PFEM bibliography
Author  Year  Title  Reference  Key words 

Aubry R, Idelsohn S, Oñate E  2005  Particle finite element method in fluidmechanics including thermal convection–diffusion  Comput Struct 83(17–18):1459–1475  Particle method, Lagrangian description, Coupled thermomechanical analysis,Thermal convection, Rayleigh–Bénard instability with free surface, Incompressible fluid flow 
Aubry R, Oñate E, Idelsohn S  2006  Fractional step like schemes for free surface problems with thermal coupling using the Lagrangian PFEM  Comput Mech 38(4–5):294– 09  Lagrangian description, Mixed incompressible element, Coupled thermo mechanical analysis, Pressure schur complement, Generalized stokes solve 
Bal A, Hoppe U, Dang T, Hackl K, Meschke G  2017  Hypoplastic particle finite element model for cutting toolsoil interaction simulations: numerical analysis and experimental validation  Undergr Space 3(1):61–71   Velocitybased finite elements formulation, Hypoplasticity, Large deformations, Particle finite elements, Cutting toolsoil interaction, Excavation experiments 
Becker P, Idelsohn S  2016  A multiresolution strategy for solving landslides using the particle finite element method  Acta Geotech 11(3):643–657 K  Landslides, Multiphase PFEM2 
Becker P, Idelsohn S, Oñate E  2015  A unified monolithic approach for multifluid flows and fluid–structure interaction using the particle finite element method with fixed mesh  Comput Mech 55(6):1091–1104  Multifluids, FSI, Fixed mesh, Lagrangian particles, Unified approach 
Bobach BJ, Boman R, Celentano D, Terrapon V, Ponthot JP  2021  Simulation of the Marangoni Effect and Phase Change Using the Particle Finite Element Method  Applied Sciences 11 (24), 11893  particle finite element method (PFEM) multiphysics simulation phase change welding additive manufacturing (AM) 
Bravo R, Ortiz P, Idelsohn S, Becker P  2019  Sediment transport problems by the particle finite element method (PFEM)  Comput Part Mech 1–11  Erodible beds, Sediment transport, Velocity and acceleration streamlines integration, Avalanches 
Cante J, Dávalos C, Hernández J, Oliver J, Jonsén P, Gustafsson G, Häggblad H  2014  PFEMbased modeling of industrial Granular flows  Comput Part Mech 1(1):47–70  Granular flow, PFEM, Numerical modeling, Silo discharge, Milling 
Carbonell JM, Monforte L, Ciantia MO, Arroyo M, Gens A  2022  Geotechnical particle finite element method for modeling of soilstructure interaction under large deformation conditions  Journal of Rock Mechanics and Geotechnical Engineering  Particle finite element method (PFEM), Structured soils, Nonlocal elastoplasticity, Contact domain method, Soil penetration problems 
Carbonell JM, Oñate E, Suarez B  2010  Modeling of ground excavation with the particle finiteelement method  J Eng Mech 136(4):455–463  Particle finiteelement method; Contact mechanics; Wear 
Carbonell JM, Oñate E, Suarez B  2013  Modelling of tunneling processes and cutting tool wear with the particle finite element method (PFEM)  Comput Mech 52(3):607–629  Particle finite element method, PFEM, Contact, Excavation, Tunneling, Tool wear 
Cerquaglia M, Deliége G, Boman R, Terrapon V, Ponthot J  2017  Freeslip boundary conditions for simulating freesurface incompressible flows through the particle finite element method  Int J Numer Methods Eng 110:921–946  fluids; incompressible flow; freesurface flow; particle finite element method; freeslip conditions 
Cerquaglia M, Thomas D, Boman R, Terrapon V, Ponthot J  2019  A fully partitioned Lagrangian framework for fsi problems characterized by free surfaces, large solid deformations and displacements, and strong addedmass effects  Comput Methods Appl Mech Eng 348:409–442  Fluid–structure interaction, Partitioned approaches, CUPyDO, Added mass, Freesurface flows, Particle finite element method 
Marti J, Ryzhakov P  2020 
An explicit–implicit finite element model for the numerical solution of incompressible Navier–Stokes equations on moving grids 
Computer Methods in Applied Mechanics and Engineering 350, 750765 
