Nowadays, thanks to the increase of computers capability to solve huge and complex problems, and also thanks to the endless effort of the geotechnical community to define better and more sophisticated constitutive models, the challenge to predict and simulate soil behavior has been eased. However, due to the increase in that sophistication, the number of parameters that define the problem has also increased. Moreover, frequently, some of those parameters do not have a real geotechnical meaning as they just come from mathematical expressions, which makes them difficult to identify. As a consequence, more effort has to be placed on parameters identification in order to fully define the problem. This thesis aims to provide a methodology to facilitate the identification of parameters of soil constitutive models by backanalysis. The best parameters are defines as those that minimize an objective function based on the differences between measurements and computed values. Different optimization techniques have been used in this study, from the most traditional ones, such as the gradient based methods, to the newest ones, such as adaptive genetic algorithms and hybrid methods. From this study, several recommendations have been put forward in order to take the most advantage of each type of optimization technique. Along with that, an extensive analysis has been carried out to determine the influence on soil parameters identification of what to measure, where to measure and when to measure in the context of tunneling. The Finite Element code Plaxis has been used as a tool for the direct analysis. A FORTRAN code has been developed to automate the entire backanalysis procedure. The Hardening Soil Model (HSM) has been adopted to simulate the soil behavior. Several soil parameters of the HSM implemented in Plaxis, such as E_50^ref, E_ur^ref, c and f, have been identified for different geotechnical scenarios. First, a synthetic tunnel case study has been used to analyze all the different approaches that have been proposed in this thesis. Then, two complex real cases of a tunnel construction (Barcelona Metro Line 9) and a large excavation (Girona High-Speed Railway Station) have been presented to illustrate the potential of the methodology. Special focus on the influence of construction procedures and instruments error structure has been placed for the tunnel backanalysis, whereas in the station backanalysis, more effort has been devoted to the potential of the concept of adaptive design by backanalysis. Moreover, another real case, involving a less conventional geotechnical problem, such as Mars surface exploratory rovers, has been also presented to test the backanalysis methodology and the reliability of the Wong & Reece wheel-terrain model; widely adopted by the terramechanics community, but nonetheless, still not fully accepted when analyzing lightweight rovers as the ones that have been used in recent Mars exploratory missions.

URL Thesis