Ship Hidrodynamics

E. Onate
J. Garcia
S.R. Idelsohn

Chapter of the book Encyclopedia of Computational Mechanics.
E. Stein, R. de Borst and T.J.R. Hughes ( Eds.)
© 2004 John Wiley & Sons, Ltd.

Publication CIMNE N2-222, March 2003



Ship Hidrodynamics

E. Onate
J. Garcia
S.R. Idelsohn

Publication CIMNE N°-222, March 2003

To be published in the Encyclopedia of Computational Mechanics.
Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes
© 2004 John Wiley & Sons, Lid.

International Center for Numerical Methods in Engineering
Gran Capitan s/n, 08034 Barcelona, Spain






Ship hydrodynamics

Eugenio Onate!, Julio Garcia! and Sergio R. Idelsohn?

1 International Center for Numerical Methods in Engineering (CIMNE)
Unwversitat Politécnica de Catalunya (UPC), Gran Capitin, s/n,
08084 Barcelona, Spain
¢ CIMNE and International Center for Computational Methods in Engineering (CIMEC)
Universidad Nacional del Litoral and CONICET, Santa Fe, Argentina

ABSTRACT

This chapter presents an overview of some computational methods for analysis of ship hydrodynamics
problems. Attention is focused on the description of a stabilized finite element formulation derived
via a finite calculus procedure. Both arbitrary lagrangian-eulerian (ALE) and fully lagrangian forms
are presented. Detailes of the treatment of the free surface waves and the interaction between the
ship structure and the sea are also given. Examples of application to a variety of ship hydrodynamics
problems are shown.
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1. INTRODUCTION

Accurate prediction of the sea forces on a ship in motion is of paramount importance in
ship design. The water resistance at a certain speed determines the required engine power
and thereby the fuel consumption. Minimization of the hydrodynamic forces is therefore an
important issue in ship hull design. Further, excitation of a wave pattern by ship motion not
only induces wave resistance but may also limit the speed in the vecinity of the shore for
environmental reasons, which must also be taken into account in ship design.

The usual simplification in ship hydrodynamics design is to separately consider the
performance of the ship in still water and its behaviour in open sea. Hydrodynamic optimisation
of a hull primarily requires the calculation of the resistance in a calm sea and the open sea
effects are generally taken into account as a wave added resistance.

The resistance of a ship in still water can be considered as the sum of several contributions:
a viscous resistance associated with the generation of boundary layers, the wave resistance,
the air resistance on the superstructure and the induced resistance related to the generation
of lift forces.

Wave resistance in practical cases amounts to 10 to 60 % of the total resistance of a ship
in still water (Raven, 1996). It increases very rapidly at high speeds dominating the viscous
component for fast displacement ships. Furthermore, wave resistance is very sensitive to the
hull form design and easily affected by small shape modifications. For all these reasons, the
possibility to predict and reduce the wave resistance is an important target.
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2 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

The prediction of the wave pattern and the wave resistance of a ship has challenged
mathematicians and hydrodynamicists for over a century. The Boundary Element Method
(BEM) is the basis of many computational algorithms developed in past years. Here the flow
problem is solved using a simple potential model. BEM methods, termed by hydrodynamicists
as Panel Methods may be classified into two categories. The first one uses the Kelvin wave
source as the elementary singularity. The main advantage of such scheme is the automatic
satisfaction of the radiation condition. The theoretical background of this method was reviewed
by Wehausen (1970), while computational aspects can be found in Soding (1996) and Jenson
and Soding (1989). The second class of BEM schemes uses the Rankine source as the elementary
singularity. This procedure, first presented by Dawson (1977), has been widely applied in
practice and many improvements have been addressed to account for the nonlinear wave effects.
Among these, a succesful example is the Rankine Panel Method (Xia, 1986; Jenson and Soding,
1989; Nakos and Sclavounos, 1990).

In addition to the important developments in potential flow panel methods for practical ship
hydrodynamics analysis during the period 1960-1980, much research in the second half of the
twentieth century was oriented towards the introduction of viscosity in the CFD analysis. In
the 1960’s the viscous flow research was mainly focused in 2D boundary layer theory and by the
end of the decade several methods for arbitrary pressure gradients were available. This research
continued to solve the 3D case during the following decade and an evaluation of the capability
of the new methods to predict ship wave resistance was carried out at different workshops
(Bai and McCarthy, 1979; Larson, 1981; Noblesse and McCarthy, 1983). Here application to
some well specified test cases were reported and numerical and experimental results compared
acceptable well for most part of the boundary layer along the hull, while wrong results were
obtained near the stern. This prompted additional research and by the end of the 1980’s
a number of numerical procedures for solving the full viscous flow equation accounting for
simple turbulence modes based on Reynolds averaged Navier-Stokes (RANS) equations were
available. Considerable improvements for predicting the stern flow were reported in subsequent
workshops organized in the 1990’s (Kim and Lucas, 1990; Reed et al., 1990; Raven, 1992; Beck
et al., 1993; Soding, 1996; Janson and Larsson, 1996; Alessandrini and Delhommeau, 1996:;
Miyata, 1996). A good review of the status of CEFD in ship hydrodynamics in the last part of
the 20th century can be found in Larsson et al. (1998).

Independently of the flow equations used, the free surface boundary condition has been
solved in different manners. The exact free surface condition is nonlinear and several
linearizations have been proposed (Baba and Takekuma, 1975; Newmann, 1976; Idelsohn et
al., 1999). Some of them use a fixed domain and others a moving one. An alternative is to
solve the full nonlinear free surface equation on a reference surface which does not necessary
coincides with the free surface itself. In this way the updating of the surface mesh is minimized
and sometimes is not even necessary.

The solution of the free surface equation in a bounded domain brings in the necessity of
a radiation condition to eliminate spurious waves. A way to introduce this condition was
proposed by Dawson (1977) who used a finite difference (FD) formula based in four upwind
points to evaluate the first derivatives appearing in the free surface equation. This method
became very popular and this is probably the main reason why a large majority of codes
predicting the wave resistance of ships use FD methods on structured meshes (Larsson et al.,
1998).

Indeed the 1990’s were a decade of considerable progress in CEFD methods for ship
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SHIP HYDRODYNAMICS 3

hydrodynamics and the most important breakthrough was perhaps the coupled solution of
the free surface equation with the fluid flow equations. Here a number of viscous and inviscid
solutions for the surface ship wave problem using finite element (FE) and finite volume (F'V)
methods with non structured grids were reported (Farmer et al., 1993, Hino et al., 1993; Garcia,
1995: Luo et al., 1995; Garcfa, 1998; Storti et al., 1998a, 1998b; Idelsohn et al., 1999; Lohner,
1999).

The current challenges in CFD research for ship hydrodynamics focus in the development of
robust (stable) and computationaly efficient numerical methods able to capture the different
scales involved in the analysis of practical ship hydrodynamics situations. Wave resistance
coefficients for modern ship design are needed for a wide range of speeds and here the accurate
prediction of the wave pattern and the hull pressure distribution at low speed (say below Froude
number (F'n) = 0,2) are still major challenges. Great difficulties also exist in the computation
of the viscous resistance which requires very fine grids in the vecinity of the hull, resulting in
overall meshes involving (at least) some 107 — 10° elements. Other relevant problems are the
prediction of the wake details and the propeller-hull interaction. Fine meshing and advanced
turbulence models are crucial for the realistic solution of these problems. Indeed the use of
unstructured meshes is essential for problems involving complex shapes.

A different class of ship hydrodynamic problems require taking beyond its limits the
assumption of continuum mechanics. These situations are found in the modelling of breaking
waves, or in the prediction of water inside the hull (green water) due to large amplitude waves
typical of sea keeping problems. Here lagrangian flow methods where the motion of each flow
particle is individually tracked using techniques developed for (incompressible) solid mechanics
are a promising trend for solving a wide class of ship hydrodynamics problems.