Incompressible Navier–Stokes, Accuracy, Particle Finite Element Method, Lagrangian, OpenMP, Benchmark, PFEM2 
2021 
A twodimensional numerical model for the sliding motion of liquid drops by the particle finite element method 
Physics of Fluids 33 (3), 032117 
Drops 

2020 
Improving accuracy of the moving grid particle finite element method via a scheme based on Strang splitting 
Computer Methods in Applied Mechanics and Engineering 366, 113212 
Incompressible Navier–Stokes; Freesurface flows; PFEM; Lagrangian; Strang splitting 

Cornejo A, Franci A, Zárate F, Oñate E  2021  A fully Lagrangian formulation for fluidstructure interaction problems with freesurface flows and fracturing solids  Computers & Structures, 250, 106532.  Fracture mechanics, Freesurface flow, Fluidstructure interaction, Discrete element method, Particle finite element method 
Cremonesi M, Ferrara L, Frangi A, Perego U  2010  Simulation of the flow of fresh cement suspensions by a Lagrangian finite element approach  J NonNewton Fluid Mech, 165(23–24):1555–1563  Fresh cement paste, Mortar, Lagrangian approach, NonNewtonian fluid, Free surface 
Cremonesi M, Ferri F, Perego U  2017  A basal slip model for Lagrangian finite element simulations of 3D landslides  Int J Numer Anal Methods Geomech 41:30–53  slip boundary conditions,landslide simulation,PFEM,Lagrangian approach 
Cremonesi M, Frangi A  2016  A Lagrangian finite element method for 3D compressible flow applications  Comput Methods Appl Mech Eng 311:374–392  Compressible flow, Lagrangian methods, Finite elements 
Cremonesi M, Frangi A, Perego U  2010  A Lagrangian finite element approach for the analysis of fluid–structure interaction problems  Int J Numer Methods Eng 84(5):610–630  particle methods,Lagrangian approaches,fluid–structure interaction 
Cremonesi M, Frangi A, Perego U  2011  A Lagrangian finite element approach for the simulation of waterwaves induced by landslides  Comput Struct 89(11–12):1086–1093  Lagrangian approach, NonNewtonian fluid, Freesurface flow, Landslidefluid interaction, Environmental science 
Cremonesi M, Meduri S, Perego U  2020  Lagrangian–Eulerian enforcement of nonhomogeneous boundary conditions in the particle finite element method  Comput Part Mech 7:41–56  PFEM, Slip, Simmetry, Inflow/outflow, Nonhomogeneous boundary conditions 
Cremonesi M, Meduri S, Perego U, Frangi A  2017  An explicit Lagrangian finite element method for freesurface weakly compressible flows  Comput Part Mech 4(3):357–369  Particle finite element method, Volume conservation, Alpha shape, Remeshing 
Della Vecchia G, Cremonesi M, Pisanò F  2019  On the rheological characterisation of liquefied sands through the dambreaking test  Int J Numer Anal Methods Geomech 43(7):1410–1425.  Bingham fluid, CFD, dam breaking, liquefied sands, PFEM, rheology 
Dávalos C, Cante J, Hernández J, Oliver J  2015  On the numerical modeling of granular material flows via the particle finite element method (PFEM)  Int J Solids Struct 71:99–125  Granular material, Finite elements, Particle finite elements 
Franci A  2020  Lagrangian finite element method with nodal integration for fluid–solid interaction  Comp Part Mech  Nodal integration, PFEM, FSI, Freesurface 
Franci A, Cremonesi M  2017  On the effect of standard PFEM remeshing on volume conservation in freesurface fluid flow problems  Comput Part Mech 4(3):331–343  Particle finite element method, Volume conservation, Alpha shape, Remeshing 
Franci A, Cremonesi M  2019  3D regularized (I)rheology for Granular flows simulation  J Comput Phys 378:257–277  mu(i)rheology Granular flows PFEM Regularized model 3D numerical simulation 
Franci A, Cremonesi M, Perego U, Crosta G, Oñate E  2020  3D simulation of Vajont disaster. Part 1: Numerical formulation and validation  Engineering Geology, 279, 105854  Rockslides, Rock avalanche, Vajont, PFEM, Impulse Wave, Multihazard, Numerical modeling, Collapse scenarios 
Franci A, Cremonesi M, Perego U, Oñate E, Crosta G  2020  3D simulation of Vajont disaster. Part 2: Multifailure scenarios  Engineering Geology, 279, 105856  Rockslides, Rock avalanche, Vajont, PFEM, Impulse Wave, Multihazard, Numerical modeling, Collapse scenarios 
