
A FINITE POINT METHOD FOR COMPRESSIBLE FLOW

Rainald Löhner, Carlos Sacco, Eugenio Oñate and Sergio Idelssohn

School of Computational Science and Informatics
M.S. 4C7, George Mason University

Fairfax, VA 22030-4444, USA

International Center for Numerical Methods in Engineering
Universidad Politécnica de Catalunya, Edificio C1

Campus Norte, Gran Capitan s/n
08034 Barcelona, Spain

ABSTRACT

A weighted least squares finite point method for compressible flow is formulated. Start-
ing from a global cloud of points, local clouds are constructed using a Delaunay tech-
nique with a series of tests for the quality of the resulting approximations. The approx-
imation factors for gradient and the Laplacian of the resulting local clouds are used to
derive an edge-based solver that works with approximate Riemann solvers. The results
obtained show accuracy comparable to equivalent mesh-based finite volume or finite
element techniques, making the present finite point method competitive.

Keywords: Finite Point Methods, Mesh Free Techniques, Compressible Flows, CFD

1. INTRODUCTION

Over the course of the last decade, a number of ‘gridless’ or ‘mesh free’ schemes have
appeared in the literature (see, e.g. [Nay72, Bat93, Bel94, Dua95, Oña96a, Liu96,
Oña98, Oña00] and the references cited therein). The interest in these schemes stems
from two main lines of reasoning:

- Even though mesh generation has progressed rapidly over the last decade, there
exists a perceived difficulty in generating volume filling grids for problems charac-
terized by complex geometries and/or complex physics. The generation of simply
points instead of grids is seen as an easier (and faster) task, and this was shown
in [Löh98];

- The construction of higher-order schemes on unstructured grids has encountered
severe obstacles in the areas of stability, operation count and storage. To date,
most production codes are still based on linear elements, or, equivalently, linear
reconstruction procedures. The use of gridless schemes should facilitate the con-
struction of higher order discretizations.

1



The numerical analysis process for ‘gridless’, ‘mesh free’, or ‘finite point’ schemes con-
sists in generating first a set of points, termed global cloud of points, within the analysis
domain. Then, for each of these points, a local cloud of neighbouring points is selected.
A local approximation is chosen for the sought unknowns in terms of the point values
using typically least squares procedures. Finally, the derivation of a discrete set of alge-
braic equations is obtained by substituting the point approximations into the governing
partial differential equations of the problem, expressed either in local differential or in
an averaged weighted residual form. The first option is a truly mesh-free approach as
no integration within internal subdomains is needed [Bat93, Dua95, Oña96a, Oña96b,
Oña98, Oña00a]. Conversely, in Galerkin-type procedures, a background grid for nu-
merical integration purposes is required [Nay72, Bel94, Liu96, Alt99, De00]. The name
‘Finite points method’ proposed in [Oña96a, Oña98, Oña00a] conbine a weighted least
square approximation of the unknowns over each local cloud whit a stabilized point
collocations procedure elliminating any numerical inestability. Examples of succesful
aplications of the finite point method have been shown in advection difution [Oña96a,
Oña96b, Oña00a], incompressible flows [Oña96a, Oña96b] and solid mechanics prob-
lems [Oña00b].

The present paper is organized as follows: Section 2 treats the basic weighted least
squares procedure for finite point methods. Section 3 describes the construction of
local clouds, and Section 4 the flow solver. Numerical examples are shown in Section 5,
and some conclusions are drawn in Section 6.

2. WEIGHTED LEAST SQUARES APPROXIMATIONS

In order to define the subsequent notation, we recall the basic weighted least squares
procedure. Throughout the paper, the Einstein summation convention will be em-
ployed, i.e. a sum is always performed over repeated indices. Let Ωi be the (local)
interpolation domain of a function u(x). Assume, furthermore, that Ωi contains n
points with coordinates xj ∈ Ωi. The unknown function u may be approximated
within Ωk by

u(x) ≈ uh(x) = pk(x)αk = p(x)T · αααααααααααααα , k = 1, ...,m , (2.1)

where αααααααααααααα = [α1, α2, ..., αm]T ] and the vector p(x) contains so-called ‘base interpolating
functions’ which are typically monomials. For 3-D problems we have used:

p2 = [1, x, y, z, x2, xy, xz, y2, yz, z2]T , (2.2a)

p2.5 = [1, x, y, z, x2, xy, xz, y2, yz, z2, x2y, x2z, xy2, xyz, xz2, y2z, yz2]T , (2.2b)

p3 = [1, x, y, z, x2, xy, xz, y2, yz, z2, x3, x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3]T ,
(2.2c)

