol-
ume 250, pages 5662–5669. Institute of Noise Control Engineering,
2015.