Franci A, Cremonesi M, Perego U, Oñate E  2020  A Lagrangian nodal integration method for freesurface fluid flows  Comput Methods Appl Mech Eng 361:112816  Nodal integration, PFEM, Freesurface, NodalPFEM 
Franci A, Oñate E, Carbonell JM  2015  On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids  Int J Numer Methods Eng 102(3–4):257–277  quasiincompressible fluid; bulk modulus; mass conservation; illconditioning; finite calculus; finite element method; particle finite element method; partitioned scheme 
Franci A, Oñate E, Carbonell JM  2016  Unified Lagrangian formulation for solid and fluid mechanics and FSI problems  Comput Methods Appl Mech Eng 298:520–547  Unified formulation FSI, PFEM, Lagrangian formulation, Quasiincompressible materials 
Franci A, Oñate E, Carbonell JM, Chiumenti M  2017  PFEM formulation for thermocoupled FSI analysis: application to nuclear core melt accident  Comput Methods Appl Mech Eng 325:711–732  PFEM, Nuclear severe accident, FSI, Coupled problems 
Franci A, de Pouplana I, Casas G, Celigueta M, GonzálezUsúa J, Oñate E  2020  Pfemdem for particleladen flows with free surface  Comput Part Mech 1:1–20  PFEM, DEM, CFDDEM, Particulate flow, Particleladen flow, Freesurface 
Gimenez J, Ramajo D, Damián S, Nigro N, Idelsohn S  2017  An assessment of the potential of PFEM2 for solving long realtime industrial applications  Comput Part Mech 4(3):251–267  Particle methods, PFEM2, Large timesteps, Multiphase flows 
Gimenez JM, González LM  2015  An extended validation of the last generation of particle finite element method for free surface flows  J Comput Phys 284:186–205  PFEM, PFEM2, Free surface flows, Finite elements, Large timesteps, Enrichment 
Gimenez JM, Nigro NM, Idelsohn SR, Oñate E  2016  Surface tension problems solved with the particle finite element method using large timesteps  Comput Fluids 141:90–104  PFEM, Surface tension, Twophase flows, SCLSVOF 
Idelsohn S, Marti J, Limache A, Oñate E  2008  Unified Lagrangian formulation for elastic solids and incompressible fluids: applications to fluid–structure interaction problems via the PFEM  Comput Methods Appl Mech Eng 197(19–20):1762–1776  Lagrangian formulation, Fluid–structure, Particle finite element method 
Idelsohn S, Marti J, Oñate E  2008  Interaction between an elastic structure and freesurface flows: experimental versus numerical comparisons using the PFEM  Comput Mech 43(1):125–132  Fluid–Structure Interaction (FSI), Free surface flows, Fluid dynamics 
Idelsohn S, MierTorrecilla M, Oñate E  2009  Multifluid flows with the particle finite element method  Comput Methods Appl Mech Eng 198(33–36):2750–2767  Particle method, Finite elements, Heterogeneous fluids, Multifluids, Lagrange formulations, Multiphase flows Incompressible Navier–Stokes equations, Freesurfaces, Interfaces 
Idelsohn S, MierTorrecilla M, Marti J, Oñate E  2011  The particle finite element method for multifluid flows  In: Particlebased methods, pp 135–158  Direct Numerical Simulation Lagrangian Formulation Particle Method Flame Spread Internal Interface 
Idelsohn S, MierTorrecilla M, Nigro N, Oñate E  2010  On the analysis of heterogeneous fluids with jumps in the viscosity using a discontinuous pressure field  Comput Mech 46(1):115–124  Heterogeneous fluids, Multifluids, Multiphase flows, Incompressible Navier–Stokes equations, Freesurfaces, Interfaces 
Idelsohn S, Nigro N, Gimenez J, Rossi R, Marti J  2013  A fast and accurate method to solve the incompressible Navier–Stokes equations  Eng Comput 30(2):197–222  Fluids, Flow, Fluid dynamics, NavierStokes equations, Particle methods, Large timesteps, Incompressible fluid flows, Updated Lagrangian formulations, Real time CFD 
Idelsohn S, Nigro N, Limache A, Oñate E  2012  Large time step explicit integration method for solving problems with dominant convection  Comput Methods Appl Mech Eng 217– 220:168–185  Explicit time integration, Large timesteps, Incompressible fluid flows, Updated Lagrangian formulations, Real Time 