Using the notation uj = u(xj), uh
j = uh(xj), pj = p(xj) and ϕij = ϕ(xj − xi), the

weighted least squares approximation (WLSQ) is obtained by minimizing

2



Ji = ϕij(uj − uh
j )2 = ϕij(uj − pT

j · αααααααααααααα)2 . j = 1, ..., n . (2.3)

The weighting function ϕ(xj − xi) takes a unit value in the vicinity of point i, i.e.
the point where the function (or its derivatives) are to be evaluated, and decreases as
one moves away from xi. A typical choice for ϕ(xj − xi) is the normalized Gaussian
function shown schematically for a 1-D case in Figure 1. We remark that n ≥ m is
always required in the sampling region. Moreover, for n = m the effect of weighting
vanishes, and the procedure reverts to standard finite element interpolation.

u,ϕ

ϕ (x − x )i ij

u  (x)h

xi i+1 i+2i−2 i−1

Ωi

Figure 1 WLSQ Procedure

The minimization of Ji with respect to αj yields

A · αααααααααααααα = B · u , (2.4)

i.e.

αααααααααααααα = C · u , C = A−1 · B , (2.5)

where

A =
n

∑

j=1

ϕij(pj ⊗ pT
j ) , (2.6)

B = [ϕ1ip1, ϕ2ip2, ..., ϕnipn] , (2.7)

3



If one evaluates all approximations based on ‘the local frame’ by shifting the coordinate
origin to the point i, any value or derivative can be obtained quickly from α. In
particular,

ui = α1 , (2.8)

∇ui = (α2, α3, α4) , (2.9)

and

∇2ui = 2 ∗ (α5 + α8 + α10) . (2.10)

These expressions can also be written as:

∂u

∂xl

∣

∣

∣

∣

i

= Dljuj , (2.11)

where Dlj = Cqj and q = l + 1, and

∇2ui = Lljuj , Llj = 2 ∗ (C5j + C8j + C10j) . (2.12)

3. GENERATION OF LOCAL CLOUDS

Any finite point method based on point collocation requires the construction of a local
cloud of points for every point in the domain. In the sequel, we describe one of the
many possible ways to construct these local clouds that has proven reliable. We first
give an outline of the technique, and then detail the algorithms employed to make this
process as fast as possible. The input required, i.e.

- A list of points with their respective coordinates;
- A list of triangles that define the outer boundaries of the domain;

is obtained using the automatic advancing front point generator described in [Löh98].
Given this information:

do: For each point ipoin:
Initialize the search region around ipoin;
while: not enough close points (30< nc <120):

Enlarge the search region;
Obtain the points in the search region;
Obtain the boundary faces in the region;
Remove, from the list of close faces, those that can not see ipoin;
Remove, from the list of close points, those whose ray ipoin:jpoin

intersects a face;
endwhile

Produce a Delauney grid with the local points;

4



Initialize the local cloud list with the first layer of nearest neighbours;

If the local cloud of points is acceptable: exit;

do: For all points, according to layers:
Add a further point to the local cloud;

If the local cloud of points is acceptable: exit;
enddo

As no proper local cloud was found: increase the search region;

enddo

With the surface triangulation: Correlate boundary points to apply boundary
conditions.

In the sequel, we describe in more detail the techniques and parameters used in each
one of these steps.

3.1 Search for Close Points

The search for close points is performed using an octree [Knu73, Sam84, Löh88]. Before
generating any local clouds, all points are placed in an octree. Whenever a search for
close points in the vicinity of ipoin is required, a small search region is placed around
ipoin. The octree is then queried for all points in this search region. This takes
approximately O(log8(Np)) operations. If the number of close points found is too
small, the search region is enlarged by 30%. Conversely, if too many points were found,
the search region is reduced by 15%. This procedure is repeated until an acceptable
number of close points has been found.

