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ABSTRACT

The expression “finite calculus” refers to the derivation of the governing differential equations in
mechanics by invoking balance of fluxes, forces, etc. in a domain of finite size. The governing
equations resulting from this approach are different from those of infinitessimal calculus theory and they
incorporate new terms depending on the dimensions of the balance domain. The new modified equations
allow to derive naturally stabilized numerical schemes using finite element, finite difference, finite volume
or meshless methods. The paper briefly discusses the possibilities of the modified governing equations
derived via the finite calculus technique for the numerical solution of convection-diffusion problems,
incompressible flow and incompressible solid mechanic problems and strain localization problems.
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INTRODUCTION

It is well known that standard numerical methods such as the central finite difference (FD)
method, the Galerkin finite element (FE) method and the finite volume (FV) method, among
others lead to unstable numerical schemes when applied to problems involving different scales,
multiple constraints and/or high gradients. Examples of these situations are typical in the
solution of convection-diffusion problems, incompressible problems in fluid and solid mechanics
and strain or strain rate localization problems in solids and compressible fluids using the
Galerkin finite element method, the central difference scheme or the finite volume method
(Zienkiewicz and Taylor (2000), Hirsch (1990)). Similar situations are found in the application
of meshless methods to those problems (Onate, Sacco and Idelsohn (2000)).

The sources of the numerical instabilities in finite element and finite difference methods, for
instance, have been sought in the apparent unability of the standard Galerkin FE method and
the analogous central difference method in FD, to provide a numerical scheme able to capture
the different scales appearing in the numerical solution for all ranges of the physical parameters.
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Typical examples of these difficulties are the spurious numerical oscillations in convection-
diffusion problems for high values of the convective terms. The same type of oscillations
are found in the vecinity of sharp internal layers appearing in high speed compressible flows
(shocks) or in strain localization problems (shear bands) in solids. A similar problem of
different nature emerges in the solution of incompressible fluid or solid mechanic problems,
where the difficulties in satisfying the incompressibility constraint limit the choices of the
approximation for the velocitiy (or displacement) variables and the pressure (Zienkiewicz and
Taylor (2000)).

The solution of above problems has been attempted in a number of ways. The underdiffusive
character of the central difference scheme has been corrected in and ad-hoc manner by adding
the so called “artificial diffusion” terms to the standard convection-diffusion equation. The
same idea has been successfully applied to derive stabilized finite volume and finite element
methods for convection-diffusion and fluid-flow problems. Other stabilized FD schemes are
based on the “upwind” computation of the first derivatives appearing in the convective operator
(Hirsch (1990)). The counterpart of upwind techniques in the FEM are the so called Petrov-
Galerkin methods (Hughes, Hauke and Jansen (1994)), or the more general perturbed Galerkin
methods (Codina (1998)) based on ad-hoc residual-based extensions of the Galerkin variational
form so as to achieve a stabilized numerical scheme. Among the many methods of this kind we
can name the SUPG method (Brooks and Hughes (1982), Hughes and Mallet (1986a), Hansbo
and Szepessy (1990), Cruchaga and Onate (1999)), the Galerkin Least Square (GLS) method
(Hughes, Franca and Hulbert (1989), Tezduyar et al. (1992)), the Characteristic Galerkin
method (Zienkiewicz and Codina (1995) and the Subgrid Scale (SS) method (Hughes (1995),
Brezzi, Franca and Hughes (1995)).

In this paper we propose a different route to derive stabilized numerical methods. The starting
point are the modified governing differential equations of the problem derived using a finite
calculus (FIC) approach. The FIC method is based in invoking the balance of fluxes (or forces)
in a domain of finite size. This introduces naturally additional terms in the classical differential
equations of infinitessimal theory which are a function of the balance domain dimensions. The
merit of the modified equations via the FIC approach is that they lead to stabilized schemes
using any numerical method. In addition, the different stabilized FD, FE and FV methods
typically used in practice can be recovered using the new modified equations. Moreover, the
FIC equations are the basis for deriving an iterative procedure for computing the stabilization
parameters.

The layout of the paper is the following. In the next section, the main concepts of the FIC
method are introduced. Applications of the FIC method to convection-diffusion and fluid
flow problems are briefly explained next. Finally the possibilities of the FIC method in solid
mechanics are discussed.

THE FINITE CALCULUS METHOD
We will consider a convection-diffusion problem in a 1D domain 2 of length L. The equation
of balance of fluxes in a subdomain of size d belonging to £ (Figure 1) is written as

ga—qp =0 (1)

where ¢4 and ¢p are the incoming and outgoing fluxes at points A and B, respectively. The

flux ¢ includes both convective and diffusive terms; ie. ¢ = —v¢ + k%, where ¢ is the
transported variable, v is the velocity and k is the diffusitivity of the material.
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Figure 1. Equilibrium of fluxes in a balance domain of finite size

Let us express now the fluxes g4 and gp in terms of the flux at an arbitrary point C' within
the balance domain (Figure 1). Expanding ¢4 and ¢p in Taylor series around point C' up to
second order terms gives
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Substituting eq.(2) into eq.(1) gives after simplification
LA J 3)

where h = d; — d9 and all derivatives are computed at point C'.