The content of the chapter is structured as follows. In the next section the standard Navier-
Stokes equations for an incompressible viscous flow are presented. The equations are formulated
in an arbitrary lagrangian-eulerian (ALE) description allowing the independent motion of the
mesh nodes from that of the fluid particles. Details of the problems posed by the free surface
wave boundary condition are given. The difficulties encountered in the numerical solution of
the fluid flow and the free surface equations, namely the unstabilities induced by the convective
terms and the limits in the approximation introduced by the incompressibility constraint are
explained. A new procedure for deriving stabilized numerical methods for this type of problems
based on the so called finite calculus (FIC) formulation is presented. The FIC method is based
in redefining the standard governing equations in fluid mechanics by expressing the balance
laws in a domain of finite size. This introduces additional terms in the differential equations of
the infinitessimal theory which are essential to derive stabilized numerical schemes (Oriate,
1996, 2002). We present here a stabilized finite element method using equal order linear
interpolation for the velocity and the pressure variables. Both monolithic and fractional step
time integration procedures are described. A method for solving the coupled fluid-structure
interaction problem induced by the motion of the ship due to the sea forces is also presented.
A mesh moving algorithm for updating the position of the free surface nodes during the ship
motion is given.

In the last part of the chapter the lagrangian formulation for fluid flow analysis is presented
as a particular case of the ALE form. The lagrangian description has particular advantages for
tracking the displacement of the fluid particles in flows where large motions of the fluid surface
occur. One of the advantages of the lagrangian approach is that the convective terms dissapear
in the governing equations of the fluid. In return, the updating of the mesh at almost every
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time step is now a necessity and efficient mesh generation algorithms must be used (Idelsohn
et al., 2002a,b,c).

The examples show the efficiency of the eulerian, ALE and fully lagrangian formulations to
solve a variety of ship hydrodynamics problems.

2. THE NAVIER-STOKES EQUATIONS FOR INCOMPRESSIBLE FLOWS. ALE
FORMULATION

2.1. Momentum and mass conservation equations

The Navier-Stokes equations for an incompressible fluid in a domain {2 can be written in an
arbitrary lagrangian-eulerian form as

Momentum
ﬂuf ﬁui: 8uj 6p 8s¢-j v
- v i ——L _p;=0 0 1
p( G+ gl )+ e~ g —b=0| g
Mass conservation
% _o| me (2)
ﬁﬂli

In Eq.(1) u; is the velocity along the ith global reference axis, u!™ is the velocity of the

moving mesh nodes, v; = u; — u!" is the relative velocity between the fluid and the moving

mesh nodes p is the (constant) density of the fluid, b; are body forces, ¢ is the time, p is the
pressure and s;; are the viscous stresses related to the viscosity p by the standard expression

1 . Ouy
8ij = 2_{.{. (Eij — 5513 3_'1’:;3) (3)
where §;; is the Kronecker delta and the strain rates €;; are
1 :’:luz- Suj
W 4
©4) 2 (3‘1-? * 61;) ( )

The presence of the volumetric strain rate terms in the Eqgs.(1) and (3) are useful for the
derivation of the stabilized formulation in Section 5.
Eqgs.(1)-(3) are completed with the boundary conditions

n;joi; — f?' =0 on Pt (5&)
uj —u; =0 onTy (5b)
where 0;; = s;; — pd;; are the total stresses, n; are the component of the unit normal vector

to the boundary and ¢; and u? are prescribed tractions and velocities on the Neumann and
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Dirichlet boundaries I'y and I',, respectively where I' = I'; UT",, is the boundary of the analysis
domain €. The boundary conditions are completed with the initial condition u; = u? for
ti=1p.

[n above equations i, j = 1,ng where ny is the number of space dimension (i.e. ng = 3 for
3D). Also, throughout the text the summation convention for repeated indexes is assumed
unless specified otherwise.

2.2. Free surface boundary conditions

The boundary conditions (5a) on the surface tractions can be written in local normal and
tangential axes as

Ot; — tg, = =12 for3D (6)

where o, and oy, are the normal and tangential stresses, respectively and ¢, and t,, are the
prescribed normal and tangential tractions, respectively.

On the free boundary we have to ensure at all times that: 1) the pressure (which
approximates the normal stres) equals the atmospheric pressure and the tangential tractions
are zero unless specified otherwise, and 2) material particles of the fluid belong to the free
surface.

The condition on the pressure is simply especified as

P=Pa (?)

where p, is the atmospheric pressure (usually given a zero value).

The condition on the tangential tractions is satisfied by setting t;, = 0 in Eq.(6). This
is automatically accounted for by the natural boundary conditions in the weak form of the
momentum equations (Zienkiewicz and Taylor Vol. 3, 2000).

The condition on the material particles is expressed (for steady state conditions) as

win; =0 or u‘n =0 (8)
i.e. the velocity vector is tangent to the free surface. Eq.(8) can be rewritten noting that the
normal vector has the following components

/g T
n= [—g, 1‘ for 2D and = [-—E —-ﬂ, 1] for 3D (9)
1 &

In Eq.(9) 8 = z3 — 25! is the free surface elevation measured in the direction of the vertical
coordinate a3 relative to some previously known surface, which we shall refer to as the reference
surface (Figure 2). This surface may be horizontal (i.e. the undisturbed water surface) or may
be simply a previously computed surface.

Introducing Eq.(9) into (8) gives (for 3D)

d
ui—ﬁ —uz =10

= 10
E):t:; ’ ’ 1 ( }
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Eq.(10) is generalized for the transient case as

ap ap

o 1 _':D}
Bf g, W8

i=1,2 (11)

We observe that 8 obeys a pure convection equation with ws playing the role of a (non
linear) source term. The solution of Eq.(11) with standard Galerkin FEM, or centred FD or
FV methods will therefore suffer from numerical instabilities and some kind of stabilization is
needed in order to obtain a physically meaningful solution. A method to solve Eq.(11), very
popular in the context of the potential flow formulation, was introduced by Dawson (1977)
using a four point FD upwind operator to evaluate the first derivatives of  on regular grids.
Dawson’s method has been extended by different authors to solve a many ship hydrodynamics
problems (Raven, 1996; Larsson et al., 1998; Idelsohn et al., 1999).

Solution of Eq.(11) is strongly coupled with that of the fluid flow equations. The solution
of the whole problem is highly non linear due to the pressence of the unknown velocities in
[£q.(11) and also to the fact that the free surface position defining the new boundary conditions
is also unknown. A number of iterative schemes have been developed for the solution of the non
linear surface wave problem (Idelsohn et al., 1999). They all basically involve solving Eq.(11)
for the new free surface height 3, for fixed values of the velocity field computed from the fluid
solver in a previous iteration within each time increment. At this stage two procedures are
possible, either the position of the free surface is updated after each iteration and this becomes
the new reference surface, or else an equivalent pressure of value p = p, + |g|(8 — Bref), Where
g is the gravity constant, is applied at the current reference surface as a boundary condition in
the next flow iteration. The first option might require the regeneration of a new mesh, whereas
the second one is less accurate but computationaly cheaper. Hence a compromise between the
two alternative is usually chosen in practice. The iterative process continues until a converged
solution is found for the velocity, the pressure and the free surface height at each time step.
Details of the computational process are described in a next section.

An alternative method to treat the free surface equation is based in the volume of fluid
(VOF) technique (Hirt and Nichols, 1981). In the VOF method the free surface position is
defined as the interface between two fluids interacting with each other, where the efect of
one fluid on the other is very small (i.e. the water and the surrounding air). An interface
function which takes the values 0 and 1 for each of the two fluids is transported with the fluid
velocity using a time dependent advection equation. Examples of application of the VOF to

ship hydrodynamics problems can be found in Aliabadi and Shujaee (2001) and Aliabadi et
al. (2002).