3.2 Search for Close Faces

The search for close faces is performed using a modified octree that stores faces. The
bounding box for each face is first determined. The faces are then placed in the octants
as if they were points, marking all octants covered. Given that the bounding boxes
of faces can overlap, it can happen that the bounding boxes of more than eight faces
can share the same point. In this case, the classic octree would divide ad infinitum.
Therefore, only two sub-subdivisions are allowed when introducing a new face to the
octree, and a provision is made to allow the storage of more than eight faces per octant.
Given the search region used for the points, all faces whose bounding boxes fall into this
region are retrieved from the modified octree. This takes approximately O(log8(Nf ))
operations. Repeated faces are then removed using hashing techniques [Knu73].

3.3 Filtering Close Faces

The search for close faces may yield some that are not related to the point whose local
cloud is to be found. A typical case is shown in Figure 2, where face A clearly does
not belong to the set of faces associated with ipoin. These faces can not ‘see’ ipoin,
and this observation can be used to remove them. One simply computes the normal
distance of ipoin to this face, and, if negative, removes the faces from the list.

5



i

ii

i

a) Obtain Search Region b) Retain Relevant Points and Faces

c) Remove Faces That Can Not See Point i d) Remove Points With Rays Crossing Faces 

Figure 2 Search for Close Points

3.4 Filtering Close Points

The search for close points can yield some that are on the ‘wrong’ side of a boundary, as
shown in Figure 2 for the tail of a wing. This situation will happen frequently for sharp
corners, multimaterial applications, and in general for complex geometries with coarse
clouds of points. The close faces obtained previously can be used to filter the points
further. The points on the ‘wrong’ side of a boundary will have to pierce through one
of the boundary faces. Therefore, any point jpoin whose ray jpoin:ipoin intersects
one of the close faces is removed from the list.

3.5 Delauney Meshing

Given a list of close points, there are many possible ways of obtaining local clouds.
Among them, the Delauney technique will produce a graph of nearest neighbours with
optimal properties for finite Elements and elliptic PDEs. It was therefore tempting to
use this same technique in the present context. We outline the main steps, and refer
the reader to George’s recent monogram [Geo98] for details.

6



Place a large tetrahedron (or box with 5/6 tetrahedra) around the point to be
gridded;

do: for all close points:

Find the element(s) xi falls into;

Obtain all elements whose circumsphere encompasses xi;

Remove from this list of elements all those that would not form a proper
element (volume, angles) with xi; this results in a properly constrained convex
hull;

Reconnect the outer faces of the convex hull with xi to form new elements;

enddo

Retain only the elements with all nodes belonging to the list of close points.

The basic procedure has been sketched in Figure 3.

a) Place Points in Macro−Triangles

i

i i

i

b) Delauney−Mesh of  Local Cloud

c) Retain Elements of Original Points d) Retain First Lay er of Nearest Neigh bours

Figure 3 Formation of Local Cloud

Given this tetrahedral mesh of close points, the graph of nearest neighbours can be
constructed.

3.6 Acceptable Cloud Criteria

The local clouds produced by the procedure outlined above will not always be useful
for finite point methods. The main reason is that a local cloud can yield a singular

7



approximation matrix A (Eqn.(2.5) above). For this reason, several tests are carried
out for every local cloud.
The first test is to see if the matrix A will be singular. The most obvious indication
that A is singular or not adequate will occur during inversion. However, we have found
cases where the local cloud is not suitable for FPMs although the inverse exists and
A · A−1 ≈ 1. We therefore also test for the largest (absolute) entry in A−1. If this
value exceeds a tolerance (e.g. 106), the local cloud is rejected.
The second test is to take a known function, and see how much the derivatives will
deviate from the exact values. For the first derivatives, we take u = x + y + z, which
should yield a gradient of ∇u = (1, 1, 1). For the second derivatives, we take u =
x2 + y2 + z2, which should yield a Laplacian of ∇2u = 6. If the values obtained via
local cloud approximation and the exact values deviate by more than 10−10, the local
cloud is rejected.