Idelsohn S, Oñate E  2010  The challenge of mass conservation in the solution of free surface flows with the fractional step method: problems and solutions  Commun Numer Methods Eng 26(10):1313–1330  freesurfaces; fractionalstep method; Navier–Stokes equations; mass conservation 
Idelsohn S, Oñate E, Pin FD  2004  The particle finite element method: a powerful tool to solve incompressible flows with freesurfaces and breaking waves  Int J Numer Methods Eng 61(7):964–989  particle methods; finite element methods; fractional step; lagrange formulations;incompressible Navier–Stokes equations; implicit time integration; fluid–structure interactions; freesurfaces; breaking waves 
Idelsohn S, Oñate E, Pin FD, Calvo N  2006  Fluid–structure interaction using the particle finite element method  Comput Methods Appl Mech Eng 195(17–18):2100–2113  Fluid–structure interaction, Particle methods, Lagrange formulations, Incompressible fluid flows, Meshless methods, Finite element method 
Idelsohn SR, Calvo N, Onate E  2003  Polyhedrization of an arbitrary 3D point set  Comput Methods Appl Mech Eng 192(22–23):2649–2667  Polyhedral mesh generation, Particles methods, Lagrangian formulations, Delaunay, Voronoi 
Idelsohn SR, Marti J, Becker P, Oñate E  2014  Analysis of multifluid flows with large time steps using the particle finite element method  Int J Numer Methods Fluids 75(9):621–644  particle methods; multi fl uids; heterogeneous fl uids; Lagrange formulations; multiphase fl ows; incompressible Navier – Stokes equations 
in YF, Yuan WH, Yin ZY, Cheng YM  2020  An edgebased strain smoothing particle finite element method for large deformation problems in geotechnical engineering  Int J Numer Anal Methods Geomech.  finite element method,footing,large deformation,slope failure,soil collapse,strain smoothing 
Kamran K, Rossi R, Oñate E, Idelsohn S  2013  A compressible Lagrangian framework for the simulation of the underwater implosion of large air bubbles  Comput Methods Appl Mech Eng 255:210–225  Lagrangian shock hydrodynamics,Variational multiscale stabilization,Two phase flow, PFEM,Bubble implosion 
Kempel F, Schartel B, Marti J, Butler K, Rossi R, Idelsohn S, Oñate E, Hofmann A  2015  Modelling the vertical ul 94 test: competition and collaboration between melt dripping, gasification and combustion  Fire Mater 39(6):570–584  melt dripping; UL 94; particle finite element method (PFEM); simulation; bisphenol A polycarbonate/acrylonitrile butadiene styrene (PC/ABS); polytetrafluoroethylene (PTFE); bisphenol A bis(diphenyl phosphate) (BDP) 
Krabbenhoft K, Lyamin AV, Huang J, da Silva M  2012  Granular contact dynamics using mathematical programming methods  Comput Geotech 43:165–176  Contact dynamics, Discrete element method (DEM), Mathematical programming, Optimization, Secondorder cone programming 
Larese A  2017  A Lagrangian PFEM approach for nonNewtonian viscoplastic materials  Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 33(3):307–317  Bingham plastics, Viscoplastic materials, Free surface, Lagrangian techniques Particle Finite Element Method, PFEM 
Larese A, Rossi R, Oñate E  2015  Simulation of the beginning of failure in rockfill dams caused by overtopping  In: Dam protection against overtopping and accidental leakage, pp 111–118  Dam overtopping, PFEM 
Larese A, Rossi R, Oñate E, Idelsohn S  2008  Validation of the particle finite element method (PFEM) for simulation of free surface flows  Int J Comput Aided Eng Softw 25(4):385–425  s Flow, Simulation, Fluid dynamics, Finite element analysis 
Larese A, Rossi R, Oñate E, Idelsohn S  2012  A coupled PFEMEulerian approach for the solution of porous FSI problems  Comput Mech 50(6):805–819  PFEM, Level set, Lagrangian–Eulerian coupling, Seepage, Nonlinear Darcy, Bingham plastics 
Larese A, Rossi R, Oñate E, Toledo M, Morán R, Campos H  2013  Numerical and experimental study of overtopping and failure of rockfill dams  Int J Geomech 15(4):04014060  Overtopping; Rockfill dams; Seepage; Slope failure 