3. ABOUT THE FINITE ELEMENT SOLUTION OF THE NAVIER-STOKES
EQUATIONS

The development of efficient and robust numerical methods for incompressible flow problems
has been a subject of intensive research in last decades. Much effort has been spent in
developing the so called stabilized numerical methods overcoming the two main sources of
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instability in incompressible flow analysis, namely those originated by the high values of
the convective terms and those induced by the difficulty in satisfying the incompressibility
constraint.

The solution of above problems in the context of the finite element method (FEM) has been
attempted in a number of ways. The underdiffusive character of the Galerkin FEM for high
convection flows (which incidentaly also occurs for centred FD and FV methods) has been
corrected by adding some kind of artificial viscosity terms to the standard Galerkin equations
(Zienkiewicz and Taylor, Vol. 3 2000).

A popular way to overcome the problems with the incompressibility constraint is by
introducing a pseudo-compressibility in the flow and using implicit and explicit algorithms
developed for this kind of problems, such as artificial compressibility schemes (Chorin,
1967; Farmer et al., 1993; Peraire et al., 1994; Briley et al., 1995; Sheng et al., 1996) and
preconditioning techniques (Idelsohn et al., 1995). Other FEM schemes with good stabilization
properties for the convective and incompressibility terms are based in Petrov-Galerkin (PG)
techniques. The background of PG methods are the non-centred (upwind) schemes for
computing the first derivatives of the convective operator in FD and F'V methods. More recently
a general class of Galerkin FEM has been developed where the standard Galerkin variational
form is extended with adequate residual-based terms in order to achieve a stabilized numerical
scheme (Codina, 1998, 2000). Among the many FIEEM of this kind we can name the Streamline
Upwind Petrov Galerkin (SUPG) method (Brooks and Hughes, 1982; Hughes and Mallet, 1986;
Idelsohn et al., 1995; Storti et al., 1995, 1997; Cruchaga and Oiiate, 1997, 1999), the Galerkin
Least Square (GLS) method (Hughes et al., 1989; Tezduyar, 1991; Tezduyar et al., 1992a),
the Taylor-Galerkin method (Donea, 1994), the Characteristic Galerkin method (Douglas
and Russell, 1982; Pironneau, 1982; Lohner et al., 1984) and its variant the characteristic
Based Split (CBS) method (Zienkiewicz and Codina, 1995; Codina et al., 1998; Codina and
Zienkiewicz, 2002), pressure gradient operator methods (Codina and Blasco, 1997, 2002) and
the Subgrid Scale (SS) method (Hughes, 1995; Brezzi et al., 1997; Codina, 2000, 2002).

In this work a stabilized FEM for incompressible flows is derived taking as the starting
point the modified governing equations of the flow problem formulated via a finite calculus
(FIC) approach. The FIC method is based in invoking the balance of fluxes in a domain of
finite size. This introduces naturally additional terms in the classical differential equations of
infinitessimal fluid mechanics which are a function of the balance domain dimensions. 'T'he new
terms in the modified governing equations provide naturally the necessary stabilization to the
standard Galerkin finite element method.

In the next section, the main concepts of the FIC approch are introduced via a simple 1D
convection-diffusion model problem. Then the FIC formulation of the fluid flow equations and
the free surface wave equations using the finite element method are presented.

4. BASIC CONCEPTS OF THE FINITE CALCULUS (FIC) METHOD

We will consider a convection-diffusion problem in a 1D domain §2 of length L. The equation
of balance of fluxes in a subdomain of size d belonging to {2 (Figure 1) is written as

ga—qB =0 (12)
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where ¢4 and gp are the incoming and outgoing fluxes at points A and B, respectively. The flux
g includes both convective and diffusive terms; i.e. ¢ = u¢ — k%g, where ¢ is the transported
variable, u is the velocity and & is the diffusitivity of the material.

We express now the fluxes g4 and ¢p in terms of the flux at an arbitrary point C' within
the balance domain (Figure 1). Expanding g4 and ¢p in Taylor series around point C' up to
second order terms gives

dq d? d*q 3 dq d3 d*q 3
= g — d) — —— = dy— —= — 3
ga =gc —di——|c+ 5 -=lc+0(d) , aB=gc+d|c+ Talc +0(dz)  (13)
Substituting Eq.(13) into Eq.(12) gives after simplification
dg hd%q
et NS s S 14
der 2 dx? ’ 4

where h = d; — dy and all derivatives are computed at point C.

Standard calculus theory assumes that the domain d is of infinitessimal size and the resulting
balance equation is simply % = 0. We will relax this assumption and allow the balance domain
to have a finite size. The new balance equation (14) incorporates now the underlined term
which introduces the characteristic length h. Obviously, accounting for higher order terms in
Eq.(13) would lead to new terms in Eq.(14) involving higher powers of h.

Distance h in Eq.(14) can be interpreted as a free parameter depending on the location of
point C' (note that h = 0 for d; = dg). However, the fact that Eq.(14) is the exact balance
equation (up to second order terms) for any 1D domain of finite size and that the position
of point C' is arbitrary, can be used to derive numerical schemes with enhanced properties,
simply by computing the characteristic length parameter using an adequate “optimality” rule.

Consider, for instance, the modified equation (14) applied to the convection-diffusion
problem. Neglecting third order derivatives of ¢, Eq.(14) can be written as

.. " (x; + “h) . (15)

dx 2 ] dx?

We see that the FIC procedure introduces naturally an additional diffusion term into the
standard convection-diffusion equation. This is the basis of the popular “artificial diffusion”
method (Hirsch, 1990). The characteristic length h is typically expressed as a function of the
cell or element dimensions. The optimal or critical value of h can be computed from numerical
stability conditions such as obtaining a physically meaningful solution, or even obtaining
“exact” nodal values (Zienkiewicz and Taylor, 2000; Onate and Manzan, 2000; Onate, 2002).

Equation (13) can be extended to account for source and time effects. The full FIC equation
for the transient convection-diffusion problem can be written in compact form as

hdr 00r
"~ gz 2L (16)
B do dep d (,deo
*‘-‘(E”a)*;&( dm)+Q (17)

where (@ is the external source and J is a time stabilization parameter (Onate, 1998; Onate
and Manzan, 1999). For consistency a FIC form of the Neumann boundary condition should
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be used. This is obtained by invoking balance of fluxes in a domain of finite size next to the
boundary I'; where the flux is prescribed to a value g. The modified FIC boundary condition
1S

dp _ h

Eﬂ-q—z:{] at I', (18)
The definition of the problem is completed with the standard Dirichlet condition prescribing

the value of ¢ at the boundary I'y and the initial conditions.

5. FIC EQUATIONS FOR VISCOUS INCOMPRESSIBLE FLOW. ALE FORMULATION

The starting point are the FIC equations for a viscous incompressible fluid. For simplicity we
will neglect the time stabilization term, as this is not relevant for the purposes of this work.
The equations are written as (Onate, 1998, 2000; Onate et al., 2002)

Momentum
1, Orm,
Tm: — Ehj —— 0 (19)
Mass balance
6’11.5; hj 0 au-‘:
bk, ) —() 20
(3:1:;;) 2 Oz (8:1:;5) )
where
du; du; O Op  Osyy o
—— e i et e SN i, e 1 24 = 21
’ ‘”( o gz O a:uj) " ;O ad =y (21)

and all the terms have been defined in Section 2.1.
The Neumann boundary conditions for the FIC formulation are (Onate, 1998, 2000)

1

n;0i; —t; + §f1jﬂj'.-"m1 =0 onl} (22)

The Dirichlet and initial boundary conditions are the standard ones given in Section 2.1.