3.7 Approximation Order of Local Cloud

From eqns.(2.2a-c) one can infer that the smallest number of points in the local cloud
required to achieve a quadratic function, a ‘serendipity cubic’ and a cubic function is
10, 17 and 20 respectively. A considerable percentage of the local clouds obtained from
the first layer of Delauney-neighbours will allow for these higher order approximations.
Therefore, a test is carried out as before for the A-matrices and the derivatives of a
known function. If these tests yield a better result than the quadratic approximation,
the higher-order approximation is retained.

4. FLOW SOLVER

In order to set the notation, we recall the compressible Navier-Stokes equations:

u,t + ∇ ·F = u,t + ∇ · (Fa − Fv) = 0 , (4.1)

where

u =











ρ

ρvi

ρe











, Fa
j =











ρvj

ρvivj + pδij

vj(ρe + p)











, Fv
j =











0

σij

vlσlj + kT,j











. (4.2)

Here ρ, p, e, T, k, vi denote the density, pressure, specific total energy, temperature,
conductivity and fluid velocity in direction xi respectively. This set of equations is
closed by providing an equation of state, e.g. for a polytropic gas:

p = (γ − 1)ρ[e −
1

2
vjvj ] , T = cv [e −

1

2
vjvj ] , (4.3a, b)

where γ, cv are the ratio of specific heats and the specific heat at constant volume
respectively. Furthermore, the relationship between the stress-tensor σij and the de-
formation rate must be supplied. For water and almost all gases, Newton’s hypothesis:

8



σij = µ(
∂vi

∂xj

+
∂vj

∂xi

) + λ
∂vk

∂xk

δij , (4.4)

complemented with Stokes Hypothesis:

λ = −
2µ

3
. (4.5)

is an excellent approximation. The compressible Euler equations are obtained by ne-
glecting the viscous fluxes, i.e. setting Fv = 0.

From the expressions (2.9, 2.11) of the WLSQ approximation procedure, we obtain the
following expression for the divergence of the flux function F:

∇ · F|i ≈ ri = DljFl
j , (4.6)

with Dlj defined by eqn(2.11). This expression can be ‘symmetrized’ by setting:

ri = Dlj
∣

∣

j 6=i
(Fl

j + Fl
i) + (Dli − Dlj

∣

∣

j 6=i
)Fl

i , (4.7)

or:

ri = Dlj
∣

∣

j 6=i
(Fl

j + Fl
i) + (D̃iiFl

i , (4.8)

For perfectly centered clouds and symmetric weighting functions ϕ, the D̃ii-term has
to vanish. Let us consider the first term in more detail. The inner product over the
dimensions l may be written in compact form as

ri = dijFij = dij(fi + fj) , (4.9)

where the fi are the ‘fluxes along edges’ or ‘fluxes along directions’, obtained from the
scalar product

fi = Sij
l Fl

i , Sij
l =

Dij
l

dij
, dij =

√

Dij
l Dij

l . (4.10)

This expression is reminiscent of edge-based or face-based finite Volume and finite
Element solvers, and is equivalent to the Galerkin weighted residual method, which
has central difference character. This is known to be an unstable discretization, and
must be augmented by stabilizing terms. This can be achieved either by adding directly
second-, fourth- or higher-order damping [Mav91], or by modifying the flux function
according to the local physics [Lee74, Roe81, Whi89, Luo93 ,Luo94]. The second route
seems attractive in the present context, as it does not require any intrinsic measure of
length. We have implemented both flux-vector and flux-difference splitting schemes for
the flux functions. In particular, the vanLeer, Roe and AUSM+ schemes were tested.

9



All of them gave acceptable results for a large class of problems. A brief desription of
these schemes is given here for completeness.

4.1 vanLeer Solver

The approximate Riemann solver of vanLeer represents one of the first modern high
resolution schemes. Even though deficient in its standard form for Navier-Stokes cal-
culations, it yields excellent results for the Euler equations, particularly for high Mach-
number flows. The key idea is to separate the ‘fluxes along an edge’ according to their
upwind character, i.e.

Fij = f+(ui) + f−(uj) (4.11)

where, in 1-D,

f
+

− =































f
+

−

f
+

−

[

(γ − 1)v
+

−
2c

]

/γ

f
+

−

[

(γ − 1)v
+

−
2c

]2

/2(γ2 − 1)































, f
+

− =
+

−
ρc

[

1

2
(M

+

−
1)

]2

,

c =

√

γp

ρ
, M =

v

c
. (4.12)

4.2 Roe Solver

By far the most popular of the approximate Riemann solvers based on flux-difference
splitting is the one derived by Roe (1981). The first order flux for this solver is of the
form:

Fij = fi + fj − |Aij |(ui − uj) (4.13)

where |Aij | denotes the Roe matrix evaluated in the direction Dij .