Larsson S, Prieto J, Gustafsson G, Häggblad H, Jonsén P  2020  The particle finite element method for transient granular material flow: modelling and validation  Comput Part Mech.  Particle finite element method, Transient granular material flow, Constitutive modelling, Strainratedependent strength, Digital image correlation 
Marti J, Idelsohn S, Oñate E  2018  A finite element model for the simulation of the ul94 burning test  Fire Technol 54(6):1783–1805  Dripping, Melt flow, UL94 test, Particle finite element method (PFEM) 
Marti J, Ryzhakov P, Idelsohn S, Oñate E  2012  Combined EulerianPFEM approach for analysis of polymers in fire situations  Int J Numer Methods Eng 92(9):782–801  Eulerian–Lagrangian formulation; PFEM; particle methods; melting; dripping; polymers; radiation transport; discreteordinate method 
Meduri S, Cremonesi M, Frangi A, Perego U  2021  A Lagrangian fluid–structure interaction approach for the simulation of airbag deployment  Finite Elements in Analysis and Design 198, 103659  Airbag simulation, Fluid–structure interaction, PFEM, Lagrangian approach 
Meduri S, Cremonesi M, Perego U  2019  An efficient runtime mesh smoothing technique for 3D explicit Lagrangian freesurface fluid flow simulations  Int J Numer Methods Eng 117(4):430–452  Explicit dynamics, Lagrangian formulation, Mesh Smoothing, Particle Finite Element Method (PFEM) 
Meduri S, Cremonesi M, Perego U, Bettinotti O, Kurkchubasche A, Oancea V  2018  A partitioned fully explicit Lagrangian finite element method for highly nonlinear fluid–structure interaction problems  Int J Numer Methods Eng 113:43–64  Particle Finite Element Method (PFEM); Fluid Structure Interaction; Explicit Dynamics; Explicit Coupling; Lagrangian Formulation Cosimulation 
MierTorrecilla M, Idelsohn S, Oñate E  2011  Advances in the simulation of multifluid flows with the particle finite element method: application to bubble dynamics  Int J Numer Methods Fluids 67(11):1516–1539  Particle Finite Element Method (PFEM); Lagrangian simulation; multifluid flows; pressure segregation; surface tension; bubble dynamics 
Monforte L, Arroyo M, Carbonell J, Gens A  2017  Numerical simulation of undrained insertion problems in geotechnical engineering with the particle finite element method (PFEM)  Comput Geotech 82:144–156  Penetration test,Large strains,Particle Finite Element Method (PFEM),Cone penetration test 
Monforte L, Arroyo M, Carbonell JM, Gens A  2022  Largestrain analysis of undrained smooth tube sampling  Géotechnique 72 (1), 6177, 2, 2022  clays, numerical modelling, sampling 
Monforte L, Arroyo M, Carbonell J, Gens A  2018  Coupled effective stress analysis of insertion problems in geotechnics with the particle finite element method  Comput Geotech 101:114–129  Penetration test,Large strains,Particle Finite Element Method (PFEM), Cone penetration test 
Monforte L, Carbonell J, Arroyo M, Gens A  2017  Performance of mixed formulations for the particle finite element method in soil mechanics problems  Comput Part Mech 4(3):269–284  Particle finite element method (PFEM),Finite deformation, Mixed formulations, Soil mechanics 
Monforte L, Gens A, Arroyo M, Mánica M, Carbonell JM  2021  Analysis of cone penetration in brittle liquefiable soils  Computers and Geotechnics 134, 104123  CPTu test,Brittleness,Liquefaction,PFEM,Non locl formulation,CASM model 
Monforte L, Navas P, Carbonell J, Arroyo M, Gens A  2019  Loworder stabilized finite element for the full biot formulation in soil mechanics at finite strain  Int J Numer Anal Methods Geomech 43(7):1488–1515  consolidation, full Biot, loworder stabilization techniques, large strains, poromechanics 
Mulligan R, Franci A, Celigueta M, Take W  2020  Simulations of landslide wave generation and propagation using the particle finite element method  J Geophys Res Oceans 125:e2019JC015873  landslide, tsunami, wave, channel, laboratory, experiment 
Oñate E, Celigueta M, Idelsohn S  2006  Modeling bed erosion in free surface flows by the particle finite element method  Acta Geotech 1(4):237–252  Bed erosion, Free surface flows,Particle finite element method 