The hls in above equations are characteristic lengths of the domain where balance of
momentum and mass is enforced. In Eq.(22) these lengths define the domain where equilibrium
of boundary tractions is established. The sign in front the h; term in Eq.(22) is consistent with
the definition of r,,, in Eq.(21).

Eqs.(19)-(22) are the starting point for deriving stabilized FEM for solving the
incompressible Navier-Stokes equations using equal order interpolation for all variables.

5.1. Stabilized integral forms
From Egs.(19) and (3) it can be obtained

h; O (Ou c_ Orm,
% 313 (ﬁ) - ;ﬂ a.’Ei (23)
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10 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

where

[ 8 2puy !
Ty (3&3 + ) (24)

h,;;

Substituting Eq.(23) into Eq.(20) leads to the following stabilized mass balance equation

auk i @‘ir"m,t
(’I}fﬂL ; oxr; (25)

The 7;'s in Eq.(23) are intrinsic time parameters which also appear in other stabilized
formulations (Hughes and Mallet, 1986a; Tezduyar, 1991, 2001; Codina, 2002). Note that these

3h?
parameters emerge naturally form the FIC formation and take the values of 7; = 3:!'
h;
Th = 2; for the viscous limit (Stokes flow) and the inviscid limit (Euler flow), respectively.
b
The weighted residual form of the governing equations (Eqgs.(19), (22) and (25)) is
hi Oris, h;
Lau;ﬁ [Tm, - 2} 81:. ] +/1",_ 5ui(gfjnj —t; + ;ﬂjr?n )dr =0 (26)
-Su;,, . O ﬁ
o ; df) = 0 27
_/f;q 5’11,1\, 1 i 8:1;1 ( )

where du; and ¢ are arbitrary we1ght1ng functions representing virtual velocity and virtual
pressure fields, respectively. Integrating by parts above equations leads to

1 a 1
/ [5“«“9 (au -+ Uj‘—u) -+ 581'3' (Tij — 513}})} dS) — / -:’iuﬁb afd— / 5%&2{6‘!9 -+
0 Bﬁ 8.".]'.':_?

-{-Z:/ hj 8(5ffr.ziﬂlidﬂ 0 (28)

. 'ﬂ'fI
dq
/ﬂ qra dS) + / Z Tim— a% Tm, | dS2 =0 (29)

Q2

-—

The fourth integral in Eq.(28) is cﬂmputed as a sum of the element contributions to
allow for discontinuities in the derivatives of 7, along the element interfaces. As usual

0Ey; = ('?55;‘, + %) Also in Eq.(28) we have neglected the volumetric strain rate tersm,

wherea& in the derivation of Eq.(29) we have assumed that r,,, is negligible on the boundaries.

5.2. Conveclive and pressure gradient projections

The convective and pressure gradient projections ¢; and m; are defined as

81:1*
¢ = Tm, — PU;j (30)
' 4 3:Ej
d
i = Tm; — —3f (31)
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We can now express 7,,,. in Egs.(28) and (29) in terms of ¢; and 7;, respectively which become
additional variables. The system of integral equations is now augmented in the necessary
number of equations by imposing that the residuals 7, vanish (in average sense) for both
forms given by Eqs.(30) and (31). The final system of integral equations is:

du;
/ [61":'5;0 ( au -+ Uj g: ) -} éE-ij (Tﬂj = Eii_jp)] df) — / ﬁutbidﬂ — 5u;t,;dﬁ -+
(2 J Q2 [t

hy, O(6u;) Ou; B
+Z/ > O (pujamj +c?) afl = 0

O, nd ("}q ap B
/ (8%)dﬂ+/ 83:1* (8mi+w.,,)dﬂ—0

i=1
Ou; y
/ dcip (puj ) ol =0 no sum in %
O dx
dp o
omiT; | =— +m; | d2 =0 no sum in % (32)
Q dx;

where d¢; and dm; are appropriate weighting functions and the p and 7; terms are introduced
in the last two equations for convenience. As usual 2,7,k = 1, ng.

5.3. Stabilized FIC equations for the free surface wave condition

We will derive next the FIC equation for the water wave surface.

Let us consider a 2D free surface wave problem. Figure 3 shows a typical free surface segment
line AB. The average vertical velocity for the segment sy is defined as

gy = 2 ;”ﬂ (33a)

where u4' and uf are the vertical velocities of the end points of the segment A and B.

The average vertical velocity o can be computed from the wave heights at points A and B
as

B LA
i = : 2 (33b)

where ¢ is the time which a material particle takes to travel from point A to point B at the
average velocity &g and xg = 3 is the free surface wave height. Equaling Eq.(33a) and (33b)
o1ves

u‘é‘l -+ uQB Ty — T

= = 3.
: ; (33c)

We can now express the vertical velocities and the wave height at points A and B in terms
|
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of values at an arbitrary point C' as

; dp dp
ufd = ug(xl —dp,t —6) =u§ - dlf’ﬂl —5156—1 + O(df,t%)
: 9, 0,
up = wug(z{ +da, t€ +85) =ug+f£2—ﬁ +52£+O(d§,t§)
6:‘82 852
aps 08 d2 9°*p
A _ no Q.. N, < . — B 1
L9 fﬂz(’ﬂl dy,t 01) = @y fl*—aml 1& i i 5 8:1:% +
03 08 ds 0%p
B _ '8 5, e op 2 .
0% 52 613
dod - .0 34
+ da Qallat-i_ 9 Ht2 _l_O(dE& 2) ( )

where all the derivatives are computed at the arbitrary point C.

Substituting Eqgs.(34) into (33¢) and noting that d ~ u$d, with § = (0; + &), dy ~ ufd
and dy ~ u{'dy (Figure 3) and that the position of point C is arbitrary, gives the FIC equation
for the free surface height (neglecting high order terms) as

h@?‘ﬁ ﬁﬁTﬁ
el (L Pall 35
Y )
with

B )

rg = -é'}? e A | aﬂ:l Us (36)

where h = (dy — dy) and 6 = (J; — Jd2) are space and time stabilization parameters. The
standard infinitesimal form of the free surface wave condition is obtained by making h =6 =0
in Eq.(35) giving
op op
e e ) G
ot M oxy 2 (37)
which coincides with equation (11) for the 2D case.
A simpler FIC expression can be derived from [q.(35) by retaining the second order space
term only. This gives
of O  wu h0*p

ot oz, 2 0a°

— Ug = 0 (38)
This can be interpreted as the addition of an artificial diffusion term where %ﬂ plays the
role of the new balancing diffusion coefficient.
In the following we will use the 3D ALE form of Eq.(35) neglecting the time stabilization
term, given by

?‘lj 8?‘;;
T — —
2 2 anj

0 with rg= 7 TV — —V3 , e (39)

where v; are the relative velocities between the fluid and the moving mesh nodes.
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6. FINITE ELEMENT DISCRETIZATION

6.1. Discretization of the fluid flow equations

We will choose C° continuous linear interpolations of the velocities, the pressure, the convection
projections ¢; and the pressure gradient projections m; over three node triangles (2D) and four
node tetrahedra (3D). The interpolations are written as

T I
= Z Nj'ﬂﬂ‘.g g = Z ij}:’:
g==]

j=1

1 n
. § : =7 _E : —J
C; = NJCJ 3 my = Nj'ﬂ'f_
=1 =]

where n = 3 (4) for triangles (tetrahedra), (-) denotes nodal variables and N; are the linear
shape functions (Zienkiewicz and Taylor, Vol 1 2000).