4.3 Higher Order Schemes

In order to achieve a scheme of order higher than one, the amount of dissipation must
be reduced. This implies reducing the magnitude of the difference ui−uj by ‘guessing’
a smaller difference of the unknowns at the location where the approximate Riemann
flux is evaluated (i.e. the middle of the edge). The assumption is made that the
function behaves smoothly in the vicinity of the edge. This allows the construction or
‘reconstruction’ of alternate values for the unknowns at the middle of the edge, denoted
by u−

j ,u+

i , leading, e.g. for the Roe-solver, to a flux function of the form

Fij = f+ + f−− | A(u+

i ,u−
j ) | (u−

j − u+

i ) , (4.14)

10



where

f+ = f(u+

i ), f− = f(u−
j ) . (4.15)

The upwind-biased interpolations for u+

i and u−
j are defined by

u+

i = ui +
1

4

[

(1 − k)∆−
i + (1 + k)(uj − ui)

]

, (4.16a)

u−
j = uj −

1

4

[

(1 − k)∆+

j + (1 + k)(uj − ui)
]

, (4.16b)

where the forward and backward difference operators are given by

∆−
i = ui − ui−1 = 2lji · ∇ui − (uj − ui) , (4.17a)

∆+

j = uj+1 − uj = 2lji · ∇uj − (uj − ui) , (4.17b)

and lji denotes the edge difference vector lji = xj −xi. The parameter k can be chosen
to control the degree of approximation. Setting k 6= 1/3 results in a second order scheme
(Hirsch (1991)) while k = 1/3 leads to a third order scheme. The additional information
required for ui+1,uj+1 can be obtained by evaluation of gradients (Whitaker (1989),
Luo (1993, 1994)), as shown in Figure 4.

i j j+1i−1 ij

u

k lh

i

j

uj

ui

Figure 4 Higher Order Approximations

4.4 Limiting

The inescapable fact stated in Godunov’s theorem that no linear scheme of order higher
than one is free of oscillations implies that with these higher order extensions, some form
of limiting will be required. The flux limiter modifies the upwind-biased interpolations
ui,uj , replacing them by

u+

i = ui +
si

4

[

(1 − ksi)∆
−
i + (1 + ksi)(uj − ui)

]

, (4.18a)

11



u−
j = uj −

sj

4

[

(1 − ksj)∆
+

j + (1 + ksj)(uj − ui)
]

, (4.18b)

where s is the flux limiter. For s = 0, 1, the first and high order schemes are recovered
respectively. A number of limiters have been proposed in the literature, and this
area is still a matter of active research (see Sweby (1984) for a review). We include
the van Albada limiter here, one of the most popular ones. This limiter acts in a
continuously differentiable manner and is defined by

si = max

{

0,
2∆−

i (uj − ui) + ε

(∆−
i )2 + (uj − ui)2 + ε

}

, (4.19a)

sj = max

{

0,
2∆+

j (uj − ui) + ε

(∆+

j )2 + (uj − ui)2 + ε

}

, (4.19b)

where ε is a very small number to prevent division by zero in smooth regions of the
flow. For systems of PDEs one can consider limiting on conservative variables, primitive
variables, and characteristic variables. Using limiters on characteristic variables seems
to give the best results, but due to the lengthy algebra this option is very costly. For
this reason, primitive variables are more often used for practical calculations as they
provide a better accuracy vs. CPU ratio.

5. NUMERICAL EXAMPLES

The proposed methodology was coded and run on a number of test cases. The visu-
alization of results from finite point methods present a number of interesting problem
in itself. Given that the unknowns at any given point and its interpolating value are
not the same, any mesh representation would yield discontinuities. Here, we present
the results obtained by coluring the points according to their values. Plane cuts and
iso-surfacs are obtained by searching the local clouds cut, and then interpolating to the
cut position.