Standard calculus theory assumes that the domain d is of infinitessimal size and the resulting
balance equation is simple g-% = 0. We will relax this assumption and allow the balance domain
to have a finite size. The new balance equation (3) incorporates now the underlined term which
introduces the characteristic length h. Obviously, accounting for higher order terms in eq.(2)
would lead to new terms in eq.(3) involving higher powers of h.

Distance h in eq.(3) can be interpreted as a free parameter depending, of course, on the location
of point C' (note that h = 0 for d; = d9). However, the fact that eq.(3) is the exact balance
equation (up to second order terms) for any 1D domain of finite size and that the position of
point C'is arbitrary, can be used to derive numerical schemes with enhanced properties simply
by computing the characteristic length parameter from an adequate “optimality” rule.

Consider, for instance, the modified equation (3) applied to the convection-diffusion problem.
Neglecting third order derivatives of ¢, eq.(3) can be written in an explicit form as

dp [,  wh\d*
—UE'F(A‘—F?)@-—O (4)

We see clearly that the modified equation via the FIC method introduces naturally an
additional diffusion term into the standard convection-diffusion equation. This is the basis
of the popular “artificial diffusion” procedure (Brooks and Hughes (1982), Hirsh (1990),
Zienkiewicz and Taylor (2000)). The characteristic length A is typically expressed as a function
of the cell or element dimensions. The optimal or critical value of A for each cell or element
can be computed from numerical stability conditions such as obtaining a physically meaningful
solution, or even obtaining “exact” nodal values (Zienkiewicz and Taylor (2000)).



GENERAL FIC EQUATION FOR CONVECTIVE-DIFFUSIVE PROBLEMS
Application of the FIC procedure to a general multidimensional convective-diffusive problem
leads to the following governing equations (Onate (1998))

1
r— §hTVT =0 in Q (5)
with boundary conditions -
$p—¢=0 on I'y (6a)
1
n'DVe + G, — §th7" =0 on Iy (60)

where T'y and I'g are the Dirichlet and Neumann boundaries where the variable ¢ and the
normal flux are prescribed to values ¢ and Gy, respectively. In above equations

ri=— {% +vIVe| +VIDVe +Q (7)

ot

where v is the velocity vector, D is the diffusivity matrix, V is the gradient operator and Q
is the external source term. Vector h in eqgs.(5) and (6b) is the characteristic length vector.
For 2D problems h = [hy, hy]T, where hy and hy, are characteristic distances along the sides
of the rectangular domain where balance of fluxes is enforced (Onate (1998)).

The modified equation (6b) is obtained by invoking balance of fluxes in a finite domain next to
the Neumann boundary (Onate (1998)). The underlined terms in egs.(5) and (6b) introduce
the necessary stabilization in the numerical solution using FD, FE, FV and meshless methods
(Oniate and Manzan (2000)).

Equivalence with the SUPG method
A finite element interpolation of the unknown can be written as

p~d=> Nid; (8)

where IV; are the shape functions and qu are the nodal values of the approximate function (]3
(Zienkiewicz and Taylor (2000)).

Application of the Galerkin FE method to eqs.(5)-(6) leads, after integration by parts of the
term involving Vr, to
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The last integral in eq.(9) has been expressed as a sum of the element contributions to allow

A

for interelement discontinuities in the term V7, where 7 = r(¢).

We could further assume that the direction of the characteristic vector h is parallel to that

of the velocity v, i.e. h = h|z_| where h is a characteristic length. Further, vector v and the

velocity module can be taken as constants within each element. Under these conditions, eq.(9)
reads

. h(e)
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Eq.(10) coincides precisely with the so called Streamline-Upwind-Petrov-Galerkin (SUPG)

method. The ratio %i)l has dimensions of time and it is usually termed element intrinsic

time parameter 7(€), The element characteristic length h(©) is taken in practice as an average
element dimension (e.g. h(¢) = [Q()]1/2 for 2D problems).

It is important to note that the SUPG expression is a particular case of the more general
FIC formulation. This explains the limitations of the SUPG method to provide stabilized
numerical results in the vecinity of high gradients of the solution transverse to the flow direction
(Zienkiewicz and Taylor (2000)). In general, the direction of h is not coincident with that of
v and the components of h introduce the necessary stabilization along the streamline and
transverse directions to the flow. Therefore, the FIC method reproduces the best-features of
the so-called stabilized discontinuity-capturing schemes (Hughes and Mallet (1986b), Codina
(1993)).