Substituting the approximations (40) into Egs.(32) and choosing the Galerking form with
du; = q = 0c; = 0m; = N; leads to following system of discretized equations

(40)

Mi+ (A+K+K)a—-Gp+ Ce=f (41a)
GTa+Lp+Qr=0 (41b)

Ciu; +Mc; =0 , i=1,n4 (41c)

QTp+ Mz =0 (41d)

The element contributions are given by (for 2D problems)

ﬂur,;j [ / pN;deQ y /-15_.}' 2/ NipuTVdeQ ! K-;j=/ B?DBJdQ
Jae Qe :
A " hgu ON; 8N_? / / hy, ON;
= 540, Gy = [ (VN)NjdQ , C= N;dS2.d9
KJ ,/ﬂpp 2 Oz Oxy Gj e(VN) ’ Jae 2 dxy, 2
9,
= A ' AN ; Az 0
P e TN . ) 2 e _ ) Oz _| M
Ly = /EV N;[T]VN;dQ , C;j = WNf...pu;; T i}, V (- 7] [ 0 ]
Jxo
1 ON;
Q= [@9% ; Qi‘j:/ T N;dS2 (42)
Qe L

<
||

A YL x
[I‘g Ié'[g] , Mﬁ;:/ 7 N; N;d)

f. = N;bdY+ [ Nitdl' , b= [b, b))%, t =[t1,t2])"
ﬂ{: ‘T‘H

with i, =1,n and k,l =1, ng.
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14 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

In above B; is the standard strain rate matrix and D the deviatoric constitutive matrix (for

du;
L 0). For 2D problems
8::;?-
e 0 ' "2 0 0
N; N, 0 0 1
B day e | - .

In Eq.(42¢) ©i; and ¢; contain the nodal degrees of freedom corresponding to the velocity
component u; and the convective projection ¢;, respectively. Note that the stabilization matrix

Py
K brings in an additional orthotropic diffusivity of value ,oT Matrices A, K and C are

dependent on the velocity field. The solution process can be advanced in time in a (quasi-
nearly) implicit iterative manner using the following scheme.

Step 1

ﬁn+1,a — " — ﬂ'ﬁM_l [(Aﬂ—L—El,iul 4 BE & I’:(«_.-;.-iaﬂhi—l)ﬁﬂ—#ﬂl,i—l . Gpn+ﬂg,~i—l 1 CEH-I--:‘I»‘;_:,,TZ—I N [.‘H-l-l]

(44)

Step 2
pn.-l-l*i = _L—~llgTﬁﬂ+1,i + Q.}.—rn+{?4}'ﬂ—l] (45)

Step 3
—n+1,1 —1Antli=nt1, . :
Cj =-M 1C +1 111_:-‘ E , J=1L1nq ('{16)

Step 4
fr'n-l-l,i - __M—-lQTI—:-)TL+l1?: (47)

In above 0; are time integration parameters with 0 < 0; <1 and ( )" denotes nodal values
at the nth time step and the ith iteration. A*00i—1 = A (a+%i-1) ete. Also (+)"H90 = ()"
for the computations in step 1 at the onset of the iterations.

Steps 1, 3 and 4 can be solved explicitely by choosing a lumped (diagonal) form of matrices

M and M. In this manner the main computational cost is the solution of step 2 involving the
inverse of a Laplacian matrix. This can be solved very effectively using an iterative method.
For 0; # 0 the iterative proces is unavoidable. The iterations follow until convergence is
reached. This can be measured using an adequate error norm in terms of the velocity and
pressure variables, or the residuals. Indeed some ot the ¢;’s can be made equal to zero. Note
that for @, = 0 the algorithm is inconditionable unstable. A simple semi-implicit form is
obtained making 0, = 03 = 04 = 0. Now all steps can be solved explicitely with exception of
Step 2 for the pressure which still requires the solution of a simultaneous system of equations.
Convergence of this solution scheme is however difficult for some problems. An enhanced
version of the algorithm can be obtained by simply adding the term L(prHid — prtli-l)
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where L;j = At [,,. VI N;VN;dQ to the equation for the computation of the pressure in the
second step. The new term acts as a preconditioner of the pressure equation given now by

I-an+l,i — —[L + i]—l[GTﬁn+l,i _I_E:[—)n+l,i~1 + Qﬁ.n-l-ﬁ".;,i—]] ("18)

Note that the added term vanishes for the converged solution (i.e. when pnt1ié = pntli=1),
An alternative to above algorithm is to use the fractional step method described in the nex
section.

6.2. Fractional step method

The pressure can be split from the momentum equations as

it = a® — ﬁtM_l[(Anhlﬂgl I K +R“+ﬂt)ﬁﬂ+ﬂl o CEG]EIH i, CEH+93 - fﬂ+l] (49)

"t = a* + AtMT'Gdp (50)

In above equations a is a variable taking values equal to zero or one. For a = 0, dp = p"*!
and for o = 1, dp = Ap. Note that in both cases the sum of Eqgs.(49) and (50) gives the time
discretization of the momentum equations with the pressures computed at ¢"**. The value of
u"t! from Eq.(50) is substituted now into (41b) to give

GTu* + AtGTM1Gép + Lp™*! + Q¥ = (51a)

The product GTM~!G can be approximated by a laplacian matrix, i.e.

GTM-'G =1, withf,-:/ %
5::

A semi-implicit algorithm can be derived as follows.

(V' N;)VN; d (51b)

Step 1 Compute the nodal fractional velocities u* explicitely from Eq.(49) with M = My
where subscript d denotes a diagonal matrix.

Step 2 Compute 0p from Eq.(51a) (using Eq.(51b)) as
0p = —(L + AtL) Y [GTa* + Q"% + Lp" (52)
Step 3 Compute the nodal velocities "+ explicitely from Eq.(50) with M = My

Step 4 Compute ¢"*! explicitely from Eq.(46) using M.

Step 5 Compute w1 explicitely from Eq.(47) M = M.

This algorithm has an additional step from the iterative algorithm of Section 6.1. The
advantage is that now Steps 1 and 2 can be fully linearized by choosing ) = 03 = 04 = 0. Also
the equation for the pressure variables in Step 2 has improved stabilization properties due to
the additional laplacian matrix L.

Details on the stability properties of the FIC formulation for incompressible fluid flow
problems can be found in Onate et al. (2002).
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16 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

0.3. Discretization of free surface wave equation

The solution in time of Eq.(39) can be written in terms of the nodal velocities computed from
the flow solution, as
hg, O

n+1 — A" — At ‘f’t+1,t _antli
ﬁ ﬁ Vi 8:1:1f “3 2 ailij_ (53)

Eq.(53) can now be discretized in space using the standard Galerkin method and solved
explicitely for the nodal wave heights at t"*t1. Typically the general algorithm will be as
follows:

1. Solve for the nodal velocities ! and the pressures p***! in the fluid domain using any
of the algorithms of Sections 6.1 and 6.2. When solving for the pressure equation impose

p"t = p, at the free surface I's.

2. Solve for the free surface elevation "1 (viz. Eq.(53)).

3. Compute the new position of the mesh nodes in the fluid domain at time ¢*+1.
Alternatively, regenerate a new mesh.

The mesh updating process can also include the free surface nodes, although this is not
strictly necessary. An hydrostatic adjustement can be implemented once the new free surface
elevation is computed simply by imposing the pressure at the nodes on the reference surface
as

P =pa+plglAB with AB =g — gt (54)

Eq.(54) takes into account the changes in the free surface without the need of updating the
reference surface nodes. A higher accuracy in the flow solution can be obtained by updating
these nodes after a number of time steps.

7. FLUID-SHIP INTERACTION

The algorithms of previous section can be extended to account for the ship motion due to the
sea forces. Here the ship hull structure can be modelled as a rigid solid defined by the three
translations and the three rotations of its center of gravity. Alternatively, the full deformation
of the ship structure can be computed by modelling the actual stiffness of the hull, the decks
and the different structural members. Indeed, the former option usually suffices for the hull
shape optimization.