5.1 Supersonic Flow Past a Wedge: A recurring question often asked about finite point
methods is whether they maintain conservation at the discrete level, a property con-
sidered vital for proper shock capturing. For this reason, supersonic flow at Ma = 3.0
past a 15o wedge was considered. The geometry, boundary conditions and discretiza-
tion information of the problem, together with the mach-number in a plane-cut are
shown in Figure 5.1.

12



nboun=   10,751
nface=   21,498
npoin=   54,911
nedge=1,039,242
navec=       18

Wedge: Ma=3.0

Figure 5.1 Wedge

The pressure on the surface is shown in Figure 5.2. One can clearly see the shock, which
is obtained at an angle of αs = 37.15o, in perfect correlation with analytical results.
For this case, the approximate Riemann solver of vanLeer was employed, together with
the vonAlbada limiter on conserved quantities. Note that the shock is captured across
2-3 points, which is similar to mesh-based finite volume or finite element methods.

13



Figure 5.2 Wedge

5.2 Ni-Bump: This classic test case was run to assess the ability of the finite point
method to simulate transonic flow. The geometry, boundary conditions and discretiza-
tion information of the problem, together with the sonic iso-surface are shown in Fig-
ure 6.1.

nboun=  4,449
nface=  8,894
npoin= 15,182
nedge=329,079
navec=     21

Ni−Bump: Ma=0.67

Figure 6.1 Ni-Bump

For this case, the approximate Riemann solver of Roe was employed, together with the
vonAlbada limiter on conserved quantities. The Mach-number and pressures in a cut
plane can be seen in Figure 6.2. A close-up of the Mach-number in the bump region is
shown in Figure 6.3.

14



Pressure

Mach−Number

Figure 6.2 Ni-Bump

Mach−Number

Figure 6.3 Ni-Bump

5.3 Sphere: The subsonic flow past a sphere provides as good test case at study the
intrinsic dissipation of schemes. The potential solution is completely symmetric, and

15



any spurious entropy creation will be reflected in the the numerical solution. The
geometry, boundary conditions and discretization information of the problem are shown
in Figure 7.1. A close-up of the surface discretization used is given in Figure 7.2.
The results, which were obtained with the approximate Riemann solver of Roe with
vonAlbada limiter on conserved quantities, are shown in Figures 7.3,7.4. A small
unsymmetry in the pressure can be seen. However, one should remark that the results
compare very well with similar mesh-based finite volume or finite element methods.

Sphere: Ma=0.3 nboun=   10,856
nface=   21,708
npoin=   56,424
nedge=1,474,878
navec=       26

Figure 7.1 Sphere

16



Figure 7.2 Sphere

Figure 7.3 Sphere

17



Figure 7.4 Sphere

6. CONCLUSIONS AND OUTLOOK

A weighted least squares finite point method for compressible flow has been developed.
Starting from a global cloud of points, local clouds are constructed using a Delaunay
technique with a series of tests for the quality of the resulting approximations. The
approximation factors for gradient and the Laplacian of the resulting local clouds are
used to derive an edge-based solver that works with approximate Riemann solvers. The
results obtained show accuracy comparable to equivalent mesh-based finite volume or
finite element techniques, making the present finite point method competitive.
Future efforts will center on:

- Improving efficiencies (cache-miss reduction, avoidance of duplicate information,
etc.);

- Higher-order schemes (full cubic recovery on the edges).

7. ACKNOWLEDGEMENTS

A considerable part of this work was carried out while the first author was visiting
the Centro Internacional de Métodos Numéricos en Ingenieŕia, Barcelona, Spain, in the
Summer of 2000. The support for this visit is gratefully acknowledged.

8. REFERENCES

[Atl99] S. N. Atluri, H. G. Kim and J. Y. Cho - A Critical assessment of the truly Meshless
Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE)
methods; Computational Mechanics 24, 348-372 (1999).

18



[Bat93] J. Batina - A Gridless Euler/Navier-Stokes Solution Algorithm for Complex Air-
craft Configurations; AIAA-93-0333 (1993).

[Bel94] T. Belytschko, Y. Lu and L. Gu - Element Free Galerkin Methods; Int. J. Num.

Meth. Eng. 37, 229-256 (1994).

[Dua95] C.A. Duarte and J.T. Oden - Hp Clouds - A Meshless Method to Solve Boundary-
Value Problems; TICAM-Rep. 95-05 (1995).