TIME STABILIZATION USING THE FIC METHOD
Application of the FIC method to a space-time slab domain of finite size leads to the following
modified governing equation for the convective-diffusive problem

1 T ) aT‘
. et =) 11
r—gh Vr 5 (11)
where 7 is given by eq.(7), h is the characteristic length vector and § is a time stabilization

parameter.

Eq.(11) can be used to derive a number of stabilized space-time integration schemes. A recent
application of the FIC method to the FE analysis of transient convective-diffusive problems
can be found in Onate and Manzan (1999).

THE FIC METHOD IN INCOMPRESSIBLE VISCOUS FLUID MECHANICS
The FIC method can be applied to derive the modified equations of momentum and mass
conservation in fluid mechanics. The resulting equations for an incompressible viscous flow
are
Momentum
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In eq.(14) v; are the velocities, p is the pressure, 7;j the viscous stresses and b; the body forces
with 7,7 = 1,2, 3 for 3D problems. As usual, h; and J are the characteristic lengths and the
time stabilization parameters, respectively.

Eqs.(12) and (13) are completed with the adequate boundary conditions. Once more the
FIC approach introduces additional stabilization terms in the momentum and mass balance



equations and the Neumann boundary conditions similar to that appearing in eqs.(5) and (6b).
For details see Onate (1998).

The underlined stabilization terms in the momentum equations (12) account for the
instabilities due to high convection effects. The underlined term in eq.(13) introduces a pseudo-
compressibility effect in the mass balance equation. This term is essential to allow for equal
order FE interpolations of the velocities and pressure. Application of the FIC method to the
FE solution of the incompressible Navier-Stokes equations acounting for free surface waves
using linear triangles and tetraedra can be found in Onate and Garcia (1999a,b) and (2000).
Extensions of the FIC method to the compressible flow equations can be found in Onate
(1998).

Similar governing equations to that found using the FIC method have been derived by Ilinca,
Hétu and Pelletier (2000) for incompressible advective-diffusive and fluid flow problems by
expanding in Taylor series the residuals of the original FE equations. Analogous modified
equations for compressible gas flow problems have been obtained by Chetveruskin (2000)
using discrete Boltzman schemes. The general modified equations provided by the FIC
method, based on simple physical concepts of balance of fluxes and forces over a finite size
domain, reproduce the particular forms of the governing differential equations obtained by
these authors.

The FIC method has been recently classified by Felippa (2001) as a particular case of
“modified equations” methods where the standard differential equations are first augmented
using physical concepts and then discretized using any numerical technique.

POSSIBILITIES OF THE FIC METHOD IN SOLID MECHANICS
Application of the FIC method to the force equilibrium equations in solid mechanics leads to
the following modified governing equations (for the steady state case)

h; or;
5y i Lo )
Al 7 0 1,7 =1,2,3 for 3D (15)
with 9
—
T = a;j + b; (16)

where o;; are the stresses and b; the body forces. The underlined term in eq.(15) results from
the FIC assumptions and, as usual, h; are the characteristic length parameters. Eq.(15) is
completed with the adequate boundary conditions. Note that, for consistency, the Neumann
boundary conditions must incorporates an aditional stabilization term similar to that of eq.(6b)
(Onate et al. (2001)).

The FIC approach can also be applied to derive a modified equation relating the pressure and
the volumetric strain change over a finite size domain as

(17)

where K is the volumetric elastic modulus, €, = g% and u; are the displacements. Note that

for an incompressible material K — oo and in this case eq.(17) recovers a form analogous to
that of the stabilized mass balance equation in fluid mechanics (see eq.(13)).



Eqgs.(15) and (17) with the adequate boundary conditions are the basis for deriving stabilized
FE formulations for quasi-incompressible and full incompressible solids allowing for equal
order interpolations of the displacement and pressure variables. A recent application of the
FIC method to the non linear explicit dynamic analysis of solids using linear triangles and
tetrahedra can be found in Onate et al. (2001).

It is interesting to note that the FIC method introduces naturally higher order derivative terms
of the displacements in the equilibrium equations. These terms resemble those introduced by
the Cosserat model (Peric, Yu and Owen (1994)) and the so called “non local” constitutive
models (de Borst (1992)). These models are typically used in order to preserve the ellipticity
of the solid mechanics equations in the presence of localized high displacement gradient zones
such as shear bands and fracture lines. This opens a world of possibilities for the modified
governing equations derived via the FIC method to analyze strain localization problems in
solid mechanics.