In both cases the computation of the ship motion involves solving the dynamic equations of
the ship structure written as

M.d + K, d = fox (55)

where d and d are the displacement and acceleration vectors of the nodes discretizing the ship
structure, respectively, M and K¢ are the mass and stiffness matrices of the structure and fo.
is the vector of external nodal forces accounting for the fluid flow loads induced by the pressure
and the viscous stresses. Clearly the main driving forces for the motion of the ship is the fluid
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pressure which acts in the form of a surface traction. Indeed Eq.(55) can be augmented with
an appropriate damping term. The form of all the relevant matrices and vectors can be found
in standard books on FEM for structural analysis (Zienkiewicz and Taylor, Vol 2 2000).

Solution of Eq.(55) in time can be performed using implicit or fully explicit time integration
algorithms. In both cases the values of the nodal displacements, the velocities and the
accelerations at time t"*! are found.

A typical coupled fluid-ship-structure solution in time using, for instance, the semi-implicit
fractional step method of Section 2.2 involves the following steps.

Step 1 Solve for the fractional velocities * using Eq.(49). Here use of a = 1 is recommended.
Step 2 Compute 6p from Eq.(51a) solving a simultaneous system of equations.

Step 3 Compute explicitely the nodal velocities u"*! from Eq.(50) with a diagonal mass
matrix.

Step 4 Compute explicitely the projected convective variables ¢t from Eq.(45) using Mg.

Step 5 Compute explicitely the projected pressure gradients 7"+ from Eq.(47) using M.

" - . . =ndl
Step 6 Compute explicitely the new position of the free surface elevation ﬁ”+

from Fq.(53).
Step 7 Compute the movement of the ship by solving the dynamic equations of motion for

the ship structure under the sea forces induced by the pressures p"*t! and the viscous stresses
S1ra—|~l '

Step 8 Update the position of the mesh nodes in the fluid domain at t"+1 by using the mesh
update algorithm described next. The updating process can also include the free surface nodes
at every time step, although this is not strictly necessary and the hydrostatic adjustment of
the pressure acting on the free surface (Section 6.3) can be used as an alternative.

A cheaper option is to update the position of the mesh nodes once the iterative process for
the fluid and solid variables has converged. Clearly the regeneration of the mesh is unavoidable
when the distorsion of the element exceeds a certain limit.

8. A SIMPLE ALGORITHM FOR UPDATING THE MESH NODES

Different techniques have been proposed for dealing with mesh updating in fluid-structure
interaction problems. The general aim of all methods is to prevent element distortion during
mesh deformation (Tezduyar, 2001; Tezduyar et al., 1992a, 1992b).

Chiandussi et al. (2000) have proposed a simple method for moving the mesh nodes based
on the iterative solution of a fictious linear elastic problem on the mesh domain. In order to
minimize the mesh deformation the “elastic” properties of each mesh element are appropiately
selected so that elements suffering greater movements are stiffer. A simple and effective
procedure is to select the Poisson’s ratio » = 0 and compute the “equivalent” Young modulus
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for each element by

B
o v B o 8
E:—"__z(]‘l—Eg—l“Eg) (56)
€
where £; are the principal strains, F is an arbitrary value of the Young modulus and ¢ is a
prescribed uniform strain field. F and € are constant for all the elements in the mesh.

The solution process includes the following two steps.

Step 1. Consider the FE mesh as a linear elastic solid with homogeneous material properties
characterized by a prescribed uniform strain field £, an arbitrary Young modulus E and v = 0.
Solve a linear elastic problem with imposed displacements at the mesh boundary defined by
the actual movement of the boundary nodes.

Step 2. Compute the principal strains in each element. Repeat the FE solution of the linear
elastic problem with prescribed boundary displacements using the values of F of Eq.(56).

The previous algorithm is able to treat the movement of the mesh due to changes in position
of fully submerged and semi-submerged bodies such as ships. However if the floating body
intersects the free surface, the changes in the analysis domain can be very important as
emersion or inmersion of significant parts of the body can occur within a time step. A possible
solution to this problem is to remesh the analysis domain. However, for most problems a
mapping of the moving surfaces linked to mesh updating algorithm described above can avoid
remeshing. The surface mapping technique used by the authors is based on transforming the
3D curved surfaces into reference planes (Figure 4). This makes it possible to compute within
each plane the local (in-plane) coordinates of the nodes for the final surface mesh accordingly
to the changes in the floating line. The final step is to transform back the local coordinates of
the surface mesh in the reference plane to the final curved configuration which incorporates
the new floating line (Garcia, 1999; Onate and Garcia, 2001).

9. MODELLING OF THE TRANSOM STERN FLOW

The transom stern causes a discontinuity in the domain and the solution of the free surface
equation close to this region is inconsistent with the convective nature of the equation. This
leads to instability of the wave height close to the transom region. This instability is found
experimentally for low speeds. The flow at a sufficient high speed is physically more stable
although it still can not be reproduced by standard numerical techniques (Reed et al., 1990).

A solution to this problem is to apply adequate free surface boundary conditions at the
transom boundary. The obvious condition is to fix both the free surface elevation  and its
derivative along the corresponding streamline to values given by the transom position and the
surface gradient. However, prescribing those values can influence the transition between the
transom flux and the lateral flux, resulting in unaccurate wave maps.

The method proposed in Garcia and Onate (2002) is to extend the free surface below the
ship. In this way the necessary Dirichlet boundary conditions imposed at the inflow domain
are enough to define a well posed problem. This method is valid both for the wetted and dry
transom cases and it can be also applied to ships with regular stern.

This scheme does not work for partially wetted transoms. This situation can occur for highly
unsteady flows where wake vortex induces the free surface deformation and the flow remains
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adhered to the transom. To favour the convergence of the free surface, an artificial viscosity
term is added to the free surface equation in the vecinity of the transom in these cases.

10. LAGRANGIAN FLOW FORMULATION

The lagrangian formulation is an effective (and relatively simple) procedure for modelling the
flow of fluid particles undergoing severe distorsions such as water jets, high amplitude waves,
braking waves, water splashing, filling of cavities, etc. Indeed the lagrangian formulation is very
suitable for treating ship hydrodynamic problems where the ship undergoes large motions. An
obvious “a priori” advantage of the lagrangian formulation is that both the ship and the fluid
motion are defined in the same frame of reference.

The lagrangian fluid flow equations are obtained by noting that the velocity of the mesh
nodes and that of the fluid particles are the same. Hence the relative velocities v; are zero in
Eq.(21) and the convective terms vanish in the momentum equations, while the rest of the
fluid flow equations remain unchanged.

The FEM algorithms for solving the lagrangian flow equations are very similar to those
for the ALE description presented earlier here. We will focus in the semi-implicit fractional
step algorithm of Section 6.2 (for 6 = 04 = 0 and « = 1) accounting also for fluid-structure
interaction effects.

Step 1 Compute explicitely a predicted value of the velocities u* as
a* =" - AtM; ' [Ka" — Gp™ — "] (57)

Note that the convective matrices A and K of Eq.(48)have been elliminated.
Step 2 Compute 0p from Eq.(52).

Step 3 Compute explicitely a”*! from Eq.(50) with M = M.
Step 4 Compute 71 explicitely from Eq.(46).

Step 5 Solve for the motion of the structure by integrating Eq.(55).
Step 6 Update the mesh nodes in a lagrangian manner as

xPH =P 4 @ AL (58)

i

Step 7 Generate a new mesh.