Oñate E, Celigueta M, Idelsohn S, Salazar F, Suarez B  2011  Possibilities of the particle finite element method for fluid–soil– structure interaction problems  Comput Mech 48(3):307–318  Particle finite element method,Fluid–soil–structure, Interaction 
Oñate E, Cornejo A, Zárate F, Kashiyama K, Franci A  2022  Combination of the finite element method and particlebased methods for predicting the failure of reinforced concrete structures under extreme water forces  Engineering Structures, 251B, 113510  Tsunami force, Finite element method, Particle finite element method, Discrete element method, Reinforced concrete, Fluid–structure interaction, Fracture mechanics 
Oñate E, Franci A, Carbonell JM  2014  Lagrangian formulation for finite element analysis of quasiincompressible fluids with reduced mass losses  Int J Numer Methods Fluids 74(10):699–731  Lagrangian formulation; finite element method; incompressible flows; quasiincompressible flows; reduced mass loss 
Oñate E, Franci A, Carbonell JM  2014  A particle finite element method for analysis of industrial forming processes  Comput Mech 54(1):85–107  Updated Lagrangian formulation,Finite element method, Incompressible fluids, Consistent tangent matrix, Mixed formulation,Stabilized method 
Oñate E, Franci A, Carbonell JM  2014  A particle finite element method (PFEM) for coupled thermal analysis of quasi and fully incompressible flows and fluid–structure interaction problems  Numer Simul Coupled Probl Eng 33:129–156  Mass Balance Equation Solid Domain Cylindrical Tank Particle Finite Element Method Linear Shape Function 
Oñate E, Idelsohn S, Celigueta M, Rossi R  2008  Advances in the particle finite element method for the analysis of fluidmultibody interaction and bed erosion in free surface flows  Comput Methods Appl Mech Eng 197(19–20):1777–1800  Lagrangian formulation, Fluid–structure interaction, Particle finite element method, Bed erosion, Free surface flows 
Oñate E, Idelsohn S, Pin FD, Aubry R  2004  The particle finite element method. an overview  Int J Comput Methods 1:267–307  particle methods; finite element methods; fractional step; lagrange formulations; incompressible Navier–Stokes equations; implicit time integration; fluid–structure interactions; freesurfaces; breaking waves 
Oñate E, Marti J, Rossi R, Idelsohn S  2017  Analysis of the melting, burning and flame spread of polymers with the particle finite element method  Comput Assist Methods Eng Sci 20(3):165–184  melting, dripping, polymers, particle finite element method (PFEM) 
Oñate E, Rojek J, Idelsohn S, Pin FD, Aubry R  2006  Advances in stabilized finite element and particle methods for bulk forming processes  Comput Methods Appl Mech Eng 195(48–49):6750–6777  Bulk forming processes, Stabilized finite element method, Particle method, Particle finite element method, Mixing processes 
Oñate E, Rossi R, Idelsohn S  2008  Prediction of melt flow and spread of thermoplastic objects with the particle finite element method  Fire Saf Sci 9:291–302  melt flow, thermoplastic objects, melt spread, particle finite element method 
Oñate E, Rossi R, Idelsohn S, Butler K  2010  Melting and spread of polymers in fire with the particle finite element method  Int J Numer Methods Eng 81(8):1046–1072  melting; dripping; polymers; particle finite element method 
Oliveira T, SánchezArcilla A, Gironella X  2012  Simulation of wave overtopping of maritime structures in a numerical wave flume  J Appl Math.  wave, overtopping 
Oliveira T, SánchezArcilla A, Gironella X, Madsen S  2017  On the generation of regular long waves in numerical wave flumes based on the particle finite element method  J Hydraul Res 55(4):538–556  Gravity waves; hydraulic models; particle finite element method; solitary waves; twodimensional numerical simulation 
Oliver J, Cante J, Weyler R, González C, Hernández J  2007  Particle finite element methods in solid mechanics problems  In: Oñate E, Owen R (eds) Computational plasticitySpringer, Berlin  Contact Interface Delaunay Triangulation Meshless Method Angular Distortion Penalty Strategy 