[De00] S. De and K. J. Bathe - The method of finite spheres; Computational Mechanics

25, 329-345 (2000).

[Geo98] P.L. George and H. Borouchaki - Delaunay Triangulation and Meshing; Editions
Hermes, Paris (1998).

[Knu73] D.N. Knuth - The Art of Computer Programming , Vols. 1-3; Addison-Wesley
(1973).

[Lee74] B. van Leer - Towards the Ultimate Conservative Scheme. II. Monotonicity and
Conservation Combined in a Second Order Scheme; J. Comp. Phys. 14, 361-370
(1974).

[Liu96] W.K. Liu, Y. Chen, S. Jun, J.S. Chen, T. Belytschko, C. Pan, R.A. Uras and C.T.
Chang - Overview and Applications of the Reproducing Kernel Particle Methods;
Archives Comp. Meth. Eng. 3(1), 3-80 (1996).

[Löh88] R. Löhner - Some Useful Data Structures for the Generation of Unstructured Grids;
Comm. Appl. Num. Meth. 4, 123-135 (1988).

[Löh97] R. Löhner - Automatic Unstructured Grid Generators; Finite Elements in Analysis

and Design 25, 111-134 (1997).

[Löh98] R. Löhner - An Advancing Point Grid Generation Technique; Comm. Num. Meth.

Eng. 14, 1097-1108 (1998).

[Luo93] H. Luo, H., J.D. Baum, R. Löhner and J. Cabello - Adaptive Edge-Based Fi-
nite Element Schemes for the Euler and Navier-Stokes Equations; AIAA-93-0336
(1993).

[Luo94] H. Luo, H., J.D. Baum and R. Löhner - Edge-Based Finite Element Scheme for
the Euler Equations; AIAA J. 32, 6, 1183-1190 (1994).

[Mav91] D. Mavriplis, D. - Three-Dimensional Unstructured Multigrid for the Euler Equa-
tions; AIAA-91-1549-CP (1991).

[Nay72] R.A. Nay and S. Utku - An Alternative for the Finite Element Method; Variational

Methods Eng. 1 (1972).

[Oña96a] E. Oñate, S. Idelsohn, O.C. Zienkiewicz and R.L. Taylor - A Finite Point Method
in Computational Mechanics. Applications to Convective Transport and Fluid
Flow; Int. J. Num. Meth. Eng. 39,3839-3866 (1996).

19



[Oña96b] E. Oñate, S. Idelsohn, O.C. Zienkiewicz, R.L. Taylor and C. Sacco - A Stabilized
Finite Point Method for Analysis of Fluid Mechanics Problems; Comp. Meth. Appl.

Mech. Eng. 139, 315-346 (1996).

[Oña98] E. Oñate and S. Idelsohn - A Mesh-Free Finite Point Method for Advective-
Diffusive Transport and Fluid Flow Problems; Computational Mechanics 21, 283-
292 (1998).

[Oña00a] E. Oñate C. Sacco and S. Idelsohn - A Finite Point Method for Incompressible
Flow Problems; Comput. Visual. Sci. 3, 67-75 (2000).

[Oña00b] E. Oñate F. Perazzo and S. Idelsohn - Análisis de problemas de mecánica com-
putacional mediante el método de puntos finitos estabilizados; VI Cong. nacional

de Mecanica aplicada y computacional Abril 17-19, Aveiro, Portugal (2000).

[Roe81] P.L. Roe - Approximate Riemann Solvers, Parameter Vectors and Difference
Schemes; J. Comp. Phys. 43, 357-372 (1981).

[Sam84] H. Samet - The Quadtree and Related Hierarchical Data Structures; Computing

Surveys 16, 2, 187-285 (1984).

[Swe84] P.K. Sweby, P.K. - High Resolution Schemes Using Flux Limiters for Hyperbolic
Conservation Laws; SIAM J. Num. Anal. 21, 995-1011 (1984).

[Whi89] D.L. Whitaker, D.L., B. Grossman and R. Löhner - Two-Dimensional Euler Com-
putations on a Triangular Mesh Using an Upwind, Finite-Volume Scheme; AIAA-
89-0365 (1989).

20