The mesh regeneration process can be effectively performed using the extended Delaunay
Tesselation described in Idelsohn et al. (2002a). This method allows the fast generation of
good quality meshes combining four node tetrahedra (or three node triangles in 2D) with non
standard polyedra such as pentahedra (or pentagons in 2D) where linear shape functions are
derived using non-Sibsonian interpolation rules. The mesh regeneration can take place after a
prescribed number of time steps, or when the nodal displacements induce significant element
distorsions.
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The identification of the free surface nodes in the lagrangian analysis can be made using the
Alpha Shape method. This is based on the search of all nodes which are on an empty Voronoi
sphere with a radius greater than a specified distance defined in terms of the discretization
size. For details see Edelsbrunner and Mucke (1994) and Idelsohn et al. (2002b,c).

The boundary conditions of prescribed velocities or pressures in the lagrangian formulation
are usually applied on a layer of nodes adjacent to the boundary. These nodes typically remain
fixed during the solution process. For details see Idelsohn et al. (2002b,c).

11. COMPUTATION OF THE CHARACTERISTIC LENGTHS

The evaluation of the stabilization parameters is a crucial issue in stabilized methods. Most
of existing methods use expressions which are direct extensions of the values obtained for the
simplest 1D case. It is also usual to accept the so called SUPG assumption, i.e. to admit that
vector h has the direction of the velocity field. This restriction leads to instabilities when sharp
layers transversal to the velocity direction are present. This deficiency is usually corrected by
adding a shock capturing or crosswind stabilization term (Hughes and Mallet, 1986; Codina,
1993). Indeed, in the FIC formulation the components of h introduce the necessary stabilization
along both the streamline and transversal directions to the flow.

Excellent results have been obtained in all problems solved using linear tetrahedra with the
value of the characteristic length vector defined by

h = hsz + he Igil (59)

where u = |u| and hs and h, are the “streamline” and “cross wind” contributions given by
hs = max(l‘?u) Ju (60)
he = 11151}{(1??{&)/]?151 i ges 1, (61)

where 1; are the vectors defining the element sides (ns = 6 for tetrahedra).
As for the free surface equation the following value of the characteristic length vector hg
has been taken

- VB

= Lk
hg = hs— + he=—
=" T v

(62)
The streamline parameter hs has been obtained by Eq.(60) using the value of the velocity
vector u over the 3 node triangles discretizing the free surface and n, = 3.
The cross wind parameter h. has been computed by

e = 111&}{[1??,6]];;—{[3' v P 1,208 (63)

The cross-wind terms in egs.(59) and (62) take into account the gradient of the solution in
the stabilization parameters. This is a standard assumption in shock-capturing stabilization
procedures.

A more consistent evaluation of h based on a diminishing residual technique can be found
in Oniate and Garcia (2001).
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12. TURBULENCE MODELLING

The detailed discussion on the treatment of turbulent effects in the flow equations falls outside
the scope of this chapter. Indeed any of the existing turbulence models is applicable.

In the examples presented next we have chosen a turbulence model based on the Reynolds
averaged Navier-Stokes equations where the deviatoric stresses are computed as sum of the
standard viscous contributions and the so called Reynold stresses. Here we have chosen the
Boussinesq assumption leading to a modification of the viscosity in the standard Navier-Stokes
equations as sum of the “physical” viscosity p and a turbulent viscosity pr.

One of the simplest and more effective choices for pp is the Smagorinski LES model giving

HT = C!he(gfijﬁij)uz (64)

where h® is the element size and C is a constant (C' ~ 0.01).

Many other options are possible such as the one and two equations turbulence models (i.e.
the k& model and the k — & and &k — w models) and the algebraic stress models. For further
details the reader is refered to specialized publications (Celik el al., 1982; Wilcox, 1994).

13. EXAMPLIS

The examples chosen show the applicability of the ALE and lagrangian formulations presented
to solve ship hydrodynamics problems. The fractional step algorithm of Section 6.2 with
01 = 03 = 04 = 0 and o = 1 has been used. The first ALE example is the flow past a
submerged NACA 0012 profile. The next ALE examples include the analysis of a Wigley hull,
a scale model of a commercial ship and two American Cup racing sail boats. Numerical results
obtained with linear tetrahedral meshes are compared with experimental data in all cases.

The last series of examples show applications of the Lagrangian formulation to simple
schematic 2D ship hydrodynamics situations.

13.1. Submerged NACA 0012 profile

A submerged NACAO0012 profile at @ = 5° angle of attack is studied using a 3D finite
element model. This configuration was tested experimentally by Duncan (1983) and modelled
numerically using the Euler equations by several authors (Hino et al., 1993; Lohner et al.,
1996; Idelsohn et al., 1999). The submerged depth of the airfoil is equal to the chord length
L.. The Froude number for all the cases tested was set to F'r = T/%T* = 0.5672 where U is the

incoming flow velocity at infinity.

The stationary free surface and the pressure distribution in the domain are shown in Figure
5. The non-dimensional wave heights compare well with the experimental results.

18.2. Wigley hull

We study here the well known Wigley Hull, given by the analytical formula y = 0.5B(1 —

422)(1 — 22/ D?) where B and D are the beam and the draft of the ship hull at still water.
The same configuration was tested experimentally (Noblesse and McCarthy, 1983; Wigley,

1983) and modelled numerically by several authors (Farmer et al., 1993; Storti et al., 1998;
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[delsohn et al., 1999; Lohner et al., 1999). We use an unstructured 3D finite element mesh
of 65434 linear tetrahedra, with a reference surface of 7800 triangles, partially represented in
Figure 6. A Smagorinsky turbulence model was chosen.

Three different viscous cases were studied for L = 6m, F,, = 0.316, . = 1072 K g/m.s. In the
first case the volume mesh was considered fixed, not allowing free surface nor ship movements.
Next, the volume mesh was updated due to free surface movement, while keeping the model
fixed. The third case corresponds to the analysis of a real free model including the mesh
updating due to free surface displacement and ship movement (sinkage and trim).

Table 1 shows the obtained total resistance coefficient in the three cases studied compared
with experimental data.

Experimental | Numerical
Test 1 5.2 10~° 1,910~
Test 2 5210~ 5.3 107"
Test 3 4.9 107" 5.1l 107"

Table I. Wigley Hull. Total resistance coeflicient values

Numerical values obtained for sinkage and trim were -0.1% and 0.035, respectively, while
experiments gave -0.15% and 0.04.

Figure 6a shows the pressure distribution obtained near the Wigley hull for the free model.
Some streamlines have also been plotted. The mesh deformation in this case is shown in Figure
Oa.

Comparison of the obtained body wave profile with experimental data for the free and fixed
models is shown in Figure 6b. Significant differences are found close to stern for the fixed
model. The free surface contours for the truly free ship motion are shown in Figure 6c.

13.3. KVLCC?2 hull model

The example is the analysis of the KVLCC2 benchmark model. Here a partially wetted
tramsom stern is expected due to the low Froude number of the test. Figure 7 shows the
NURBS geometry obtained from the Hydrodynamic Performance Research team of Korea
(KRISO). Numerical results are compared with the experimental data available in KRISO
(2000).

The smallest element size used was 0.001 m and the largest 0.50 m. The surface mesh chosen
is also shown in Figure 7. The 3D mesh included 550.000 tetrahedra. The tramsom stern flow
model described was used.

Test 1.- Wave pattern calculation. The main characteristics of the analysis are listed below:

o Length: 5.52 m, Beam (at water plane): 0.82 m, Draught: 0.18 m, Wetted Surface: 8.08m?.
e Velocity: 1.05 m/seg, Froude Number: 0.142.
e Viscosity: 0.00126 K g/mseg, Density: 1000K g/m?*, Reynolds number: 4.6310°.