Oliver J, Hartmann S, Cante J, Weyler R, Hernández J  2009  A contact domain method for large deformation frictional contact problems. Part 1. Theoretical basis  Comput Methods Appl Mech Eng 198(33–36):2591–2606  Contact mechanics,Lagrange multipliers,Contact domain method,Interior penalty method,Nitsche method,Friction,Active set strategy 
Reinold J, Meschke G  2019  Particle finite element simulation of fresh cement paste: inspired by additive manufacturing techniques  Proc Appl Math Mech 19:e201900198  cement, additive manufacturing 
Reinold J, Meschke G  2021  A mixed u–p edgebased smoothed particle finite element formulation for viscous flow simulations  Computational Mechanics, 120  Smoothed particle finite element method, Edgebased gradient smoothing, 3Dconcrete rinting, Elastic–viscoplastic, Fresh concrete 
Rodríguez J, Carbonell J, Cante J, Oliver J  2017  Continuous chip formation in metal cutting processes using the particle finite element method (PFEM)  Int J Solids Struct 120:81–102  Particle Finite Element Method (PFEM), Metal cutting processes 
Rodríguez J, Jonsén P, Svoboda A  2019  Simulation of metal cutting using the particle finiteelement method and a physically based plasticity model  Comput Part Mech 4(1):35–51  Particle finiteelement method, Dislocation,density constitutive models, Metal cutting, Machining 
Rodriguez J, Carbonell J, Cante J, Oliver J  2016  The particle finite element method (PFEM) in thermomechanical problems  Int J Numer Methods Eng 107(9):733–785  particle finite element method (PFEM); thermoelastoplasticity; IMPLEX integration; remeshing and geometry update 
Ryzhakov P  2017  An axisymmetric PFEM formulation for bottle forming simulation  Comput Part Mech 4(1):3–12  Glass manufacturing, Numerical modelling, Lagrangian, Axisymmetric, Final blow 
Ryzhakov P, Garcia J, Oñate E  2016  Lagrangian finite element model for the 3D simulation of glass forming processes  Comput Struct 177:126–140  Bottle manufacturing, Numerical simulation, Benchmark, PFEM, Counter blow, Thermomechanical 
Ryzhakov P, Jarauta A, Secanell M, PonsPrats J  2017  On the application of the PFEM to droplet dynamics modeling in fuel cells  Comput Part Mech 4(3):285–295  PFEM, Embedded model, Fuel cells, Droplet,dynamics, Sessile droplet 
Ryzhakov P, Marti J, Idelsohn S, Oñate E  2017  Fast fluid–structure interaction simulations using a displacementbased finite element model equipped with an explicit streamline integration prediction  Comput Methods Appl Mech Eng 315:1080–1097  incompressible flows, NavierStokes, fluidstructure interaction,Particle Finite Element Method, Lagrangian, coupled problems 
Ryzhakov P, Oñate E, Rossi R, Idelsohn S  2012  Improving mass conservation in simulation of incompressible flows  Int J Numer Methods Eng 90(12):1435–1451  incompressible flows; pressure prediction; fractional step method; mass conservation;Lagrangian fluids; PFEM 
Ryzhakov P, Rossi R, Idelsohn S, Oñate E  2010  A monolithic Lagrangian approach for fluid–structure interaction problems  Comput Mech 46(6):883–899  Fluid–structure interaction, PFEM,Monolithic FSI, Lagrangian fluids, CFD 
Ryzhakov P, Rossi R, Viña A, Oñate E  2013  Modelling and simulation of the sealanding of aerial vehicles using the particle finite element method  Ocean Eng 66:92–100  Fluid–structure interaction, Water landing, UAV, PFEM, Wedge impact, Incompressible flows 
Salazar F, Irazabal J, Larese A, Oñate E  2016  Numerical modelling of landslidegenerated waves with the particle finite element method (PFEM) and a nonNewtonian flow model  Int J Numer Anal Methods Geomech 40:809–826  landslidegenerated waves; particle finite element method; nonNewtonian fluid; Lagrangian formulation 
Salazar F, SanMauro J, Celigueta M, Oñate E  2017  Air demand estimation in bottom outlets with the particle finite element method. Susqueda dam case study  Computat Part Mech 4(3):345–356  Particle finite element method, Two fluids,Bottom outlets, Air demand 
Salazar F, SanMauro J, Celigueta M, Oñate E  2020  Shockwaves in spillways with the particle finite element method  Comput Part Mech 7:87–99  Particle finite element method · Spillways · Shockwaves 