COMPUTATION OF THE STABILIZATION PARAMETERS

Accurate evaluation of the stabilization parameters is one of the crucial issues in stabilized
methods. Most of the existing methods use expressions which are direct extensions of the
values obtained for the simplest 1D case. As already mentioned, it is also usual to accept the
so called SUPG assumption, i.e. to admit that vector h has the direction of the velocity field
(Onate (1998), Onate and Manzan (2000)). This unnecessary restriction leads to instabilities
when sharp layers transversal to the velocity direction are present. This deficiency of the

SUPG assumption is usually corrected in the FEM by adding a shock capturing or crosswind
stabilization term (Hughes and Mallet (1986b), Codina (1993)).

The FIC method does not suffer from these restrictions and the components of h introduce
the necessary stabilization along both the streamline and transversal directions to the flow .

Excellent results have been obtained in convective-diffusive problems solved using linear
triangle and tetrahedra with the value of the characteristic length vector given by (Onate
and Manzan (2000))

u V¢
h=hs—+hers— 18
“Jul VY 1e)
where hs and h. are the “streamline” and “cross wind” characteristic length given by
hs = max(l?u)/|u| y  he= max(l?Vqﬁ)/]Vqﬁl s J=1;%M (19)

where 1; are the vectors defining the element sides (ns = 6 for tetrahedra).

Note that the cross-wind term in eq.(18) accounts for the effect of the gradient of the solution
in the stabilization parameters. This is a standard assumption in most “shock-capturing”
stabilization procedures (Hughes and Mallet (1986b), Codina (1993)).

An alternative method for computing vector h in a more consistent manner using a diminishing
residual technique is explained below.

Regarding the time stabilization parameters ¢ in eqs.(11) and (12) the value § = At was
taken for solution of the problems presented in Onate and Garcia (2000). A more consistent
evaluation following the diminishing residual technique is described in Ofate and Manzan
(1999) and (2000) for transient advective-diffusive problems.



Computation of the characteristic length vector using a diminishing residual
technique

The idea of this technique first presented in Onate (1997) and tested in Onate (1998), Onate,
Garcia and Idelsohn (1998) and Onate and Manzan (1999), (2000) for advective-diffusive
problems is the following. Let us assume that a finite element solution for a fluid mechanics
problem has been found for a given mesh. The point wise residual of the momentum equation
corresponding to this particular solution is (assuming § = 0 in eq.(12))

1. Or
1 1
The average residual over an element can be defined as
1(e) _ L / 1.
T = @ Jae r;dS2 (21)

Let us assume now that an enhanced numerical solution has been found for the same mesh and
the same approximation (i.e., neither the number of elements nor the element type have been
changed). The enhanced solution could be based, for instance, in a superconvergent recovery of
derivatives (Wiberg, Abdulwahab and Li (1997), Zienkiewicz and Taylor (2000)). The element
residual for the enhanced solution is denoted by 27"1(6). The element residuals must obviously
tend to zero as the solution improves and the following condition must be satisfied

1) 2.0 5 (22)

1 %

Above diminishing residual condition applies for 17"1(6) > (. Clearly for lri(e) < 0 the inequality
in eq.(22) should be changed to < 0. Substituting eq.(20) into (22) and applying the identity
condition in eq.(22) gives the following system of equations for each element which unknowns

are the characteristic length parameters for the element
Ah(®) = ¢ (23)

with

287"56) B ]-arl(e)] , fz 2 (e) 1 (6) (24)
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The following “adaptive” algorithm can be proposed for obtaining a stabilized solution in fluid

mechanics problems:

1. Solve for the numerical values of the nodal velocities and the pressure. This solution is
found by choosing an initial value h(e) = op(e),

(e).

%

Evaluate the enhanced velocity and pressure fields. Compute 2y

Compute 17
(e)
2 s
Compute the updated value of h(¢) solving eq.(23).

Repeat steps (1)—(4) until a stable solution is found.

Pl W0 10

The above strategy can be naturally incorporated into a transient solution scheme by simply
updating the value of h(®) after the solution for each time step has been found (Onate and
Manzan (1999), (2000)). A similar procedure can be followed to compute the characteristic
length vector in solid mechanics problems.



CONCLUSIONS

The paper has briefly discussed the possibilities of the finite calculus (FIC) method for
obtaining modified governing equations in mechanics with intrinsic advantages for the
numerical analysis of convective-diftusive transport, fluid flow and structural problems.
Starting with the modified equations many of the well known stabilized FE, FD and FV
methods can be reproduced and new stabilized numerical methods can be found. In addition,
the FIC equations can be used to derive an iterative scheme for computing the stabilization
parameters. In summary, the FIC method opens many possibilities for deriving new numerical
methods for the steady state and transient solution of problems in mechanics. Some topics
which require further research include the application of the FIC method for capturing strain
localization bands in solids or shocks waves in compressible flows, and the advantages of
accounting for even higher order terms in the FIC equations in order to model large zones
with high gradients of the solution, such as it occurs in turbulent flow situations.
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