The turbulence model chosen was the K model. Figures 8 and 9 show the wave profiles on
the hull and in a cut at y/L = 0.0964 obtained for Test 1, compared to experimental data.
The results are quantitatively good.
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Test 2.- Wake analysis at different planes. Several turbulence models were used (Smagorins-
ky, K and K — e model) in order to verify the quality of the results. Here, only the results from
the K — e model are shown. The velocity maps obtained even for the simplest Smagorinsky
model were qualitatively good. The main characteristics of this analysis are:

o Length: 2.76 m, Beam (at water plane): 0.41 m, Draught: 0.09 m, Wetted Surface: 2.02m?.
e Velocity: 25 m/seg.
e Viscosity: 3.05107° K g/mseg, Density: 1.01K ¢g/m?, Reynolds number: 4.63106.

Figures 10 and 11 present some results for Test 2. Figure 10 shows the contours of the
axial (X) component of the velocity on a plane at 2.71 m from the orthogonal aft. Figure 11
shows the map of the kinetic energy at this plane. Experimental results are also plotted for
comparison. Further results are reported in Garcia and Onate (2000).

18.4. American Cup Rioja de Espana Model

The Rioja de Espana boat representing Spain in the American Cup’s edition of 1995 was
analyzed. Figure 12 shows the geometry of the boat based on standard NURBS surfaces.
Numerical results are compared with an extrapolation of experimental data obtained in
CEHIPAR basin (Spain) using a 1/3.5 scale model. Resistance tests were performed with
the model free to sink and trim. Experimental data include drag, lift, sinkage, trim angles and
wave profiles at 4.27m (real scale) from symmetry plane. Every model was towed at equivalent
velocities of 10, 9, 8.5, 8.0, 7.5 and 7.0 knots.

Numerical analysis were carried out at real scale. Characteristics of unstructured grids of
four node linear tetrahedra used are shown in Table 2 together with the parameters of some
of the model studied.

Test Geometry Heel | Drift | Symmetry | # Elements | # nodes
[£0D0 Hull, bulb and keel 0" 0° Yes 700 000 175 000
[K15D2 | Hull, bulb, keel and rudder | 15° i No 1 500 000 380 000
[515D4 | Hull, bulb, keel and rudder | 15° 4° No 1 500 000 380 000
[525D2 | Hull, bulb, keel and rudder | 25° 2° No 1 500 000 380 000

Table II. Rioja de Espana. Analysis parameters.

All grids used were generated with the same quality criteria and using element sizes from
Smm to 2000 mm. Some details of the grid used in the EODO case are shown in Figures 13
and 14. A k — ¢ turbulence model in combination with an extended law of the wall was chosen
for the analysis.

A time step of 0.1 seconds was used and this sufficed to achieve a steady state solution in all
cases. Additional calculations were carried out with At = 0.025s and 0.01s, in order to verify
the influence of the time increment in the accuracy of the results. No significant influence was
detected for the selected results.

Figure 16 shows a comparison of simulated and experimental wave profiles. The origin of the
x axis has been taken at the fore perpendicular and the x+ sense is afore. In the non symmetric
case, the measurements were performed at the opposite side of the heeled board. The ratio
of maximum amplitudes of fluctuations (noise) and waves in the experimental measurements
varies from 4% to 12%.
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Figures 16 and 17 show pressure contours on the bulb and keel for different cases,
corresponding to a velocity of 8 kn. Figures 18 to 19 show some of the wave patterns obtained
for a velocity of 9 kn. Figures 21 and 22 show some perspective views, including pressure and
velocity contours, streamlines and cuts, for some cases analyzed. Finally Figures 23 and 24
show resistance graphs where numerical results are compared with values extrapolated from
experimental data. For further details see Garefa et al. (2002).

13.5. American Cup BRAVO ESPANA Model

The finite element formulation presented was also applied to study the racing sail boat Bravo
Espatia participating in the 1999 edition of the American Cup. The mesh of linear tetrahedra
used is shown in Figure 25. Results presented in Figures 25-27 correspond to a non symmetrical
case including appendages. Good comparison between experimental data and numerical results
was again obtained Further details can be found in Garcia and Onate (2002).

13.6. Lagrangian flow examples

A number of simple problems have been designed and solved in order to test the capabilities
of the lagrangian flow formulation to solve ship hydrodynamics problem.

The first example is a very schematic representation of a ship when it is hit by a big wave
produced by the collapse of a water recipient (Fig. 28). The ship cannot move and initially
the free surface is horizontal. Fixed nodes represent the ship as well as the domain walls. The
example tests the suitability of the lagrangian flow formulation to solve contact problems with
curved walls correctly. Note the crash of the waves under the ship prow and the rebound of the
wave. It is also interesting to see the different contact situations with the internal and external
ship surfaces and the moving free surface at the bottom and back of the ship.

In the next example (Fig. 29) the same ship of the previous example is now moving
horizontally at a fixed velocity. All the nodes representing the ship have a prescribed velocity.
The free surface, which was initially horizontal, takes a correct position at the bottom of the
ship. Again, the correct contact problem is realistically solved in the curved prow.

The last example shows an initially stationary recipient with a floating piece of wood where a
wave is produced on the left side. The wood has been simulated by a liquid of higher viscosity.
The wave intercepts the wood piece producing a breaking wave and displacing the floating
wood as shown in Figure 30.

Further examples of the lagrangian flow formulation can be found in Idelsohn et al. (2002a,b).

14. CONCLUDING REMARKS

An overview of different finite element schemes for solving ship hydrodynamics problems has
been presented. The necessary stabilization in the numerical computation has been provided
by the finite calculus formulation of the fluid flow equations accounting for surface wave effects.

Stabilized finite algorithms for solving a variety of ship hydrodynamics situations using
ALE and fully lagrangian descriptions have been presented. Both monolithic and fractional
step algorithms have been derived. The interaction of the motion of the ship structure with
the fluid equations can be accounted for in a straight forward manner within the general
flow solution schemes. The ALE formulation is particularly adequate for ship hydrodynamics
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problems involving free surface waves of moderate amplitude. The lagrangian description allows
to solve in an effective manner ship hydrodynamics problems involving large motions of the
free surface and complex fluid-structure interaction situations.
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Figure 6. Wigley hull. a) Pressure distribution and mesh deformation of the wigley hull (free model).
b) Numerical and experimental body wave profiles. c¢) Free surface contours for the truly free ship
motion
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Figure 7. KVLCC2 model. Geometrical definition based on NURBS surfaces and surface mesh used
in the analysis
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Figure 8. KVLCC2 model. Wave profile on the hull. Thick line shows numerical results
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Figure 9. KVLCC2 model. Wave profile on a cut at y/L=0.0964. Thick line shows numerical results
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Figure 10. KVLCC2 model. Map of the X component of the velocity on a plane at 2.71 m from the
orthogonal aft. Experimental data shown in the right
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Figure 11. KVLCC2 model. Map of the eddy kinetic energy (K) on a plane at 2.71 m from the
orthogonal aft. Experimental data shown in the right
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Figure 12. NURBS-based geometry used in the analysis of the Rioja de Espana America Cup boat
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Figure 13. Detail of the final (boundary) mesh used in the EODO case. The mesh has been adapted
taking into account sinkage, trim and free surface deformation
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Figure 15. Wave elevation profile for 10kn (left: E0DO0, right: E15D2)

Figure 16. EODO 8kn. Pressure contours on bulb
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Figure 17. E25D2 8kn. Pressure contours on bulb
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Figure 18. E15D2 9%kn Wave map
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Figure 19. E25D2 9%kn Wave map
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Figure 20, E15D2 7.5 kn. Pressure map on appendages and streamlines. Perspective view
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Figure 21. E15D4 7.5 kn. Velocity modulus contours. Perspective view
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Figure 22. E25D2 7.5 kn. Pressure contours on appendages and cuts. Perspective view
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Figure 23. EODO. Resistance graph. Comparison with results extrapolated from experimental data
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Figure 24, E15D4. Resistance graph. Comparison with results extrapolated from experimental data
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Figure 30. Floating solid hit by a wave
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