Tang B, Li J, Wang T  2009  Some improvements on free surface simulation by the particle finite element method  Int J Numer Methods Fluids 60(9):1032–1054  free surface; particle finite element method; adaptive time method; mass correction;pressure oscillations; leastsquare finite element method 
Yuan W, Wang B, Zhang W, Jiang Q, Feng X  2019  Development of an explicit smoothed particle finite element method for geotechnical applications  Comput Geotech 106:42–51  Column collapse, Explicit time integration, Footing penetration, Large deformation, Particle finite element method, Strain smoothing 
Zhang W, Yuan W, Dai B  2018  Smoothed particle finiteelement method for largedeformation problems in geomechanics  Int J Geomech 18(4):04018010  Smoothed particle FEM (SPFEM); Strain smoothing; Large deformation; Soil; Numerical 
Zhang X, Krabbenhoft K, Pedroso D, Lyamin A, Sheng D, da Silva MV, Wang D  2013  Particle finite element analysis of large deformation and granular flow problems  Comput Geotech 54:133–142  Particle Finite Element Method, PFEM, Large deformations 
Zhang X, Krabbenhoft K, Sheng D  2014  Particle finite element analysis of the granular column collapse problem  Granul Matter 16(4):609–619  Granular flow, PFEM, Axisymmetric problem, Mathematical programming, Large deformation 
Zhang X, Krabbenhoft K, Sheng D, Li W  2015  Numerical simulation of a flowlike landslide using the particle finite element method  Comput Mech 55(1):167–177  Particle methods, Landslide, Mathematical,programming, Contact 
Zhang X, Oñate E, Torres S, Bleyer J, Krabbenhoft K  2019  A unified Lagrangian formulation for solid and fluid dynamics and its possibility for modelling submarine landslides and their consequences  Comput Methods Appl Mech Eng 343:314–338  Submarine landslide; Unified FE formulation; Monolithic coupling; Fluidsolid 36 Interaction; Mathematical programming; PFEM 
Zhang X, Sheng D, Sheng D, Sloan S, Huang W  2016  Quasistatic collapse of twodimensional granular columns: insight from continuum modelling  Granul Matter 18(3):41  Particle finite element method, Granularmaterial, Quasistatic collapse, Large deformation 
Zhang X, Sheng D, Sloan S, Bleyer J  2017  Lagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticity  Int J Numer Methods Eng 112(8):963–989  Sensitive clays; Progressive failure; Elastoviscoplasticity; Strain softening, SOCP 
Zhang X, Sloan S, Oñate E  2018  Dynamic modelling of retrogressive landslides with emphasis on the role of clay sensitivity  Int J Numer Anal Methods Geomech 42(15):1806–1822  landslides, PFEM, retrogressive failure, sensitive clay, strain softening 
Zhang X, Wang L, Krabbenhoft K, Tinti S  2019  A case study and implication: particle finite element modelling of the 2010 Saint Jude sensitive clay landslide  Landslides 1:1–11  Sensitive clay, Retrogressive landslide, Progressivefailure, Strain softening, PFEM 
Zhu M, Elkhetali I, Scott M  2018  Validation of opensees for tsunami loading on bridge superstructures  J Bridge Eng 23(4):04018015  Simulation; Tsunamis; Wave loads; Finite elements; Particle methods 
Zhu M, Scott M  2014  Improved fractional step method for simulating fluid–structure interaction using the PFEM  Int J Numer Methods Eng 99(12):925–944  finite element methods; fluidstructure interaction; incompressible flow; Lagrangian;particle methods 
Zhu M, Scott MH  2014  Modeling fluid–structure interaction by the particle finite element method in opensees  Comput Struct 132:12–21  Fluid–structure interaction,Finite element analysis,Wave loading,OpenSees 
Zhu M, Scott MH  2015  Direct differentiation of the quasiincompressible fluid formulation of fluid–structure interaction using the PFEM  J Struct Eng 142(3):04015159  Particle finite element method, Fluidstructure interaction, Sensitivity analysis 
Zhu M, Scott MH  2017  Unified fractional step method for Lagrangian analysis of quasiincompressible fluid and nonlinear structure interaction using the PFEM  Int J Numer Methods Eng 109(9):1219–1236  Particle methods, Finite element methods, Fluidstructure interaction, Lagrangian 